An Exercise in Structural Induction

Thomas Forster

February 28, 2014

A set x is **transitive** if $z \in y \in x$ implies $z \in x$.

 $\mathcal{P}(x)$ is $\{y:y\subseteq x\}$, the **power set** of x.

Define V_{ω} to be the \subseteq -smallest set A containing \emptyset and containing $x \cup \{y\}$ whenever it contains x and y.

- (i) Show that V_{ω} is closed under \cup .
- (ii) Show that V_{ω} is closed under \bigcup .
- (iii) Show that V_{ω} is the \subseteq -smallest set containing \emptyset and closed under pairing (existence of $\{x,y\}$) and \cup .
- (iv) Show that V_{ω} is the \subseteq -smallest transitive set containing \emptyset and closed under \mathcal{P} .
- (v) Show that V_{ω} is the \subseteq -smallest set containing all its finite subsets.