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I am very grateful to Nathan Bowler for supplying a crucial little aperçu
that enables one to dispense with the axiom of choice for pairs in the proof
of one of the principal results (corollary 3). And also for helpful critical
comments (in particular spotting an embarrassingly large lacuna in the
proof of lemma 8) that have sharpened up the presentation greatly. By
rights he should be a co-author, but he has asserted his moral right to not
be identified as the (or even merely an) author of this work: his reward
will be in heavan . . . and all mistakes are mine.

There could be a section on the partial order discovered by Bowler. Indeed
it might even make a self-contained paper. It would contain Bowler’s
construction of permutations universal for various classes. Corollaries in
the form of existence of permutation models containing automorphisms.
Are binary disjoint unions binary LUBs? arbitrary LUBs? binary infs?
We also need to consider the partial order where the embedding function
is not injective. What do we lose? We need to say something about
how we really are doing this stuff on Symm(V ) not just any old infinite
symmetric group.

1 Introduction and Summary

Recently Zuhair Abdul Ghafoor Al-Johar [19] has directed our attention to a
syntactic constraint that is – on the face of it – tighter than NF’s device of strat-
ification1; in this little essay I consider a weakening, namely the generalisation
of stratification to stratification modulo n. So far the coterie of NFistes has
considered neither the possibility that the class of unstratified formulæ in the
language of set theory might admit any structure or gradation, nor the possi-
bility that failure-of-stratification (which perhaps we can call dysstratification)
might come in degrees, let alone the possibility that recognition of such degrees
might allow one to gain understanding and prove useful facts.

So stratification-mod-n opens a new vein, and the purpose of this note is to
advertise some nuggets and prepare the ground for future nuggets. It has to
be admitted that stratification-mod-n comes across as a highly artificial notion,
of interest only to those whose tastes have been primed by prior exposure to
the idea of stratification. However, as we shall see below, there are familiar
set-theoretic notions that are stratifiable-mod-n so the concept is not vacuous

1Though recent work of Nathan Bowler seems to establish (modulo some very minor set-
theoretic assumptions) that every stratifiable formula is equivalent to an acyclic formula. I do
not yet understand his proof, and he hasn’t published it. However I see no reason to doubt it.
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in practice. Further, there is a nontrivial result that makes essential use of this
notion, and we will see it in section 8 where we show (theorem 6) that – for NF
– duality for formulæ that are stratifiable-mod-2 is consistent relative to NF.
Although we do not believe that this result is best possible it is nevertheless
worth mentioning beco’s it is a significant improvement on what has so far been
known about duality. We still believe that duality for all formulæ is consistent
relative to NF. If we achieve that, stratification-mod-n can perhaps go back to
the shades whence it came. But perhaps by then it will have thrown useful light
on other ideas: we shall see.

2 Stratification

Even readers who are familiar with the idea of stratification should probably
read this section, since the treatment here is slightly more abstract than the
usual one, and is tailored to the developments that follow.

Let L = L(∈,=) be the language of set theory. We associate to every
formula ϕ ∈ L a digraph as follows. First we identify two variables ‘v’ and ‘v′’
if ϕ contains either of the atomic subformulæ ‘v = v′’ or ‘v′ = v’, and so on,
recursively. The vertices of the digraph are the equivalence classes of variables
in ϕ, and we place a directed edge from one vertex [v] to another vertex [v′] if
the atomic formula ‘v ∈ v′’ is a subformula of ϕ.

We call this graph the derived graph of ϕ, and write it Gϕ.

Our digraphs may have multiple edges in the restricted sense that there
could be a directed edge from v to v′ as well as a directed edge from v′ to v –
but only one in each direction. In a digraph we can have a special notion of a
path from v1 to v2 which allows us to “go the wrong way”. The length of such
a path is computed by adding 1 every time you follow an arrow the right way,
and subtracting 1 every time you go the wrong way.

For n ≤ ℵ0 the n-gon Gn is the unique connected digraph with precisely n
vertices where every vertex has indegree 1 and outdegree 1. It is a reduct of the
integers mod n, in that it has successor-mod-n but does not have addition or
multiplication. Despite this document bearing the title “stratification mod n”
arithmetic mod n plays essentially no rôle in what follows: if we are to sensibly
describe the circular stratification that is of interest to us here then it is the
n-gon Gn that we need – rather than Z/nZ – because the additive and multi-
plicative structures of Z/nZ do nothing for us when computing stratifications;
they are merely distractions.
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Unlike the integers-mod-n the n-gon Gn is not rigid: its automorphism group
is the cyclic group2 Cn. This matters because the set of stratifications-mod-n
of a formula ϕ are “closed under rotation” so that if there is one there are n.

There is a slight problem when n = 2, since digraphs cannot normally have
multiple edges, but we will tough this one out. And we still entertain hopes
that the ℵ0-gon will turn out to have a name already. For the moment let’s call
it the Z-gon.

The theory of n-gons is Horn, so the class of n-gons is closed under prod-
ucts and homomorphisms. In particular there is a homomorphism Gm →→ Gn

whenever n divides m, and we will exploit this fact, for example in the proof of
remark 1.

DEFINITION 1
A stratification graph is one where

(∀v1)(∀v2)(all paths from v1 to v2 are the same length).

A stratification-mod-n graph is one with a homomorphism onto the n-gon.
If we don’t want to mention the ‘n’ we will say that a graph that is stratified-
mod-n is circularly stratified.
Equivalently a graph is a stratification-mod-n graph iff, for any two vertices v1
and v2, all paths from v1 to v2 have the same length modulo n.

This definition doesn’t make a great deal of sense unless n ≥ 2, and we will
only use it in those settings.

DEFINITION 2
A formula is stratifiable iff its derived digraph is a stratification graph.

2Not Dn! Dana Scott points out that we can’t think of Gn as a mere polygon because
otherwise reflections would be automorphisms, and they aren’t, so we have to think of them
as polygons with directed edges.
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A stratification of a formula ϕ is a homomorphism from the
derived graph Gϕ of ϕ to the Z-gon;

A stratification-mod-n of a formula ϕ is a homomorphism from the
derived graph Gϕ of ϕ onto the n-gon.

A formula is stratifiable mod n iff its derived digraph is a
stratification-mod-n graph.

Again, if we do not want to mention the ‘n’ we will say of a formula that is
stratifiable-mod-n that it is circularly stratifiable.

Equivalently a stratification graph is one where, for all vertices v, all paths
from v to v are of length 0; a stratification-mod-n graph is one where, for all
vertices v and v′, all paths from v to v′ are of the same length mod n, or –
equivalently – for all vertices v, all paths from v to v are of length 0 mod n.

Observe that, for each n, the theory of stratification-mod-n graphs is a first-
order theory, indeed a universal theory.

A moiety is a set x such that |x| = |V | = |V \ x|.
A formula is (Crabbé)-elementary iff all its variables are related by the

ancestral of the relation “v and v′ occur in an atomic subformula together”.
We will often tacitly assume in what follows that all our formulæ are Crabbé-
elementary. Classically (though not constructively) every first-order formula is
equivalent to a boolean combination of elementary formulæ (and every closed
first-order formula is equivalent to a boolean combination of closed elementary
formulæ) so there is little cost in making this simplifying assumption. Without
it, some of the proofs below would become snarled up in annoying minor details,
so we plead for the reader’s indulgence.

REMARK 1
(i) A formula that can be stratified both mod-n and mod-m can be stratified

mod-LCM(m,n), and conversely.
(ii) A formula that is stratifiable-mod-n for arbitrarily large n is just plain

stratifiable, and a stratifiable formula is stratifiable-mod-n for all n.

Proof:
(i) Let ϕ be such a formula, and Gϕ its derived graph. ϕ is both stratifiable-

mod-n and stratifiable-mod-m which is to say that there are homomorphisms
f : Gϕ →→ Gn and g : Gϕ →→ Gm. Consider the graph G = {⟨f(v), g(v)⟩ : v ∈
Gϕ} with the obvious edge relation. We want to show that G is the LCM(m,n)-
gon. It is a graph of size at most n·m. There is a homomorphism λv.⟨f(v), g(v)⟩ :
Gϕ →→ G. Clearly every vertex in G has indegree 1 and outdegree 1, so it is
either a gon (if it is connected) or a union of gons (o/w). It is also clear that
if we apply the edge operation of the graph G n times to an ordered pair we
reach an ordered pair with the same first component, and if we apply the edge
operation m times to an ordered pair we reach an ordered pair with the same
second component, so if we apply the edge operation LCM(m,n) times to an
ordered pair we get back to that same ordered pair. And LCM(m,n) is the
smallest number of times we can apply the edge operation of G to secure this

5



effect. Therefore one of the connected components of G is the LCM(m,n)-gon,
so G is the LCM(m,n)-gon as long as it is connected.

To establish that it is – indeed – connected, we show that, for all vertices
v, v′ in G, there is a path from ⟨f(v), g(v)⟩ to ⟨f(v′), g(v′)⟩. Recall that Gϕ is a
stratification graph, so there is a well-defined distance, d, from v to v′. We can
now see that the distance from ⟨f(v), g(v)⟩ to ⟨f(v′), g(v′)⟩ is precisely d, so G
is connected.

For the converse, if ϕ is stratifiable-mod-LCM(m,n) then there is a homo-
morphism f : Gϕ →→ GLCM(m,n). We compose f with the homomorphism from
GLCM(m,n) onto Gn, thereby showing that ϕ is stratifiable-mod-n; similarly ϕ
is also stratifiable-mod-m.

(ii) If n > length(ϕ), then any stratification-mod-n of ϕ is (or, more correctly,
can be easily modified into) a stratification. For the other direction, observe
that, for every n, the Z-gon maps onto the n-gon Gn.

Assertion (ii) is literally true, but the reader should be warned not to mis-
read it as “any expression that, for each n, is equivalent to a formula that is
stratifiable-mod-n is equivalent to a stratified formula”; in section 3 we will see
counterexamples to this stronger assertion.

So the picture is: we only have to worry about stratifiability-mod-p for
p prime, and the various stratifiabilities-mod-p are the weakest conditions;
stratifiability-mod-m · n is a weaker condition than stratifiability-mod-n, and
all these are weaker than stratifiability tout court, which is the conjunction of
them all. The various stratifiabilities-mod-p with p prime all seem to be equally
weak, and they are all of minimal strength.

It may be worth noting that we cannot strengthen remark 1 by modifying
the asssumption on the formula to being merely equivalent both to a formula
that is stratifiable-mod-n and to a formula that is stratifiable-mod-m, because
of the Axiom of Counting. For every n, the Axiom of Counting is equivalent
(modulo NF) to a formula that is stratifiable mod n (we will see a proof of this
on p 22) so the analogue of remark 1 part (ii) would tell us that it is equivalent
to a stratifiable formula. However, it is known that it is not equivalent (modulo
NF) to any stratifiable formula. However, the Axiom of Counting is invariant,
so it might be possible to strengthen remark 1 by modifying the asssumption
on the formula to being merely equivalent (mod NF) both to a formula that is
stratifiable-mod-n and to a formula that is stratifiable-mod-m, if the conclusion
we want to infer is that the formula in question is merely invariant (modulo NF)
rather than actually stratifiable. Explain ‘in-

variant’?

2.1 Wrapping up miscellaneous definitions

Finally we wrap up some definitions and notations. Some of them are standard
in an NF context but a clear summary of them can do no harm.
• We write ‘RUSC(R)’ for the relation that some might write as ‘Rι’, namely
{⟨{x}, {y}⟩ : ⟨x, y⟩ ∈ R}. This R was binary, but we can define RUSC for
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relations of higher arity analogously. (The acronym is from [?] Relation Unit
Sub Class
• ι is the singleton function: ι(x) = {x}.

If ι↾x exists we say x is strongly cantorian.
• We write ‘Symm(X) for the full symmetric group on X.

In practice X is always V .
• j : Symm(V )→ Symm(V ) is defined so that j(σ)(x) = σ“x.
• Let us use lower-case fraktur characters for variables ranging over

conjugacy classes.
• If there is σ such that (jσ)−1 · τ · σ = π then we say τ and π are skew-

conjugate. Observe that this relation of skew-conjugacy is in fact an equiva-
lence relation. However the definition is not stratified and (in NF) the graph
of the relation is not a set and the equivalence classes are not sets. The skew-
conjugacy class of 11, the identity relation, is the class of internal automorphisms
and it should be easy to show that that need not be a set (though I have not
done so so far!)

The significance of this relation is that skew-conjugate permutations give
rise to isomorphic permutation models, as follows. Suppose τ and π are skew-
conjugate; then x ∈ τ(y) iff x ∈ (jσ)−1 · π · σ(y) iff σ(x) ∈ π · σ(y) which is as
much as to say that σ is an ∈-isomorphism between V τ and V π.

However skew-conjugacy doesn’t seem to be a congruence relation for very
much. Certainly not for the group-theoretic operations of product or inverse.

Every permutation is conjugate to its inverse, but examples can be found
of permutations not skew-conjugate to their inverses. For example, if τ is the
3-cycle (∅, {∅}, {{∅}}) then, in V τ , ∅ has become a Quine atom. However in

V τ−1

there will be no Quine atom (unless there was one in V ) so V τ−1

and V τ

are not isomorphic and τ is not skew-conjugate to its inverse.

Minding your ps and qs:

A partition P of a set X is a set of pairwise disjoint subsets of X s.t.
⋃

P = X.
The members of P are pieces (of P). I shall use the letter ‘P’ to range over
partitions.

‘Π’ will be used for products (in particular for products of (pairwise dis-
joint) transpositions, as in ‘Πx∈A(x, V \ x)’).
P(x) is the power set of x; B(x) = {y : x ∈ y}, the principal ultrafilter in

the powerset algebra P(V ) generated by {x};
P
(x) is {y : y ∩ x ̸= ∅}; to put it

another way it is thus dual to P, in the sense that
P
(x) = V \(P(V \x)) – which

is why we write it with an upside-down ‘P’. The fact that B(x) =
P
({x}) also

helps.

3 Motivating stratification-mod-n

It’s already quite a challenge to persuade set theorists that ordinary mere strati-
fication is a natural and well-motivated notion, tho’ they are open to persuasion
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and a case can be made: stratification sits very well with the endogenous strong
typing of mathematics. This can be seen for example, in the type-inspired
treatment of Burali-Forti (see [7] for example). Stratification-mod-n is much
less natural so motivating it is an altogether taller order; however there is a
story that can be told . . . .

3.1 The ∈-game

The ∈-game Gx in [13] is played by two players – I and II– and is initiated by
player I picking a member of x; thereafter the players move alternately, each
picking an element of the other’s previous choice until one of them attempts to
pick a member of the empty set and thereby loses. (That is the only way the
game can end). This subject matter has a naturally stratifiable-mod-2 flavour:
“Player I has a Winning strategy in Gx” and “Player II has a Winning strategy
in Gx” are both stratifiable-mod-2. The first is

(∀y)(
P
(P(y)) ⊆ y → x ∈ y)

which is as much as to say that x belongs to the ⊆-least fixed point for X 7→P
(P(X)). The second is

(∀y)(P(
P
(y)) ⊆ y → x ∈ y).

which is as much as to say that x belongs to the ⊆-least fixed point for X 7→
P(

P
(X))).

3.2 The Axiom of Counting

The axiom of counting is unstratified and not equivalent modulo NF to any
stratifiable formula but is, for each concrete n, equivalent modulo NF to a
formula that is stratifiable-mod-n. It’s also invariant. The same goes for
AxCount≤ (with a bit more work) since – for any concrete k – AxCount≤
can be written as ‘(∀n ∈ IN)(n ≤ T kn)’.

See also section 5.

4 Preservation Results for Stratification-mod-n

We start with a definition from [6].

DEFINITION 3 H(0, τ) =: 11V ; H(n+ 1, τ) =: (jnτ) ·H(n, τ).

This H notation will only ever be used with concrete naturals in first argu-
ment place.3

3so we shouldn’t use these purely concrete things as arguments; they should be hidden
in the syntax? The trouble with this policy is that we don’t want footnotesized things like
‘LCM(n,m)’.
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The effect of this notation is that, for any τ and any concrete n, (∀xy)(x ∈
τ(y) ←→ H(n, τ)(x) ∈ H(n + 1, τ)(y)). The intention behind the design of
this family of permutations derived from a single τ is to prove that, when ϕ is
stratifiable, ϕτ is equivalent to the result of replacing every occurrence of each
free variable ‘v’ with ‘H(nv, τ)(v)’ where nv is the concrete natural number
associated to the variable ‘v’ in a fixed stratification of ϕ. In the treatment
here, our stratifications are functions from vbls(ϕ) to the Z-gon or the n-gon
and do not take numbers as values. This can be remedied by composing a
stratification with a decoration-by-numbers (satisfying the obvious adjacency
condition) of the gon in question.

It might be worth minuting other facts about the family of permutations
engendered in this way from a permutation σ. For example H(n + m,σ) =
jm(H(n, σ)) ·H(m,σ). We don’t think there is a nice formula for H(n ·m,σ).
This is another manifestation of the fact that there is no natural arithmétic
structure on the set of type indices.

We have a theorem of Scott that stratifiable formulæ are preserved under Might be an
idea to cite itthe Rieger-Bernays permutation construction. This is an assertion of the form

(∀π)(F (π)→ (∀ϕ)(ϕ ∈ Γ→ (ϕπ ←→ ϕ))) (A)

or equivalently

(∀ϕ)(ϕ ∈ Γ→ (∀π)(F (π)→ (ϕπ ←→ ϕ)))

Assertions like (A) have converses of the form

(∀π)[(∀ϕ)(ϕ ∈ Γ→ (ϕπ ←→ ϕ))→ F (π)] (B)

and of the form

(∀ϕ)[(∀π)(F (π)→ (ϕπ ←→ ϕ))→ ϕ ∈ Γ] (C)

In this section we consider the project of proving assertions like these where
Γ is the set of formulæ that are stratifiable-mod-n. This will involve us in
identifying interesting properties of permutations to serve as the ‘F ’ in the
statement of the results

4.1 Instances of (A): (∀π)(F (π)→ (∀ϕ)(ϕ ∈ Γ→ (ϕπ ←→ ϕ)))

PROPOSITION 1 If ϕ is stratifiable-mod-n then it is preserved under all
Rieger-Bernays constructions using setlike permutations π s.t. H(n, π) = 11.

Proof:
The proof is a straightforward adaptation of the proof given by Henson.[?]

Theorem 1.2 and corollary 1,4.
In Henson’s treatment of the stratified case we fix a stratification s for ϕ.

[In that treatment stratifications take values in Z, not in the Z-gon.] Then,
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whenever we look at a subformula ‘x ∈ σ(y)’ in ϕσ we replace it by ‘H(n, σ)(x) ∈
H(n+1, σ)(y)’ where n is the type given to the variable ‘x’ by the stratification
s. We then observe that, for every variable, all occurrences of that variable
in the rewritten version of ϕσ are prefixed by a ‘H(n, σ)’ where n is the type
given to ‘x’ by the stratification s. Then we appeal to the fact that H(n, σ) is a
permutation, so we can reletter ‘H(n, σ)(x)’ as ‘x’, and this manipulation turns
ϕσ back into ϕ. The difference here, in this case, is that our subscripts are no
longer integers but are integers-mod-n, so that if i ≡ j (mod n) we must have
H(i, σ) = H(j, σ). This is equivalent to requiring that H(n, σ) be the identity.

4.2 Instances of (C): (∀ϕ)[(∀π)(F (π)→ (ϕπ ←→ ϕ))→ ϕ ∈ Γ]

There is a theorem, proved by Pétry and Forster ([9], [17], [18]) to the effect
that: if a formula is preserved under all Rieger-Bernays constructions using
setlike permutations then it is equivalent to a stratifiable formula.

Is there an analogous result to the effect that if a formula is preserved under
all Rieger-Bernays constructions using setlike permutations σ = H(n, σ) then it
is equivalent to a formula that is stratifiable-mod-n? Something like that ought
to be true, and it’s probably worth proving. Put up or shut

up

4.3 Instances of (B): (∀π)[(∀ϕ)(ϕ ∈ Γ→ (ϕπ ←→ ϕ))→ F (π)]

We start with a very easy example:

REMARK 2 If f : V → V (possibly a proper class) satisfies ϕ ←→ ϕf for all
stratifiable expressions then f must be a setlike permutation.

Setlike?
Proof: The axiom of extensionality is stratifiable, and any f that preserves it
must be onto. If f preserves an (n+1)-stratifiable formula then H(n, f) has to
be defined, so f has to be n-setlike.

One might expect that if π is a permutation that preserves all formulæ that
are stratifiable-mod-n then H(n, π) = 11. Something with that sort of flavour
should be true. The following is a straw in the wind.

REMARK 3 If H(n, σ) = 11 and H(k, σ) = 11 then H(HCF (n, k), σ) = 11.

Proof:
This is because, for every σ, the class of naturals n s.t. H(n, σ) = 11 is

closed under subtraction4 so we can, as it were, perform Euclid’s algorithm.
If H(n, σ) = 11 and H(k, σ) = 11, with n > k then reflect that H(n, σ) is
(jkH(n− k, σ)) ·H(k, σ). So jkH(n− k, σ) = H(n, σ) ·H(k, σ)−1 = 11 · 11 = 11.
But then H(n− k, σ) = 11 as well.

4prima facie we cannot expect this thing to be a set, since it is defined by an unstratified
expression.
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This doesn’t actually say that if σ both preserves formulæ that are
stratifiable-mod-n and preserves preserves formulæ that are stratifiable-mod-
k) then it preserves formulæ that are stratifiable-mod-HCF (n, k), but it has
that flavour.

One wants to say that a permutation that preserves all closed formulæ must
be an ∈-automorphism, but that doesn’t seem to be strictly true. At any rate
we don’t know how to prove it! Perhaps we can prove it by reasoning about
Ehrenfeucht games. What we do know how to prove is that, if V ≃ V σ, then
σ is skew-conjugate to the identity. The only permutation that preserves all
expressions (i.e., including open formulæ) is 11.

And, once we have identified predicates F that appear in theorems of flavour
(B), one wants to find a structure for the set of all permutations on V such that,
for each F , the class of permutations that are F is a substructure not a mere
subclass.

One thing one might hope to prove is that if ϕ is stratifiable-mod-n and is
logically equivalent to a formula that is stratifiable-mod-m then it is logically
equivalent to a formula that is stratifiable-mod-nm . . .

Thinking aloud about this. . . Editing needed
here!!If ϕ is equivalent to something that is stratifiable-mod-n then ϕ is equivalent

to (∀σ)(H(n, σ) = 11→ ϕσ). Now letτ be a permutation satisfying H(m, τ) = 11
and consider what happens in V τ . We have

(∀σ)(H(n, σ) = 11→ ϕσ)τ

This requires thought! “H(n, σ) = 11” can be thought of as a stratified
formula with n occurrences of ‘σ’, one at each of n distinct adjacent types,
namely

jn(σ) · jn−1(σ) · · · · jn−2(σ) · σ = 11

jn(H(k, τ)(σ)) · jn−1(H(k+1, τ)(σ)) · jn−2(H(k+2, τ)(σ)) · · · H(k+n, τ)(σ) = 11

where we have chosen k large enough so that H(k + 1, τ)(σ) is conjugated to
H(k, τ)(σ) by τ or ji(τ)

Now let’s think about what happens to ϕσ in the permutation model. This
is a problem well-known to your humble correspondent.

(x ∈ σ(y))τ becomes
H(k − 1, τ)(x) ∈ H(k + 1, τ)(σ)(H(k, τ)(y)) becomes
x ∈ (τk)

−1“τk+2(σ)(τk+1(y))
Need to continue rewriting. Editing needed

here!!Now we reletter ‘τk(σ)’ as ‘σ’ throughout.
jn(τk(σ)) · jn−1(τk+1(σ)) · ·jn−2(τk+2(σ)) · · · τk+n(σ) = 11 becomes

jn(σ) · jn−1(στ ) · ·jn−2(στ2 · · ·στn) = 11

which is

jn(σ) · jn−1τjn−1 · σ · jn−1τ−1) · ·jn−2(στ2) · · ·στn = 11

and we can do some cancellation. . .
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Definitely work to be done in section 4; not sure what was going on there(!)
Editing needed
here!!

5 Stratifiable-mod-n for every n

Given a theory T , there is a natural class consisting of those formulæ that,
for each n, are equivalent modulo T to a formula that is stratifiable-mod-n.
It is larger than the class of stratifiable formulæ and even (though this is less
obvious and of course depends on T ) contains formulæ that are not T -invariant.
Whether or not there are formulæ that are T -invariant but are not in our class
i do not know at this stage.

We will consider the following formulæ: stcan(x), WF(x),
⋃

x ⊆ x.
As we shall see, the axioms TCl and TCo of transitive closure and transitive

containment are both of this class.
We need an adjective for formulæ that, for each n are T -equivalent to a

formula that is stratifiable-mod-n!

DEFINITION 4
Let us say x is n-hemitransitive iff (∀y)(y ∈n+1 x→ y ∈ x).

Thus ordinary transitivity is 1-hemitransitivity. It is easy to see that n-
hemitransitivity is stratifiable-mod-n. It is also easy to see that transitivity
implies n-hemitransitivity for all n.

We know that the property of being a transitive set cannot be captured by
a stratifiable formula if NF is consistent (We know that the collection of transi-
tive sets is a proper class). Presumably the property of being n-hemitransitive
cannot be captured by any stratifiable formula either – and for the same reasons
– but I haven’t written out the details and i don’t think anyone else has either.

This is worth
provingLike transitivity, n-hemitransitivity is a Horn property, so there is a notion

of the n-hemitransitive closure of a set. Observe that if x is n-hemitransitive
then x∪

⋃
x∪ . . .

⋃n−1
x is transitive. So “There is an infinite transitive set” is,

for each n, equivalent to “There is an infinite n-hemitransitive set” . . . which of
course is stratifiable-mod-n. So it ought to be invariant. Suppose then that we
are working in a model of NF + AxCount≤ that contains Vω. Holmes’ clever
permutation will kill off Vω but it would leave behind an infinite transitive
wellfounded set. This doesn’t seem frightfully plausible. Tidy this up

Now we can see that the fact that if x is n-hemitransitive then
⋃<n

x is
transitive means that the axiom of transitive containment belongs to our special
class of formulæ.

Let TCln say that every set has an n-hemitransitive closure. Considera-
tion of

⋃<n
X shows that this implies TCl. For the other direction we will

need unstratified separation – annoyingly. TCon implies TCo; for the other
direction we do not need any unstratified separation, since any transitive set is
n-hemitransitive for any n.

12



Consider the sets – call them Xn for the nonce – where Xn is the least
fixpoint for x 7→ (Pℵ0)

n(x). Xn is the collection of sets of (finite) rank a
multiple of n. The assertion that Xn exists is stratifiable-mod-n, and Vω is of
course

⋃
n∈IN Xn. Thus the assertion that Vω exists is, for each n, equivalent

(over NF) to a formula that is stratifiable-mod-n. However, beco’s of Holmes’
clever permutation, it is not invariant!

This shows that, for T = NF + AxCount≤ at least, there are formulæ that,
for each n, are T -equivalent to something that is stratifiable-mod-n but are not
T -invariant. This doesn’t prove the same for NF, but the damage is done. Can More work

needed herewe do the same for NF? Clearly one wants to put Holmes’ clever permutation to
use. Let An be the assertion that there is an infinite n-hemitransitive subset of
Xn. Is An equivalent to the assertion that there is an infinite transitive subset
of Vω? I can only see the implication one way.

Probably the most important unstratified set-theoretic property is wellfound-
edness; it cannot be captured by any stratifiable formula, but can it be captured
by a formula that is stratifiable-mod-n? The following elementary observation
took us by surprise.

PROPOSITION 2 “x is wellfounded” is, for every n, equivalent to a formula
that is stratifiable-mod-n.

Proof:
In fact there is a parametrised family of such formulæ. The typical formula

is (∀y)(Pn(y) ⊆ y → x ∈ y), or WFn(x) for short. Notice that for n = 1
this gives the natural inductive definition of the class of wellfounded sets as the
least fixpoint for the power set function. WFn(x) is stratifiable-mod-n all right,
but is it equivalent to WF (x)? One direction is easy: Pn(y) ⊆ y is a weaker
condition than P(y) ⊆ y so if you belong to everything satisfying the weaker
condition you certainly belong to everything satisfying the stronger condition.
So WFn(x) implies WF(x). What about the other direction?

Let us say that a set y s.t. Pn(y) ⊆ y is n-fat5. Observe that if y is n-fat
so is P(y). Suppose now (with a view to performing an ∈-induction) that every
member of x belongs to every n-fat set. Then x is included in every n-fat set,
and so is a member of the power set of any n-fat set. So it is a member of every
n-fat set. Thus we can prove by ∈-induction that every wellfounded set is WFn.

“(∀y)(Pn(y) ⊆ y → x ∈ y)” seems to make sense only in NF-like contexts,
where separation fails and sets can be supersets of their own power sets. However
if we contrapose and replace ‘y’ by ‘V \ y’ we obtain

(∀y)(x ∈ y → (∃z ∈ y)(z ̸∈ Pn(V \ y))).

which make sense in a context with full separation. This development is analo-
gous to the way in which one obtains the concept of regular set from the natural

5This terminology is generalised from that in [2].
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inductive (least-fixpoint) definition of wellfounded set as (∀y)(P(y) ⊆ y → x ∈
y).

While we are about it (though perhaps this observation could be better
placed elsewhere) this shows that although stratified parameter-free ∈-induction Editing needed

here!!seems to be quite weak (it is open whether or not it proves anything more than
the nonexistence of a universal set) it is nevertheless the case that, for each n,
parameter-free ∈-induction for formulæ that are stratifiable-mod-n implies full
∈-induction.

5.1 Von Neumann Ordinals

So x being a wellfounded set can be captured, for any n, by a formula that is
stratifiable-mod-n. What about being a von Neumann ordinal?

Let’s stick to the case n = 2 for the moment. How about we say α is a von
Neumann ordinal iff it is a (wellfounded) n-hemitransitive set of n-hemitransitive
sets. How’s that for a definition of α being a von Neumann ordinal? α is a well-
founded hemitransitive set of hemitransitive sets (by analogy with a wellfounded
transitive set of transitive sets). The trouble with this is that {1, 3} satisfies
these criteria and is not an ordinal. We could add the further condition that
(∀xy ∈ α)(x ⊆ y ∨ y ⊆ x) (which is satisfied by von Neumann ordinals and
stratifiable-mod-2). Although that doesn’t dispose of {1, 3} it may hold the
key. Add the condition that α should belong to a hemitransitive set X satisfy-
ing (∀xy ∈ X)(x ⊆ y ∨ y ⊆ x). Observe that any hemitransitive set containing
{1, 3} must also contain 2, but 2 ̸⊆ {1, 3} and {1, 3} ̸⊆ 2.

Thus we have the following stratifiable-mod-2 definition of von Neumann
ordinal:

A set α is a von Neumann ordinal iff

(i) It is a wellfounded 2-hemitransitive set of 2-hemitransitive sets;

(ii) it belongs to a 2-hemitransitive set Y satisfying (∀xy ∈ Y )(x ⊆
y ∨ y ⊆ x).

Let us prove that this definition succeeds. First thing is to check that the
definition as (wellfounded) 2-hemitransitive set of 2-hemitransitive sets very
nearly powers an ∈-induction to show that every 2-hemitransitive set of 2-
hemitransitive sets is an ordinal. For the induction we want that every 2-
hemitransitive set of von Neumann ordinals is a von Neumann ordinal. If X
is a 2-hemitransitive set of ordinals then it contains any ordinal α such that
(∃β ∈ X)(α + 1 < β). Thus, if the set of ordinals in X has no largest element
than X is an ordinal as desired. If not, you can end up with things of the form
α ∪ {α + 2}. But any 2-hemitransitive set containing α ∪ {α + 2} will contain
α+ 1 and violate the ⊆-connexity condition.

To complete the proof for the case where α genuinely is an ordinal observe
that α∪{α} is a 2-hemitransitive set containing α and satisfying the ∈-connexity
condition.

14



Thus we have proved that

PROPOSITION 3 “x is a von Neumann ordinal” is equivalent to a formula
that is stratifiable-mod-2.

It remains to see whether or not one can give stratifiable-mod-n definitions
of von Neumann ordinal for other n. Even the mod-2 definition we have is
unsatisfactory in that the existential quantifier in clause (ii) prevents it being
∆0. Editing needed

here!!Here’s one that might work. x is a von Neumann ordinal if it is hereditarily
n-hemitransitive and (∀yz ∈ x)(z ∈

⋃n−1
y ∨ y ∈

⋃n−1
z).

6 Cylindrical Types

Stratifiable formulæ of the language of set theory are those from which one can
obtain wffs of TST by decorating the variables with indices indicating what
levels they belong to. There is an analogous move to be made with formulæ
that are stratifiable-mod-n: one can obtain from them formulæ that are wffs of
a typed theory of sets whose levels are indexed by n-gons. The more properties
we succeed in capturing with formulæ that are stratifiable-mod-n the greater
the expressive power of these typed theories of sets will be.

We should note that – in contrast to stratification tout court – stratification-
mod-n is not a useful notion from the point of view of comprehension principles
in a one-sorted language, since there are paradoxical objects that are the ex-
tension of formulæ that are stratifiable-mod-n; one thinks of the n-fold Russell
class {x : x ̸∈n x} – being the extension of the formula ‘x ̸∈n x’ (which is
stratifiable-mod-n) which is a paradoxical object even in mere first-order logic.
This is discussed in section 4 of [5] and also below). Also, as we have just shown
(proposition 2), wellfoundedness is capturable by a formula that is stratifiable-
mod-n for any n (and is therefore expressible in L(TCnT)). Of course there are
no known paradoxical objects defined by stratifiable set abstracts. Define TZT

somewhereSo that’s a dead end, but there is an obvious link from formulæ that are
stratifiable-mod-n to the theory TZT+ Ambn. The usual Specker equiconsis-
tency analysis leads one thence to type theories whose levels are indexed by the
n-gon. One could perhaps call these theories “type theory mod n”, and that is
what I shall do here; the proper name will be “TCnT” (“theory of n cylindrical
types”).

Let’s be formal about it.

DEFINITION 5
The language L(TCnT), where n is a concrete natural number, has two binary
relation symbols: ‘=’ and ‘∈’.
Its variables each have a sort index as an integral part, and those sort indices
are precisely the elements of the n-gon.
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∈

∈

∈

∈

∈

The axioms of TCnT are extensionality at each type, as with TZT, but there
is a subtlety with the set comprehension axioms. For obvious reasons one cannot
allow (∃x)(∀y)(y ∈ x ←→ y ̸∈n y) to be an axiom even though this formula is
a wff of L(TCnT) and has the syntactic form of a comprehension axiom, and
‘y ̸∈n y’ is a wff of the language. One allows set comprehension only for the
old TZT axioms. To be formal about it, a wff that looks like a comprehension
axiom is adopted as an axiom only if it is possible to rejig the type indices in it
so that the resulting formula is an axiom of TZT.

Thus the axioms of TCnT are “closed under rotation”, or ambiguous in
traditional parlance.

It may be worth noting that TCnT can expressed as a theory in the usual
one sorted first-order language L(∈,=) of set theory. However, since we will not
be making any use of this fact, we feel under no obligation to provide a proof. Could say

a wee bit
more. . .

The various analogues of Russell’s paradox prevent us from adopting as our
comprehension scheme for TCnT the obvious scheme of all expressions of the
form (∀x⃗)(∃y)(∀z)(z ∈ y ←→ ϕ(x⃗, z)) that belong to L(TCnT). Of course the
mere fact that the existence of {x : x ̸∈n x} is not a comprehension axiom
does not ipso facto mean that the sets {xi : xi ̸∈n xi} cannot exist at any
of the n levels, though it will be shown below that first-order logic by itself
suffices to show that they cannot exist at all levels simultaneously. TCnT has
comprehension axioms and can prove that they cannot exist at even one level.
This fact is probably worth minuting.

REMARK 4 TCnT ⊢ Ri
n = {xi : xi ̸∈n xi} does not exist for any i ≤ n.
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Proof:
Reasoning in TCnT we pick on any level i and consider the possibility of

the existence of Ri
n = {xi : xi ̸∈n xi}. Consider ιn−1(Ri

n); is it a member of Ri
n

or not? If it is, then it belongs to an ∈-loop of circumference n, so it is barred
from membership of Ri

n. So it isn’t a member of Ri
n. So there are x1 . . . xn−1

with ιn−1(Rn) ∈ x1 ∈ x2 ∈ . . . ιn−1(Rn) an ∈-loop of circumference n. But then
x1 = Rn (peel off the brackets) showing that Rn ∈ Rn after all.

Notice that we have not used very much comprehension. All we have used
is the assumption that every set has a singleton. In fact all we need is that for
every x there is a nonempty subset of P(x), the point being that every set of
loop-free sets is itself loop-free.

Readers might like to note the curiosity that inside first-order logic pure and
simple (without using any set theory at all) we can show that {xi : xi ̸∈n xi}
must fail to exist at least one level i. This, too, is probably worth minuting.

REMARK 5 It is a theorem of First Order Logic that that no model of TCnT
can contain Ri

n = {xi : xi ̸∈n xi} for all i ≤ n.

Proof:
Suppose {x : x ̸∈n x} exists at every level. Let us write ‘Ri’ for its manifes-

tation at level i. Let i be an arbitrary concrete natural ≤ n. Suppose Ri ̸∈ Ri+1.
Then Ri belongs to an ∈-loop of circumference n, and there must be xi−1 in Ri

in this loop. But xi−1 ∈ Ri implies that xi−1 cannot belong to any such loop.
Thus we conclude Ri ∈ Ri+1. But i was arbitrary. So there is an ∈-loop of
circumference n consisting entirely of the Ri and this clearly cannot happen.

It doesn’t seem to be possible to spice up this proof to show (in first-order
logic) that none of the Ri exist. The nonexistence of {x : x ̸∈n x} is a theorem of
first-order logic that is stratifiable-mod-n, but I know of no globally stratifiable-
mod-n cut-free proof. This fact (if it is a fact) is almost certainly related to
the fact (if it is a fact) that we cannot prove that {x : x ̸∈n x} exists at no
level (though we can show that it doesn’t exist at all). If we had a proof of the
nonexistence of {x : x ̸∈n x} in FOL that was globally stratifiable-mod-n then
we could run it at any level and show that {x : x ̸∈n x} exists at no level. The
following reflection suggests that there is no such proof. Consider the two-lobed
model with precisely one inhabitant in each lobe: a yin set that is a member
of the yang set (but not the other way round). The yang set (but not the yin

set) is a double-Russell class.
Consider the two-lobed structure depicted below: two objects in the left lobe

l1 and l2, and two objects in the right lobe: r1 and r2. l1 ∈ r1 ∈ l1; l2 ∈ r2, so
that l2 = ∅; r2 = {l2}; r1 = {l1} and l1 = {r1}. It’s a model of extensionality,
and r2 is the double Russell class on the right; there is no double Russell class
on the left.
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l1

l2

r1

r2

This does rather suggest that first-order logic holds no globally stratifiable-
mod-2 nonexistence proof for the double Russell class. . . and that this is true
even if we allow cut.

6.1 Rieger-Bernays Permutation methods for TCnT

Rieger-Bernays methods generalise smoothly to TCnT. R-B methods in NF
enable one to obtain from any model of NF a new model which satisfies the same
stratifiable sentences but tweaks the truth-values of some formulæ that are not
stratifiable. In the TCnT context we have the same notion of stratifiable, but
the role of non-stratifiable formulæ is played by formulæ that are stratifiable-
mod-n. Formulæ that are frankly unstratified don’t enter into it as the man in
the parrot shop would say. The R-B method which we develop below for TCnT
will enable us to obtain from a model M of TCnT a model that satisfies the
same stratifiable sentences as M but satisfies different sentences that are merely
stratifiable-mod-n.

It goes as follows. Let M be a model of TCnT. To each of the n levels of
M associate an internal permutation τ of that level. Thus we have a suite of
permutations. Then we declare a new membership relation between levels i and
i + 1 by xi ∈new xi+1 iff xi ∈ τ(xi+1). The relettering now proceeds as in the
proof of Henson’s lemma. For this we naturally need all the permutations in Do we need

a reference
for henson’s
lemms?

the suite to be setlike, just as in the original R-B setting. Realistically we can
take them to be sets of the model.

Observe the two special cases: NF and TST. NF is the special case TC1T.
There is only permutation, and we are in the standard situation with Rieger-
Bernays models for NF. TST is the case TC∞T and we have infinitely many
permutations, one for each level. In this case nothing happens, because there are
no wellformed formulæ that this process could possibly change the truth-value
of. No wonder nobody noticed it before!

If we want to preserve formulæ that are stratifiable-mod-k then we require
certain equations to hold between the permutations τ that we use. Consider
TC3T, the simplest case that is complicated enough to partake of the general
flavour. We have a suite π, τ, σ of permutations. In the permutation model
x1 ∈ x2 becomes x1 ∈ τ(x2); x2 ∈ x3 becomes x2 ∈ π(x3) and x3 ∈ x1 becomes
x3 ∈ σ(x1). To reletter we have to rewrite x2 ∈ π(x3) as τ(x2) ∈ (jτ) · π(x3)
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and then rewrite x3 ∈ σ(x1) as (jτ) · π(x3) ∈ (j2τ) · jπ · σ(x1). If we want to be
able to eliminate π, σ and τ from formulæ that are stratifiable-mod-3 (but not
stratifiable) then we will need (j2τ) · jπ · σ = 11. Call this The Equation For
n.

Very well: so we have a model of TCnT, and we decorate it with permuta-
tions of each level. This R-B construction preserves all stratifiable expressions.
What about expressions that are stratifiable-mod-(n · k)? Then we have The
Equation For n · k. This is an equation w = 11 where w is a product of n · k
things, with k occurrences of each permutation. Persisting for the moment with
the n = 3 example, we find that if we want our suite of permutations to preserve
formulæ that are stratifiable-mod-6, then we need τ , σ and π to satisfy

(j5τ) · (j4π) · (j3σ) · (j2τ) · jπ · σ = 11.

This looks messy, but I think it is correct. needs editing

There is also the small matter of proving an analogue of the PHF theorem needs editing.
PHF??for TCnT. We can obtain a model of TZT from a model of TCnT in the same

was as we obtain one from a model of NF. The analogue will then say that
M1 and M2 satisfy the same stratifiable sentences iff the two models of TZT
obtained from them have stratimorphic ultrapowers.

But what about stratifiable-mod-n? What condition on two models M1

and M2 of TCnT corresponds to them satisfying the same formulæ that are
stratifiable-mod-n · m? I’m guessing it will be the following. Any model of
TCnT can be turned into a model of TCm·nT in an obvious way. So: let M1

and M2 be two models of TCnT. Obtain two models of TCm·nT. Then M1 and
M2 satisfy the same formulæ that are stratifiable-mod-n ·m iff these two models
have isomorphic ultrapowers. I should be able to prove this but I am old and
tired and I have multiple infarct dementia.

We should probably try to find something to say about expressions that,
for every n, are logically equivalent to a formula that is stratifiable-mod-n. It’s
not true that all such sentences are stratified, because the axiom of counting is
a counterexample. An interesting example of a sentence of this kind is “every
wellfounded set is finite”. It’s not known if this allegation is invariant. However, needs editing
at least some such expressions are not invariant.

6.2 Possible Equiconsistency of TCnT and NF

Two fundamental questions:

(i) Is TCnT equiconsistent with NF?

(ii) Are there models of TCnT that are not ambiguous? Equivalently,
Are there models of TZT+Ambn that are not models of Amb?
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I’m guessing that the answer to both is ‘yes’, but I have no idea how to prove
it. Part of the trouble is that I can’t think of a stratified formula for which Amb
might fail while Amb2 holds. needs editing

Is TCnT equiconsistent with NF? One direction is easy. We can obtain a
model of TCnT from a model of NF by making n copies of the model of NF
and decorating them appropriately. The obvious way is as follows. Let level n
of M be V × {n} and let us declare that M |= xn ∈ yn+1 iff let xn = ⟨x, n⟩ in
let yn+1 = ⟨y, n+ 1⟩ in x ∈ y. M is clearly an ambiguous model.

However one would not expect every model of TCnT to be ambiguous, be-
cause that would mean that Ambn implies Amb, and that surely cannot be true.
It would be nice to obtain a model of TC2T that violates ambiguity. A simple
observation is that no model of TC2T can contain a Boffa atom in one lobe and a
Boffa antiatom in the other. (A Boffa antiatom is a b s.t. (∀x)(x ∈ b←→ b ̸∈ x).
No chance of such an object in a one-sorted universe, but here. . . perhaps) This
means that if we can find a model M that has in one lobe both a Boffa atom
and a Boffa antiatom then M must violate ambiguity, because an ambiguous
model with a Boffa atom plus antiatom in one lobe must also contain a Boffa
atom plus antiatom in the other, giving a Boffa atom in one lobe and a Boffa
antiatom in the other and this is impossible, as we have just observed. needs edit-

ing. Boffa
antiatoms are
problematic

We can do this by a simple tweak of the obvious construction. Let τ be some
permutation that adds a Boffa atom and a Boffa antiatom, such as (∅, B(∅)) ·
(V,BV ). Then we set both yin and yang to be V and we set xyin ∈ yyang iff
x ∈ y and xyang ∈ yyin iff x ∈ τ(y). Let us call this model M.

M is clearly extensional. If we pinch ourselves to keep in mind that the com-
prehension axioms of TC2T are the fully stratifiable instances of comprehension
and not the (larger) class of comprehension axioms that are stratifiable-mod-2
(Beware the double Russell class) then we can see that all the instances of com-
prehension for M follow smoothly from comprehension in the model of NF in
which we are working. (See also p 24.)

[One potentially useful piece of clarification. . . . What happens if we use τ on
both lobes, so that we set xyin ∈ yyang iff x ∈ τ(y) and xyang ∈ yyin iff x ∈ τ(y)?
Clearly we do not get Boffa atoms plus antiatoms in both lobes – beco’s we
can’t – but it might help to show what becomes of V and ∅ in each lobe. They
probably become something annoying that is almost an atom or an antiatom.]

However this construction does not resolve the question. Hitherto all dis-
cussions of ambiguity were in the context of TST. The scheme was: take any
stratifiable formula ϕ ∈ L(∈,=), decorate it with type indices on the variables,
and assert biconditionals between the results. The point is that all formulæ of
L(TST ) arise from formulæ in L(∈,=) by this process of decoration. However
L(TCnT) has extra formulæ that can be decorated in this way, namely the for-
mulæ that are stratifiable-mod-n. Ambiguity fails in the model M that we have
just considered, but the failure we have exhibited concerns not formulæ that
arose from stratifiable formulæ of L(∈,=), but a formula that arose from a for-
mula in L(∈,=) that was stratifiable-mod-n. I claim that M satifies ambiguity
for all formulæ that arose from stratifiable formulæ in L(∈,=). Let ϕ be any
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closed stratifiable formula of L(∈,=). Fix a stratification of it. This stratifica-
tion awards every variable a decoration that is either an even natural or an odd
natural. We can now turn ϕ into a formula of L(M) in two ways: make every
variable with an even decoration into a variable of type yin and every variable
with an odd decoration into a variable of type yang or vice versa. But then in
both these cases any variable v that ever appears in a context “. . . ∈ τ(v)” only
ever appears in such contexts, and so can be relettered.

If we think of the task of finding a model of TC2T that is not ambiguous
as the task of finding a model of TZT that satisfies Amb2 but does not satisfy
Amb then it perhaps becomes clearer. This second task clearly remains undone.

It’s an old result (it was in Forster’s Ph.D. thesis, with a much improved
proof by Crabbé [3] subsequently) that TZT+ Ambn refutes AC, and by essen-
tially the same mechanism as does TZT+ Amb. The best guess is that all the
theories TCnT are equiconsistent with NF.

I noted above, in definition 5, that we have to make sure that our compre-
hension axioms are only those formulæ which become axioms of TZT, lest we
get Russell-style paradoxes. It might be worth thinking a bit about how one
might cautiously relax this restriction to admit some more comprehension ax-
ioms. There is an analogue of strongly cantorian and although one obviously
cannot allow the class of analogue-stcan sets to be a set (for the usual reasons
concerning the Burali-Forti paradox) there doesn’t seem to be any objection to
the collection of finite analogue-stcan sets being a set.

Since “x is wellfounded” can now be captured by a formula that is
stratifiable-mod-n and separation for wellfounded sets is safe for many expres-
sions we should sort that out. In this next section we consider the property
“ιn ↾x exists” which is stratifiable-mod-n.

7 Modulo-n Analogues of strongly cantorian

7.1 Analogues in NF

In this section we work in NF.
“ιn ↾x exists” is an analogue of x is strongly cantorian. Lots of things to be

said about it. Is this generalisation of strong cantorian-ness a good notion of
small set? In the categorial sense, that is?

I noticed years ago the fact that although the existence of ι↾x clearly implies
the existence of ιn ↾x, the converse does not seem to hold. If ι2 ↾x exists then
certainly x ⊔ ι“x is cantorian but that (and its analogues for n > 2) seem to be
as far as one can go. It would appear that, in principle, there might be sets x
s.t. ιn ↾x exists for some n but which are nevertheless not strongly cantorian.

The property “ιn ↾x exists” is inherited by subsets in the same way that
strong-cantorianness is, so it is an analogue of ‘strong cantorian’ rather than a
mere weakening of it – unlike ‘cantorian’ which (being a mere weakening) is not
inherited by subsets in the same way.
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The possible existence of such sets is worth noting in the present context,
since for them one can prove an analogue of subversion of stratification for
formulæ that are stratifiable-mod-n.

Subversion of stratification says that, if M is a strongly cantorian set, and
ϕ an arbitrary formula, then {x ∈ M : ϕM (x)} exists. (ϕM is the result of
restricting all quantifiers in ϕ to M .) The analogue here would say that, if
ιn ↾M exists and ϕ is stratifiable-mod-n, then {x ∈ M : ϕM (x)} exists. Of
course this will hold in TCnT . . . which may be the correct setting for this
observation: TCnT has subversion of stratification for x s.t. ιn ↾x exists, in the
sense that the following holds.

REMARK 6
If ιn ↾M exists, and ϕ is stratifiable-mod-n then {y ∈M : ϕM (y)} exists.

Should really
write out a
proof.

Proof:

Just as subversion for strongly cantorian sets gives us interpretations into
(extensions of) NF of fully unstratified set theories, subversion for sets x for
which ιn ↾x exists will give us interpretations into (extensions of) NF of set
theories satisfying syntactic contraints correspondingly less onerous than full
stratification.

Subversion of stratification enables us to cutely finitise the restriction of the
scheme of ∆0 separation to formulæ that are stratifiable-mod-n. We know how
to finitely axiomatise stratifiable ∆0 separation (see the second edition of the
monograph [8]), and we can get full ∆0 separation from that axiomatisation
simply by adding the existence of ι ↾x for all x. The obvious thing to do is
augment the kit of rudimentary functions by adding a new rudimentary function
which gives ιn ↾x, and then rely on subversion.

Does this open up a vein of novel, more delicate, relative consistency proofs?
Possibly, but not if we are adopting an axiom of infinity: the assumption that
there is an (infinite) x s.t. ιn ↾x exists is as strong as the assumption that there
is an infinite strongly cantorian set. This triviality is worth minuting because
we will make use of it elsewhere (see p. 6).

REMARK 7
(i) If x is wellorderable and ιn ↾x exists then x is strongly cantorian.
(ii) If there is an infinite x and a concrete n such that ιn ↾x exists then the

axiom of counting holds.

Proof:
(i) If x is a wellorderable set s.t. ιn ↾x exists then the order type of any

worder of x is certainly going to be less than all of Ω, Ω1 . . . 6, so we can assume
without loss of generality that x is an initial segment X of the ordinals. This

6Ω is the order type of the set of ordinals; Ω1 = TΩ, and so on.
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means that ιn ↾X exists, and that in turn means that Tn ↾X exists, and that
in turn means that we can prove by induction on the ordinals that Tn ↾X is
the identity. So, for every α ∈ X, Tnα = α. For every ordinal α (and so in
particular for every α ∈ X) we have α = Tα ∨ α < Tα ∨ α > Tα. The third
disjunct implies (apply T to both sides) T 2α < α giving α < Tα < . . . Tnα
contradicting Tnα = α; the second disjunct is refuted similarly. So T ↾X exists
beco’s it is the identity, so ι↾X exists as well.

(ii) This property “ιn ↾x exists” is preserved by power set as well as by subset,
so if there is even one infinite set which has it then IN will have it as well. (Just
as: IN is strongly cantorian if there is even one infinite strongly cantorian set).
But IN is wellordered, so we can apply part (i).

The other direction (inferring “ιn ↾IN exists” for arbitrary concrete n from
the axiom of counting) is easy. Thus, for every (concrete) n, the axiom of
counting is equivalent modulo NF to a formula that is stratifiable-mod-n. If ϕ
is, for each n, equivalent (modulo NF) to something that is stratifiable-mod-n
must it be (NF)-invariant? No, because the property of being a wellfounded set
is, for each n, equivalent (modulo NF) to something that is stratifiable-mod-n
but is not invariant. But what about closed formulæ? No, that doesn’t work
either, as we shall see below.

Let Macn be Mac with separation restricted to formulæ that are ∆0 and
stratifiable-mod-n. Analogues of the result in [12] to the effect that Mac +
TCl can be interpreted into KF can be obtained, saying that Macn + TCl can
be interpreted into KF, but these results are weaker than the result in [12].
However these refined constructions could turn out to be useful should there
turn out to be interesting theories of the form Macn ∪ {A} (where A is some
formula not a theorem of Mac). However no such examples leap to mind. Not
to the authors’ mind anyway: ∃NO might have sounded like a starter but is is
inconsistent with the existence of ιn ↾x for all x. (This last follows from remark
7 part (i).)

The upshot of this is that ∃NO is incompatible with Macn, the point being
that ιn ↾(the representative set of wellorderings) would exist and that the quotient
would be strongly cantorian.

LEMMA 1
For all concrete n and k, (∀x)(ιn ↾x exists) implies (∀x)(ιn·k ↾x exists).

Proof:
We know that RUSC(R) always exists, so RUSCk(R) exists for all R and all

concrete k, so RUSCk(ιn ↾x) exists and so ιn ↾x composed with RUSCn(ιn ↾x)
exists, and that is ιn·2 ↾x. And so on for all the other multiples of n.

7.2 Ambiguity in TCnT

Take a simple example: TC2T. Since every formula that is stratifiable-mod-4
is also stratifiable-mod-2 we can assert in the language of TC2T that the yin
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collection that would be the quartic Russell class {x : x ̸∈4 x} exists. Ambiguity
for formulæ that are stratifiable-mod-4 would then say that the corresponding
yang set exists. See the discussion on page 17.

It might be an idea to write out a proof that the quartic Russell classes
{x : x ̸∈4 x} cannot all exist. Put up or shut

upIf we are right about all ambiguityn schemes being of equal consistency
strength then it should be easy to prove the consistency of TCnT + Ambiguity
for formulæ that are stratifiable-mod-(m · n) relative to TCnT. Yeah right. needs editing

7.3 CO models for TCnT

It is simplicity itself to cook up a CO model of (the version of) TCnT that
corresponds to AST. (For definition of AST and more on CO models in general
see [10].) Let ⟨IN, E⟩ be the standard Oswald model. Define a new relation E′

on IN by

2nE′ (2m+ 1) iff nEm

and

(2n+ 1)E′ 2m iff nEm.

That way even numbers are yin and odd numbers are yang. I think the double
Russell class will turn out to contain precisely the wellfounded sets. . . but this
will need to be checked. It’s clear how to do the same for TCnT for n > 2. You needs editing
partition IN into the n residue classes mod n and you say that i is a member of
j in the new sense if i+ 1 ≡ j mod n and (i DIV n) E (j DIV n).

Of course there is nothing special about E. We can do this for any Oswald
model at all. What we might be able to do is get a model of the AST version Check this:

aren’t Boffa
antiatoms
problematic?

of TC2T with a Boffa antiatom in one lobe but not in the other. It might be
an instructive exercise to write this out in some detail.

We’ll have two copies of IN: yin naturals and yang naturals. And we’ll put a
Boffa antiatom into level yang but not into level yin. In n is a yin natural and
m a yang natural then we ordain than m is a member of n in the new sense iff
mE n, where E is the membership relation of the Oswald model. Membership
of yang naturals echoes the construction of CO models containing moieties. You
look at yang naturals mod 4: that is to say, peel off the two least significant
bits of a yang natural m and use them as a flag, which of course is 0, 1, 2 or 3.

If the flag is 0 then we say n belongs to m in the new sense iff the
nth bit of the truncation is 1;

If the flag is 1 then we say n belongs to m in the new sense iff the
nth bit of the truncation is 1;

If the flag is 2 then we say n belongs to m in the new sense iff (the
nth bit of the truncation is 1 iff n belongs to the complement of the
Boffa antiatom);

If the flag is 3 then we say n belongs to m in the new sense iff (the
nth bit of the truncation is 1 iff n belongs to the Boffa antiatom).
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But questions of whether or not any given yin n belongs to the yang Boffa
antiatom are answered by examining whether the Boffa antiatom is a member
of n. And membership of yang sets in yin sets is unproblematic.

7.4 Generalise a Result of Specker?

Specker shows that in the situation where our language admits an automorphism
∗ of order 2, a conjunction of finitely many assertions of the form ϕ ←→ ϕ∗ is
another expression of that form. See Chad Brown’s discussion of this question.
Can we do anything similar here? Does it matter? needs editing

Perhaps chop
this doc into
two at this
point

8 Applications to Duality

Spend some time investigating the role of weak versions of AC. AC2 presumably
doesn’t follow but it’s worth a try.

Fit this in somewhere
Must show that if there is a polarity it’s universal for involutions without
fixed points. Well, actually no, co’s that would imply that all polarities
are conjugate, which sounds a bit restrictive. What happens if there is
more than one polarity? If they are both universal then they’re conjugate.
Must show that if AC2 fails and τ is universal for involutions without fixed
points then so is jτ · c. First step is to show that in these circumstances
jτ · c has no transversal. The second step is to show that it is universal.

¿How easy is it going to be to show that τ ≤ jτ · c?
Remember that there are only T |V | pairs, so no involution can have more
than T |V | pairs. Nothing to say that it can’t have fewer. But if it has
fewer it has no transversal!

If it’s the wrong size it lacks a transversal. Is the converse true? Probably
not. Can we show that if there is a partition into pairs that lacks a
transversal then there is a right-sized one that lacks a transversal? Well
we can add or delete ordered pairs to obtain a right-sized set of pairs
without a choice function. Will that do?

What sort of involutions-without-fixedpoints lack transversals?

The set of involutions-without-fixedpoints-or-transversals are an upward-
closed subset.

Hmm. Suppose there is a partition-into-pairs that is smaller than T |V |.
It lacks a transversal. But then anything Bowler-above it also lacks a
transversal. There is also a universal partition-into-pairs. So it lacks
transversals if anything does.

antimorphisms form a torsor

The special case of stratification-mod-n which will concern us here is n = 2.
The context throughout this section is NF.

DEFINITION 6 The dual ϕ⟲ of a formula ϕ is the formula obtained from ϕ
by replacing all occurrences of ‘∈’ in ϕ by ‘̸∈’.

It has been known for some time that ϕ ←→ ϕ⟲ is a theorem of NF when-
ever ϕ is a closed stratifiable formula. Permutation models can be found in
which ϕ←→ ϕ⟲ fails for some unstratifiable ϕ, but it remains an open question
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whether or not there are models in which ϕ←→ ϕ⟲ holds for all ϕ. The natural
conjecture is that there should be such models.

We do not prove the full conjecture here but we can prove the relative con-
sistency of the scheme ϕ ←→ ϕ⟲ at least for all ϕ that are stratifiable-mod-2.
This will be theorem 6 below, and it is the principal aim of this section to prove
it.

However, in preparation for theorem 6 we need to do a lot of bush-clearing
in regard to NF’s theory of permutations (and specifically involutions) of V ,
and this necessitates a few subsections of prolegomena.

8.1 Transversals, Partitions, Conjugacy and
the Axiom of Choice for sets of pairs

First we reflect that the duality scheme might in principle be witnessed by the
existence of an antimorphism.

DEFINITION 7

• A transversal for a disjoint family is a set that meets every member of
the family on a singleton.
• An antimorphism is a permutation τ of V satisfying

(∀x, y)(x ∈ y ←→ τ(x) ̸∈ τ(y)).

• An antimorphism that is an involution is a polarity.

Clearly if there is an antimorphism then duality follows.
Clearly in principle there is the possibility of antimorphisms of infinite order

or any finite even order. However for the moment we will consider the possibility
only of polarities. This restriction would appear to be of little cost, since it
seems highly implausible that there might be antimorphisms but no polarities,
and polarities are so much easier to think about.

Bowler [2] has found an injection i from the set of pairs into the set of
singletons: send {x, y} to {(x× y) ∪ (y × x)}. This enables us to infer (2) from
(1):

1. Every set of disjoint pairs has a choice function;

2. Every set of pairs has a choice function.

Let P be a set of pairs. We desire a choice function for it, but we know only
(1) – not (2). The set

{p× i(p) : p ∈ P}

is a family of disjoint pairs and therefore, by (1), has a choice function, f . We
can recover a choice function f∗ for P by f∗(p) =: fst(f(p× i(p))).

We will also need the equivalence of (3) and (4):

3. Every partition of V into pairs has a choice function;

26



4. Every set of disjoint pairs has a choice function.

If we are given a set of pairs we can make disjoint copies of it by the trick we
used earlier. In fact – by using an i whose range is a moiety7 of singletons – we
can ensure that the sumset

⋃
P of the disjoint family P of pairs we construct

by this method has a complement that is the same size as V . The complement
V \

⋃
P therefore has a partition P′ into pairs. Then P ∪ P′ is a partition of V

into pairs. Any transversal for this partition will give us a choice function for
the partition we started with.

Two more propositions:

5. Whenever we partition V into pairs we get the same number of pairs;

6. Whenever we partition V into pairs the two partitions are conjugate.

It turns out that (6) is equivalent to AC2. (I mention 5 only as a foil, lest a
reader think i’m talking about 5 when I am in fact talking about 6).

• AC2 → 6
Suppose P1 and P2 are two partitions of V into pairs. By AC2 we have a

transversal S for P1, and P1 is obviously a bijection between S and V \ S. So
|S| = |V | and |P1| = T |V |. Naturally we argue for P2 in the same way. So there
is a bijection π between P1 and P2. For each p ∈ P1 there are precisely two
bijections between p and π(p) and we use AC2 to pick one. The union of all
such chosen bijections is a permutation conjugating P1 and P2.

• 6→ AC2.
Assume 6. If P is a partition of V into pairs then by 6 it will be conjugate

to the partition {{x, V \ x} : x ∈ V }. That is to say, there is a permutation π
of V such that, for all p ∈ P, π“p is a pair {x, V \ x}. But clearly the partition
{{x, V \ x} : x ∈ V } has a choice function f (“pick the element that contains
∅”) so the choice function for P that we want is p 7→ π−1(f(π“p)).

So we have established:

REMARK 8 The following are equivalent:

Every set of pairs has a choice function (AC2);
Every set of disjoint pairs has a choice function;
Any two partitions of V into pairs are conjugate;
Every partition of V into pairs has a choice function.
Any two equinumerous partitions of V into pairs are conjugate

Here’s a proof that the last bit implies AC2.
Let π be a set of pairs without a choice function. Without loss of generality

the pairs are disjoint. Take the disjoint union of
⋃

π with V . The result is
the same size as V and can be canonically split into pairs using c (on the copy
of V ) and π (on the copy of

⋃
π). Copy this over into a partition of V into

7Moieties are supposed to be the same size as V
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pairs. We have T |V |-many pairs, which is the same as the number of pairs in
the partition corresponding to c. So – if any two partitions of V into the same
number of pairs are conjugate – then this π must have a choice function. But
π was arbitrary.

If we partition V into pairs how many do we get? No more than T |V | (by
this result of Bowler’s in [2]) but can we get fewer? We must try to connect this
with the question of whether or not |V | is decomposable.

DEFINITION 8
An involution with no fixed points and no transversal set is bad.

The thinking behind this censorious terminology is that an involution without
fixed points is a partition of V into pairs and will have a transversal as long
as AC2 holds. Thus we stigmatise involutions with no fixed points and no
transversal as bad beco’s their existence contradicts AC2.

Involutions are peculiar among permutations of V in that they can be
thought of straightforwardly as partitions whose pieces are of size at most two.
We will make much use of this freedom.

I assume the reader can work out for themselves that every polarity is a bad
involution.

Can we say anything about the cardinality of a polarity tho’rt of as a set of
pairs?

LEMMA 2 Any two involutions-without-fixed-points whose corresponding
partitions-of-V -into-pairs have transversals are conjugate.

Proof:
First we establish that if T is a transversal for a partition P of V into pairs

then its cardinality is |V |. Clearly |P| = T |T |, since we can send each piece of
P to the unique singleton ⊂ T that meets it. Observe that there is a bijection
between ι“V and P×{0, 1}, as follows. For each x there is a unique px ∈ P with
x ∈ px. If x ∈ T we send {x} to ⟨px, 0⟩; if x ̸∈ T we send {x} to ⟨px, 1⟩.

Finally if π1 and π2 are two involutions-without-fixed-points equipped with
transversals T1 and T2, then not only do we have |T1| = |T2| = |V | but π1 and
π2 are conjugate, as follows. T1 and T2 are in bijection, by a map π∗, say. Any
such π∗ can be extended to a permutation π of the universe by adding all the
ordered pairs ⟨π1(x), π2(π

∗(x))⟩ for x ∈ T1.

Some minor points:

(i) The proof of lemma 2 as given above tells us nothing about permuta-
tions that conjugate π1 and π2 beyond the fact that they exist. However the
construction is effective and can be mined for more information. In lemmas 3
and 8 we consider a particular case in which we need more information and we
go into more detail.
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(ii) Notice that in lemma 2 the assumption on the two involutions is that
the corresponding partitions have transversals. It is not the weaker assumption
that the corresponding partitions are the same size.

Might it be possible to prove in NF that any two partitions of V into pairs
are the same size. . . ? After all – as mentioned above – Nathan Bowler [2] has
shown us a proof in NF that there are as many pairs as singletons.

Sadly no, not unless NF ⊢ AC2.
What is the status of “All partitions of V into pairs are equinumerous”?

We now need Nathan Bowler’s fruitful idea of a universal involution. That
in turn relies on a notion of permutation morphism due to Bowler:

DEFINITION 9
• For permutations σ and τ of sets X and Y , a map of permutations

from σ to τ is a function π : X → Y such that π · σ = τ · π.
• If π is injective, we call it an embedding of permutations.
• An involution is universal if every involution embeds into it.
• We will write “σ ≤B τ” to say that there is an embedding of permutations
from σ to τ .

In all the cases of interest to us we have X = Y = V and π will be injective,
but we shouldn’t forget that Bowler’s definition is more general.

Think of a permutation as a digraph wherein every vertex has indegree
one and outdegree one, and loops at vertices are allowed. An embedding-of-
permutations must send n-cycles onto n-cycles, and when you look at it like
that the Cantor-Bernstein–style theorem below (lemma 3) becomes much more
obvious.

For the moment we need definition 9 only for involutions, and we will speak
of involution-embeddings or embeddings of involutions. In due course we will
prove (lemma 4) that there are universal involutions, and give examples.

We will need the following analogue of Cantor-Bernstein for embeddings-of-
permutations.

LEMMA 3 BCB (Bowler’s Cantor-Bernstein lemma)
If σ is a permutation of X and τ a permutation of Y with σ ≤ τ ≤ σ
then σ and τ are conjugate.

Proof: (Bowler, edited by tf)
Suppose σ ≤ τ in virtue of ρ : X ↪→ Y and τ ≤ σ in virtue of π : Y ↪→ X.

Consider the map P(X) ↪→ P(X) defined by S 7→ X \ ρ“(Y \ π“S).
By Tarski-Knaster this map has a least fixed point, which we will call P .
Then the map X ↪→ Y given by π↾P ∪ ρ−1 ↾X \ P conjugates σ to τ .

Notice that the map that conjugates σ and τ has a stratifiable definition in
terms of them, so if they are definable it is too, and so is its least fixed point.
It won’t matter that there is a least fixed point, but it will matter that there is
a fixed point that is definable in terms of ρ and π, and the lfp is one such.

In fact – for the moment – we will need lemma 3 only for involutions.
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COROLLARY 1 Any two universal involutions of V are conjugate.

Lemma 3 is telling us that the intersection of the quasiorder ≤B and its
converse ≥B is the equivalence relation of conjugacy. This makes it sort-of
OK to abuse notation by additionally using ‘≤B ’ to denote the partial ordering
induced on the quotient. The quotient is a directed poset because of disjoint
unions of copies of V . Is it an upper semilattice? It certainly supports a +
operation, but whether or not [σ] + [τ ] is the sup of [σ] and [τ ] is another
matter!

The following elementary facts will loom large.

REMARK 9
(i) Conjugacy is a congruence relation for j;
(ii) Conjugacy is a congruence relation for τ 7→ jτ · c;
(iii) j preserves ≤B.

Proof:
(i) is obvious (and skew-conjugacy, too, is a congruence relation for j, though
that is not as important here).

(ii) We will prove that σ ≤ τ → jσ · c ≤ jτ · c Assume σ ≤ τ so that there
is π s.t.

πσ = τπ

so
jπjσ = jτjπ

and
jπjσ · c = jτjπ · c

jπjσ · c = jτ · c · jπ

which implies
jσ · c ≤ jτ · c

So σ 7→ jσ · c respects conjugacy as desired. Is it injective on conjugacy
classes? (ii) will be useful when we come to consider antimorphisms

For (iii) Observe that if π is an embedding of permutations from σ to τ then
j(π) is an embedding of permutations from j(σ) to j(τ).

We will need this in the proof of the second part of lemma 4.

We begin by giving some examples of universal involutions of V .

LEMMA 4 (Bowler, [1])
For all i > 0, ji(c) is a universal involution.
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Proof:
First we prove that j(c) is universal.

There are bijections V ←→ {x : ∅ ̸∈ x}; in what follows fix θ to be one of
them – it won’t matter which.

For any involution σ of any set X we define an embedding of involutions π
from σ to j(c) by

π : x 7→ j(θ)(x) ∪ j(c · θ)(σ(x)).

Observe that the two sets on the RHS are disjoint, since – by choice of
{x : ∅ ̸∈ x} – the ranges of θ and c · θ are disjoint.

The function π is injective, with left inverse y 7→ j(θ−1)({z ∈ y : ∅ ̸∈ z}).
To see that π is a map of involutions from σ to j(c) we calculate as follows:

(1) (j(c) · π)(x) = j(c)(π(x)) Expand π(x) to get
(2) = j(c)[j(θ)(x) ∪ j(c · θ)(σ(x))] distribute jc over ∪ to get;
(3) = j(c)(j(θ)(x)) ∪ jc · j(c · θ)(σ(x))
(4) = j(c · θ)(x) ∪ j(c · c · θ)(σ(x))
(5) = j(c · θ)(x) ∪ j(θ)(σ(x)) reorder the set unions to get
(6) = (jθ)(σ(x)) ∪ j(c · θ)(x) which gives
(7) = (jθ)(σ(x)) ∪ j(c · θ)(σ(σ(x))) beco’s σ is an involution;
(8) = π(σ(x))

Two observations:

For the main result we argue as follows.
Clearly any involution into which a universal involution can be embedded is

also universal, and any involution conjugate to a universal involution is again
universal.

Since j(c) is universal, there is an embedding of c into j(c). This lifts to
embeddings of ji(c) into ji+1(c), and composing these embeddings we get em-
beddings of j(c) into ji(c) for any i ≥ 1. Thus ji(c) is universal for any i ≥ 1.

It might be an idea to properly write out a proof that j lifts in this way.
We should also check that j(c) and j2(c) are conjugate and do it by hand
as it were, so that we can tell whether or not they are conjugated by
anything definable.

So j(c) is a universal involution.
Notice that this means that jc and j2c are conjugate and therefore give rise

to a permutation model containing an automorphism that is an involution, as
follows.

c ≤ jc beco’s jc is universal.Lift by j
jc ≤ j2c but in any case we have
j2c ≤ jc beco’s jc is universal. But then
j2c and jc are conjugate by BCB – lemma 3.
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For this to work we needed not only that there should be a universal per-
mutation of that flavour, but also that that universal permutation should be j
of something.

I think i now see how to prove the existence of permutations that are uni-
versal for degrees other than 2. I think this is the way to do it

The key is to understand that what Nathan is doing in definition 9 is pipelin-
ing. Here is how to have a permutation that is universal for permutations of
degree n.

We split V into n moieties M0 · · ·Mn−1 and we have a permutation τ with
τn = 11 s.t. for each 0 ≤ i < n − 1, τ“Mi = Mi+1, so that τ“Mn−1 = M0. We
also have θ : V ←→M0.

The idea is that jτ will be universal for permutations of degree n.
Let σ be a permutation with σn = 11. We then define

π(x) = (jθ)(x) ∪ (jτ)(jθ)σ(x) ∪ (jτ)2(jθ)σ2(x) · · · (jτ)n−1(jθ)σn−1(x)

So (jτ)π(x) will be

(jτ)[(jθ)(x) ∪ (jτ)(jθ)σ(x) ∪ (jτ)2(jθ)σ2(x) · · · (jτ)n−1(jθ)σn−1(x)]

= (jτ)(jθ)(x)∪ (jτ)(jτ)(jθ)σ(x)∪ (jτ)(jτ)2(jθ)σ2(x) · · · (jτ)(jτ)n−1(jθ)σn−1(x)

= (jτ)(jθ)(x) ∪ (jτ)2(jθ)σ(x) ∪ (jτ)3(jθ)σ2(x) · · · (jτ)n(jθ)σn−1(x)

The underlined expression simplifies to 11.

= (jτ)(jθ)(x) ∪ (jτ)2(jθ)σ(x) ∪ (jτ)3(jθ)σ2(x) · · · (jθ)σn−1(x)

move the underlined bit to the front.

= (jθ)σn−1(x) ∪ (jτ)(jθ)(x) ∪ (jτ)2(jθ)σ(x) ∪ (jτ)3(jθ)σ2(x) · · ·

which is π · σn−1(x).
So π is an embedding-of-permutations from σn−1 to jτ . But σn = 11 by

hypothesis, so π is an embedding-of-permutations from σ−1 to jτ . So we should
replace ‘σ’ with ‘σ−1’ in the definition of π.

Observe that this universal permutation – jτ – is j of something and will
therefore give rise to an automorphism in a permutation model.

So, for each n ∈ IN, there is a permutation which is universal for permuta-
tions of degree n. So there is a disjoint union of them, and it will be universal
for the permutations with no infinite cycles. That doesn’t seem to be enough
to give us a universal permutation.

But perhaps we can get a permutation that is universal for permutations
with no finite cycles by refining the pipelining.

So here goes, reusing Nathan’s Greek letters. . .
Find a partition of V into moieties {Mi : i ∈ Z} and a permutation τ of V

that maps each Mi onto Mi+1. And θ is a map V ←→M0. jτ is going to be a
universal permutation. Then, given σ, declare
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π(x) =
⋃
n∈Z

(jτn)(jθ)σn(x)

whence

(jτ)π(x) =
⋃
n∈Z

(jτn+1)(jθ)σn+1(σ−1x)

renumbering

(jτ)π(x) =
⋃

n+1∈Z
(jτn+1)(jθ)σn+1(σ−1x)

renumbering

(jτ)π(x) =
⋃
n∈Z

(jτn)(jθ)σn(σ−1x)

which is π(σ−1(x)), so π · σ−1(x) = jτ · π(x) which says that π witnesses σ−1

embedding into jτ .
(So we should really replace σ by σ−1 in the definition of π.)

We didn’t put any conditions on π he upshot is that this jτ seems to be
universal for all permutations. How can this be? Surely the embedding must
send n cycles to n-cycles?! What goes wrong with the proof if σ is of finite
order? I think the answer is that there is no problem beco’s jτ has cycles of all
finite sizes. We have stumbled upon a genuinely universal permutation:

τ ≤ jτ beco’s jτ is universal.Lift by j
jτ ≤ j2τ but in any case we have
j2τ ≤ jτ beco’s jτ is universal. But then
j2τ and jτ are conjugate by BCB – lemma 3.

If there is a permutation that is universal for permutations with no infinite
cycles we might expect it to give rise to an automorphism with arbitrarily large
finite cycles but no infinite cycles. This would contradict countable choice.
So presumably the universal permutation whose construction we have outlined
above is not j of anything.

Suppose there were a permutation that is universal for permutations-with-
no-infinite-cycles that was jτ for some τ . We would like to get a contradiction
with countable choice. Then τ has no infinite cycles, whence τ ≤ jτ . This gives
jτ ≤ j2τ . But there we run into the sand. We want j2τ ≤ jτ but there seems
no way of proving it.

REMARK 10 There is a universal involution-without-fixpoints.

Proof:
Of course (as we have seen) if AC2 holds then there is a unique conjugacy

class of involutions-without-fixpoints: all involutions-without-fixpoints would
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be universal. However we are not going to assume AC2. Recall that j(c) is a
universal involution. In particular, if π is an involution without fixpoints there
is a permutation-embedding from π into j(c), and any such embedding must
send π into that part of j(c) that consists of pairs not singletons. Think of j(c)
as a set of pairs and singletons and let X be the union of all the pairs in j(c).
It’s easy to check that

There are |V |-many sets that are not closed under complementation (*)

so X is the same size as V and that part of j(c) can be copied over to V to give
us a permutation u of V that has no fixed points. And the construction of τ
ensures that π above embeds into it. And u is definable!

For (*) reflect that {x : V ∈ x ∧ ∅ ̸∈ x} is a subset of the collection of sets
not closed under complementation, so it will suffice to show that it is of size |V |.
But it’s a moiety of a moiety, in the sense that B(V ) is a moiety and provably
the same size as V , and its members fall into one of two pieces depending on
whether or not they contain ∅, and these two pieces are of course the same size
as each other and the same size as V .

Here is another proof. Any permutation-without-fixpoints must embed into
jc, and it must embed in that part of it that consists of pairs. We persuade
oiurselves that the union of those pairs is of size |V |, so we copy it over to a
partition of V into pairs. This is the universal permutation-without-fixpoints
that we desire.

This merits some reflection. Let us reserve the letter ‘u’ to denote this
definable member of this conjugacy class. This u gives us a definable partition
of V into pairs which is a kind of definable ϵ-object for bad pairs: if there any
counterexamples to AC2 then u is one of them. I don’t think this is going to
help us prove AC2, but it is quite striking.

[In the medium term we are going to be interested in finding automorphisms
thare are not involutions, that have other cycle types. The cycle types we have
to consider are actually quite special. Every automorphism is a fixed point for
j, and that tells us quite a lot about the cycle type. For any n, the number of
things belonging to n-cycles is either |V | or 0. If there is an n-cycle and m|n
then there is an m-cycle. For these purposes every natural number divides the
order of an infinite cycle. This give us ω+1 cycle types we have to worry about,
one for each cantorian natural and one for the presence of infinite cycles. We
are interested in “universal” permutations of these cycle types and not in any
other. It would be nice to show that each of these flavours has a “universal”
(top) type. There are some details to be nailed down about the cantorian nature
of all these cycles but that is for later.

Is there anything analogous one can say about the cycle types of antimor-
phisms?]

Going back to what i was saying earlier about pipelining on page 32 . . . what
we seem to have established is that the permutation jτ there is universal. So
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we can say: τ ≤ jτ whence jτ ≤ j2τ and j2τ is universal too. So jτ and
j2τ are conjugate. So every model of NF has a permutation model containing
an automorphism of infinite order. It’s probably universal too (since being
universal is a stratified property)

Observe that we are skating here on some pretty thin ice. It might look as
if AxCount follows from the existence of an automorphism of inifinite order but
it doesn’t. Every finite power of an automorphism so there are infinitely many
automorphisms and any set of automorphisms is strongly cantorian. . . ? Not so
fast!

However it does establish that NF does not prove that the collection of ∈-
automorphisms is a set. Suppose per contra that NF proved that the collection
of ∈-automorphisms is a set. We add an automorphism of infinite order by
RB permutations. In the resulting permutation model we fix an automorphism
σ and consider the set of those powers of σ that are automorphisms. There
is one for each cantorian natural. This is an infinite strongly cantorian set,
whence we can infer AxCount. So NF ⊢ AxCount . . . which is known to be
false. So NF ̸⊢ “the collection of automorphisms is a set”. However we do not
know of any permutation π for which we can prove V π |= there is no set of
all automorphisms”; nor do we know a permutation that will reliably give us a
model that doesn’t contain an automorphism.

9 Working towards Antimorphisms
A bit of a jum-
bleAre conjugate antimorphisms skew-congugate? Are skew-conjugate antimor-

phisms conjugate? Is anything conjugate to an antimorphism an antimorphism?
Is anything skew-conjugate to an antimorphism an antimorphism?

First let’s try to use the idea of u the universal permutation-without-fixpoints
to get an antimorphism. Suppose ju · c were also a universal permutation-
without-fixpoints. If it were, then u and ju ·c would be conjugate and then we’d
get our antimorphism in a permutation model. If we are to show that ju · c is
a universal permutation-without-fixpoints it will suffice to show that it has no
fixpoints and that u ≤ ju · c. In fact it would suffice to show that jc ≤ ju · c

Nathan Bowler has some cold water to pour on this idea. Notice that since
we are assuming ¬AC2 there will be involutions-without-fixpoints that lack
transversals so since u is universal-without-fixpoints it can have no transver-
sal; so, if ju ·c is to be conjugate to u it had better not have a transversal either.
(And even that is a necessary condition not a suff condition). So let us assume
¬AC2.

We will show that any wellordered subset of u without a transversal will give
rise to a transversal for ju·c. So suppose P = ⟨pi : i < α⟩ is a wellordered subset
of u without a transversal. We will show that P gives a transversal for ju · c.
Let {A,B} be a pair in ju · c; we will show how to choose one of A and B. It
cannot be that every pi meets A on a singleton, lest A give rise to a transversal
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for P . pi = {x, u(x)} for some x so pi cannot meet both A and B = V \ u“A.
So if pi ∩A is not a singleton then pi ⊆ A or pi ⊆ B = V \ u“A – but not both!
So at least one p ∈ P must ⊆ precisely one of {A,B}. There will be a first such
p, and we can use it to distinguish between A and B, and this of course gives
us a transversal for ju · c. If there is to be no transversal for ju · c then every
wellordered subset of u must have a transversal.

That’s striking, but it’s not helpful – it’s the wrong way round. The
converse would say that AC for wellorderable sets of pairs would imply
that ju · c has no transversal and then we’d be in with a chance of making
it conjugate to u.

In fact this seems entirely general: if π is an involution-without-fixpoints and
jπ · c has no transversal then every wellordered subset of π has a transversal.
That sounds very like a choice principle: something that might not have a
transversal does. . .

I think this observation of Nathan has legs. Watch my back. . . .
Assume that there is a polarity. Let P be a wellordered disjoint family of

pairs. We want to show that it has a selection set, a transversal.
There is an injection f :

⋃
P ↪→ B(∅), so we can split V into the two pieces

f“B(∅) (which has a partition into pairs) and (B“∅ \ f“B(∅)) ∪B(∅) (which is
the same size as V and therefore can be partitioned into pairs) so we obtain
a partition of V into pairs which contains a conjugate copy of P . Call this
partition π. It’s an involution without fixed points, so π ≤ u. So every subset
of π will be conjugate to a subset of u and every wellordered subset of π will be
conjugate to a wellordered subset of u. Two conjugate sets of pairs either both
have transversals or neither do, so all we need now is that every wellordered
subset of u should have a transversal. This will follow if ju · c has no transversal
. . . which we had better now prove.

Suppose σ is a polarity. It has no fixed points, so σ ≤ u (by universality
of u) whence jσ · c ≤ ju · c (by remark 9 part (ii)). Now jσ · c (which is σ) is
a polarity and so has no transversal. So ju · c cannot have a transversal. So
every wellordered subset of u has a transversal, by Bowler’s aperçu . But P is
conjugate to such a wellordered subset and therefore has a transversal.

9.1 Antimorphisms have no odd cycles

We start with the observation that no antimorphism can have any odd cycles.
One might think this is obvious but it isn’t. Things are complicated by the fact
that it’s far from obvious that a cycle must be cantorian.

REMARK 11 No antimorphism can have an odd cycle.

Proof:
What one wants to say is this: suppose τ is an antimorphism and x belongs

to a (2k + 1)−cycle. One then has

x ∈ x ←→ τ2k+1(x) ̸∈ τ2k+1(x) (A)
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so we cannot have τ2k+1(x) = x. Unfortunately the biconditional one obtains
is not (A), but instead is

x ∈ x ←→ τ2k+1(x) ̸∈ τ2Tk+1(x).

However one can do the following. Suppose x belongs to an o-cycle (‘o’
for ‘odd’). We seek an odd natural number k such that k and Tk are both
divisible by o. We then have x ∈ x ←→ τk(x) ̸∈ τTk(x). Now, since k and
Tk are both divisible by o, we have τk(x) and τTk(x) both equal to x, whence
x ∈ x←→ x ̸∈ x and we have the contradiction we desired.

Q: But what is k?

A: LCM(o, T−1o).

Observe that o divides LCM(o, T−1o) = k, and evidently To divides
LCM(To, o) = Tk. To and o are both odd, and the LCM of two odd num-
bers is odd.

Two points:
(i) Notice that we have not assumed that τ is a set; so this holds for
external antimorphisms as well.
(ii) The proof we have given was complicated by the need to allow for
noncantorian cycles. We do at least know that the order of any ∈-
automorphism is cantorian and every set of ∈-automorphisms is stcan.
Ad (ii). Consider the inductively defined set obtained by closing {x} under
π, and the inductive defined set obtained by closing {ι“x} under jπ · c; it
seems clear that the size of the second is T of the size of the first. That
should show that the size of any τ -cycle (τ an antimorphism) is cantorian.

Recalling that one of the aims of this investigation is to understand antimor-
phisms we remind ourselves that τ is an antimorphism iff τ = j(τ) · c. This fact
gives us an interest in permutations of the form jτ · c and, in particular, in how
the cycle type of τ controls the cycle type of jτ · c. It’s quite easy to see how
the cycle type of τ controls the cycle type of jτ . We remark (without proof for
the moment):

if τ has an n-cycle, jτ has a Tn-cycle;
if τ has infinite cycles, jτ has cycles of all sizes;
if τ has cycles of arbitrarily large finite sizes, then jτ has infinite
cycles;
if all τ -cycles have lengths in I ⊂ IN with I finite then, for n large
enough, jnτ has cycles of all sizes that divide LCM(I). (With a few
‘T ’s scattered around). It also has the maximal possible number of
such cycles (presumably T |V |) so jnτ is going to be universal for n
bigger than about 3.

We start the task of seeing how many n-cycles jτ has by consider the simples
possible case: how many 2-cycles are ther for jτ where τ is the transposition
(a, b)? Whenever we have x that contains neither a nor b we have a 2-cycle
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that consists of x ∪ {a} and x ∪ {b}. There are |V |-many such x, so precisely
|V |-many such cycles. Clearly a similar argument will work when τ has a longer
finite cycle. Infinite cycles need a bit more work.

How many fixed points does jτ have? Clearly j of a transposition (a, b)
has |V |-many fixed points (every subset of V \ {a, b} is fixed). If τ is a bad
involution, how many fixed points hath jτ?

. . . jτ · c is a lot harder. Lemma 5 is a taster.

LEMMA 5
AC2 implies that, for all permutations τ ,
jτ · c has fixed points iff τ has no odd cycles.

Proof:

R → L

Suppose X is a fixed point for jτ · c. Then, for each τ -cycle C, we must have
τ“(X ∩ C) = C \X – and that means that |C| must be even (or infinite).
This direction does not need AC2.

L → R

This direction needs AC2. Suppose τ has no odd cycles. Each τ -cycle splits
into precisely two τ2 cycles. Use AC2 to pick, for each τ -cycle, one of the two
τ2-cycles into which it splits. The union of the set of chosen τ2-cycles is a fixed
point for jτ · c.

The converse is true too. Suppose τ is a permutation with no odd cycles,
and assume the consequent. Then jτ · c has a fixed point. τ itself of course has
no fixed point. The fixed point for jτ · c is a transversal for τ !

Another fairly easy observation in the thread of cycle-type-of-τ -controlling-
cycle-type-of-jτ · c is that. . .

REMARK 12

(1) If τ is of order 2n then jτ · c is of order T2n;
(2) If τ is of order 2n+ 1 then jτ · c is of order T4n+ 2;
(3) If τ has a Z-cycle then so does jτ · c.

Proof:
It’s obvious that if τ is of order n then jτ is of order Tn, but composing

with c embroils us in slightly more work.

(1) Suppose τ is of order 2n. c commutes with jτ , so in (jτ · c)T2n we can
rearrange to make all the cs adjacent and all the jτ adjacent so they all cancel.

(2) What if the order of τ is odd? A similar calculation shows that if τ
is of order 2n+ 1 then (jτ · c)T2n+1 becomes, with rearrangement-followed-by-
cancellation, (jτ)T2n+1 · c = j(τ2n+1) · c = 11 · c = c. This is not the identity!
However, its square is. What this

shows is the
the order di-
vides 4n + 2
not that it is
4n+ 2.
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(3) Let x belong to a τ Z-cycle and consider {x}.

Of some interest will be the sequence of permutations:

11, c, jc · c, j2c · jc · c . . . ,

where c is the complementation permutation. The superscripts are all small
(they are all concrete numerals, in fact), so – rather than persist with the more
general but slightly unwieldy H(c, i) notation of [5] introduced above – we will
revert to the simpler (original) notation of Henson, in which these permutations
are written ‘ci’, thus: c1 := c; ci+1 := j(ci) · c.

Suppose AC2 fails, so that there are bad involutions with neither fixed points
nor transversals. If τ is a bad involution then, by remark 14, jτ · c has no fixed
points. (It might have a transversal and not be bad. . . ). And, if there are bad
involutions, then any involution that is maximal among involutions without
fixed points will be bad.

What we might be able to do is this: If AC2 fails then there is a bad
involution, so any involution that is universal for involutions-without-fixpoints
(uiwf) is bad. So all we need to show is that if τ is uiwf then jτ · c is uiwf.

I think τ 7→ jτ · c is ≤B-monotone.
Sse πσ = τπ. Then jπjσ = jτjπ and j(π)j(σ) · c = j(τ)j(π) · c and

j(π)j(σ) · c · (jσ) = j(τ) · c · j(π).
However i don’t see any reason why it should be injective

If τ has no fixed points and no transversals then jτ · c has no fixed points
(any fixed point would be a transversal for τ). It is true that there doesn’t seem
to be anything to prevent c · jτ having a transversal, so there is work to do.
The point of all this, of course, is that if there is a uiwf τ s.t. c · jτ is also
uiwf then we get a permutation model containing an antimorphism. It a classic
fixed-point-for-a-tro-obtained-by-permutations–situation.

Recall that we use lower-case fraktur characters for variables ranging over
conjugacy classes.

Consider the poset ⟨P,≤B⟩ of conjugacy classes of involutions-without-
fixpoints. It is closed under j (which is order-preserving) and σ 7→ jσ · c (which
isn’t). It has a top element which is the conjugacy class of universal involutions;
call it c1. There are also
(i) the conjugacy class – call it c3 – of universal involutions-without-fixpoints,
and
(iii) the conjugacy class – call it c2 – of the involutions that have a transversal.

Evidently c2 ≤B c3. AC2 is simply the assertion that c3 = c2. And if
they are the same then there is only one conjugacy class of involutions-without-
transversals. And that’s an iff. What happens if AC2 fails? Then there is more
than one conjugacy class. Can we prove that c2 is always the bottom element?
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If there are involutions-without-fixpoints that have fewer than T |V | pairs (and
there might be, for all I know) then the answer would be: no!

If AC2 fails then the congruence class c1 of universal involutions consists of
bad involutions, and there is the ≤B-minimal class c2 which consists of good
permutations. In fact it’s the equivalence class of c1 – the equivalence class
of all cs with odd subscripts, indeed. And it’s a consequence of corollary 3
that the conjugacy class c1 of universal involutions contains all the cs with even
subscripts. π 7→ jπ · c swaps you back and forth between these two conjugacy
classes. (This is how we know that π 7→ jπ · c does not preserve ≤B). Thus,
among the conjugacy classes of involutions we find the conjugacy class of the c2n
(which is maximum) and the conjugacy class of the c2n+1 (which is minimal).
c2 is ≤B-minimal but perhaps not minimum, since – for all we know – if AC2

fails there may be involutions without fixpoints whose corresponding partitions
are smaller than ι“V . Indeed, to the best of my knowledge, no-one has ever
proved that V is not the union of a wellordered(!) family of finite sets. So we
should not expect to be able easily to exclude the possibility of partitioning V
into fewer than T |V | pairs.
⟨P,≤B⟩ admits a + operation, arising from disjoint union. Is it the join

in the sense of the poset? Well, it will be if |V | is indecomposable. But is it?
What happens if a+ a = a?

Consider the class BINV of those involutions that are universal or lack fixed
points. BINV is closed under σ 7→ jσ · c, which makes it the correct place to
search for fixpoints for σ 7→ jσ · c. We need a name for this function whose
fixed points are antimorphisms. Is BINV the correct thing to examine? Or its
conjugacy classes? Or perhaps its conjugacy classes in J1?? The point being
that if jσ · c and jτ · c are J1-conjugate then σ and τ are J0-conjugate.

In fact this setting seems to be one in which various old festering problems
appear and can perhaps be partially processed. Among the bad involutions
are there any which have fewer than T |V | pairs? Call such a permutation
small bad. If there are any, is the collection of conjugacy classes of small bad
permutations closed under +? This is related to the question of whether or not
|V | is decomposable. Clearly if σ and τ are both bad, so is σ ⊔ τ . But if |V |
is indecomposable, then if |σ ⊔ τ | = T |V |, one of σ and τ must also be of size
T |V |. So might there be a universal small bad permutation?

Let us write ‘J0’ for the symmetric group on V , and J1 for j“J0 (and so on).
Thus the triviality is that c is in the centraliser CJ0(J1) of J1 in J0. There is
slightly more one can say about this that may be worth recording here.
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REMARK 13

CJ0
(J1) ⊆ {σ : (∀x)(σ(x) = x ∨ σ(x) = V \ x)} ⊆ CJ0

({c, 11V })8.

Proof: First inclusion:

Suppose σ ∈ CJ0(J1). Let τ be any permutation whatever. Then

τ“σ(x) = σ(x)

iff (commutativity)
σ(τ“x) = σ(x)

iff (because σ is a permutation)

τ“x = x

So τ fixes σ(x) setwise iff it fixes x setwise. But τ was arbitrary. It
follows easily9 that σ(x) must be x or V \ x.

Second inclusion:

Assume (∀x)(π(x) = x ∨ π(x) = c(x)).
We will show that π ∈ CJ0({c, 11V }).
If π(x) = c(x) then π · c(x) = x so c · π(x) = π · c(x) = x.

If π(x) = x then π · c(x) = c(x) so c · π(x) = c(x) = π · c(x).

Both these inclusions are proper:∏
x∈ι“V

(x, V \ x) is a counterexample to the converse of the first inclusion.

The second inclusion cannot be reversed because J1 ⊆ CJ0
({c, 11V }).

Observe that

({c, 11V } ⊆ {σ : (∀x)(σ(x) = x ∨ σ(x) = V \ x)}

whence (because the centraliser function is antimonotonic)

CJ0
({σ : (∀x)(σ(x) = x ∨ σ(x) = V \ x)}) ⊆ C({c, 11V }).

I think I can prove that

CJ0({σ : (∀x)(σ(x) = x ∨ σ(x) = V \ x)}) = {c, 11V }.

The R-to-L inclusion is obvious.
Suppose a ̸= b ̸= (V \ a) and suppose τ sends a to b. Then it doesn’t

commute with the transposition (a, V \a), which is certainly in {σ : (∀x)(σ(x) =
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x ∨ σ(x) = V \x)} so τ is not in the centraliser CJ0({σ : (∀x)(σ(x) = x ∨ σ(x) =
V \ x)}) Not sure what

that proves!{σ : (∀x)(σ(x) = x ∨ σ(x) = V \ x)} is actually a group, and of exponent 2,
so of course it is abelian and equal to its own centraliser.

Much of what we say below about c goes for any member of CJ0
(J1).

Note that (∃σ)(y = σ“x) is an equivalence relation. Let us write it ∼1, and
let us write the equivalence class of x under ∼1 (the orbit of x under J1) as
[x]. What we have shown is that, for each π ∈ CJ0

(J1) and for each x, π must
either fix all members of [x] or send them all to their complements. That is, we
can code members of CJ0

(J1) by the equivalence classes whose members they
fix. If we now identify [x] and [V \ x] by ≈ we see that CJ0(J1) is precisely the
additive part of the boolean ring on (V/∼1)/≈.

LEMMA 6
(i) All the ci are involutions;
(ii) All the ci commute with each other.

Proof:

(i) We prove this by induction on i. Suppose ci is an involution. ci+1 = jci ·c.
So (ci+1)

2 = (jci ·c)2 = jci ·c · jci ·c. Now by the key triviality we can rearrange
to jci · jci · c · c = 11.

In fact this even shows that all products of the ci are involutions.

(ii) We prove by induction on i that, for all j, ci commutes with cj .
Case i = 0. c0 = c and c commutes with j(π) for all π. But every cj is

j(π) · c for some π, and (compose with c on the right) j(π) · c · c = j(π) and if
we compose with c on the left we get c · j(π) · c which, too, is j(π) because c
commutes with j(π).

Now for the induction.

ci+1 · cj = j(ci) · c · j(cj−1) · c

and the RHS simplifies to
j(ci) · j(cj−1)

which is
j(ci · cj−1)

which by induction hypothesis is

j(cj−1 · ci)
8Actually one can spice this up quite a lot, by reflecting that the centraliser function is

antimonotonic, so one can whack ‘C()’ in front of each of these and then reverse all the arrows.
I was sure I had written this out somewhere but I can’t find it.

9I suspect the proof that I am eliding is not constructively correct.

42



which is
j(cj−1) · j(ci).

We now sprinkle a couple of cs judiciously – by the triviality we know can insert
them anywhere – obtaining

j(cj−1) · c · j(ci) · c

which is of course
cj · ci+1.

REMARK 14
Let σ and τ be involutions of V .

(1) Let τ be an involution without fixpoints. Then T is a transversal
for τ iff T is a fixpoint for jτ · c;

(2) T is a fixpoint for σ iff B(T ) is a transversal for jσ · c.

Proof:
(1) Think of τ as a partition of V into pairs. Then, if T is a transversal,

V \ T (which is also a transversal) is precisely τ“T .
(2) A piece of [the partition] jσ · c is a pair {x, V \ σ“x} – which of course

might be a singleton. If σ(T ) = T then, for all x, precisely one of x and V \σ“x
will contain T . That is to say, {x, V \ σ“x} ∩B(T ) is a singleton, so B(T ) is a
transversal.

For the other direction . . . if B(T ) is a transversal for jσ · c then, for all x,
precisely one of x and V \ σ“x contains T , which is to say that T ∈ x ←→
σ(T ) ∈ x. In particular let x be {T }; then T ∈ {T } ←→ σ(T ) ∈ {T }, so
σ(T ) = T .

I thought this corollary followed but it doesn’t. Error Alert!
This is not a
corollaryCOROLLARY 2

If jτ · c is bad then τ is bad.

Proof:
Suppose jτ · c is bad. Then it has no transversals. In particular for no T is

B(T ) a transversal, so for no T is T a fixpoint for τ .
Suppose jτ · c is bad. Then it has no fixpoints. So τ has no transversals.

At one point i tho’rt i had a proof of the convers, but i didn’t.
We aspire to show τ bad implies jτ · c bad. (which won’t work!)
τ has no fixpoint so jτ · c has no transversal10.

10No! It might have transversals that aren’t B of any fixpoint for τ
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τ has no transversal. Suppose, per impossibile, that jτ · c has a fixpoint, x.
Then x = V \ τ“x which says that x is a transversal for τ .

The gap could be plugged if there were a way of constructing a fixpoint for
an involution τ from a transversal for jτ · c.

The following corollary seems quite striking, but it hasn’t borne any fruit
just yet.

COROLLARY 3
(i) For any ultrafilter U on V , Bn(U) is a transversal for c2n+1;
(ii) All the c2n+1 are conjugate;
(iii) For all n ≥ 1, cn is conjugate to cn+2.

Proof:
(i) We do an induction on n.

For the case n = 0 any ultrafilter is a transversal for c.
Suppose for the induction that Bn−1(U) is a transversal for c2n−1.
Consider

c2n+1(A) ∈ Bn(U). ((A))

By definition of B this is the same as

Bn−1(U) ∈ c2n+1(A)

Now c2n+1(A) = V \ (c2n“A), so we can rewrite (A) as

c2n(B
n−1(U)) ̸∈ A.

By induction hypothesis Bn−1(U) is a transversal for c2n−1, which is to say that
Bn−1(U) is a fixed point for c2n. So rewrite ‘c2n(B

n−1(U))’ as ‘Bn−1(U)’; this
turns our formula-in-hand into

Bn−1(U) ̸∈ A

which (by definition of B) becomes

A ̸∈ Bn(U).

So we have proved

c2n+1(A) ∈ Bn(U)←→ A ̸∈ Bn(U)

. . . which is to say that Bn(U) is a transversal for c2n+1.

(ii) now follows by lemma 2.

(iii) By induction on n.

The case n = 1 we know from (ii).
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For the induction step suppose π conjugates cn to cn+2, which is to say

π · cn · π−1 = cn+2

Lift by j:
jπ · j(cn) · (jπ)−1 = j(cn+2)

compose both sides with c on the right:

jπ · j(cn) · (jπ)−1 · c = j(cn+2) · c

But c commutes with (jπ)−1 so we can rearrange the LHS, and j(cn+2)·c = cn+3

on the RHS giving
jπ · j(cn) · c · (jπ)−1 = cn+3

Now j(cn) · c (underlined) = cn+1 giving

jπ · cn+1 · (jπ)−1 = cn+3

as desired.

Also worth minuting is the fact that

REMARK 15 Conjugacy is a congruence relation for the operation π 7→ jπ ·c.

Proof:
Suppose σ and τ are conjugate; so, for some π,

π · σ · π−1 = τ ; Then whack it with j:
j(π) · j(σ) · j(π−1) = j(τ); compose with c:
j(π) · j(σ) · j(π−1) · c = j(τ) · c; but c commutes with j of anything, giving:
j(π) · j(σ) · c · j(π−1) = j(τ) · c

which says that j(σ) · c and j(τ) · c are conjugated by j(π).

Notice that in this construction j(σ) · c and j(τ) · c end up being conjugated
by j of something, which is (presumably, demonstrably?) a stronger condition
than simply being conjugate. There seems to be no obvious reason why the
induced function [σ] 7→ [jσ · c] on conjugacy classes should be injective. I think we

prove it isn’t
LEMMA 7 (Bowler, written up by tf)
j(c) and c2 are conjugate, so c2, too, is universal.

Proof: duplication. . . ??
Given a set of the form x△B(∅) we can recover x since it is

(x△B(∅))△B(∅). So x 7→ x△B(∅) is injective. But the same thought re-
assures us that it is surjective too, so it is genuinely a permutation of V and,
actually, an involution. In fact we can write it

∏
x∈V (x, x△B(∅)) as a product

of disjoint transpositions . . . or π for short.
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To see that π conjugates c2 to j(c), we calculate as follows:

(j(c) · π)(x) =1 j(c)(x△B(∅))
=2 j(c)(x)△ j(c)(B(∅))
=3 j(c)(x)△ (V \B(∅))
=4 j(c)(x)△ (V △B(∅))
=5 (j(c)(x)△V )△B(∅)
=6 (V \ j(c)(x))△B(∅)
=7 (c · j(c))(x)△B(∅)
=8 c2(x)△B(∅)
=9 (π · c2)(x)

Equation 1 holds by definition of π;
Equation 2 distribute j over △;
Equation 3 holds beco’s jc swaps ultrafilters with their complements;
Equation 4 holds beco’s V \X = V △X;
Equation 5 holds beco’s △ is associative;
Equation 6 holds beco’s V \X = V △X;
Equation 8 holds by definition of c2 (It equals jc · c);
Equation 9 holds by definition of π.

How could he see that???! There are two facts that seem to be key. One
is that V△X = V \ X, and the other is that jc swaps ultrafilters with
their complements, and so does the same as c in that case. Perhaps these
two insights can be put to wider use.

COROLLARY 4
Every model of NF has a permutation model with an internal ∈-automorphism.

Proof: It follows from corollary 1 that j(c) and j2(c) are conjugate, making j(c)
an example of a permutation which is conjugate to j of itself. It was shown in
[8] that any model containing such a permutation π has a permutation model
wherein π has become an (internal) ∈-automorphism.

In [8] it is shown that there must be such a π, but that was on the assumption
of AC2, and of course we have here scrupulously eschewed AC2.

Zuhair Abdul Ghafoor Al-Johar has asked me whether the automorphism
obtained in this way moves any wellfounded set. Thinking about it for a bit
the answer is of course ‘no’. For any automorphism σ the set {x : σ(x) = x} is
indeed a set and it extends its own power set, so – by induction – it contains all
wellfounded sets.

For the main result which follows later (corollary 6) we will need involutions
σ and τ such that there is a permutation π conjugating σ to j(τ) · c and τ to
j(σ) · c. The next lemma exhibits such a pair of involutions, taking σ to be c1
and τ to be c2.
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LEMMA 8 (Bowler)
There is an involution that conjugates c with c3 and commutes with c2.

We seem to
have accu-
mulated two
proofs of this

Proof:
We begin by choosing a fixed point a of c2 and setting b = c1(a). Since a is

a fixed point of c2 we also have b = c1(c2(a)) = j(c)(a). For any s ⊆ {a, b} we
define Xs to be {x : x ∩ {a, b} = s}.

X∅ is closed under both j(c) and j2(c); let σ∅ be the restriction of j(c) to X∅
and τ∅ the restriction of j2(c). Then there are embeddings of j(c) into σ∅ and
j2(c) into τ∅, so by the results of the last section both σ∅ and τ∅ are universal.
Let π∅ be an isomorphism from σ∅ to τ∅. Since j(c) = c1 · c2 and j2(c) = c3 · c2
we have the equation π1 · c1 · c2 = c3 · c2 · π1, which we note for future use.

We now define π : V → V by

x 7→


π∅(x) if x ∩ {a, b} = ∅
x if x ∩ {a, b} = {b}
c3(c1(x)) if x ∩ {a, b} = {a}
c3(π∅(c1(x))) if x ∩ {a, b} = {a, b}

Then π is a union of bijections from Xs to Xs for each s ⊆ {a, b}, so it is a
bijection.

It remains to check that for any x we have π(c1(x)) = c3(π(x)) and
π(c2(x)) = c2(π(x)). For each equation there are four cases, depending on
x ∩ {a, b}. We now check these cases for the first equation.

• If x ∩ {a, b} = ∅, then c1(x) ∩ {a, b} = {a, b} and so

π(c1(x)) = c3(π∅(c1(c1(x)))) = c3(π∅(x)) = c3(π(x)) .

• If x ∩ {a, b} = {b} then c1(x) ∩ {a, b} = {a} and so

π(c1(x)) = c3(c1(c1(x))) = c3(x) = c3(π(x)) .

• If x ∩ {a, b} = {a} then c1(x) ∩ {a, b} = {b} and so

π(c1(x)) = c1(x) = c3(c3(c1(x))) = c3(π(x)) .

• If x ∩ {a, b} = {a, b} then c1(x) ∩ {a, b} = ∅ and so

π(c1(x)) = π∅(c1(x)) = c3(c3(π∅(c1(x)))) = c3(π(x)) .

Might be an
idea to an-
notate these
equations

The four cases for the other equation are similar.

• If x ∩ {a, b} = ∅ then c2(x) ∩ {a, b} = {a, b} and so

π(c2(x)) = c3(π∅(c1(c2(x)))) = c3(c3(c2(π∅(x)))) = c2(π∅(x)) = c2(π(x)) .

• If x ∩ {a, b} = {b} then c2(x) ∩ {a, b} = {b} and so

π(c2(x)) = c2(x) = c2(π(x)) .
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• If x ∩ {a, b} = {a} then c2(x) ∩ {a, b} = {a} and so

π(c2(x)) = c3(c1(c2(x)))) = c2(c3(c1(x))) = c2(π(x)) .

• If x ∩ {a, b} = {a, b} then c2(x) ∩ {a, b} = ∅ and so

π(c2(x)) = π∅(c2(x)) = π∅(c2(c1(c1(x)))) = c2(c3(π∅(c1(x)))) = c2(π(x)) .

Here is another proof

The universe partitions naturally into bundles closed under both c1 and c3.
Each such bundle contains precisely four sets. We will define a permutation π
in such a way that it fixes each bundle setwise. It will turn out that π is the
permutation we seek.

x j2c · jc · c(x) c(x) j2c · jc(x)

x c(x) j2c · jc · c(x) j2c · jc(x)

c3

c

In the accompanying picture we have written a typical bundle twice: once
below the line where it is divided into two c-cycles and once above the line where
it is divided into two c3-cycles. We have to biject the set of points below the line
with the set of points above the line in a way that respects the two partitions
into cycles. Evidently this can be done (in eight different ways, as it happens)
so we pick one such way for each bundle. By corollary 3 (i) we have transversals
for c3 and c. The transversal for c3 highlights precisely one element in each
pair upstairs, namely that element that contains B(∅). These two highlighted
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elements cannot – downstairs – belong to different pairs because the downstairs
pairs are complements and two complementary sets cannot both contain B(∅).

To illustrate, suppose in the picture that upstairs we highlight x and (there-
fore) j2c · jc(x). We tell π to fix these two sets, and that compels it to swap
c(x) and c3(x).

The other possibility is that we highlight c3(x) and c(x), and then we tell π
to fix those two sets and to swap x and j2c · jc(x).

Either way the net result is that π is

if B(∅) ∈ x then x else j2c · jc(x).

Reflect that B(∅) ∈ x iff B(∅) ∈ j2c · jc(x), and j2c · c is an involution.
So, if B(∅) ∈ x, it follows that π(x) = x and then π2(x) = x; if B(∅) ̸∈ x then
π(x) = j2c·jc(x) which does not contain B(x) either. So π2(x) = π(j2c·jc(x)) =
j2c · jc · j2c · (x) = x and π2(x) = x. So π is an involution.

Let us check that π commutes with j2c · jc, that is to say: j2c · jc · π(x) =
π · j2c · jc(x) for all x.

There are two cases, depending on whether or not B(∅) ∈ x.

If B(∅) ∈ x then π(x) = x and j2c · jc · π(x) = j2c · jc(x).
If B(∅) ∈ x then B(∅) ∈ j2c · jc(x) so j2c · jc(x) is fixed by π.

Either way j2c · jc · π(x) = π · j2c(x) = π · j2c · jc(x)

If B(∅) ̸∈ x then π(x) = j2c · jc(x). Then j2c · jc · π(x) = x.

If B(∅) ̸∈ x then B(∅) ̸∈ j2c · jc(x) so j2c · jc(x) is moved by π, and
must be x.

Either way j2c · jc · π(x) = x = π · j2c · jc(x)

Presumably there is a generalisation that says that there is an involution
that conjugates ci with ci+2 and commutes with ji+2c ·ji+1c. But – presumably
– we are not going to need it.

However i think this is completely general. Is it not the case that, in any
symmetric group, if σ and τ are conjugate, then they can be conjugated by
something that commutes with στ? Something like that must be true...

9.2 Finding Permutations that will prove Duality2

COROLLARY 5
Every model of NF has a permutation model that contains two (internal) per-
mutations σ and τ satisfying
(∀xy)(x ∈ y ←→ σ(x) ̸∈ τ(y)) and
(∀xy)(x ∈ y ←→ τ(x) ̸∈ σ(y)).

Furthermore any such model satisfies duality for formulæ that are stratifiable-
mod-2.
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Proof: We use the permutation π from lemma 8, and exploit the two permuta-
tions σ and τ that we find in the permutation model V π.

If a formula ϕ is stratifiable-mod-2 then its variables can be assigned to two
types yin and yang in such a way that in subformulæ like ‘x = y’ the two
variables receive the same type and in subformulæ like ‘x ∈ y’ the two variables
receive different types. Let us associate σ to variables given type yin in the
assignment and associate τ to variables given type yang in the assignment.
‘x ∈ y’ is equivalent to ‘σ(x) ̸∈ τ(y)’ and if x is of type yin we perform this
rewrite. ‘x ∈ y’ is also equivalent to ‘τ(x) ̸∈ σ(y)’ and if x is of type yang we
perform that rewrite. We deal with equations analogously. In the rewritten
version of ϕ we find that every variable ‘x’ of type yin now appears only as
‘σ(x)’ and that every variable ‘y’ of type yang now appears only as ‘τ(y)’. So
we can reletter ‘σ(x)’ as ‘x’, and ‘τ(y)’ as ‘y’ and the result is ϕ⟲.

There is a further corollary: no homogeneous formula ϕ(x1, x2) can define
a BFEXT (a well-founded extensional binary relation) on V . Given a definable
well-founded extensional binary relation on V we can argue as follows. Let
σ be an permutation, assumed to be an ∈-automorphism. We then prove by
wellfounded induction on ϕ that σ is the identity.

Actually we have to be very careful how we state this . . .

First we prove that if there is a definable wellfounded extensional relation
on the whole of V then there are no nontrivial ∈-automorphisms.

Suppose σ is an ∈-automorphism, and that ϕ(x, y) defines a wellfounded
extensional relation on the whole of V . Fix y and suppose (∀x)(ϕ(x, y) → x =
σ(x)). Then (∀x)(ϕ(x, y) ←→ ϕ(x, σ(y))) whence y = σ(y) by extensionality.
Then if {y : y ̸= σ(y)} is nonempty it has no ϕ-minimal element, contradicting
wellfoundedness of ϕ.

We plan next to exploit corollary 4. The obvious thing to do is to say:
suppose ϕ defines a wellfounded extensional binary relation on V ; jump into a
permutation model containing a nontrivial ∈-automorphism to prove that it’s
not a wellfounded extensional binary relation. However for that to work we
need the expression “ϕ defines a wellfounded extensional binary relation on V ”
to be stratified, and for that we need ϕ to be stratified. It doesn’t have to be
homogeneous, but it does have to be stratified.

Some questions

1. Under what operations is the class of universal involutions closed?

2. Are the universal involutions a normal generating subset of J0?

Ad (2): Every permutation is a product of involutions; is every permutation
a product of universal involutions? Surely we can bring Bowler-Forster to bear
on this. If not, then the subgroup generated by the universal involutions is a
normal proper subgroup of small index. [We’d better show that this normal
subgroup is of small index in the meaning of the act!] Come to think of it, one
can run the same argument for all conjugacy classes of involutions.
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COROLLARY 6 Every model of NF has a permutation model that satisfies
duality for formulæ that are stratifiable-mod-2.

It’s worth bearing in mind that σ and τ retain in V π all the stratified prop-
erties they had in their previous life in V , where they were c and c2. Thus they
commute, and σ2 = τ2 = 11. Observe also that

j(στ) = jσ · jτ = τ · c · c · σ = τσ = στ,

so στ is actually an ∈-automorphism of V π. It is a nontrivial automorphism
beco’s σ and τ are not inverse to each other: τ has fixed points and σ does not.
By the remark in the proof of part (i) of lemma 6 στ is an involution.

This fact is worth recording! But we proved
this aleady on
p 32.COROLLARY 7 Every model of NF has a permutation model containing a

nontrivial automorphism of order 2.

We should be able to express this as a fact inside the base model. . .

Can we use this technique to obtain models in which duality holds for for-
mulæ that are stratifiable-mod-p for other primes? If we were to rejig the above
development to seek a proof for formulæ that are stratifiable-mod-3 then we
would be looking for an antimorphism tuple (in this case triple) σ, τ , π such
that there is θ satisfying

(jσ · c)θ = τ , (jτ · c)θ = π and (jπ · c)θ = σ.

However, as Nathan Bowler has reminded me, the existence of such a triple
contradicts AC2 since – by lemma 5 – τ has an odd cycle iff jτ · c does not. And
if we are going to ditch AC2 then we may as well go for outright antimorphisms
from day 1.

9.3 Full Duality?

It may be that the set of things fixed by στ is a model of NF + full Duality.
Something to check!

First we check that στ (which is the same as τσ) is an ∈-automorphism. For
all x and y we have x ∈ y ←→ σ(x) ̸∈ τ(y) so σ(x) ̸∈ τ(y)←→ τσ(x) ∈ στ(y) =
τσ(y) so τσ is an ∈-automorphism as desired.

Next we check that if π is an ∈-automorphism then the set of fixed points is
a model of NF. The big gap here is extensionality. We would have to show that
every nonempty fixed set has a fixed member.

Finally we check that the set of fixed points of στ is additionally a model
of duality. Observe that, for all such fixed x we have x = σ(τ(x)) whence
σ−1(x) = τ(x). But σ2 = 11 so σ(x) = τ(x).

Now suppose x and y both fixed. Then x ∈ y ←→ σ(x) ̸∈ τ(y) = σ(y). So
σ is an antimorphism of the fixed points.
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But this relies on the set of fixed points being extensional. It may be that
we can ensure this by a judicious choice of the permutation in lemma 8. We
seek a π that conjugates c to j2c · jc · c and moreover has the extra feature that
in V π the set {x : σ(x) = τ(x)} is extensional. Must turn this into a condition
on π. . . . We think

V π |= (∀x)(x ̸= ∅ ∧ στ(x) = x→ (∃y ∈ x)(στ(y) = y))

is
(∀x)(π(x) ̸= ∅ ∧ στ(x) = x→ (∃y ∈ π(x))(στ(y) = y))

which becomes

(∀x)(x ̸= ∅ ∧ j2c · jc(x) = x→ (∃y ∈ π(x))(j2c · jc(y) = y))

where π conjugates c and j2c · jc · c.
Let us write ‘F ’ for {x : x = jc · j2c(x)} to keep things readable. The π

we seek has got to inject F into {y : y ∩ F ̸= ∅} – o/w known (see p. 7) as
“
P
(F )”. Observe that

P
(x) is always a moiety, since it is V \(P(V \x)), and the

complement of a power set (of anything other than V ) is always the same size as
V . This is beco’s every set (other than V itself) is included in the complement
of a singleton, and the power set of a complement of a singleton is a principal
prime ideal and therefore a moiety.

So there’s no problem on that score.
It’s not blindingly obvious to me that it cannot be done.

9.4 Refuting duality

The Lads said:

First: Add a Quine atom by τ = (∅, {∅});
Second: Kill off all Quine atoms by τ =

∏
x∈ι2“V

(x, V \ x).

Now it should be possible to do it with a single permutation. I think the idea
is to swap with their complements-in-the-sense-of-(∅, {∅}), all those sets that are
double singletons in the sense of V (∅,{∅}). That is to say – writing ‘σ’ for the
transposition (∅, {∅}) and ‘c’ for complementation to keep things readable:

τ :=
∏

(x∈ι2“V )σ

(x, σcσ(x))

is the one-stop permutation we want. (The fact that this definition is legitimate
is nontrivial: it’s a great help that σcσ is an involution. We also need the
fact that if x is a double-singleton-in-the-sense-of-σ then its complement-in-the-
sense-of-σ cannot be a double-singleton-in-the-sense-of-σ. This ensures that all
the transpositions in the big product are disjoint.)
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THEOREM 1
Duality fails in V τ because it contains a Quine antiatom but no Quine atom.

Proof:
Clearly the collection A := {x : ((∃z)(x = {{z}}))σ)} is going to be of

interest. Let’s process ‘(x ∈ ι2“V )σ’.

(x ∈ ι2“V )σ

is
(∃z)(x = {{z}})σ

which is
(∃z)(σ“(σ(x)) = {{z}})

which is
(∃z)(σ(x) = σ“{{z}})

which is
(∃z)(σ(x) = {σ{z}}).

Two things to notice

1. Since every Quine atom is fixed by σ every Quine atom belongs to A.
Everything that starts life as a Quine atom is moved.

2. Notice too that if x = ∅ then it belongs to A: σ(∅) = {∅} = {σ{∅}}.

So what is the fate of ∅ in the new model V τ? (Let’s call it ‘a’ in order not
to confuse ourselves!)

(x ∈ a)τ

iff
x ∈ τ(a)

Now τ(a) is the complement-in-the-sense-of-V σ of a which is σcσ(a) = σc{∅} =
σ(V \ {∅}) = V \ {∅}.

iff
x ∈ (V \ {∅})

iff
x ̸∈ {∅}

iff
x ̸= ∅

iff
x ̸= a

So a is a Quine antiatom in the new model V τ .
Now let’s check that there are no Quine atoms in the new model V τ .
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Suppose x is a Quine atom in the sense of V τ . If x is fixed by τ then it was
a Quine atom in the model in which we started. We observed earlier (item 2
p 53) that any object that starts life as a Quine atom is moved by τ . So x is
moved. So (x is a Quine atom)τ is

(∀y)(y = x ←→ y ∈ σcσx)

We need not consider the case where x = ∅, since we have already dealt with
that and seen that x is a Quine antiatom. If x = {∅} then the RHS becomes
y ∈ σcσ{∅} = V which is clearly not equivalent to the LHS; clearly {∅} is not a
Quine atom in V τ .

There remain the cases where x is fixed by σ. These give

(∀y)(y = x ←→ y ∈ σ(V \ x))
For x to be a Quine atom in V τ , σ(V \ x) will have to be a singleton. This

can happen if x = V , for then V \ x is empty and σ(V \ x) is {∅} so x would
have to be both V and ∅, so the case x = V does not give rise to a Quine atom.
The only other way for σ(V \ x) to be a singleton is for V \ x to be a singleton,
say {z} and for it to be fixed by σ. In that case the condition for (x is a Quine
atom)τ becomes

(∀y)(y = x ←→ y ∈ (V \ {z}))
which is clearly impossible.

In contrast, we have not yet found a permutation model that satisfies duality.

10 Work still to do

The previous section is error-strewn of course! Here is a message from Nathan
“Hi Thomas,
I think I’ve found a way to recover your original result (given the axiom of

choice for pairs, we get a permutation model such that truth of sentences which
can be 2-stratified is preserved under complementing the containment relation).

I don’t have time to send you more than a sketch now, but I’ll try to send
more details later. Fix some identification of V with V ×{1, 2, 3, 4, 5, 6, 7, 8}. Let
s be the permutation acting on the second component by (1, 2)(3, 4)(5, 6)(7, 8)
and t the permutation acting on the second component by (3, 4)(5, 8)(6, 7). So
s and t are commuting involutions. If we look at the orbits under the action of
these two permutations, we get:
• sets of the form {x} × {1, 2} – here s exchanges the two elements and t

fixes both.
• sets of the form {x}×{3, 4} – here both s and t exchange the two elements.
• sets of the form {x} × {5, 6, 7, 8} – here s exchanges (x, 5) with (x, 6) and

(x, 7) with (x, 8), whereas t exchanges (x, 5) with (x, 8) and (x, 6) with (x, 7).
Now consider s′ = j(t) · c and t′ = j(s) · c. The ‘orbit type’ of the pair (s′, t′)

is the same as that for the pair (s, t). So there is some permutation conjugating
s to s′ and t to t′, which is exactly what we need.”
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There remains of course the challenge of proving consistency of duality for
all sentences, not merely those that are stratifiable-mod-2. But more to the
point are the possibilities of extending to formulæ that are stratifiable-mod-n
things known about the rather more restricted class of stratified formulæ – and
these we haven’t started thinking about. Here are some, in no particular order.

• We should show in an NF context that, for each n, the assertion that
“there are sets x s.t. ιn ↾x exists” is invariant.

• Is there any interest in versions of Forti-Honsell Antifoundation along the
lines “Every set picture that is a n-stratification graph is a picture of a set”?

• If ϕ is, for each n, equivalent (modulo NF) to something that is stratified-
mod-n must it be (NF)-invariant?

I briefly thought i had a counterexample, on the grounds that
“∃Vω’ is, for each n, equivalent to
“The least fixpoint for x 7→ (Pℵ0

)n(x) exists”
and that last assertion is stratifiable-mod-n. So it ought to be invariant, but

it isn’t, beco’s of Holmes’ clever permutation.
However, the least fixpoint for x 7→ (Pℵ0

)n(x) isn’t Vω. It’s the set of sets
of rank a multiple of n.. Duh.

• Randall has just (4/vi/2016) pointed out to me that TCnT is in some sense
the same theory as NFU + |V | = |Pn(V )|. It could be a good idea to spell this
out. Evidently any model of NFU + |V | = |Pn(V )| will give rise to a model of
TCnT. The other direction looks a lot more complicated.

• In a model of TCkT one can sensibly ask, for any m, whether or not
Ambiguity holds for formulæ that are stratifiable-mod-k ·m.

• André Pétry suggests a generalisation of a result of his-and-mine alluded
to earlier ([9], [17], and [18]) to the effect that if two structures are elementarily
equivalent for formulæ that are stratifiable-mod-n then they have stratimorphic
(as it were) ultrapowers.

• One could investigate whether the construction of [11] could be modified
to encompass expressions that are stratifiable-mod-n. That looks messy.

• There are natural settings where one encounters embeddings that are ele-
mentary for stratifiable formulæ, and where one might hope to get embeddings
that are elementary for some of these larger classes of formulæ. CO models is
one setting: the embedding from the ground model into the hereditary low sets
is elementary for stratifiable formulæ. (That particular example is probably
not a good one, because if the inclusion embedding is elementary for formulæ
that are stratifiable-mod-n for even one n then the hereditarily low sets cannot
contain any Quine atoms). For another, let M be a structure for L. Consider
the class of those m ∈M s.t. m is fixed by all permutations of M that, for all n,
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are jn of something. It’s an elementary substructure as long as it’s extensional.
Now use instead those permutations π of M s.t. jmπ = 11. Now the class of
fixed things is a substructure elementary for expressions that are stratifiable
mod m (again, assuming extensionality).

• Str(ZF) is the theory axiomatised by the stratifiable axioms of ZF; by
analogy strn(ZF) will be the theory axiomatised by those axioms of ZF that
are stratifiable-mod-n. ZF can be interpreted in str(ZF) + IO. (IO is the axiom
“every set is the same size as a set of singletons”). Observe that IO is a theorem
of strn(ZF), since it proves that ιn ↾x exists for all x, so every set is the same
size as a set of singletons. Indeed even strn(Z) (the stratifiable-mod-n fragment
of Zermelo set theory) proves IO. So ZF can be interpreted in strn(ZF). At
this stage we cannot see how to prove that strn(ZF) = ZF. There are parallel
questions about the fragments of Mac.

• Stratified parameter-free ∆0 ∈-induction seems to prove no more than
the nonexistence of a universal set. How about stratifiable-mod-n parameter-
free ∈-induction. . . what does that do? One might hope that it would prove
the nonexistence of ∈-loops of circumference n but we can’t see it offhand.
But in any case we should start with the case n = 2 in order to not drown
immediately in the deep end. We noted in section 3 that the collections I and
II as in [13] are both the extensions of expressions that are stratifiable-mod-
2. So stratifiable-mod-n parameter-free ∈-induction will imply ∈-determinacy.
(though that induction is not ∆0. . . ) Needs looking into.

Stratifiable parameter-free ∈-induction implies the nonexistence of the uni-
versal set. (If none of your members are the universal set, you can’t be either).
It’s not known if the converse holds. However the strengthening of the converse
one would consider in this context, namely “the non-existence of the universal
set implies ∈-induction for parameter-free formulæ that are stratifiable-mod-n”
clearly does not go through: ∈-induction for parameter-free formulæ that are
stratifiable-mod-n” implies (∀x)(x ̸∈2 x), and that clearly doesn’t follow from
the nonexistence of V .

• Suppose we add to our favourite theory of wellfounded sets a scheme of
∈-induction for formulæ that are stratifiable-mod-n, for some or all n. Is it
the case that any such model is first-order indistinguishable from a wellfounded
model? Can we prove anything with that flavour . . . ? A: by proposition 2 we
could prove that every set is wellfounded.

• Every weakly stratifiable theorem of first-order logic has a cut-free weakly
stratifiable proof; every stratifiable theorem of first-order logic has a stratifiable
proof (Crabbé, [4]); are there analogues for stratification-mod-n? Every theorem
of first-order logic that is stratifiable-mod-n has a proof that is stratifiable-mod-
n? Crabbé thinks so. Why should it not work, after all?

On the other hand we should not expect a stratifiable-mod-n analogue of
Crabbé’s result that SF is consistent.

• There is an old question about whether the atoms of a model of NFU can
be indiscernible. We know that they are indiscernible wrt stratifiable formulæ;
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now that we’ve started looking into stratification-mod-n it is natural to wonder
whether one might be able to show that the atoms of a model of NFU must be
indiscernible wrt expressions that are stratifiable-mod-2. At this stage it’s not
looking hopeful.

• We should investigate the consistency results relative to TZT obtained by
omitting types, to see how many of them work for TCnT. They make heavy use
of Coret’s lemma. Coret’s lemma tells us how permutations preserve stratifiable
formulæ. Any old permutation works. In the NF context we know that if we
want to preserve all formulæ then we can’t use any-old-permutation but only
∈-automorphisms. Working in TCnT we want to preserve formulæ that are
stratifiable-mod-n, and that means using permutations π s.t. π = jn(π), and
such permutations are not just lying around. TCnT really does behave more
like NF than like TZT.
• There is the old question of whether or not Ambn is equiconsistent with

NF. Suppose we work in KF, and consider TC2T to keep things simple initially.
Suppose we have an x with |x| = |P2x|. Is that going to give us a model of NF?
Let α be the cardinal of such an x. Can we prove that α = 2Tα? We suspect
not, because that would probably say something about theorems in TC2T. A
useful thought is the fact that α is ℶn of something for all concrete n. So we
certainly have α = α+1, α = α+α, α = α·α. The plan is to use these equations

to show that x⊔P(x) gives us a model of NF. So we want T (2α+2Tα

) = α+2Tα.

Now T (2α+2Tα

) = 2Tα · 22T
2α

.
So we want α+2Tα = 2Tα ·α, and we hope to get it from the good behaviour

of α. We have α = α2 so we get 2Tα = 2Tα2

= (2Tα)Tα which looks hopeful but
isn’t exactly what we want. The warning sign is that if this worked it would
show that 2Tα absorbs α and that sounds extremely implausible.

But even if α + 2Tα = 2Tα · α it wouldn’t help. We can exploit Bernstein’s
Lemma to show that we would have α = 2Tα or – at the very least – that each
≤∗ the other, which is just as bad, as follows.

If we have α+2Tα = 2Tα ·α then Bernstein’s Lemma gives α ≤ 2Tα∨2Tα ≤∗

α and α ≤∗ 2Tα ∨ 2Tα ≤ α so a case analysis gives α = 2Tα ∨ α ≤∗ 2Tα ≤∗ α

which gives 2α = 22
Tα

= Tα, which is altogether too strong.
One has the impression that KF really does not want to prove that if there

is x with |x| = |Pn(x)| then there is an x with |x| = |P(x)|. The moral of this
seems to be that TC2T is not as much like NF as it might be.

• Consider “2(Duality for sentences that are stratifiable-mod-2)”
Is this consistent? Does it imply AC2?

• ZF + Foundation and ZF + antifoundation are alike extensions of ZF +
Coret’s axiom “every set is the same size as a wellfounded set” conservative
for stratifiable sentences. (See [14]). Does this hold also for sentences that are
stratifiable-mod-n?

Checking this last one should be simple!
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10.1 The full symmetric group on the Universe

The idea is that this section will become a self-contained paper with the above
title.

Things to cover:
Nathan’s partial order; universal involutions, universal permutations of all

orders
Pull in stuff from chapter about permutation models in NFnotesredux.tex
Bowler-Forster on normal subgroups
First-order theories of infinite symmetric groups
theorem on permutation models and normal generating subsets.
Existence of polarities implies AC for wellordered sets of pairs.
Existence of universal permutations needs V to be V (or at least a power

set) beco’s of the appearance of j in the definition of some of the universal
permutations, not merely an infinite set.

Pull in the stuff about centralisers of Jn
Also pull in the stuff from NFnotesredux.tex about how there can be finite

non-singleton orbits under Jn if AxInf fails. Look for ‘two-orbit’.
We can define the partial order for any symmetric group but in an NF

context it takes on some interesting structure. CUS is synonymous with ZF but
NF is not. This is something to do with the fact that NF has much more to say
about Big sets than CUS does; for example, according to NF (but not CUS)
the symmetric group on the universe is a set and there is quite a lot one can
say about it. These things are almost certainly not going to recounted by ZF
and so we’d better prick up our ears and pay attention.
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mêmes sentences stratifiées” Cahiers du Centre de Logique (Louvain-la-neuve)
4, (1982) pp. 7–16.

[18] Pétry, A. “Stratified languages” Journal of Symbolic Logic 57, (1992) pp.
1366–1376.

[19] Zuhair Al-Johar, M. Randall Holmes and Nathan Bowler “The Axiom
Scheme of Acyclic Comprehension” Notre Dame J. Formal Logic http:

//projecteuclid.org/info/euclid.ndjfl 55, Number 1, (2014), 1–155.
http://projecteuclid.org/euclid.ndjfl/1390246432.

59

www.dpmms.cam.ac.uk/~tef10/permstalk.pdf
www.dpmms.cam.ac.uk/~tef10/permstalk.pdf
www.dpmms.cam.ac.uk/~tef10/strZF.pdf
www.dpmms.cam.ac.uk/~tef10/strZF.pdf
www.dpmms.cam.ac.uk/~tef10/zmlmany.pdf
www.dpmms.cam.ac.uk/~tef10/zmlmany.pdf
www.dpmms.cam.ac.uk/~tef10/scansets.pdf
www.dpmms.cam.ac.uk/~tef10/scansets.pdf
http://projecteuclid.org/info/euclid.ndjfl
http://projecteuclid.org/info/euclid.ndjfl
http://projecteuclid.org/euclid.ndjfl/1390246432

	Introduction and Summary
	Stratification
	Wrapping up miscellaneous definitions

	Motivating stratification-mod-n
	The -game 
	The Axiom of Counting

	Preservation Results for Stratification-mod-n
	Instances of (A): ()(F() ()((-3mu)))
	Instances of (C): ()[()(F() (-3mu)) ]
	Instances of (B): ()[()((-3mu)) F()]

	Stratifiable-mod-n for every n
	Von Neumann Ordinals

	Cylindrical Types
	Rieger-Bernays Permutation methods for TCnT
	Possible Equiconsistency of TCnT and NF

	Modulo-n Analogues of strongly cantorian
	Analogues in NF
	Ambiguity in TCnT
	CO models for TCnT
	Generalise a Result of Specker?

	Applications to Duality
	Transversals, Partitions, Conjugacy and the Axiom of Choice for sets of pairs

	Working towards Antimorphisms
	Antimorphisms have no odd cycles
	Finding Permutations that will prove Duality2
	Full Duality?
	Refuting duality

	Work still to do
	The full symmetric group on the Universe


