
Five grades of Typical Ambiguity

Thomas Forster

November 6, 2024

Contents
1 The Five Grades 2

1.1 Specker’s Example of a grade (ii) Theory that is not grade (v) . . . . . 3

2 The Constructive Setting 4
2.1 Type-raising and Realizers . . . . . . . . . . . . . . . . . . . . . . . 6
The purpose of this brief note1 is to reprise Specker’s note [5] on Typical Ambi-

guity, and to discuss what might happen to those ideas in a constructive setting. The
motivation for this twist is that there are obvious realizers for the ambiguity axioms,
so there might be an argument for the consistency of the constructive fragment iNF of
NF that is not at the same time an argument for the consistency of NF. We now finally
know – thanks to Holmes [4] – that NF is consistent, but it would be very pleasing if
there should turn out to be two routes to this result not just the one.

The reader may be aware ([2] and [3]) that if a contradiction can be derived from a
set A of axioms then one can derive a contradiction from {¬¬ϕ : ϕ ∈ A}. Why does this
not promptly scupper the possibility of a classical theory that refutes ambiguity having
a constructive fragment that is consistent with ambiguity? The point is that Glivenko’s
result does not hold for predicate logic. This chink leaves open the possibility that there
might be classical theories that refute ambiguity but whose constructive fragments are
consistent with it, In this note i will show at least that one of the example theories in
[5] is such a theory:

There is a classical theory that contradicts Typical Ambiguity but
whose constructive fragment is consistent with Typical Ambiguity.

The most general setting for ideas like these is a first-order language L with a
bijection σ : L ←→ L that commutes with quantifiers and connectives, and an L-
theory T such that σ is an automorphism of T in the sense that, for all ϕ ∈ L, T ⊢ ϕ
iff T ⊢ σ(ϕ). (Henceforth we will write ‘ψσ’ rather than ‘σ(ψ)’). The two Specker
articles are essential reading. TZZT (which is the strongly typed set theory with levels

1Thanks to Randall Holmes and Stephen Mackereth for helpful comments
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indexed by Z, the theory in [7]2) is such a theory. Indeed TZZT is likely to be our main
preoccupation in what follows, and the automorphism of L(TZZT) that is of interest to
us is the operation that bumps up the type of a formula by one. Traditionally we write
this automorphism with a ‘+’ symbol: thus ϕ+ is the result of lifting all type subscripts
in ϕ by one.

1 The Five Grades
The phrase ‘typical ambiguity’ is often used in contexts like this, and it comes in (at
least!) five grades.

Grade (i) T ⊢ ϕ iff T ⊢ ϕ+;
Grade (ii) T ∪ {ϕ←→ ϕ+} is consistent for each ϕ;
Grade (iii) T ∪

∑
ϕ∈L ϕ←→ ϕ+ is consistent;

Grade (iv) T ⊢
∑
ϕ∈L ϕ←→ ϕ+;

Grade (v) T has an ambiguous model.

Grade (v) is complicated to state in general but in the case of interest here (TZZT)
an ambiguous model (glissant in French) is a model with an automorphism that sends
elements of type (level) i to elements of level i + 1. Any such model of TZZT will give
a model of NF as per Specker [6].

It may be worth noting en passant that – as Specker points out – if the + operation
is an involution3 then (ii) implies (iii). However the + operation in play in TZZT is
of infinite order so this observation is not very useful to us, tho’ it is worth keeping
in mind for later use in a more general context.

Classically there is a theorem of Specker’s [5] that says that grade (iii) implies
grade (v)4. (A theory of grade (iii) can be extended to a theory of grade (iv), and grade
(iv) implies grade (v) by general model-theoretic nonsense, and we supply no proof).
This gives a reduction of Con(NF) to the assertion that TZZT is grade (iii)). Altho’
Marcel Crabbé showed in [1] that TZZT is grade (ii), unfortunately there is no obvious
reason to believe that it is grade (iii) (tho’ in fact it is) and it manifestly isn’t grade
(iv). Classically you can have theories that are grade (ii) but have no extensions that
are grade (iv). Specker [5] supplies examples which we will consider below.

2In [7] this theory is called the Theory of Negative Types and for many years was called ‘TNT’. Nowadays
the notation ‘TZZT’ is preferred, leaving ‘TNT’ to denote the analogous theory with types indexed by the
negative integers. . . which would not otherwise have a name. One wants to distinguish the two because it is
far from clear that every model of TNT can be “extended upwards” to a model of TZZT.

3There is probably something similar one can say if + is an operation of finite order; should say it!
4Specker does not use this ‘grade’ terminology.
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1.1 Specker’s Example of a grade (ii) Theory that is not grade (v)
We next consider Specker’s Example of a Theory that is grade (ii) but not grade (v),
from: Specker [5].

The language has levels indexed by Z (so each variable is restricted to range over
one level only), and it’s a first order language with equality but no nonlogical vocabu-
lary. Our theory T will have two axiom schemes:

(1) There are precisely 1, 2, or 3 elements of each level;
(2) There are not equally many elements of level k and of level k + 1.

To be formal about it let us write

‘∃!xi’ for ‘(∃xi)(∀yi)(xi = yi)’,
‘∃2!xi’ for ‘(∃xi, yi)(xi , yi ∧ (∀zi)(xi = zi ∨ zi = yi))’ and
‘∃3xi’ similarly.

At each level i, T has axioms

• (∀aibicidi)(ai = bi ∨ ai = ci ∨ ai = di ∨ bi = ci ∨ bi = di ∨ ci = di)
• ¬(∃!xi ∧ ∃!xi+1)
• ¬(∃2!xi ∧ ∃2!xi+1)
• ¬(∃3!xi ∧ ∃3!xi+1)
• (∃xi)(xi = xi)

This T is a theory in (many-sorted) first-order logic, but many of its features can be
captured in a propositional theory Tprop in a language L with propositional letters pi,
qi and ri for all i ∈ Z. The theory Tprop has two schemes:

• (pi ∧ ¬qi ∧ ¬ri) ∨ (¬pi ∧ qi ∧ ¬ri) ∨ (¬pi ∧ ¬qi ∧ ri)

• ¬(pi ∧ pi+1) ∧ ¬(qi ∧ qi+1) ∧ ¬(ri ∧ ri+1).

one instance of each for each i ∈ Z. (Secretly pi says that there is precisely one
object at level i; qi says that there are precisely two, and ri says there are precisely
three. This interprets T into Tprop.) We will show that Tprop (and therefore T ) is grade
(ii) but not grade (iv).

Recall that we write ψ+ for the result of increasing every subscript in ψ by 1. We
can also define this ‘+’ operation to propositional valuations: if f is a valuation defined
on the letters in L then f + is the valuation v+ 7→ f (v). This ensures that f satisfies ψ iff
f + satisfies ψ+.

Tprop considered as the deductive closure of these axioms (a set of formulæ), has
lots of automorphisms (one can permute the letters {p, q, r}) but the sole automorphism
of interest to us is the one that sends every p-variable ‘pi’ to ‘pi+1’, and q- and r-letters
similarly. This is the automorphism we have been writing with a ‘+’ sign. Altho’, for
all ψ, we have: Tprop ⊢ ψ iff Tprop ⊢ ψ

+, nevertheless we do not have Tprop ⊢ ψ ←→ ψ+

for all ψ. Thus T is grade (i) but is not grade (iv). It remains to be shown that it is also
grade (ii).

REMARK 1
(a) Tprop ∪ the scheme of biconditionals ψ←→ ψ+ is inconsistent;
(b) Each biconditional ψ←→ ψ+ is individually consistent with Tprop.
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Proof:
(a) is pretty obvious. This shows that a grade (i) theory need not be grade (iii)
(b) Given an arbitrary L-formula ψ we will find a Tprop-valuation satisfying ψ←→

ψ+. (A valuation is a function from the propositional letters in L to {true, false}; a
Tprop-valuation is one that validates/accepts every theorem of Tprop).

Suppose (with a view to obtaining a contradiction) that every Tprop-valuation satis-
fies precisely one of ψ and ψ+. Now Tprop says that precisely one of pi, qi and ri will
be true at level i, so we can think of a Tprop-valuation as inter alia a function that tells
us, given i, which of pi, qi and ri is true at level i.

Let f be the valuation that responds successively: . . . p q r p q r . . . (with period 3)
as the levels increase, and consider the three valuations f +, f ++ and f +++ = f . (Quick
reality check: these are all Tprop-valuations). Recall that f sat ψ iff f + sat ψ+ and so
on. By the reductio assumption each of f , f + and f ++ satisfies precisely one of {ψ, ψ+}.
Without loss of generality f satisfies ψ but not ψ+; then f + satisfies ψ+ but not ψ; f ++
satisfies ψ but not ψ+, and finally f +++ satisfies ψ+ but not ψ. But f +++ = f .

I think this is why we need three possible sizes, rather than two . . . to make the
parity trick work.

We observe without proof that the interpretation T ↪→ Tprop enables us to port
remark 1 to (our formulation of) Specker’s original first-order theory T .

The above proof of remark 1 is not the proof on p. 8 of the English translation of
[5], but rather a side-effect of my attempts to understand that proof.

2 The Constructive Setting
Thus, manifestly, classically neither grade (i) nor grade (ii) implies grade (iv). (All this
is in in [5].) However if we are thinking constructively then the + operation on proofs
gives obvious candidates for realizers of the biconditionals in (ii) and (iii) and thereby
gives us reason to believe that constructively grade (i) might imply grade (iv); thus we
are moved to go looking for a version of Specker’s theorem for constructive logic.

In propositional logic any contradiction provable classically is provable construc-
tively, so there is no hope for a constructive version of Specker’s theorem for proposi-
tional logic. However, this doesn’t tell us that there can be no version for constructive
first-order logic. For example: it may be that the first-order theory T (which – re-
member – was Specker’s original example) has a constructive version to which we can
consistently add an axiom scheme of typical ambiguity. (In fact I cunningly chose the
axiomatisation above with precisely this possibility in mind, so that we can use the
same example.)

It turns out that this is indeed the case: if we use a constructive logic then this T
remains consistent when we add the scheme ϕ←→ ϕ+.

The constructive version iT of Specker’s theory T will have the same axioms, or
at least axioms that are classically equivalent to the axioms of T , embedded in a con-
structive logic. It will say, at each level, that there are one, two or three things; yet
there is not precisely one thing, nor precisely two things, nor precisely three things.
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(The theological vapours emanating from this trilemma should alert us to the dangers
ahead).

Reflect that there is no point in trying to set up a constructive version of Tprop. By
Glivenko [2] and [3] any contradiction provable in a classical propositional theory
is provable also in its constructive fragment.

We want axioms to say that, at each level

• there is at least one but not as many as four distinct things,
• there is not precisely one thing,
• nor precisely two,
• nor precisely three.

and that adjacent levels have different numbers of members.
So, first of all, we have an axiom that says there is a thing such that if we pick up

four things then two of the four are equal. That ensures that there is at least one thing
but not as many as four distinct things. We want that in the weakest possible form, co’s
it’s going to be an axiom of the quotient theory, which we want to be consistent. Then
we have the three expressions that say “there are precisely three things”, “there are pre-
cisely two . . . ”. When we add the ambiguity scheme we have to consider the instances
of it that involve the assertions “there are precisely k things”. If these biconditionals
are to be true then – given that we require adjacent levels to have different numbers of
inhabitants – all these assertions (that a given level has precisely k elements) all have
to be false.

Therefore we want our formulation of these “there are precisely k elements” to be
as strong as possible beco’s they are going to have a negative occurrence in the quotient
theory.

Our first axiom has to say

(∃x)(∀yzw)(x = y ∨ x = z ∨ x = w ∨ y = z ∨ y = w ∨ z = w)

So we adopt the classically equivalent but constructively weaker

∃x∀yzw¬(x , y ∧ x , z ∧ x , w ∧ y , z ∧ y , w ∧ z , w)

which has been made nearly as weak as possible. We could have further weakened the
‘∃’ to ‘¬∀¬’ but it turns out that that is not necessary.

Then we have the three assertions “there are precisely 1, 2, 3 elements” which have
to be made as strong as possible. Let’s use the following abbreviations to protect our
sanity

notfouri ∃xi∀yiziwi¬(xi , yi ∧ xi , zi ∧ xi , wi ∧ yi , zi ∧ yi , wi ∧ zi , wi)
notonei ¬∃xi∀yiyi = xi

nottwoi ¬(∃xiyi)(xi , yi ∧ (∀zi)(zi = xi ∨ zi = yi))
notthreei ¬(∃xiyizi)(xi , yi ∧ yi , zi ∧ xi , zi ∧ (∀wi)(wi = xi ∨ wi = yi ∨ wi = zi))

And our version iT of Specker’s theory T has the four axiom schemes

• ¬(¬notonei ∧ ¬notonei+1);
• ¬(¬nottwoi ∧ ¬nottwoi+1);
• ¬(¬notthreei ∧ ¬notthreei+1); and
• notfouri.
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This theory is grade (ii) (it’s a subset of a grade (ii) theory).
We now come to the crucial difference from the classical case. If we add the ambi-

guity scheme ϕ←→ ϕ+ to iT the result is consistent. It proves ¬notthreei, ¬nottwoi

and ¬notonei at each level i.
The consistency of this conjunction looks fairly daunting, but it’s actually quite

simple: let each level contain three things which are notnotequal. We need a
possible world
model for this!

We can now consider the “quotient” theory, the one-sorted theory obtained from iT
by simply erasing the type indices. It contains

notfour: ∃x∀yzw¬(x , y ∧ x , z ∧ x , w ∧ y , z ∧ y , w ∧ z , w)
notone: ¬∃x∀yy = x
nottwo: ¬(∃xy)(x , y ∧ (∀z)(z = x ∨ z = y))
notthree: ¬(∃xyz)(x , y ∧ y , z ∧ x , z ∧ (∀w)(w = x ∨ w = y ∨ w = z))

This, too, is consistent. For example a model containing three things which are all
notnotequal.

So we have an example of a classical theory that refutes typical ambiguity but
whose constructive fragment is consistent with typical ambiguity.

This inspires hope in the following possibility:

CONJECTURE 1
Whenever T is a constructive theory in a first-order languageL admitting an automor-
phism σ such that

(i) T ⊢ ψ iff T ⊢ ψσ for every ψ ∈ L; and
(ii) each formula ψ←→ ψσ is consistent relative to T ,

then T has a model admitting an automorphism corresponding to σ, and a consistent
one-sorted quotient.

The reason for interest in this situation is that there might be classical theories
whose constructive fragments satisfy some form of ambiguity for reasons like those
seen above. Specifically the thought is that TZZT might be such a theory. Granted, we
now know that NF is consistent (so a fortiori the constructive fragment is consistent
too) but it would be nice to have an entirely separate proof of the consistency of iNF–
the constructive fragment.

To clarify the situation and estimate the hopes for such a result we need to think a
bit about what realizers are and what it is to raise the level of a formula.

2.1 Type-raising and Realizers
The thought that launched this discussion was the idea that realizers for formulæ in
a strongly typed language such as L(TZZT) were the kind of thing that type-raising
operations could act on. If they are, then the raising of types certainly provides realizers
for conditionals like ϕ→ ϕ+.

We need to start by reflecting that there is no good notion of type-raising in propo-
sitional languages. And this is despite the artful way in which the reader was tricked on
p. 3 into accepting Tprop as a typed propositional theory. Consider the (typical) axiom
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¬(pi ∧ pi+1). The trickery is the exploitation of the subscripts. As far as the proposi-
tional language is concerned the propositional letters have no internal structure: every
permutation of the set of propositional letters of a propositional language is an auto-
morphism of the language. One would expect that any permutation of the propositional
letters would fix Tprop at least in the sense of sending it to something α-equivalent to it,
but this is not so. If one thinks of Tprop as expressed in a language where none of the
propositional letters have internal structure then Tprop in effect defines some structure
on that language. It defines a three-place relation (the ellipses in the picture below) and
a two-place relation (the left-to-right edges in the picture below). For a permutation of
the set of propositional letters to fix Tprop (at least in the sense of sending it to some-
thing α-equivalent to it) then it must preserve the ellipses and the injective character of
the edges.

W

Z

A1

B1

C1

D1

But we don’t need to make sense of type-raising in propositional logic, for reasons
noted above. However we do need to think about precisely what we mean by “raising
the types” in a first-order formula. Now a first-order theory is a set of closed formulæ
so – prima facie – we only need to consider what it is to “raise the type” of a closed
formula. Thus this + operation, if taken in the way explained above, is really an opera-
tion defined not on (closed) formulæ but on α-equivalence classes of (closed) formulæ.
That is just as well, because the idea of raising types in an open formula is problematic.
The simplest open formula is of course a naked variable. What happens, what does one
get, if one raises the type of a variable? How do we decide which variable of the next
level to replace a given variable with? If we are raising the type of a variable as part of
an act of raising the type of a closed formula then it doesn’t matter; the axioms are –
all of them – closed formulæ, and all the results of performing this (somewhat nonde-
terministic) operation on ϕ will be α-equivalent to each other. If we are trying to raise
the type of a naked variable it matters a great deal.

If type-raising is to be a realizer for ϕ → ϕ+ then realizers for ϕ have to be fairly
syntactic objects – things that + can operate on. But + doesn’t work very well on things
with free variables. So it looks as tho’ things with free variables can’t have realizers.
Or perhaps (and this would be a good outcome) things with free variables can have
realizers all right, it’s just that type-raising on them doesn’t work.

The usual way of thinking of variables is to take a variable to be – in the first
instance – a letter from some standard alphabet (typically the Roman alphabet).
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Such alphabets are always finite of course, so we augment them by use of a prime
symbol: ′, giving us variables such as x, x′, y′′ and so on.
In the context of typed set theory (TST, TZZT. . . ) these variables additionally are
decorated with a subscript (or, in the early literature, a superscript) from IN or Z.
If we think of variables that way then we can define the result of raising the type
of a variable5 v as the result of adding 1 to the numerical subscript in v. Then we
define ϕ+ to be the result of raising all the subscripts on all the variables in ϕ by
precisely 1, with the result that + is an operation defined on formulæ themselves
rather than merely on their α-equivalence classes.
There is a minor infelicity to this in that the presence of sort subscripts clogs up
a place which has a long and honourable history of serving other useful purposes,
such as notating sequences. This is notationally annoying but not mathematically
substantial. We will not consider it further.
There is a second infelicity, of a different nature altogether. The attachment of
subscripts provides extra information about the variables which – from the point
of L(TZZT) – is spurious: the connection between ‘x2’ and ‘x3’ that is visible to us
is not visible to the language.
It is this second infelicity that offers us an invitation to error. According to the new
definition of the operation + it is defined on formulæ with free variables. On the
face of it that ought to be harmless, so how is it an invitation to error?
As remarked above any TZZT-proof of ϕ can be turned into a proof of ϕ+. This
means that “from ⊢ ϕ infer ⊢ ϕ+” is an admissible6 rule of TZZT. However this is
legitimate only if ϕ is a closed formula and there are no live assumptions in the
proof. If + is defined only on closed formulæ then the admissible rule is applicable
to closed formulæ only. Once we extend + to formulæ with free variables then new
formulæ come within the purview of the rule and it may cease to be admissible.
This is in fact what happens.
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