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Dr. Rachel Camina, rdc26@dpmms.cam.ac.uk
Recommended reading: Alan Beardon Algebra and Geometry

Symbols: ∀ ∃, →, s.t., ..., Z, IN, IR, and a C for the complexes.

A binary operation is a way of combining two elements.
A group is a set G with an operation *. (G, ∗) is a group iff the following

axioms are satisfied

(i) x, y ∈ G→ x ∗ y ∈ G closure
(ii) (∃e ∈ G)(∀x ∈ G)(e ∗ x = x = x ∗ e) Existence of an Identity element
(iii) (∀x ∈ G)(∃y ∈ G)(x ∗ y = e = y ∗ x) Existence of [two-sided] inverses
(iv) x ∗ (y ∗ z) = (x ∗ y) ∗ z Associativity

Now for some illustrations (some of them are examples, some of them are
failures)

1. Z with + . . . is a group

2. Q with + . . . is a group; IR with + . . . is a group

3. Z with −. Has closure, has an identity and has inverses but associativity
fails.

4. Z with ×. Has closure and identity and associativity but no inverses.

5. Q with×. Has closure and identity and associativity but 0 lacks an inverse.

6. {1,−1} with ×.

× 1 -1
1 1 -1
-1 -1 1

e is 1 in this case.

7. {0, 1, 2} equipped with +3 (aka addition mod 3). It’s a group. e is 0;
inverse of 1 is 2 and vice versa.

+3 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

8. {e, a, b, c} equipped with the following multiplication table:
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∗ e a b c
e e a b c
a a e c b
b b c e a
c c b a e

It’s closed; it has an identity; everything has an inverse—look down the
main diagonal! [Dr C didn’t say anything at this stage about associativity
. . . ] We will see later that this is the group C2 × C2.

9. Rotations and reflections of an equilateral triangle. Label the vertices ‘1’,
‘2’ and ‘3’. There is a rotation thru’ 2π/3 radians, and for each vertex, a
reflection about the perpendicular bisector thru’ that vertex.

The operation ∗ is composition [which makes it obvious that associativity
holds] and we get a group with 6 elements. Might be an idea to write out
a multiplication table. (For you, Dear Reader, not me!)

10. M2(IR): 2×2 matrices “over” IR (with entries in IR.) ∗ is matrix addition
(aka “pointwise” or “co-ordinatewise” addition)

11. GL2(IR): Invertible 2×2 matrices over IR where ∗ is matrix multiplication.

{
(
a b
c d

)
: a, b, c, d 6∈ IR ∧ (ad− bc 6= 0)} ()

Recall that

(
a b
c d

)−1
=

1

(ad− bc)

(
d − b
−c a

)
LEMMA 1 Let (G, ∗) be a group. Then

(1) The identity is unique.
(2) Inverses are unique.

Proof:
[Dear Reader: try to work this one out for yourself. Then check your answer

against what i copied off the blackboard.]

(1) Suppose e and ê are both identities. Then e ∗ ê = e (beco’s ê is an
identity) and e ∗ ê = ê (beco’s e is an identity) so e = ê.

(2) Suppose x has two inverses: y and z. Both these inverses are two-sided.

yxz = z beco’s y is a left inverse;

yxz = y beco’s z is a right inverse;

whence y = z.

Observe that what we have actually shown is that if x has both a left inverse
and a right-inverse then they are the same.
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Remarks

• Associativity means we can omit brackets. We can prove this by induction
on the number of brackets. [Dear Reader: do not worry about this proof
pro tem. Check the details if you like but don’t stress]

• Often, when it’s clear from context what the group operation is, we simply
drop the ‘∗’.

• Use uniqueness of inverses to prove (xy)−1 = y−1x−1

• Prove (x−1)−1 = x. (Premultiply by x−1)

DEFINITION 1 A group (G, ∗) is abelian if ∗ is commutative.

[end of first lecture]

What’s purple and commutes? An Abelian grape.
The muliplication table of an abelian grape is symmetric about the main

diagonal.
Multiplication of matrices and the composition of the operations on triangles

above are not commutative.
We use ‘◦’ or ‘·’ for composition.

(G, ∗) is a finite group iff G is finite. |G| is the order of the group (G, ∗), the
number of elements in the set G.

miniexercise: which of the groups in the list in the first lecture are finite.
A: 1, 2, 6, 11 and 12 are all infinite, and the others are finite.
7) has order 2; 8) has order 3; 9) has order 4 and 10) has order 6.

1 Subgroups

This is our first encounter with the notion of substructure.
(H, ∗) is a subgroup of (G, ∗) if

(i) H ⊆ G
(ii) (H, ∗) is a group
(iii) The operation ∗ on H is the restriction of the operation ∗ on G.
We say (H, ∗) “inherits” the operation from (G, ∗).

We write “(H, ∗) is a subgroup of (G, ∗)” as “(H, ∗) ≤ (G, ∗)”. (There is a
certain amount of abuse of notation going on: people often write ‘H’ instead of
(H, ∗).)

It’s obvious that if ∗ was associative on G, and H ⊆ G then the restriction
of ∗ to H is associative too.

Some illustrations

1. (Z,+) ≤ (Q,+) ≤ (IR,+);
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2. ({1,−1},×) ≤ (Q \ {0},×);

3. In example 9 from lecture 1 {1, σ, σ2} equipped with composition is a
subgroup. (Remark: σ is the rotation; τi is the reflection in vertex i.
Further remark: she wrote ‘1’ instead of ‘e’ out of force of habit . . . it’s
common to use the letter ‘1’ to denote the identity of a group.)

4. In example 12 we have the subgroup of matrices of determinant 1. This
works beco’s the determinant of the product of two matrices is the product
of the determinants. Write out a proof if you are not sure. This subgroup
is called SL2(IR), there the ‘S’ means Special.

5. ({e}, ∗) is a subgroup of every group (at least if we pretend that all groups
have the same identity element, which we sort-of can). It’s the trivial
subgroup;

6. (G, ∗) ≤ (G, ∗). It’s the “improper” subgroup.

2 Isomorphism and Homomorphism

When are two groups the same group? if we took example 9) from lecture 1
and systematically replaced all the Roman letters by Greek letters it would still
(in the sense we are interested in) be the same group. Let’s spell out what we
might mean by this.

We need to say a bit about functions
f : A→ B is a function if (∀a ∈ A)(∃!b ∈ B) f sends a to b.
Here are some examples:

f : Z→ Z: f(x) = x+ 1

g : Z→ Z: g(x) = 2x

h : Z→ Z: f(x) = x2

j : {0, 1, 2, 3, 4} → {0, 1, 2, 3, 4} by: if X < 4 then x 7→ x+ 1; 4 7→ 4;

k : {0, 1, 2, 3, 4} → {0, 1, 2, 3, 4} by: if X < 4 then x 7→ x+ 1; 4 7→ 0.

If f, g both A→ B with (∀a ∈ A)(f(a) = g(a)), then we say f = g. [f and
g have the same extent or extension and we say they are the same function-in-
extension.]

Composition of functions

If g : A→ B and f : B → C then f ◦ g : A→ C and f ◦ g(a) = f(g(a)).

Consider the two function f , g : Z→ Z as above. Then f ◦ g(x) = 2x+ 1.

At this point one should draw j and k as digraphs, but don’t know how to
do digraphs in LATEX!
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k is injective and j isn’t. An injective function never sends distinct arguments
to the same value.

k is surjective and j isn’t. In injective function never sends distinct argu-
ments to the same value. A function is surjective if “everything [in the target]
gets hit”. We sometimes use a special arrow: thus “f : A→→ B” means that f
is surjective

A function is bijective iff it is both injective and surjective.

f, g and k are injective; f and k are surjective; f and k are bijective.
Key point: if f : A → B it has an inverse! The inverse is written ‘f−1’.

f ◦ f−1 = 1B ; f−1 ◦ f = 1A. This makes f−1 a two-sided inverse. The inverse
we find in groups are also two-sided. [You might like to reflect on the possibility
of a surjection A→→ B having a right-sided inverse but no left-sided inverse.]

REMARK 1 If A is finite and f : A→ A is injective then f is surjective.

Indeed the converse is Dedekind’s definition of finite: a set X is infinite iff
there is an injection X → X that is not a surjection.

LEMMA 2 Suppose g : A→ B and f : B → C. Then they are both (in)(sur)(bi)jective
iff g ◦ f is (in)(sur)(bi)jective.

Proof omitted. [Dear Reader, i have one written out somewhere if you need
it]

2.1 Homomorphism

We are interested in maps that “respect” the group operations.

DEFINITION 2 Let (G, ∗G) and (H, ∗H) be groups.
We say θ : G→ H is a homomorphism if
(∀g1, g2 ∈ G)(θ(g1) ∗H θ(g2) = θ(g1 ∗G g2))

[Of course we also want θ(eG) = eH and we want θ to preserve complements
but we’re going to ignore those for the moment while we press on with some
illustrations].

Let G be {0, 1, 2, 3} and let H be {1, eπi/2, eπi, e3πi/2}, the set of the fourth
roots of unity. Equip G with +3 (addition mod 3) and equip H with (complex)
multiplication. Both are groups, and there is a bijection between them given
by n 7→ enπi/2. This bijection respects the group operations. These two groups
are—in the sense we are interested in—the same group. (The form of words
that used to be used and sometimes still is, is that they are the same abstract
group. Distinct as concrete groups.)

[end of second lecture]

LEMMA 3 Let (G, ∗G), (H, ∗H) be groups with θ : G → H a homomorphism.
Then the image of G in θ is a subgroup of H.
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[Dear Reader: lots of things to be careful of here. (i) The word ‘image’ is overloaded

or frankly misused. People sometimes talk of image (of a function) when they mean

a value of the function. You should use ‘image’ only when you mean set of values,

as here. The image of G in θ is {θ(g) : g ∈ G}, and Dr Camina writes ‘θ(G)’ for

this. This widespread deplorable habit is sort-of OK: you can tell that θ(g) is a group

element while θ(G) is a group (a set of elements) beco’s of context, but this kind of

disambiguation is not always possible and the overloading of the parenthesis notation

is bad practice, tho’ almost universal. I was brought up to write ‘θ“G’ for the image

of G in θ and that’s what i shall consistently do here.]

Closure: If x, y ∈ θ“G then there are g, h ∈ G (not neccessarily distinct)
with x = θ(g) and y = θ(h). Then x ∗H y = θ(g) ∗H θ(h) = θ(g ∗G h) and this
last thing is in the range of θ as desired.

[Dear Reader: the range of a function f defined on a set A is f“A. I don’t seem

to have defined it earlier]
I should prob-
ably supply
some more
details hereDEFINITION 3 A group homomorphism that is a bijection is an isomorphism.

If θ : G → H is a bijection we say G and H are isomorphic and we write
‘G ∼= H’.

Example: The integers mod 4 with addition and the 4th roots of unity with
multiplication are isomorphic. n 7→ e2nπ/2 is the obvious isomorphism. [Are
there any others, Dear Reader?]

You can think of two isomorphic groups as being the same group with the
elements labelled differently.

LEMMA 4

1. The composition of two homomorphisms is a homomorphism;

2. The composition of two isomorphisms is a isomorphism;

3. The inverse of an isomorphism is an isomorphism.

[while we are about it we may as well observe that the identity map from a
group to itself is an isomorphism.]
Proof:

(1) Suppose θ1 : (G1, ∗1) → (G2, ∗2) and θ2 : (G2, ∗2) → (G3, ∗3) are homo-
morphisms. Then θ2 · θ1 is a map G1 → G3.

θ2 · θ1(x ∗1 y) =

θ2(θ1(x ∗1 y)) =

θ2(θ1(x) ∗2 θ1(y)) =

θ2(θ1(x)) ∗3 θ2(θ1(y))
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(2) By lemma 2 composition of bijections is a bijection.

(3) Suppose θ : (G1, ∗1) → (G2, ∗2) is an isomorphism. Then θ is a bijection
and accordingly has an inverse. This inverse is also an isomorphism, as
follows.

Suppose y, z ∈ G2. Then there are x, k ∈ G1 with θ−1(y) = x and
θ−1(z) = k.

Then θ(x) = y and θ(k) = z.

y ∗2 z = θ(x) ∗2 θ(k) = θ(x ∗1 k)

DEFINITION 4

Exponent notation: xn is x starred with itself n times. x0 is e, and x−n is
the inverse of xn.

A group (G, ∗) is cyclic if there is an element g of G such that every element
of G is a power of g. Such a g is a generator.

Beware: there may be more than one such element!

The “order” of an element g in a group is a number, the same number as
the size (which, too is called ‘order’) of the cyclic subgroup of powers of g. We
will write it as ‘o(g)’.

This number might be infinite of course.

Examples:

• (Z,+) is cyclic, and it has generators 1 and −1. Both these generators
have infinite order

• {1,−1} with × is cyclic with generator −1, which has order 2

• {0, 1, 2, 3} with addition mod 4 is cyclic and has generator 1 (or 3), both
of which have order 4.

• Example 10 earlier: The subgroup {1, σ, σ2} is cyclic and has generator
σ. Or σ2! Both generators have order 3.

It seems that whenever a cyclic group has more than one generator then the
generators all have the same order . . .

Cyclic groups are Abelian. (This is beco’s the group multiplication corre-
sponds to addition on the exponents, and addition on Z is abelian.)

The subgroup of G generated by an element g is the ⊆-least subset of G con-
taining g and closed under the group operations. (And then of course equipped
with those operations, to make it a group not a mere set.)
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The nth roots of unity with complex multiplication is (‘are’?) the same
(abstract) group as the interval [0, n − 1] of IN (the square bracket notation
means what you think it means) equipped with addition mod n. We call this
[abstract] group ‘Cn’ and we say that the two [concrete] groups i have just
described are “realisations” of it.

[end of third lecture]

The “kernel” ker(θ) of a homomorphism θ : G→ H is {g ∈ G : θ(g) = eH},
aka “the preimage of the singleton of the identity under θ”. I was brought up
to write images with double apostrophes (see above) so i write this θ−1“{e}.

REMARK 2 Let G be a group and g1 . . . gk elements of G. Then 〈g1 . . . gk〉 is
the “subgroup generated by g1 . . . gk”. It’s

⋂
{G′ ≤ G : {g1, . . . gk} ⊆ G′}, the

intersection of all the subgroups of G that contains all the gi.

Observe that the intersection of a hatful of groups is a group (see sheet 1
exercise 2) so this intersection really is a group.

3 Symmetric and Dihedral Groups

A bijection X → X of a set X is a permutation of X. The collection of permu-
tations of a fixed set X, equipped with composition, is a group, the symmetric
group on X, aka Symm(X). Check

(i) Closure: a composition of two permutations is a permutation. (We showed
in lemma 2 that a composition of two bijections is a bijection)

(ii) eSymm(X) is obviously going to be the identity relation on [the members of]
X. This function is written variously: 11X , ∆X and God Knows what else.

(iii) Associativity. Didn’t we show earlier that composition of relations is
associative? [will supply more details if called upon]

We will write ‘Sn’ for the abstract group corresponding to Symm(X) where
X is a set with |X| = n. Sn is the “symmetry group of degree n”. (NB: ‘degree’
‘not order’ ! What is its order?)

We will use “double row notation”
If σ ∈ Sn think of it as a permutation of [1, n], so we are thinking of Sn

concretely as Symm([1, n]). We represent the information in σ in a table:(
1 2 3 . . . n
σ(1)σ(2)σ(3) . . . σ(n)

)
(1)

Let’s now have a look at some of the Sn, for small n.

(1) S1 =

{(
1
1

)}
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(2) S2 ={(11 2
2), (

1
2
2
1)}. Evidently S2 = C2.

(3) S3 = {(11 2
2
3
3), (

1
2
2
3
3
1), (

1
3
2
1
3
2), (

1
1
2
3
3
2), (

1
2
2
1
3
3), (

1
3
2
2
3
1)}.

It is the triangle group we saw earlier.

(12
2
3
3
1) is σ; (13

2
1
3
2) is σ2; (11

2
3
3
2) is τ1; (13

2
2
3
1) is τ2;

(12
2
1
3
3) is τ3.

S3 is nonabelian: the rotation σ does not commute with τ1 (nor with τ2 or
τ3).

What are the subgroups of S3? Answer: 〈σ〉 (which is of course the same
as 〈σ2〉) and the three subgroups 〈τ1〉, 〈τ2〉 and 〈τ3〉 generated by the three
reflections, all of which are realisations of C2—the cyclic group on two elements.
They are also, of course, realisations of S2, corresponding to the symmetric
group on two-membered subsets of the vertex set.

Observe that, for n ≥ 4, Sn is nonabelian. Any group with a nonabelian
subgroup is nonabelian, and S3 ≤ Sn for any n ≥ 3:

(12
2
3
3
1
4
4 · · · nn)

and

(11
2
3
3
2
4
4 · · · nn)

clearly do not commute.

DEFINITION 5 Suppose {a1, . . . ak} ⊆ [1, n], and σ sends each ai to a(i+k1)

(addition mod k on the subscripts). We write σ as ‘(a1, . . . ak)’. This object is
also denoted by the expression ‘(a2 . . . ak, a1)’. (The subcsripts have a “circular”
order).

. . . the point being that everything not mentioned inside the brackets is fixed.
When the things being permuted in a cycle come equipped with a natural

order, we tend to write the “smallest” one first: thus “(a1, a2, a3)” rather then
“(a2, a3, a1)”.

If σ = (a1, . . . ak) we say that the cycle σ is a rotation of the ai. What is
σ−1? Obviously (ak, . . . a1) with the subscripts decreasing. But we would tend
to write it as (a1, ak, ak−1, . . . a2)

Cycles of order 2 are transpositions.

DEFINITION 6 Two cycles are disjoint iff their supports are disjoint.
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“Supports”? The support of a permutation σ is the set {x : σ(x) 6= x} of
things moved by σ, often written ‘supp(σ)’.

LEMMA 5 Disjoint cycles commute.

Proof: Suppose σ and τ are disjoint cycles. We will show that

(∀x)(σ ◦ τ(x) = τ ◦ σ(x)).

There are three cases to consider:

(i) x ∈ supp(σ)\ supp(τ);
(ii) x ∈ supp(τ)\ supp(σ);
(iii) x fixed by both τ and σ.

(iii) is obvious. (i) and (ii) are analogous so i shall prove (i) only.

σ ◦ τ(x) = σ(x) beco’s τ(x) = x.

τ ◦σ(x) = τ(σ(x)) = σ(x), the second equality holding beco’s τ fixes
everything in supp(σ).

Observe that what we have actually just proved is that if σ and τ are a pair
of disjoint permutations then they commute. If the supports overlap then they
mightn’t commute: e.g (1, 2) · (2, 3) = (2, 3, 1) 6= (2, 3) · (1, 2) = (2, 1, 3)1.

[end of fourth lecture]

When we think of Sn concretely it is the group of all permutations of [1, n]

THEOREM 1 Every permutation in Sn (n ≥ 2) can be written as a product of
disjoint cycles, the product being unique up to order.

Proof:
And the cycles themselves are unique up to rotation! Two levels of abstrac-

tion. It would be nice if we could write the cycles as spinning circles on the
page, so they we didn’t have this spurious reduplication of notation, but sadly
pages are static objects. A .gif file perhaps . . .

Let’s just do an example, that should do the trick.

(12
2
4
3
5
4
7
5
6
6
3
7
1
8
9
9
8)

1 7→ 2 7→ 4 7→ 7 7→ 1
3 7→ 5 7→ 6 7→ 3
8 7→ 9 7→ 8

1Actually we would leave out the ‘·’ and write ‘(1, 2)(2, 3) 6= (2, 3)(1, 2)’.
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So this permutation is represented by the product (1, 2, 4, 7)(3, 5, 6)(8, 9).
And—beco’s these cycles are disjoint—it doesn’t matter in what order we write
them. [Given that the cycles can themselves be rotated, how many equivalent
ways are there, Dear Reader, of writing this product? (just checking!!)]

One thing that might bother you, Dear Reader (it sort-of bothers me) is the

way in which the standard notation—(1, 2, 4, 7)(3, 5, 6)(8, 9) is our example in-hand—

suggests that when we apply this permutation to an argument we first apply (8, 9)

to the argument, then apply (3, 5, 6) to the result, and then apply (1, 2, 4, 7) to the

output of that. But of course we don’t. What we do is: look for the cycle in which our

argument appears (if there is one, and if there isn’t, do nothing) and apply that cycle.

An ideal notation for this permutation would be one that displayed the three cycles in

a way that had perfect threefold symmetry, so that none of them had a distinguished

position but of course there is no way of doing that!

Let’s write something snotty and official.

Suppose a ∈ supp(σ). Consider the sequence a, σ(a), σ2(a) . . . . The support
of σ is finite, so this sequence is finite, and something must appear for a second
time. Now σ is a bijection, so when the sequence rejoins it cannot rejoin in the
middle (for o/w something in it would be σ of two different arguments) so it
must go back to the beginning. So we have a cycle.

LEMMA 6 Let g be a group element. Then gn = e iff o(g)|n.
[the order of g divides n].

Proof:
L→ R: easy!
R → L: Suppose gn = e where n is not a multiple of o(g). Then n =

k · (o(g)) +m for some m < n. Then

e = gn = gk·(o(g))+m = gk·(o(g)) · gm = ek · gm = gm

so n|m contradicting m < n.

LEMMA 7

Let σ, τ be disjoint cycles in Sn. Then o(σ · τ) = LCM(o(σ), o(τ))

Write ‘k’ for LCM(o(σ), o(τ)). Then consider (σ·τ)k = σ·τ ·σ·τ ·σ·τ ·σ·τ ·. . ..
Since σ and τ commute [they are disjoint, after all] we can rearrange to get

σkτk = e · e = e. Now we must show that k is minimal s.t. (σ · τ)k = 1. So
suppose (στ)n = e. Then, rearranging as before, we get σnτn = 1. So σn and
τn are inverse. How can this be? They’re disjoint! The answer must be that
they are both e. So o(σ)|n and o(τ)|n, whence k|n.

PROPOSITION 1 Any σ ∈ Sn can be written as a product of transpositions.
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Proof: .
It will suffice to show that any cycle can be written as a product of trans-

positions. So here’s an illustration:
(a1, · · · ak) can be written as (a1, a2)(a2, a3)(a3, a4)(a4, a5) · · · (ak−1, ak)
You then have to go through this by hand to check that it works!

The order of the transpositions in the product matters (beco’s transpositions
that overlap don’t commute, as we saw earlier) but are we applying this product
left-to-right or right-to-left? I think we are doing it properly, applying the
rightmost first. . . .

Now for the annoying bit! The representation as a product of transpositions
is not unique! Grrr!

(1, 2, 3, 4, 5) = (1, 2)(2, 3)(3, 4)(4, 5) = (1, 2)(1, 2)(1, 2)(2, 3)(3, 4)(4, 5) or even
(1, 5)(1, 4)(1, 3)(1, 2)

DEFINITION 7 Suppose σ ∈ Sn, n ≥ 2. Let us say the sign of σ is (−1)k

where k is the number of factors in a representation of σ as a product of trans-
positions.

It remains to be shown that

LEMMA 8 sign(σ) is well-defined.

. . . which is to say that sign(σ) does not depend on the choice of transposi-
tions for σ.

Proof:
We start with a special case. Let σ be a permutation expressed as a product

of cycles, and τ the permutation (k, l). We develop a representation of στ as a
product of cycles, given a representation of σ as a product of cycles.

There are two cases to consider, depending on whether or not k and l belong
to the same σ-cycle.

Case (i) k and l belong to the same σ-cycle.
So σ has a cycle (k, a1 · · · an, l, b1 · · · bm). What happens if we do τ and then

σ? We get (k, b1 · · · bm)(l, a1 · · · an). One more cycle! check this cal-
culation

Case (ii) k and l belong to different σ-cycles: (k, a1 · · · an) and (l, b1 · · · bm).
What happens if we do τ and then σ?

In the product:

k 7→τ l 7→σ b1;
b1 7→τ b1 7→σ b2;

...
bm 7→τ bm 7→σ l
l 7→τ k 7→σ a1
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a1 7→τ a1 7→σ a2
...

an 7→τ an 7→σ k

The two cycles get spliced together: (k, b1 · · · bm, l, a1, · · · an)
One fewer cycle!

To use this to prove that every permutation is either odd or even we need to
think of the identity as the product of n trivial cycles. !?@!? Yes, i know, but
trust me, i’m a doctor.

So suppose we have two decompositions of σ into products of transpositions.

τ1 · · · τa = τ ′1 · · · τ ′b

We will show that (−1)a = (−1)b.
Think of σ both as 11 · τ1 · · · τa and 11 · τ ′1 · · · τ ′b.
Multiply 11 on the right by τ1. By the results earlier, this flips the parity of

the number of cycles in our representation. Now multiply it on the the right by
τ2. Flips it again. By the time we have done it a times the product is σ and its
parity is (−1)a.

Do the same with the other list of transpositions. In both cases you end with
a representation of σ as a product of disjoint cycles. But the representation of
σ as a product of disjoint cycles is unique! (up to rearrangement, so certainly
up to the number of cycles and so certainly up to the parity of the number of
cycles). Now the parity of the number of cycles in the two representation that
we obtain of σ as a product of disjoint cycles is controlled precisely by the parity
of the lengths of the two lists of transpositions. So the two lists must have the
same parity!

THEOREM 2 Let n ≥ 2 be a natural number. Then

sign: (Sn, ·)→→ ({1,−1},×) is a [surjective] group homomorphism.

Just check that it is indeed surjective and nontrivial: sign((1, 2)) = −1 and
sign(11) = 1.

Check too that sign(α)× sign(β) = sign(α · β). After all, α and β are both
products of transpositions.

Now sign is a homomorphism, and we showed earlier that the kernel of a
homomorphism is always a group.

DEFINITION 8 σ is even iff sign(σ) = 1, and odd otherwise.

Observe: 11 is even beco’s 11 = (1, 2)(2, 1). I prefer to think that 11 is even
beco’s it’s the product of the empty set of transpositions, and 0 is even.

The collection of even permutations is going to be the same group as the
kernel of sign. [pretty obvious, really]. Check closure, inverse, assoc.
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The inverse of a product of transpositions is just the same list written back-
wards. Product; easy. Associativity inherited as always.

The group of even permutations of n things is the Alternating Group on
n things aka An.

A4 = {11, (123), (132), (124), (142), (234), (243), (134), (143), (12)(34), (13)(24), (14)(23)}

I have written the cycles without commas. This is partly to save space, and
also to make the point that it’s OK to do so if the things being moved around
are denoted by single characters so there is no need for delimiters!

EXERCISE 1 |An| = |Sn|/2 = n!/2

[Why is there the same number of odd permutations as even permutations?]

3.1 Dihedral Groups

Symmetry groups of regular polygons.
Can also think of them as distance-preserving maps from C to C that fix the

nth roots of unity setwise. (“setwise”? ask your supervisor). So we will think
of a dihedral group as acting on a polygon in the complex plane whose vertices
are the nth roots of unity.

DEFINITION 9 The group of symmetries of a regular n-gon is the dihedral
group of order 2n and called ‘D2n’

Beware, some deviants think ‘Dn’ denotes the nth dihedral group, which is
of course our D2n.

There is an obvious embedding D2n ↪→ S2n co’s D2n is moving 2n things
around.

Write a square in the plane and number its elements 1,2,3,4 clockwise.

σ = (1, 2, 3, 4); σ2 = (1, 3)(2, 4); τ = (1, 2)(3, 4); σ3 = (1, 4, 3, 2)
σ2τ = (1, 3)(2, 4)(1, 2)(3, 4) = (1, 4)(2, 3)
στ = (1, 2, 3, 4)(1, 2)(3, 4) = (1, 3)
σ3τ = (1, 4, 3, 2)(1, 2)(3, 4) = (2, 4)

[I hope i’ve copied these down properly: you should check, Dear Reader!]

PROPOSITION 2 Let n ≥ 3. Then D2n is a nonabelian group of order 2n
which naturally embeds into Sn. It is generated by σ of order n (a rotation) and
τ of order 2 (a reflection). Only one reflection needed!

{11, σ, . . . σn−1, τ, στ, σ2τ, . . . σn−1τ}
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Proof:
Check that it really is a group . . .
Composition of symmetries is another symmetry; inverse of a symmetry is

another symmetry.
A choice of labelling (with [1, n]) of the vertices of the regular n-gon [How

many such labellings are there, Dear Reader?] defines an embedding from the
group of symmetries of the regular n-gon into the symmetric group on [1, n]
which of course is a realisation of Sn.

It’s easy to find 2n symmetries (rotations through (2π)/k for k ≤ n plus n
reflections—one in each vertex). Not immediately blindingly obvious that that is
all there is. Must show that any symmetry is one of {11, σ, . . . σn−1, τ, στ, σ2τ, . . . σn−1τ}.

Let g be a symmetry. Suppose g moves vertex 1 to vertex j. Then g
agrees with σj−1 on the argument 1 at least. Now any symmetry must preserve
adjacency of vertices, so g must move vertex 2 to vertex j − 1 and vertex n to
vertex j + 1 or vertex 2 to vertex j + 1 and vertex n to vertex j − 1. Using
the fact that g must preserve adjacency we, in each case, can compute what g
does to all the other vertices. In the first case g is a rotation and in the second
case it’s a rotation followed by a reflection. In this second case the reflection
is in vertex j not vertex 1, and we are only allowed the rotation in vertex 1.
However, the reflection in vertex i can be effected by rotating through −i and
then reflecting in vertex 1. This composite is in the list above.

[end of fifth lecture]

Have i miscounted? Wasn’t that the sixth lecture?

3.2 Group Presentations

Observe that if σ is a rotation and τ a reflection in Dn then στ is a reflection
and is of order 2, which is to say στστ = 11 which is to say τστ−1 = σ−1.

We showed earlier (well, Dr Camina did, i am not happy with what i wrote
down—might revise it later) that every symmetry of the regular n-gon is a
product of rotations and reflections. We encapsulate this fact in the following
impressive inscription

D2n = 〈s, t : sn = 11, t2 = 11, tst = s−1〉

What this says is that every element of the group D2n can be obtained from
the two elements s and t (that’s them, to the left of the colon) by multiply-
ing them together and making the identifications that follow the colon. These
equations after the colon are the relations. Prima facie there could be infinitely
many distinct products (there certainly are infinitely many strings of ss, s−1s,
t−1s and ts) but with luck they collapse down to finitely many (as they do in
this case) once we make the identifications listed after the colon. And we do
not identify two strings unless we are told to.
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4 Cosets and Lagrange

DEFINITION 10 Left and right cosets:
For G a group, H ≤ G a subgroup of G, and g ∈ G we say
gH := {gh : h ∈ H} is a left coset of H. It is a translation of H by g. (A

left-translation.)
Hg := {hg : h ∈ H} is a right coset of H. It, too, is a translation of H by

g . . . a right-translation.

Think of S3 concretely as the symmetric group on [1, 3] = {1, 2, 3}. Consider
H = {11, (123), (132)}. then (12)H = {(12), (23), (13)}. This is the same as
(13)H. Check it!

Observe that if g ∈ H then gH = H.

Observe that S3 = H ∪ (12)H. Observe also that H ∩ (12)H is empty.
People sometimes use the expression ‘disjoint union’ for this phenomenon, so
beware! co’s the expression ‘disjoint union’ has another—distinct—usage, and
you shouldn’t become confused.

Try K := {11, (12)}. Then (123)K = {(123), (13)}, (132)K = {(132), (23)}.
Observe that S3 = K ∪ (123)K ∪ (132)K and that, again, the union is disjoint.
(The things-being-unioned are pairwise disjoint.)

Observe that typically cosets are not subgroups co’s they tend not to contain
11.

LEMMA 9 Suppose H ≤ G. Then all the left cosets of H are the same size.

And that size is the same as the size of H itself co’s H is the coset 11H. (This
is basically beco’s group multiplication has inverses and is therefore injective,
but let’s grind it out.)

We seek a bijection between aH and bH. Suppose x ∈ aH. Then x = ah
for some (unique!) h ∈ H. Send x to ba−1x. This is a member of bH. If
we now try to send ba−1x (which is in bH) to something in aH by using the
same idea to build a map bH → aH we find that we have sent it back to
x. So our construction actually constructed a bijection between aH and bH.
Observe that in order to describe this bijection we needed to have an a and a b
to compute with. It didn’t matter which a and b we used—co’s we’ll always get
a bijection—but it might be different each time, and there is no way of finding
a distinguished or canonical bijection.

(you can skip this bit if you like)

Let gH and g′H be two cosets of H. Send x in gH to g′g−1x, which will clearly

be in g′H. Is this function injective? If g′g−1x = g′g−1y then equally clearly x = y.

Observe, however that the bijection x 7→ g′g−1x between the two cosets gH and g′H

depends on our choice of g and g′, not purely on the cosets. Every coset of H is of

the form gH for some g, but there may be lots of g that give rise to the same coset,

and there is no canonical way to pick such a g. Thus, altho’ any two cosets of H in G

have the same cardinality, there is no uniform way of assigning bijections.
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LEMMA 10 Suppose H ≤ G.
Any two left cosets of H are either identical or disjoint, and the set {gH :

g ∈ G} of left cosets of H forms a partition of G.

Proof:
For starters, the cosets cover the whole of G co’s if g ∈ G then g ∈ gH!

We will show that if aH and bH overlap then they are identical.

Observe that aH = bH iff ab−1 ∈ H. This is beco’s b ∈ bH = aH so
b = ah for some h ∈ H which is of course a−1b and the arrows can be reversed.
Actually that wasn’t what i claimed was it? I said ‘ab−1’, but you can get that
by permuting ‘a’ and ‘b’—the allegation is symmetric in ‘a’ and ‘b’.

Now suppose there is c ∈ aH ∩ bH. So a−1c ∈ H and b−1c ∈ H. Now H is
a group and is closed under inverses so (b−1c)−1 = c−1b ∈ H. Further, H is a
group and is closed under · so a−1cc−1b = a−1b ∈ H, and this is the same as
aH = bH.

Now aH = bH defines an equivalence relation on G (obviously!). Let’s
think about the partition corresponding to this equivalence relation. The pieces
of the partition are the equivalence classes. [make sure you understand the
correspondence between partitions and equivalence relations!! There is a natural
bijection between the set of equivalence relations on a fixed set X and the set of
partitions of X.] It is customary to use square brackets to denote equivalence
classes, thus ‘[a]∼’ denotes the equivalence class of a under the equivalence
relation ∼. If we know which equivalence relation we mean we can discard the
subscript. So what is [a]? Blindlingly cute fact: [a] = aH!! Why is this?

The equivalence relation a ∼H b ←→ aH = bH is the same as the relation
a−1b ∈ H. So so [a]∼H

= {b : a−1b ∈ H}. But this object on the RHS is
precisely aH!

This strikes your humble correspondent as a very cute fact. ∼H is clearly an
equivalence relation, and it must have as many equivalence classes as there are
cosets, but it’s very nice that the equivalence classes turn out to be precisely
those cosets. I mean: for all we know they could have turned out to be the right
cosets instead?

Which reminds us: all this stuff about left cosets . . . we could have done
exactly the same development with right cosets instead.

Observe that the left cosets and the right cosets all turn out to be the same
if the group G is abelian.

Observe that the number of left cosets is the same as the number of right cosets.

This is beco’s in each case one can compute the number of cosets by observing that all

cosets are the same size and are the same size as the subgroup, a bit of division does

the rest and we get the same answer in both cases. Notice that there is no obvious

way of describing a bijection between the set {gH : g ∈ G} of left cosets and the set

{Hg : g ∈ G} of right cosets. The situation is bit like that earlier where i pointed out

that there is no canonical bijection between two given left cosets of H. We can find
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bijections but no canonical one. In this case we can’t even point to any bijections at

all, altho’ we can prove that there must be such bijections—at least in the finite case.

We have traded heavily on the assumption that the group G is finite.

Amid all this above chat there is a proof of:

THEOREM 3 Lagrange
Suppose H ≤ G, G finite. Then |H| divides |G|.

DEFINITION 11 The index of a subgroup H ≤ G is the cardinality of the set
of left H-cosets, and this cardinality is written ‘|G : H|’

Remark: If G is finite then |G : H| = |G|/|H|. (Observe overloading of the
vertical bar notation(!) Just to be really annoying i shall continue to use a single
vertical bar for divisibility, as in Numbers and Sets.)

Further remark: we can have |G : H| finite even if both G and H are infinite:
e.g, let G be the group of permutations of IN that move only finitely many things,
and let H be the subgroup consisting of all the even permutations. Both these
groups are countably infinite, but |G : H| = 2.

We will write ‘(G : H)’ for the set {gH : g ∈ G} of left cosets.

We should not expect a converse to Lagrange. Groups of order n do not
reliably have subgroups of all orders that are divisors of n. A4 has no subgroups
of order 6, and A5 has no subgroups of order 30. We will prove these later.

[end of sixth lecture]

COROLLARY 1 Lagrange’s Corollary
If G is a finite group, and g ∈ G then o(g)||G|. In particular g|G| = 11G.

Overloading of
vertical line!!Proof:

Consider 〈g〉, the2 cyclic [sub]group [of G] generated by g. This is a subgroup
of G so its order must divide the order of G

COROLLARY 2 If the order |G| of G is a prime, p, then every g ∈ G has
order p.

Indeed every group of order p is cyclic.

Now we are going to consider Euler’s totient function.

φ(n) = |{m ∈ IN : (0 < m < n) ∧ (n,m) = 1}|

[In case you were wondering, Dear Reader, (n,m) here is the highest common

factor of n and m not the transposition swapping n and m. Nor is it the open interval

in IR bounded by n and m. Life’s like that.]

2Strictly speaking this notation has not yet been introduced, but i think you can guess
what it means!
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THEOREM 4 Fermat-Euler
Let n ∈ IN, a ∈ Z with (a, n) = 1. Then aφ(n) ≡ 1 (mod n).

Proof:
This is a generalisation of Fermat’s little theorem: If p ∈ IN is prime and

a ∈ Z is prime to p, then ap−1 ≡ 1 (mod p).

Suppose n ∈ IN. Let R∗n be {0 < a < n : (a, n) = 1}. Equip R∗n with
multiplication mod n. It’s pretty obvious that the result is a group so in the
interests of speed i might omit the proof for the moment. Proof needed

hereclosure

inverses

Associativity. Not totally blindingly obvious that multiplication mod n is
associative. One needs to do a small amount of hand-calculation and that might
be good for the soul. insert hand-

calculation
here

Observe that |R∗n| = φ(n).
Suppose a ∈ Z with a prime to n. (Let us write a REM n for the remainder

of a on division by n, so that a REM n is always a natural number < n.) Then
a REM n is in R∗n. So, by Lagrange, (a REM n)φ(n) = a|R

∗
n| = 1 ∈ R∗n. So

aφ(n) ≡ 1 mod n.

You may be confused, Dear Reader—as was i—by the overloading of the expo-

nential notation. In ‘(a REM n)φ(n)’ we mean the group element a REM n composed

with itself φ(n) times. This is of course the same as the number a REM n raised to the

power φ(n)—mod n of course. Persist and it will all come right.

5 Normal Subgroups, Quotient Groups and Ho-
momorphisms

Idea: given G and H ≤ G, strive to define a group operation [which we will
write ‘◦’] on the quotient, the set (G : H) of [left] cosets of H in G.

The obvious thing is . . . . Well, the elements of (G : H), the cosets, are sets
of group elements, and we have an operation on the group. It would be nice if
we could obtain a third coset from two cosets C and C ′ by taking a c ∈ C and
a c′ ∈ C ′, and seeing which coset the product lands in3.

Things are greatly simplified for us by the fact that the equivalence relation of
belonging-to-the-same-coset is the same relations giving-rise-to-the-same coset,
viz a is equivalent to b if aH = bH. So what we have to check is

aH ◦ bH = (ab)H??

3This a special case of a general situation where we have an operation o on a set x and we
try to define an operation defined on the pieces of a partition of X. Another example: Z with
×: can we define a × operation on the equivalence classes of Z mod p?
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When does this happen?? There will now be an ad-break, i mean a definition
break before we learn when. . .

DEFINITION 12 A subgroup H ≤ G is a normal subgroup [of G]4, written
‘H �G’ if (∀g ∈ G)(gH = Hg).

Observe that this is saying more than just “every left coset is a right coset”;

it’s saying that the left coset corresponding to g is the same set as the right coset

corresponding to g. Must think a bit about what the weaker condition “every left

coset is a right coset” does for us.

Try K = {11, (123), (132)} ≤ S3.
Then

(12)K = {(12), (23), (13)} = K(12)
(13)K = {(13), (23), (12)} = K(13)
(23)K = {(23), (13), (12)} = K(23)

[check the stuff in the middle of each of these three lines, to confirm that
these three cosets are the same—which they are. No time to copy it down off
the board.]

So gK = Kg for every g ∈ S3 so K is a normal subgroup of (or “is normal
in”) S3.

In contrast {11, (12)} is not a normal subgroup beco’s (13){11, (12)} and {11, (12)}(13)
are distinct sets.

PROPOSITION 3 the following are equivalent
For G a group, and K ≤ G

1. (∀g ∈ G)(gK = Kg);

2. (∀g ∈ G)(gKg−1 = K);

3. (∀g ∈ G)(∀k ∈ K)(gkg−1 ∈ K).

The notation in line 2 is a teeny bit naughty, beco’s we were told what gH
and Hg are only when H is a subgroup. We haven’t been told what it means if
H merely a coset. But this notation can be used even if H is any subset of G
whatever, and it can even be used both sides, so that gHk := {ghk : h ∈ H}.
Proof:

We will show (1) → (2); (2) → (3); and (3) → (1).

(1) → (2) gKg−1 = {gkg−1 : k ∈ K}, and this must be

{(gk)g−1 : k ∈ K} but, by (1), we can commute

= {kgg−1 : k ∈ K}
= {k : k ∈ K}
= K

4‘normal’ is a two-place relation not a one-place predicate—like abelian. No such thing as
a normal group, just a normal-subgroup-of —
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(2) → (3) is a piece of cake

(3) → (1) Suppose g ∈ G, k ∈ K. Then gkg−1 = k′ for some k′ ∈ K.

So gk = k′g. But every member of gK has the form of the thing on the
LHS of this equation, and anything of the form on the thing on the right
is in Kg. So this is telling us that gK ⊆ Kg.

The inclusion in the other direction is analogous. Write it out
. . .

5.1 Examples of normal subgroups

The trivial subgroup and the improper subgroup;
Every subgroup of every abelian group is normal;
Kernels of group homomorphisms are normal subgroups (sheet 1 q
8);
An � Sn co’s An is kernel(sign).

Recall the presentation of D2n on page 16. The cyclic [sub]group generated
by the rotation is a normal subgroup; the cyclic subgroup of order 2 generated
by the reflection in vertex 1 is not a normal subgroup.

[end of eighth lecture]

LEMMA 11 If K ≤ G is of index 2 then K �G.

Proof:
There are only two cosets (either on the left or the right). One of the two

cosets is K, so the other (whichever side you are on!) is G\K. So the left cosets
are the same as the right cosets!! .

That gives us another reason why An � Sn.

THEOREM 5 If K � G the set (G : K) of left cosets is a group under the
operation ◦ of coset multiplication defined earlier.

Proof:
The concept of normal subgroup was designed precisely to ensure that this

happens, so this should not come as a great surprise.
You shouldn’t really need a proof of this fact at this stage Dear Reader, but

Dr Camina is soft-hearted and is going to give one anyway.

Suppose gK = g′K and hK = h′K. We want (gh)K = (g′h′)K.
We use lemma 11.
gK = g′K iff (g′)−1g ∈ K, and
hK = h′K iff (h′)−1h ∈ K.

NowK is normal and therefore is closed under conjugation. So from (g′)−1g ∈
K we can infer h−1(g′)−1gh ∈ K. Now h′ and (h′)−1 are both in K so we can
multiply this last thing by (h′)−1h getting (h′)−1hh−1(g′)−1gh ∈ K. Must check

this calcula-
tion again
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We wanted (gh)K = (g′h′)K, and for this it is suff that (g′h′)−1gh ∈ K—but
this is what we have just proved.

The identity of G/K is of course the coset K itself.

Inverses? The inverse of gK is g−1K.

Associativity? This is actually tricky, co’s there are lots of things you could
try.

(gK ◦ hK) ◦ lK =

(ghK) ◦ lK =

(gh)lK

Examples:

1. Sn/An = ({An, (12)An}, ◦) = C2.

2. D8 = 〈a, b|a4 = 1 = b2, bab = a−1〉 (a is the rotation, b a reflection). If
K = {1, a2} then K �D8. To check this, calculate (ajb)a2(ajb)−1

aK = {a, a3};
abK = {ab, aba2} = {ab, a3b};
bK = {b, ba2} = {b, a2b}.

◦ K aK bK abK
K K aK bK abK
aK aK K abK bK
bK bK abK K aK
abK abK bK aK K

This is example 9 from lecture 1, aka C2 × C2.

[We haven’t actually defined group products yet. We will do this on p.
27.]

3. What are the quotient groups of (Z,+)?

First find all the subgroups. Clearly, for any n ∈ Z, the set of all multiples
of n will be a subgroup. Such subgroups are denoted ‘Zn’. We have to do a
bit of work to establish the obvious fact that there are no other subgroups.

Suppose H ≤ Z. Let n be the smallest +ve integer in H. (If there isn’t
one then H is the trivial group.) Consider the (cyclic) subgroup of Z
generated by n. This must be a subgroup of H. If it isn’t the whole of H
then we can find m ∈ H ∩ IN with m not a multiple of n. Use Euclid to
express m as qn+ r for some q and r < n. Then r = m− qn. But m ∈ H
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by assumption, qn ∈ H beco’s n ∈ H so r ∈ H. But r < n contradicts
minimality of n.

OK, so we know what the subgroups are. Since (Z,+) is abelian all these
subgroups are normal, so we have located all the quotient groups.

Let’s work thru’ an example. Take n = 5; what are the cosets?

5Z = {5z : z ∈ Z}; 1 + 5Z = {1 + 5z : z ∈ Z}; 2 + 5Z = {2 + 5z : z ∈ Z};
3 + 5Z = {3 + 5z : z ∈ Z}; 4 + 5Z = {4 + 5z : z ∈ Z}. We get

(1 + 5Z) ◦ (2 + 5Z) = 3 + 5Z

and in general

(i+ 5Z) ◦ (j + 5Z) = (i+ j REM 5) + 5Z

So the result is isomorphic to ([1, 4],+5) and the isomorphism is of course
n+ 5Z 7→ n (or perhaps 7→ n REM 5 if you think n can be anything in Z).

In general Z/nZ ∼= ([0, n− 1],+n)

[end of ninth lecture]

4. Fix p a prime; then Cp∞ = {z ∈ C : (∃n ∈ IN)(zpn = 1)}. This is the
Prüfer group. Never heard of it. This is obviously a plot point. All
its subgroups are finite. (This is in contrast to the additive group of the
integers, all of whose subgroups are infinite).

5. To illustrate why normality is necessary. . . letH = {11, b} ≤ D8 = 〈a, b|a4 = 1 = b2, bab = a−1〉.
Observe b ∈ H but aba−1 6∈ H so H is not closed under conjugation and is
therefore not normal. So it is meet for our purposes. Consider the cosets

H = {11, b};
aH = {a, ab} = abH;
a2H = {a2, a2b}; I might have

copied these
down wrong.
Couldn’t see
blackboard
properly.
Check them
and get back
to me

a3H = {a3, ab}.
Now aH ◦ aH ought to be a2H. However aH = abH and abH ◦ abH
ought to be ababH, and we can rewrite the underlined bit as ‘a−1’, so
ababH = H. And H 6= a2H.

We really shouldn’t need this, beco’s the definition of normal subgroup was

cooked up precisely to make this true. However, no harm has been done.

THEOREM 6 The First Isomorphism Theorem
this should be
theorem 6, ac-
cording to the
blackboard

Suppose θ : G→ H is a homomorphism, and let us write ‘K’ for the kernel
of θ. Then K �G and G/K ' θ“G (the “image” of G [in θ, understood].)
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Illustrations before proof!!

1. sign: Sn →→ ({1,−1},×).

Ker(sign) = An � Sn, and Sn/An = C2—of which ({1,−1},×) is a reali-
sation.

2. Can define θ : (IR,+) → (C \ {0},×) by θ : r 7→ e2πir. Check it’s a
homomorphism . . . . The image θ“IR is the unit circle in the complex
plane.

Ker(θ) = Z beco’s 1 is the identity in the target group. Could proba-
bly say a bit
more about
this

(IR,+)/(Z,+) ' (S1,×), the unit circle.

This is proba-
bly a definition
of S1.

3. det: GL2(IR)→ (IR\{0},×), by det: M 7→determinant(M). [Recall from
3 that GL2(IR) is the family of 2×2 matrices with nonzero determinants.]
Recall, too, that det(AB) = det(A)· det(B). The image of the homomor-
phism is the whole of the target, beco’s any α ∈ IR is the determinant
of

(α0
0
1)

The kernel is SL2(IR) = {A ∈ GL2(IR) : det(A) = 1}
Nothing special here about either the ‘2’ nor the ‘IR’. We can have n×n matrices

over any field we choose. Not that you know what is field is yet but you’re about

to find out. Integers mod p.

Now for a proof.

We need an isomorphism between G/K and θ“G, the image of θ. This
isomorphism will be the gadget φ defined by:

φ(gK) = θ(g)

This is well-defined beco’s K � G, as follows. Suppose gK = hK. Then
h−1g ∈ K (by normality of K, lemma 11) whence θ(h−1g) = eH , giving θ(h−1) ·
θ(g) = eH and finally θ(h) = θ(g).

φ is a homomorphism beco’s θ(gK ◦ hK) = φ(ghK) = θ(gh) = θ(g)θ(h) =
φ(gK)φ(hK).

φ is onto beco’s θ(g) ∈ image of θ and φ(gK) = θ(g).

To establish that φ is 1 − 1 we need φ(gK) = φ(hK) iff θ(g) = θ(h). Let’s
calculate:

θ(g) = θ(h) iff
(θ(h))−1 · θ(g) = eH iff
θ(h−1(g)) = eH iff
h−1g ∈ ker(θ) = K iff
hK = gK
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A normal subgroup K �G is the kernel of the quotient map G→→ G/K.

This should be
lemma 13, ac-
cording to Dr
C

LEMMA 12 A homomorphism θ :→ H is injective iff the kernel is trivial.

Proof:
Left-to-Right

Suppose θ(g) = eH = θ(eG). Then g = eG by injectivity.

Right-to-Left

Suppose θ(g) = θ(h). Then (θ(h))−1θ(g) = eH . θ is a homomorphism, so
θ(h−1g) = eH , so hg−1 ∈ ker(θ) = {eG} so h = g.

An extra bit of notation. . . . For A, B subsets of G, write ‘AB’ for {ab : a ∈
A ∧ b ∈ B}

Should be
lemma 14
by RDC’s
counting

LEMMA 13 Suppose N �G and H ≤ G.
Then NG ≤ G.

Suppose further that H, too is normal.
Then NH �G.

I didn’t know that!! And it’s easy!
Proof:

All we have to do is show that NH is closed under G’s multiplication and
inverse.

Multiplication:

So suppose nh and n′h′ are two elements of NH. H�G so hn′ = n′′h
for some n′′ ∈ N . This tells us that nhn′h′′ = nn′′hh′, and this is
definitely in NH.

Inverse

Suppose nh ∈ NH. We want h−1n−1 ∈ NH. But, by normality of
H, there is n ∈ N s.t. h−1n−1 = n′h−1, and the RHS of this last
equation is obviously in NH.

Dr C hasn’t proved the second part. Perhaps she’ll do it in the next lecture,
or perhaps she wants you to do it as an exercise.

[end of tenth lecture]
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An aside at the start of the lecture. How do you know that homomorphisms preserve

inverses? The morally correct answer is that homomorphisms preserve all structure—

that what you have to do if you aspire to be a homomorphism, it’s part of the definition.

However, if you define a homomoprhism to be something that preseves 11 and multi-

plication, then if θ is a homomorphism from a group to another group then you can

prove that it also preserves inverses. What does it send g−1 to? Something that in the

target cancels g. But then, by uniqueness of inverse in the target [wot is a group after

all] the inverse that g−1 got sent to must be the unique inverse. You really don’t want

to think about this. Just define a homomorphism to be something that preserves all

structure. Don’t try to get clever.

6 Direct (cartesian) Products

Do not confuse this with NH earlier. That will crop up too!

If (G,×) and (H,×) are groups then consider the set G ×H, the set of all
ordered pairs whose first components are in G and whose second components
are in H. This set is commonly known as the product of G and H. Suppose
you wanted to put a group structure on this set. How might you do it? The
obvious answer [the one you have already tho’rt of] is the operation defined
coördinatewise.

If (G, ∗) and (H, ∗) are groups then the set G×H = {(g, h) : g ∈ G∧h ∈ H}
of all ordered pairs whose first (“left”) components are in G and whose second
(“right”) components are in H can be equipped with group gadgetry as follows

• The unit is the pair (11G, 11H);

• (g, h) ∗ (g′, h′) = (gg′, hh′);

• The inverse of (g, h) is g−1h−1).

The group that is the set G×H equipped with the coördinatewise operation
is also called G×H. Its size (order!) is clearly |G| · |H|.

Observe that the operation that flips ordered pairs round—thus: (x, y) 7→
(y, x)—is an isomorphism between G×H and H×G. By thinking about ordered
pairs in this way you can explain why (G×H)×K ' G× (H ×K).

Observe further: the set G × {11H} supports a group structure that is an
exact copy of ×H , and the set {11G} ×H supports a group structure that is an
exact copy of ×G. So both G and H inject isomorphically into G×H.

Observe: G×H is abelian iff G and H are both abelian.

Let’s have some examples
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1. C2 × C2. Two copies, 〈a|a2 = 11〉 and 〈b|b2 = 11〉. The product of the two
sets is {(e, e), (e, b), (a, e), (a, b)}. Let’s have a multiplication table5

∗ ee ae eb ab
ee ee ae eb ab
ae ae ee ab eb
eb eb ab ee ae
ab ab eb ae ee

Here i have
omitted com-
mas and
brackets.

This is example 9 from earlier. It’s the Klein 4 group. Observe that all
nonidentity elements have order 2

2. C2 × C3. Two factors 〈a|a2 = 11〉 and 〈b|b3 = 11〉, and the product is the
following set of pairs: {ee, eb, eb2, ae, ab, ab2}.
Now consider the element ab.

(ab)2 = (a2, b2) = (e, b2);
(ab)3 = (a3, b3) = (a, e);
(ab)4 = (a4, b4) = (e, b);
(ab)5 = (a5, b5) = (a, b2);
(ab)6 = (a6, b6) = (e, e).

They’re all distinct. Thus the product is the cyclic group generated by
(a, b).

LEMMA 14 Let h ∈ H and k ∈ K, then the order of the pair (h, k) in the
product H ×K is LCM(o(h), o(k)).

Proof:
Let’s write ‘m’ for the least common multiple of o(h) and o(k). Then

(h, k)m = (hm, km) = (11H , 11K), so m is a multiple of the order of (h, k). And it’s
not a proper multiple beco’s, if (h, k)n = 11, then (hn, kn) = 11—whence o(h)|n
and o(k)|n and m|n.

COROLLARY 3 Cn × Cm ' Cnm iff LCM(n,m) = 1.

By the preceding lemma, there is an element of Cn×Cm of order mn iff (n,m) =
1.

PROPOSITION 4 Let G be a group with subgroups H and K. Then if

5Initially i left out the brackets beco’s it’s probably safe to. But also beco’s i cannot
bring myself to write ‘(a, e)’ for the ordered pair of a and b, and my preferred notation—
‘〈a, b〉’—collides with the notation we are using for group presentations. And i’ll try to write
‘LCM(x, y)’ instead of ‘(x, y)’. The possibility of confusion caused by all this overloading is
potentially alarming. The commas in expressions like ‘(e, a)’ do not serve the same purpose
as the [higher level] commas demarcating the pairs themselves as elements of the set.
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1. (∀g ∈ G)(∃h ∈ H)(∃k ∈ K)(g = hk);

2. H ∩K = {11G};

3. (∀h ∈ H)(∀k ∈ K)(hk = kh);

then G ' H ×K.

[“Internal direct product”]. Notice that we really do mean H×K not K×H.
They ain’t the same: item (1) is not the same as (∀g ∈ G)(∃h ∈ H)(∃k ∈ K)(g =
kh);

Proof:
Every g in G is hk for some h ∈ H and k ∈ K. The obvious thing to do

is to send g to the ordered pair (h, k). What problem could there possibly be?
Well, there might be more than one way of representing g as a-member-of-H-
times-a-member-of-K. So we want uniqueness of the representation. So suppose
g = h1k1 = h2k2.

h1k1 = h2k2.

multiply both sides by k1
−1 on the right to get

h1 = h2k2k1
−1.

Now multiply both sides by h2
−1 on the left to get

h2
−1h1 = k2k1

−1.

Observe now that the LHS is an element of H and the RHS is an element of K
so, by condition 2, we must have h2

−1h1 and k2k1
−1 both equal to 11. But then

h1 = h2 and k1 = k2.
So in these cirumstances we can legitimately define θ : G→ G×H by θ : g 7→

(h, k). It now only remains to check that θ is indeed a group homomorphism.

Preserves product: θ(g1 ∗ g2) = θ(h1k1 ∗ h2k2). By clause (3) we have
commutativity so this is θ(h1h2k1k2) which is (h1, k1) · (h2, k2) = θ(g1) · θ(g2).

It’s onto: (h, k) ∈ H ×K is θ of hk ∈ G.

C6 = 〈a|a6 = 1〉. Try H = 〈a2〉 and K = 〈a3〉. (Recall the notation ‘〈x〉’ for
the cyclic [sub]group generated by the element x.)

Then C6 ' H ×K. This is easy beco’s all these groups are abelian and so
all subgroups are normal.

Worth noting that there are other (equivalent) definitions of internal direct
product. Here’s one:

“G is the internal direct product of H and K if

1. H �G, K �G;
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2. H ∩K = {11};

3. G = HK in the old (page 26) sense.”

We will show that these 1, 2, 3 are equivalent to the old 1, 2, 3 from propo-
sition 4.

We first prove the left-to-right implication.

We want K �G. Let k′ be in K and g ∈ G. By (1) we can write g = hk for
some h ∈ H and k ∈ K. so

gh′g−1 = (hk)k′(hk)−1 = hkk′k−1h−1.

The underlined part is in K, and by (3) we can commute things in H with
things in K so this is kk′k−1 which is in K.

Similarly H � G. So HK ≤ G by lemma 14 (her numbering). This makes
sure that (1) is satisfied.

Right-to-left

We will use (3)’ to prove (1). Consider the term h−1k−1hk. Terms like this
are called “commutators”. (If everything commuted they would be 11.) Write
it as h−1k−1hk. The underlined bit is in H beco’s H is normal, so the whole
thing is in H. But we can also write it as h−1k−1hk. This time the underlined
bit is in K so the whole thing is in K. So it’s in both H and K. Therefore, by
(3’), h−1k−1hk = 11, so h and k commute as desired.

7 Small groups

|G| = 1

G must be the trivial group.

|G| = 2

2 is prime so we can use Lagrange (a taste of things to come) to argue that
every nonidentity element is of order 2. (Pretty bloody obvious in this case, but
. . . ). We must get C2.

|G| = 3

3 is prime so all we get is C3. In fact if G is of order a prime p then it can only
be Cp.
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|G| = 4

By Lagrange, if g 6= 11 then o(g)|4. If there is a nonidentity element of order
4 then we are clearly looking at C4. So suppose all nonidentity elements are
of order 2. But then (this was a question on an example sheet) the group is
abelian. It must be 〈a, b|a2 = b2 = 1〉, which is {11, a, b, ab} which is C2 × C2.

|G| = 5

C5 yawn.

|G| = 6

By Lagrange any nonidentity element must have order 2, 3 or 6. If every element
of a group G is of order 2 then |G| is a power of 2.6 But |G| is not a power
of 2, so there are elements of order 3 or 6. If there is an element of order 6
then we are in C6. But there must be an element of order 3 in any case, since
if g6 = 11 then (g2)3 = 11. So let a be an element of order 3. Then the cyclic
subgroup generated by a is of index 2 and is therefore normal by lemma 12
(her numbering). Choose b ∈ G \ 〈a〉. Then b2 ∈ 〈a〉 by sheet 2 q 11. So G is
generated by a and b.

If b2 = a or b2 = a2 then o(b) = 6 so G ' C6 ' C2 × C3.

If b2 = 11 we have 〈a〉 is normal, so bab−1 ∈ 〈a〉. Which element of 〈a〉 is it?

If bab−1 = 11 then a = 11 . . . No!

If bab−1 = a then a and b commute making G abelian (it’s generated by two
elements wot commute), so o(ab) = 6 so G = C6.

If bab−1 = a2 then G = 〈a, b|a3 = 11 = b2, bab−1 = a−1〉 and this is D6 aka
S3.

|G| = 7

Yawn

|G| = 8

Apparently lots of groups of order 2n, according to Dr C. Perhaps this case will
illustrate why.

We start off by brandishing Lagrange as before. Every nonidentity element
has order 2, 4 or 8.

If there is even one element of order 8 then we are in C8.

If all elements have order 2 then we are abelian and it’s not hard to see we
are in C2 × C2 × C2.

6Apparently this is sheet 1 Q 11. Go away and do it now if you have not already done so.
Presumably it’s beco’s all subgroups are normal by abelianness so the quotient over a copy of
C2 gives you a quotient group whose order is |G|/2, and you keep on doing it . . .
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If there are elements of order 4, what then? Suppose a is an element of order
4. Then the cyclic subgroup 〈a〉 has index 2 and must be normal.7

Let b be in G\〈a〉. Then G = 〈a, b〉. This is beco’s G/〈a〉 ' C2 (the quotient
has order two so it must be C2). So b2 ∈ 〈a〉. [why?]

If b2 is a or a3 then o(b) = 8 and we are in C8.
If b2 is 11 or a2 there is still life in the old dog. Let’s see what can happen.
Either way, 〈a〉 � G so bab−1 ∈ 〈a〉. So bab−1 = ai for some i. Also , ,

says Dr Cb2 ∈ 〈a〉. So a = b2ab−2 = bbab−1b−1 and the underlined bit is ai so it becomes

baib−1 = ai
2

. So a = ai
2

so 11 = ai
2−1 so i2 ≡ 1 (mod 4), so i ≡ 1 or −1 mod 4.

There are two cases:

• i ≡ 1 (mod 4). Then G is abelian, beco’s

either

b2 = 11 so a and b commute so G is generated by things that
commute [and in this case G is C4 × C2]

or

b2 = a2 in which case (ba−1)2 = 11, so G = 〈a, b〉 = 〈a, ba−1〉 =
〈a〉 × 〈ba−1〉 = C4 × C2.

• i ≡ −1 (mod 4). Suppose bab−1 = a−1.

If b2 = 11 then G = 〈a, b|a4 = 11 = b2, bab−1 = a−1〉 which is to say that G
is D8.

If b2 = a2 we get a new group, called Q8.

7.1 Realisations of Q8

Q = {1,−1,+i,−i,+j,−j,+k,−k}. As you can see, the elements have special
names. 1 is 11Q8

. I don’t think the ‘+’ and the ‘-’ allude to group operations, at
least not directly: −j is not the inverse of j in Q8. It’s (−1) · j where the dot is
multiplication-in-Q8. This notation works beco’s (−1) commutes with each of
i, j and k. (And presumably it’s an involution, a chap of order 2). Thus when
you Q8-multiply two things the minus signs cancel.

We have the following bits of info about the group operation.

ij = k; jk = i; ki = j; ji = −k; kj = −i; ik = −j; i2 = j2 = k2 = −1;
(−1)2 = 11.

o(i) = o(j) = o(k) = 4.

I think we are supposed to infer from jk = i that (−j)k = −i, j(−k) = −i
and (−j)(−k) = i. I have used inferences like that in my attempt to fill in

7The point here is that, in general, if N � G and G/N is cyclic of prime order then, if
g ∈ G \N , we find that the coset gN generates a subgroup isomorphic to the quotient G/N .
This is beco’s, if h is any element of G, h belongs to some coset giN so h = gin for some
n ∈ N .
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the multiplication table below. In fact −j (and −k, −i mutatis mutandis) is
a seductive cheating notation for (−1) · j. If you grasp that then everything
follows.

[What is o(−1)? I think we are suppose to be guided by the notation into
thinking that (−1)2 = 1 = 11 so o(−1) = 2]

× 1 −1 i −i j −j k −k
1 1 −1 i −i j −j k −k
−1 −1 1 −i i −j j −k k
i i −i −1 1 k −k −j j
−i −i i 1 −1 −k k j −j
j j −j −k k −1 1 i −i
−j −j j k −k 1 −1 −i i
k k −k j −j −i i −1 1
−k −k k −j j i −i 1 −1

This multi-
plication is a
construction
site. Hard hats
needed. There
is no guaran-
tee that the
calculations
are correct!!

We can think of Q8 as a group of matrices.

11 = (10
0
1); i = (i0

0
−i); j = (0i

i
0); k = (01

−1
0 );

−1 = −(10
0
1); −i = −(i0

0
−i); −j = −(0i

i
0); −k = −(01

−1
0 ).

These eight matrices all have determinant 1, so Q8 is a subgroup of SL2(C).
Q8 = 〈a, b|a4 = 11, b2 = a2, bab−1 = a−1〉, and we can make the following

identifications:
a = i; b = j; jij−1 = ji(−j) = −jk = −i.

So! There are five groups of order 8: C8, C4 ×C2 and C2 ×C2 ×C2 (which
are abelian) and D8 and Q8 which are not.

[end of eleventh lecture]

|G| = 9

Either there is an element of order 9, in which case we are in C9, or there isn’t
in which case every nonidentity element has order 3. Pick one, and consider the
cyclic subgroup it generates. Then consider something not in that subgroup.
Easy to see that we get C3×C3. Observe [a very mathematical move, this] that
all we were using is that 9 is the square of a prime. The moral is that any group
of order p2 is a product of cyclic groups and is therefore abelian. And, yes, a
product of abelian groups is abelian. Think about it a bit.

|G| = 10

We didn’t go through this case in lectures, but we get C10, C5 × C2 or D10.
[look at sheet 2 q 12]. Might have to do a bit of work to check that that is all
you get. Oops!! C5 × C2 is C10! That’s beco’s 2 and 5 are coprime. (Corollary
3).
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|G| > 16

10 groups of order 16. Something like 1011 of order 1024.

8 Group Actions

The groups D2n and Sn arise beco’s they do something. They act8! D2n acts
on the n-gon; Sn acts on [1, n].

Remember the distinction between abstract groups and concrete groups. A
concrete group is a realisation (p 9) of an abstract group. If you equip an
abstract group with an action it becomes a concrete group.

DEFINITION 13 Let G be a group and X a nonempty9 set. An action of G
on X is a function ρ : G×X → X satisfying

(0) ρ“(G×X) ⊆ X. (Actually this is enforced by the conventions underlying
the use of the above syntax, but it is something that has to be checked when
you encounter a ρ that might be an action.)

(1) (∀g, h ∈ G)(∀x ∈ X)(ρ(gh, x) = ρ(g, ρ(g, x))

(2) (∀x ∈ X)(ρ(11, x) = x)

Let’s have some examples.

1. Trivial action: (∀x)(ρ(g, x) = x).

2. Sn acts on [1, n] by permutation.10

3. D8. We know where the dihedral groups come from. Let’s not forget that
the elements of the dihedral group can be taken to be permuting not edges
but (if we choose) vertices.

Suppose we have a square with four sides a, b, c and d, reading clockwise
from the horizontal chap a at the top. τ(a) = a, τ(b) = d, τ(c) = c. need a pic-

ture!!8

In Modern Thought, if not in fact
Nothing is which does not act.
Thus that is counted wisdom which
Describes the scratch but not the itch.

9

Not sure why it has to be nonempty but never mind.
10Of course it does: that’s where it came from. However there are some things to worry

about here—at any rate they worried me. What is the abstract group S3 anyway? It’s a
multiplication table. To get it to act we have to decide which row (column) corresponds to
which actual physical permutation. The group elements of order 2 had better correspond
to transpositions. How many ways are there of marrying up the group elements with actual
permutations? I don’t suppose for a moment that the answer is interesting (my guess is
that it’s n!) but one should understand this situation well enuff to be able to perform the
calculation. Of course one can think of a group as a group presentation, so that S3 =
〈a, b, c|a2 = b2 = c2 = 11, (ab)3 = (bc)3 = (ac)3 = 11〉—at least i think that is correct—and then
one has to identify a, b and c with the three transpositions, and this can be done in 3! ways.
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σ(a) = b and so on.

If we have a square with vertices 1, 2, 3 and 4, reading clockwise from the
top left corner. [need a picture!!] τ(1) = 2, τ(2) = 1, τ(3) = 4 and so on.

Of course G can act on itself! And in more than one way. . . !

• Left-multiplication: ρ(a, b) = ab. Let’s just check that this really is a
group action in the meaning of the act.

(0) ρ(a, b) = ab ∈ G
(1) ρ(g, ρ(h, k)) = ρ(g, hk) = ghk.

ρ(gh, k)) = ghk, so we get associativity (in case anyone was wondering).

This is often known as the left regular action. There is also [of course]
the

• right regular action

The reader can fill in the details by themselves

• G can act on itself by conjugation

ρ(g, h) = ghg−1.

Let’s check the conditions

(0) k ∈ G→ gkg−1 ∈ G
(1) ρ(gh, k) = ghk(gh)−1 = ghkh−1g−1;

ρ(g, ρ(h, k)) = gρ(h, k)g−1 = ghkh−1g−1.

so it really is an action.

But G acting on itelf gives a map G × G → G. Is this map a group homo-

morphism? What is the kernel?? Do not miss next week’s thrilling installment!

Subscribe now!

[end of twelfth lecture]

• G can also act by conjugation on any normal subgroup. The point is that
you need the subgroup to be normal-in-G in order for condition (0) to be
satisfied.

• G acts on the set of left-cosets by [wait for it!] left-multiplication. This is
the left coset action.

(0) ρ(g, kH) = (gk)H;

(2) ρ(g, ρ(l, kH)) = ρ(g, lkH) = glkH;

(3) ρ(11, kH) = 11kH = kH.
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• There is also of course the action on right cosets by multiplication on the
right.

[end of thirteenth lecture]

Every action ρ(G×X)→ X gives rise to a homomorphism G→ Symm(X).
[Think about it for a bit]

To what element of Symm(X) do we send g ∈ G? Obviously to that element
of Symm(X) that, when we give it x, gives us ρ(g, x). I am going to write this
using lambda notation, as λx.ρ(g, x). λ notation

is coool!We’d better check that this λx.ρ(g, x) really is a permutation of X. Here
we get clever and use the fact proved earlier (plot point!) that a function is a
bijection iff it has a two-sided inverse. You can have a one-sided inverse and not
be a bijection. Consider λn.2n : Z→ Z. It has a left-sided inverse but no right-
sided inverse. Now λx.ρ(g, x) has a two-sided inverse, namely λx.ρ(g−1, x)—
which is of course an inverse by the definition of group action—so it is indeed a
bijection.

This is lemma 16. The homomorphism G → Symm(X) induced by the
action ρ of G on X is of course λg.λx.ρ(g, x). Dr Camina is going to write the
with a capital phi: ‘Φ’. I don’t know if this is the letter always used for this
homomorphism induced by a group action. We shall see.

PROPOSITION 5 Check for yourself that Φ : G → Symm(X) is not only a
function form G to Symm(X) (all its values are in Symm(X)) but is actually
a group homomorphism. I shall write out a proof if suitably threatened but not
otherwise. This is propo-

sition 6 in
Dr Camina’s
numbering

Things in the kernel of Φ are things that “act trivially”. If the kernel is {11G}
we say that the action is faithful.

Something in me wants to write this capital Φ with a ρ subscript. . .

OK, so group actions correspond to homomorphisms, and where we have
homomorphisms we have normal subgroups and homomorphic images and so
on. Let’s have some examples, and dig up the first isomorphism theorem.

1. The trivial action. ker(Φ) = G. Not faithful!

2. Sn acting on [1, n] [in the obvious way] is faithful. What about Sn acting
on [1, n+ 1]? Well, it could act on it in various ways, but i think what Dr
C had in mind was an action that moved 1, . . . n around and fixed n+ 1,
and the point of this example is that it is not faithful. Is there an action
of Sn on [1, n+ 1] where only the identity element of Sn fixes everything?
I don’t know!

3. D8 acting on the edges of a square: faithful.

4. Left regular action: faithful.

37



5. G acting on itself by conjugation. The kernel is {g ∈ G : (∀h ∈ G)(ghg−1 =
h)}. The kernel contains precisely those elements that commute with ev-
erything in G. It is called the centre of the group G and it is notated
‘Z(G)’. Whether or not this action is faithful depends on whether or not
the kernel is trivial. It might be. But if G is abelian the kernel is the
whole group. Examples: Z(D8) = 〈σ2〉; Z(A5) = {11}.

6. G acting by conjugation on a normal subgroup N of itself. The kernel is
written in the following style

CG(N) = {g ∈ G : (∀n ∈ N)(gng−1 = n)}

and it is called the centraliser (of N in G).

Actually we talk of centralisers of arbitrary subsets of G, not merely cen-
tralisers of normal subgroups.

7. Left coset action. [Remember, we have fixed a subgroup H, and we are
moving its cosets around with this action.] The kernel is

{g ∈ G : (∀k ∈ G)(gkH = kH)}

= {g ∈ G : (∀k ∈ G)(k−1gk ∈ H)}

= {g ∈ G : (∀k ∈ G)(g ∈ kHk−1)}

=
⋂
k∈G

kHk−1

which is the ⊆-biggest normal subgroup of G that is included in H. [Need
to think a bit about this.] This called the core of H (in G). Thinking
aloud. . . by lemma 13 you can “multiply” two normal subgroups together,
so i suppose as long as the group is finite you can “multiply” together all
the normal subgroups, and even—specifically—all the normal subgroups
that happen to be included in a given subgroup H. (Is the result included
in H?) What we have just learnt is that you can multiply them all together
even if the group is infinite.

(Observe that if |G| > |Symm(X)|, then the action is not faithful.)

So we have proved:

THEOREM 7 Cayley’s theorem
If ker(Φρ) is {11} (so the action is faithful) then G ' some subgroup of

Symm(X). The left-regular action of G on itself is faithful, so every group G is
isomorphic to a subgroup of Symm(G).

Proof:

Given an action ρ of G on a set X we will often write ‘g(x)’ for ‘ρ(g, x)’ of
course only if ρ is fixed and understood.
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DEFINITION 14 The orbit of x [under ρ and G] is {x′ ∈ X : (∃g ∈ G)(gx =
x′)} (also written {g(x) : g ∈ G}) and OrbG(x) for short. Sometimes written
‘G(x)’.

Let’s go back to our portfolio of standard examples.

1. The trivial action. Orb(x) = {x}. (I’ve omitted the subscript as Dr C
did.)

2. Sn acting on [1, n]. OrbSn
(x) = [1, n]. Suppose H ≤ S5 is 〈(1, 2)(3, 4, 5)〉

acting on [1, 5] then H has two orbits, namely: OrbH(1) = {1, 2} and
OrbH(3) = {3, 4, 5}.

3. D8 acting on the edges of the square with edges a, b, c, d labelled clockwise
from the top horizontal [need a picture!]. OrbD8

(a) = {a, b, c, d}.

4. Left regular action. OrbG(h) = G for all elements h ∈ G.

5. Conjugation action. OrbG(h) = {ghg−1 : g ∈ G}. We write ‘ccl(h)’ for
this object.

Definition 18
according to
Dr C but my
LATEXhas its
own views

DEFINITION 15 G acts transitively on X iff (∀x ∈ X)(OrbG(x) = G). (G
has only one orbit . . . moves everything to everything). Equivalently (∀x1x2 ∈
X)(∃g ∈ G)(ρ(g, x1) = x2)

Orbits [unlike cosets] can emphatically be of different sizes (like the ears of
the old man of Devizes) as is illustrated by example 2 above, where OrbH(1) =
{1, 2} and OrbH(3) = {3, 4, 5}.

LEMMA 15 The orbits form a partition.

Proof:
It will sufficient to show that the binary relation of belonging-to-the-same-

orbit is an equivalence relation. To this end the best definition of OrbG(x) is
{x′ ∈ X : (∃g ∈ G)(gx = x′)}.

• It’s reflexive. Take g to be 11G.

• It’s transitive. If y ∈ OrbG(x) that’s beco’s there is g ∈ G s.t. ρ(g, x) = y;
if z ∈ OrbG(y) that’s beco’s there is h ∈ G s.t. ρ(h, y) = z. But then z ∈
OrbG(x) beco’s there is hg ∈ G and ρ(hg, x) = z. (“if g takes me from x
to y and h takes me from y to z then hg takes me from x to z”.)

• It’s symmetrical: (“if g takes me from x to y then g−1 takes me from y to
x”.)

Brief reality check. Fix your action. Then G acts transitively on each orbit.
We say “OrbG(x) is G-invariant”. G acts trivially on the set of orbits—co’s it
fixes each orbit (as a set).
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DEFINITION 16 The stabiliser of x ∈ X, written ‘stabG(x)’ is {g ∈ G :
g(x) = x}11

Think of the automorphisms of a cube (not a mere flatland square as hith-
erto), and think about the stabiliser of a vertex. It’s the copy of C3 consisteing
of the rotations thru’ 2π/3 radians about an axis thru’ your vertex and the
vextex diagonally opposite at a distance of

√
3.

StabG(x) sometimes written ‘Gx’ as, indeed, in sheet 3 q 8.

Observe that stabG(x) is always a group, and a subgroup of G at that.

Some examples

1. Trivial action on X. StabG(x) = G for all x ∈ X;

2. Sn acting on [1, n] in the obvious way: stabSn
(1) = Sn−1; try H =

〈(1, 2)(3, 4, 5)〉 acting on [1, 5] in the obvious way. StabH(1) = 〈(3, 4, 5)〉.
(“even powers of H”) 12

3. D8 acting on the edges of a square. StabD8
(a) = {11, τ}. (Remember: τ

was the reflection about the perpendicular bisector of the two horizontal
edges.)

4. Left regular action of G on G. StabG(h) = {11}.

5. Conjugation action of G on G. StabG(h) = {g ∈ G : g(h) = h} = {g ∈
G : ghg−1 = h} = the centraliser CG(h) of h in G.

LEMMA 16 Stabilisers are always subgroups.

Proof:
Every stabiliser contains 11. If g(x) = x then g−1(x) = g−1(g(x)) = x so g−1

fixes x too. Composition is easy.

REMARK 3 ker(Φ) =
⋂
x∈X

stabG(x)

THEOREM 8 The orbit-stabiliser theorem
Let G be a finite group acting on a set X, and x ∈ X. Then

stabG(x) ≤ G and |G| = |stabG(x)| · |orbG(x)|.

[end of fourteenth lecture]

11Remember that this, strictly, is {g ∈ G : ρ(g, x) = x}.
12what did she mean?
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Fix x ∈ X, and consider (G :stabG(x)), the set of left-cosets in G of the
subgroup stabG(x). We will show that it is the same size as OrbG(x). This
proof [unlike the proof of Lagrange] does not depend on G being finite. What
do we mean when we say that two sets are the same size? We mean there is a
bijection between them. So let’s explicitly exhibit such a bijection.

Let gstabG(x) be a left coset. To which element of the orbit do we send it?
What operations can we do to the things mentioned in gstabG(x) to obtain an
element of OrbG(x). Well, you can apply g to x. Let’s try that!

gstabG(x) 7→ g(x)

There is some checking we have to do. Remember that a coset can be
obtained from the subgroup by multiplication on the left in potentially more
than one way, so we have to establish that it doesn’t matter whether we are
thinking of our coset as gstabG(x) or hstabG(x). Observe that by lemma 11,
gstabG(x) = hstabG(x) iff hg−1 ∈ stabG(x), which is to say hg−1(x) = x which
is to say h(x) = g(x).

So the definition is legitimate.

Now we have to show that this function (Dr Camina write it ‘θ’ but i am
wondering if there is an official name for it. There is of course a lambda notation
for it, but it’s a bit messy) is 1-1.

To show it’s 1-1, suppose it sends gstabG(x) and hstabG(x) to the same
element of OrbG(x). But then g(x) = h(x), but (and this is like a backwards
version of the proof in the last para that the funtion dfn was legitimate) we have
g(x) = h(x) whence h−1g(x) = x whence h−1g ∈ stabG(x) whence—by lemma
11 as always—the two cosets gstabG(x) and hstabG(x) are one and the same.

9 Symmetries of Regular Solids

Distance-preserving permutations (“isometries”) of IR3 that fix the vertex set.
(That fix the vertex set setwise, not pointwise).

We need the notion of the dual of a polyhedron. Put a vertex in the middle
of each face of a regular polyhedron. Join up the vertices to obtain a new regular
polyhedron. If you do this to a tetrahedron you get a tetrahedron. If you do it
to a cube you get an octahedron and vice versa. If you do it to a dodecahedron
you get an eicosahedron and vice versa. I think the Greeks knew this.

9.1 The Tetrahedron

Let G be the symmetry group, the group of all isometries of IR3 that move the
vertices around. Evidently there is a homomorphism → S4. Let G+ be the
subgroup consisting of rotations.

Join each vertex to the centre of the opposite triangle, and rotate about this
vertex. If you rotate about this axis by 2π/3 radians you fix the vertices setwise.
Thus through vertex 1 you have the rotation (2, 3, 4) of order 3, which we will
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call ‘σ’. You have have its square (3, 4, 2). You can do this for each vertex, so
you have 4× 2 rotations thru’ 2π/3 each of order 2.

Now join the midpoints of opposite edges, and rotate about these axes by π
radians. This gives (for example) (1, 4)(2, 3). There are three pairs of opposite
edges so three such elements.

There are no other rotations. This isA4. OrbG+(1) = {1, 2, 3, 4}; stabG+(1) =
〈σ〉. No more: we’ve considered rotations that fix one vertex, that fix two, and
if three vertices are fixed the whole figure is fixed.

Now consider G, the group of all symmetries of the tetrahedron. OrbG(1) =
{1, 2, 3, 4}. But now we have reflections to consider. Each edge e belongs to a
unique plane which cuts the opposite edge thru’ its midpoint. We can reflect in
this plane. The reflection fixes the two vertices joined by e and swaps the other
two vertices. Let us use the letter ‘τ ’ to denote the reflection that fixes vertices
1 and 2. So stabG(1) = 〈σ, τ〉 = D6. You need only one reflection when trying
to generate the whole group, beco’s the other reflections are conjugates of it.

So by theorem 8 we have |G| = 4 · 6 = 24. G = S4.
(1234) = (12)(234) is a composition of a rotation and a reflection but is itself

neither.

This is ringing bells with me concerning organic chemistry. It is known that the

four valences of a carbon atom are directed outwards from the centre of the tetrahedron

to the four vertices. A molecule that consists of a carbon joined to four different chaps

exists in two forms. (The fact that it’s only two was one way in which the chemists

were able to determine that the arms were directed to the corners of a tetrahedron.)

Presumably this is something to do with the fact that the rotations of a tetrahedron

are S4 and the group of all isometries is A4 and that A4 is of index 2 in S4.

9.2 The Cube

The cube is dual to the octahedron.
Think of the group of symmetries of the cube as acting on the long (“

√
3”)

diagonals. Let’s call them {d1, d2, d3, d4}. (We have numbered the vertices so
that 1,2,3,4 go rounf the top clockwise and the

√
3 diagonals join 1 to 1′, 2 to

2′, 3 to 3′ and 4 to 4′, with the dashed numbers living on the bottom storey.)

Let G+ be the group of rotations. Only the identity rotation fixes all the
long diagonals. This means that the obvious map G+ →→ S4 is injective. Rotations

about what?
Let σ be a rotation thru’ π/2 about an axis joining the centres of the top

and bottom faces. σ is of order 4, so there are three rotations about that axis.
σ = (1234) (order 4); σ2 = (13)(24) (order 2); σ3 = (1432) (order 4). There
are three pairs of opposite-faces, so three such axes, giving 6 elements of order
4 plus three elements of order 2. (“double transpositions”).

There are also 4 long diagonals to rotate round, thru’ 2π/3 in the first
instance. Use the letter rho for these. Then ρ3 = 11 so each long diagonal
contributes two elements of order three → 8 elements of order 3.
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Next we consider axes joining midpoints of opposite edges, what one might
call the

√
2 diagonals-within-the-body. Let τ be the rotation thru’ π radians

about the axis through the midpoint of the edge joining 1 to 4 with the midpoint
of the edge joining 1′ to 2′.

Six such axes with rotations of order 2. So six more elements of order 2. So
we get G+ = S4.

OrbG+(d1) = {d1, d2, d3, d4}
StabG+(d1) = 〈ρ, τ〉
(not necessarily the same τ but at any rate one of the rotations thru’ opposite

midpoints)

[end of fifteenth lecture]

Now let G be the full symmetry group of the cube. Consider the action of
G on the six faces. The action is faithful—anything that fixes the six faces fixes
the whole cube (i.e., fixes the eight vertices). This gives an injection G ↪→ S6.
Clearly G acts transitively on the faces. Let F be a face. Thus |orbG(F )| = 6.
StabG(F ) = D8 (why? what about the reflections that we find in D8? Don’t
they reflect the cube “out of the paper”?) Now D8 = 8 so, by the orbit-stabiliser
theorem, |G| = 6 · 8 = 24. So the action of G on diagonals is not faithful. So
there is g ∈ G with g 6= 11 but g fixes all diagonals. Let’s think about what such
a g might do. Label the vertices of the cube with the 8 elements in {+1,−1}3
(which is in any case naturally tho’rt of as a cube in IR3) and consider the
function g(x, y, z) = (−x,−y,−z). “swap opposite faces”. The numbers on
opposite faces of a gambler’s die add up to 7, so use the numbers on the faces
of the die and then we can think of g as (1, 6)(2, 5)(3, 4). [am i right in thinking
that this operation transforms a die into a different die which is its mirror image
and the two are not superimposible. . . ?] Then G ' S4 × 〈g〉. 〈g〉 is C2.

Remember that subgroups of order 2 are always normal. So S4 � G. As it
happens 〈g〉�G too. Is this a case of internal direct product?

9.3 The Dodecahedron

Dual to the icosahedron. Let’s call it ‘D’. Twelve faces, each a regular pentagon.
30 edges 20 vertices.

As before, let G+ be the group of rotation. Clearly G has transitively on the
faces. (How many orbits on pairs of faces?) |OrbG+(F )| = 12; |stabG+(F )| = 5.

We can embed five cubes in the icosahedron

............

.\ /.

. \______/ .

. / \ .

./........\.
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This view of a complete edge is supposed to be a face of an embedded cube.
Now G+ acts faithfully on the five cubes, whence G+ ↪→ S5. |G+| = 60.

The only subgroup of S5 of order 60 is A5. (We aren’t expected to know why
this is true!) A5 is the group of even permutations, so there should be a way
of thinking of a symmetry of D as an even permutation. A five-cycles is an
even permutation (check it!) and each face is a pentagon so there might be a
good fit there. Think of a pair of opposite faces; join their centres and consider
rotations around that axis. (The opposite faces are staggered not eclipsed but
i’m persuading myself that that doesn’t matter) Six such opposite pairs, and
each gives a 5-cycle. There are 10 pairs of opposite vertices and each of those
gives rise to a 3-cycle (the vertices “have degree 3”) → 20 elements of order 3.

A5 also contains the “double transpositions”—a product of two disjoint
transpositions. These correspond to rotations about axes through pairs of op-
posite edges.

Now we procede to another application of orbit-stabiliser.

THEOREM 9 Cauchy
Let G be a finite group and p a prime dividing |G|. Then G has an element

of order p.
says

Dr CProof:
Fix G and p. Gp is the set of p-tuples of elements of G. (This is pretty

standard notation.). Then let X be {s ∈ Gp : s multiplies out to 11}. In
particular if o(x) = p then

p times︷ ︸︸ ︷
x, x, x . . . x = 11 so

p times︷ ︸︸ ︷
x, x, x . . . x ∈ X.
Now let H be a realisation of Cp. H is cyclic and so is 〈h〉 for any h ∈ H.

Fix one such and call it h.
Consider now the following action of H on X.

(h, x) = (x2, x3, x4 . . . xp, x1)

So far i’ve only said what the generator h does to a tuple in X, and even that
not clearly! What it does is what used to be called in old assembler languages
ROTATE-LEFT. x ∈ X is a string of length p, and we can whack it with commands
like ROTATE-LEFT.

OK, so what do other elements of H do to strings from X? We can deduce
what they do from two facts. (i) This is a group action, and (ii) every element
of H is a power of h. Thus (using the fact that this is an action) h2 must
ROTATE-LEFT twice, and so on. Since everything in H is a power of h this
defines the action completely.

We have to check that if we ROTATE-LEFT a string in X then we obtain
another string in X. Of course this is blindingly obvious if G is abelian but it
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mightn’t be. So let x = (x1x2 . . . xp) be a string in X. ROTATE-LEFT to obtain

x2 . . . xp, x1). Now observe that the underlined bit is simply x−11 (beco’s x ∈ X!)

so x2 . . . xp, x1) evaluates to 11 as well.
So we do really have a group action.

Sum the sizes of the orbits to get |X|. What is |X|? Actually this can be
easily computed. We want to build a string of length p whose product will be
11. We can choose the first p− 1 elements x1 . . . xp−1 however we like, beco’s we
can then set xp to be (x1 · · ·xp−1)−1! So we have p− 1 choices from G, so the
answer is |G|(p−1). Now, ex hypothesi, p divides |G|, so p divides |G|(p−1) = |X|.
By the orbit-stabiliser theorem we have |OrbH(x)| · |stabH(x)| = |H| = p.

So |OrbH(x)| = 1 or p—co’s its order divides p.
There is an orbit of size 1, name the orbit of
p times︷ ︸︸ ︷

11, 11, . . . 11.
How many such orbits are there? Every orbit has a size that is 1 or a multiple

of p, so if there are any orbits of size 1 (and there are) there must be enuff of
them so that the number of singleton-orbits as a multiple of p. So there must
be at least one other singleton orbit.

Orbits of length 1 correspond to elements of order p, as follows. An element

x whose orbit is a singleton is of the form {
p times︷ ︸︸ ︷

x, x, . . . x}. But then x is an element
of order p.

[end of seventeenth lecture]

We need to revise our definition of a symmetry of a figure. Isometry of IRn

that preserves the figure not just the vertices. Need a picture here, and i can’t
do it in LATEX).

9.4 Conjugacy Action

Some remarks

(i) The conjugacy classes partition G.

(ii) By orbit-stabilser thm we have (∀x ∈ G)(|G| = |CG(x)| · |ccl(x)|).

(iii) Elements that are conjugate have the same order. The key move is to
consider what happens when one write out (ghg−1)o(h) in full. All the “inner”
occurrences of ‘g’ and ‘g−1’ cancel, so we are left with gho(h)g−1 which is of
course 11. Can this happen for any smaller exponent? (ghg−1)j is ghjg−1. Can
this be 11? Not unless hj = 11, co’s anything conjugate to 11 is 11.

(iv) Z(G) = {g ∈ G : (∀h ∈ G)(ghg−1 = h)} � G. It’s the intersection⋂
∈G CG(h) of all the centralisers.

N.B: z ∈ Z(G) iff |cclG(z)| = 1 (i.e., the conjugacy class of z is {z}) beco’s
z commutes with everything so any conjugate gzg−1 of z must be z.
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(v) A subgroup is normal iff it is a union of conjugacy classes. (Sheet 3 Q
2).

(vi) G is abelian iff Z(G) = G.
This should
be proposition
7 when i’ve
persuaded
LATEXto num-
ber things
properly.

PROPOSITION 6 Let G be a finite group with G/Z(G) cyclic. Then G is
abelian.

G/Z(G) so it is 〈y(Z(G))〉 for some Z(G) coset y(Z(G)). We have to show
that any two g, h ∈ G commute.

We have g(Z(G)) = yi(Z(G)) for some i beco’s the quotient is cyclic.
So g = yiz1 for some z1 ∈ Z(G).
Similarly So h = yjz2 for some z2 ∈ Z(G).
So gh = yiz1y

jz2.
The point now is that z1 and z2 are in the centre and commute with ev-

eryething, so z1 can be pushed to the end, giving gh = yiyjz2z1. yi com-
mutes with yj and with z2 so we can push it to the right as well, getting
gh = yjz2y

iz1 = hg.

I think that’s worth a .
Will be
coroll 5 when
LATEXnumbers
things prop-
erly

COROLLARY 4 Suppose |G| = p2 with p prime. Then G is abelian, and in
fact is either Cp2 or Cp × Cp.

(Think about why Cp2 and Cp × Cp are distinct: see C5 and C2 on p. 33.)
Sheet 3 Q 10.

Remarks

1. A group of order pn with p prime is a finite p-group.

2. If all elements of G are of p-power order we say the group is a p-group Eg,
the Prüfer group on p. 24.

9.5 Conjugation in Sn

DEFINITION 17 The cycle type of a permutation is a tuple that tells you
how many cycles it has of which length. Thus (1, 2, 3)(4, 5, 6, 7)(8) has cycle type
(4, 3, 1). basic observation: the numbers in the cycle-type of an alement of Sn
must add up to n.

theorem 9 ac-
cording to Dr
C

THEOREM 10 In Sn two permutations are conjugate iff they have the same
cycle type.

Proof:
Think of a permutation as a product of disjoint cycles. Things of each cycle

as a polygon, with directed edges and each vertex labelled. Thus a permutation
in Sn is a bunble of polygons (one for each cycle) with the vertices of the
polygons labelled in such a way that each number ≤ n is used precisely once.
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Such a picture represents a unique permutation π of [1, n]. What does π send k
to? Find the vertex labelled ‘k’. There is a directed edge [precisely one!] going
from that vertex to another vertex. The label on that vertex is your π(k).

OK. Suppose we have two permutations σ in τ with the same cycle type.
They have the same number of k-cycles for each k, so pair them off, somehow. So
each (as it might be) k-cycle s (written with pink edges) in σ has been assigned
to a k-cycle t (written in blue edges) in τ . We now have to map s onto t in an
“adjacency-preserving” way, and there are clearly k ways to do this. Pick one
such map s → t for each married couple s and t, and write the edges joining
s-vertices to t-vertices in green, with arrows pointing from s to t. What have
we got? The green edges are a graphical representation of a new permutation
π of [1, n]. And π conjugates σ and τ . Start your odyssey on a vertex in a pink
polygon. Fly over to a blue polygon using π. Move along a blue τ edge; then fly
back along a green (π−1) edge. What have you done? You’ve in effect travelled
one step along a pink edge! .

Observe that this construction tells you nothing about the cycle type of the
green edges, the π that conjugates σ and τ . . . but then we were never promised
that.

Consider specifically S4. Build a table

[seventeenth lecture ends in the middle of this table]

Cycle Type Size of S4 Sign Size of CS4
(x)

conj’ class centraliser
11 (1,1,1,1) 1 +1 24 S4

(1, 2) (2,1,1) 6 -1 4 〈(1, 2), (3, 4)〉
(1, 2, 3) (3,1) 8 +1 3 〈(1, 2, 3)〉
(1, 2, 3, 4) (4) 6 -1 4 〈(1, 2, 3, 4)〉
(1, 2)(3, 4) (2,2) 3 +1 8 〈(1, 3, 2, 4), (1, 2)〉 = D8

This will
be Corol-
lary 6 when
LATEXgets the
numbering
right

COROLLARY 5 The number of distinct conjugacy classes in Sn is given by
the function often written ‘p(n)’ aka the number of partitions of n, to wit: the
number of ways in which n can be expressed as the sum of a multiset of smaller
(nonzero) numbers.

Proof: Each such “partition” corresponds to a conjugacy class!

Conjugacy class in An is a lot less clear. If we are thinking of An fairly
concretely as the set of even permutations of a set of size n (say [1, n] if we
want to be specific) then clearly two permutations that are conjugate in An
are conjugate in Sn. Not obvious that the converse holds. In fact it’s easy to
see that it won’t. Suppose i have two disjoint 3-cycles. They’re both even, so
they’re in An. What conjugates them? Obviously a product of three disjoint
transpositions, and that ain’t in An. Dr C’s example is even easier. What
conjugates (1, 2, 3) and (1, 3, 2)? A single transposition! In both these case the
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things are also conjugated by permutations that move other stuff around, but
there might not be enuff other stuff around to move.

Let’s use her example, and work in A4 (where indeed there isn’t room to
move other stuff around) and consider CA4

((1, 2, 3)) = CS4
((1, 2, 3)) ∩A4.

CA4
((1, 2, 3)) = 〈(1, 2, 3)〉 ⊆ A4 so CA4

((1, 2, 3)) = CS4
((1, 2, 3)).

So |cclA4
((1, 2, 3))| = |A4|/|CA4

((1, 2, 3))| by the orbit-stabiliser theorem.
= (|S4|/2)/|CS4((1, 2, 3))| = |cclS4((1, 2, 3))|/2.

So the conjugacy class of a 3-cycle in A4 splits into two conjugacy classes in
A4. [Presumably this is beco’s 3 is odd].

Dr C says: key point!

If CAn
(x) = CAn

(x) (which is to say that x doesn’t commute with any odd
element) then |cclAn

(x)| = |cclSn
(x)|/2

On the other hand, if If CAn
(x) < CAn

(x) (so CAn
(x) contains an odd

permutation) then

|CAn(x)| = |CSn(x) ∩An|/2 = |CSn(x)|/2
(see sheet 2 q 6) and |cclAn

(x)| = |cclSn
(x)|.

Let’s have another table, for A4.

Cycle Type Size of Size of CS4(x)
conj’ class CA4(x)

11 (1,1,1,1) 1 24 A4

(1, 2, 3) (3,1) 4 3 〈(1, 2, 3)〉
(2, 1, 3) (3,1) 4 3 〈(2, 1, 3)〉
(1, 2)(3, 4) (2,2) 3 8 〈(1, 3)(2, 4), (1, 2)(3, 4)〉 ' C2 × C2

Now a table for S5

Cycle Type Size of Sign Size of CS5(x)
conj’ class centraliser

11 (1,1,1,1,1) 1 +1 120 S5

(1, 2) (2,1,1,1) 10 -1 12 〈(1, 2)〉×Symm([3, 5])
(1, 2, 3) (3,1,1) 20 +1 6 〈(1, 2, 3), (4, 5)〉 ' C6

(1, 2, 3, 4) (4,1) 30 -1 4 〈(1, 2, 3, 4)〉 ' C4

(1, 2, 3, 4, 5) (5) 24 +1 5 〈(1, 2, 3, 4, 5)〉 ' C5

(1, 2)(3, 4) (2,2,1) 15 +1 8 〈(1, 3, 2, 4)〉
(1, 2, 3)(4, 5) (3,2) 20 -1 6 〈(1, 2, 3), (4, 5)〉 ' C6

Cycle Type Size of A5 CA5(x)
conj’ class

11 (1,1,1,1) 1 A5

(1, 2, 3) (3,1) 20 〈(1, 2, 3)〉
(1, 2, 3, 4, 5) (5) 12 same as in S5

(2, 1, 3, 4, 5) (5) 12 〈(2, 1, 3, 4, 5)〉
(1, 2)(3, 4) (2,2,1) 15 〈(1, 3)(2, 4), (1, 2)(3, 4)〉 ' C2 × C2
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Message to myself: Here’s how to see that an orbit of an element of Sn might split
into two orbits in An. (And only two orbits.) Let π be an even permutation in Sn. All
the things conjugate to π are also even permutations, so how might they come in two
flavours? Let τ be something conjugate to π. There are things that conjugate π to τ .
It may be that there are even things that conjugate π to τ , or it might be that there
are only odd things. If the first, then π and τ remain conjugate in An. If the latter,
then evidently π and τ will not be conjugate in An. Now suppose τ and σ are two
things which are conjugated to π in Sn only by odd things. Start with τ ; conjugate it
by an odd thing to obtain π; now conjugate by another odd thing to obtain σ. What
have you done? You have conjugated τ to σ by an even permutation! So τ and σ are
conjugate in An. So any two things which are conjugate-to-π-in-Sn-but-not-in-An are
conjugate-to-each-other-in-An. So the Sn orbit of an even permutation either splits
into precisely two bits or remains in one piece.

What’s all the fuss about? A conjugacy class of an even permutation might split

into two or it mightn’t. Is this a plot point? No. Apparently the reason for all this

detail is merely that, once students get into their heads the idea that having-the-same-

cycle-type might be a sufficient condition for being-conjugate, they assume that it is

always sufficient. It ain’t, and they have to be broken of the habit.

[end of eighteenth lecture]

10 Matrix Groups
section 7 in Dr
C’s numberingMn(F) is the set of n× n matrices with entries in the field F.

GLn(F) is the general linear group—of invertible members ofMn(F), equippped
with matrix multiplication.

proposition
8 in Dr C’s
numbering

PROPOSITION 7 GLn(IR) is a group under matrix multiplication.

Proof: n Some trivial checking to be done. Clearly the matrix product of two
invertible n×n matrices with real entries is another such. The unit of GLn(IR)
is the diagonal matrix with all 1’s. Inverse? These matrices are invertible—duh!
You know from V&M that matrix multiplication is associative.

proposition
9 in Dr C’s
numbering

PROPOSITION 8 det:GLn(IR) → IR \ {0} is a surjective group homomor-
phism.

Here we equip GLn(IR) with matrix multiplication and IR \ {0} with real
multiplication to make both things into groups.
Proof:

This all follows from standard V&M stuff. The determinant of the product
of two matrices is the product of the determinants, and other such standard
facts. It’s surjective beco’s, for any real r, we can find a (diagonal) n×n matrix
whose determinant is r.

Observe that the proof of proposition 8 does not depend on anything very
specific about the field IR. You could replace the set IR \ {0} with the nonzero
elements of any field whatever and it would still work. This is important!
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Clearly the kernel of the determinant map det:GLn(IR)→ IR \ {0} is going
to be that subgroup of det:GLn(IR) consisting of matrices of determinant 1.
This subgroup is SLn(IR), the special linear group, and it is clearly a normal
subgroup of GLn(IR).

What other fields are there? There is IR of course, Q and C. Also the field
of rational functions, and, for every prime p ∈ IN, the field Fp of integers mod
p. Dr C wants us to think about the sizes of GLn(Fp) and SLn(Fp).

Now let’s think about the actions of GLn(C)

GLn(C) acts on Cn in by the usual multiply-a-vector-on-the-left-by-a-matrix.
(The vector has to be the right length of course). This is a faithful action:
consider the basic vectors (every entry but one is 0) if it fixes all of those it’s
the identity matrix. This action has precisely two orbits on Cn: one orbit for
the null vector and one for all the others: if v, w ∈ Cn neither of them null, then
there is A ∈ GLn(C) s.t. Av = w.

GLn(C) acts on Cn by conjugation. This is much more fun. Two matrices
A and B are conjugate iff they represent the same linear map Cn → Cn. If A
and B are conjugated by P then P represents a change of basis.

e1 =(10); e2 =(01)

A : e1 7→ 2e1; e2 7→ 3e2. A =(20
0
3)

P : e1 7→ e2; e2 7→ e1. P =(01
1
0)= P−1

PAP−1 =(01
1
0)(

2
0
0
3)(

0
1
1
0)= (30

0
2)

i.e., e2 7→ 3e2; e1 7→ 2e1.

When considering Möbius groups we will appeal to the following fact from
V&M.

Suppose A ∈ M2(C) and consider the conjugation action of GL2(C) on
Mc(C). Then precisely one of the following happens

1. The orbit of A contains a diagonal matrix (λ0
0
µ) with λ 6= µ;

2. The orbit of A contains a diagonal matrix (λ0
0
λ);

3. The orbit of A contains a matrix (λ0
1
λ).

Which is to say that A is conjugate to a matrix of one of those three forms.
Apparently this cannot be relied upon to work for all fields (Dr C sez it doesn’t
work for IR, for example) but it does work for C.
Proof:
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1. In this case A has two distinct eigenvalues, λ 6= µ. Take a basis consisting
of eigenvectors. Distinct pairs {λ, µ} give distinct orbits.

2. Eigenvalues λ, λ. Two linear independent eigenvectors.

3. Every maximal independent set of eigenvectors is a singleton.

10.0.1 some remarks

1. AT is ATij = Aji. (“Reflect in the diagonal”).

(AB)T = BTAT . This is beco’s

(AB)Tij = (AB)ji = AjkBki while

(BTAT )ij = BTikA
T
kj = BkiAjk

[end of nineteenth lecture]

2. AAT = In iff ATA = In
13

3. (AT )−1 = (A−1)T

4. det(AT ) =det(A).

All this is standard from V& M.

DEFINITION 18 On(IR) = {A ∈Mn(R) : ATA = In} is the orthogonal group

The rows of such an A form an ortho(∗)normal(∗∗) basis of IRn. (*) ortho for
orthogonal; (**) normal for the entries being units.

proposition 10
according to
Dr C

PROPOSITION 9 On(IR) is a [very nice ] subgroup of GLn(IR)

Proof:
Note that 1IR = det(In) = det(ATA) = det(A2) whence det(A) 6= 0, so A is

in GLn(IR) as claimed.14

Obviously In is the identity element of GLn(IR).
Must check that ta product of two elements of On(IR) is another element of

On(IR).

(AB)T (AB) = BTATAB = BTB = In

(the underlined bit cancels).

13In is the identity n× n matrix.
14Sometimes i write ‘1IR’ when i want to emphasise that 1 is a real number. It can make

formulae easier to read.
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AT is the inverse of A in this group. (Yes, AT is in the group if A is)

Remark: 1 = det(AA) so det(A) is 1 or −1 (we’re in IR). So det: On(IR)→
→ ({+1,−1},×IR) is a surjective homomorphism. Must find A ∈ On(IR) with
determinant −1 to be sure it’s surjective. But the diagonal matrix with a −1
in the top left is one such. memo to self:

draw this ma-
trix properly
when you have
time

Now the kernel of this determinant homomorphism is {A ∈ On(IR) : det(A) =
1}. This is called “SOn(IR)” the special orthogonal group. By the first isomor-
phism theorem we have On(IR)/SOn(IR) = ({+1,−1},×IR)

lemma 20 ac-
cording to Dr.
C

LEMMA 17 Let A ∈ On(IR) and suppose ~x, ~y ∈ IRn. Then

1. A~x ·A~y = ~x · ~y (preserves dot-product);

2. |A~x| = |~x|;15

Proof:

1. A~x ·A~y = (A~x)T (A~y) = ~xT ·ATA~y = ~xT~y = ~x · ~y;

2. |A~x|2 = A~xA~x = ~x~x = |~x|2

So A is an isometry of IRn

Let’s analyse the 2× 2 case.

A =(ac
b
d); I = AAT = (ac

b
d)(

a
b
c
d) = (a

2+b2

ac+bd
ac+bd
c2+d2).

ATA =(ab
c
d)(

a
c
b
d) = (a

2+c2

ab+cd
ab+cd
b2+d2).

So we deduce

1 = a2 + b2 = c2 + d2 = a2 + c2 = b2 + d2

0 = ab+ cd = ac+ bd

Trig functions anyone?

So assume a = cosθ for some θ. So c = sinθ. b and d?

(bd) = (−sinθcosθ ) or (bd) = (sinθ−cosθ).

15The vertical bars are not cardinality this time!
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10.0.2 Case 1

A =(cosθsinθ
−sinθ
cosθ ).

Then A(xy) is the vector (cosθx−sinθysinθx+cosθy).

So let’s set z = x+ iy, so that

eiθz = (cosθx− sinθy) + i(sinθx+ cosθy)

and A represents a rotation, and det(A) = 1.
All elements of SO2(IR) are of this form.

10.0.3 Case 2

A =(cosθsinθ
sinθ
−cosθ).

Then A(xy) = (cosθx+sinθysinθx−cosθy).

Let z = x+ iy as in case 1,

eiθz = (cosθx+ sinθy) + i(−cosθy + sinθx).

What are the fixed points of this map?

eiθ/2z is a real, call it r. So A represents a reflection in the line reiθ/2.
Det(A) = −1, and all such A are reflections. So

O2(IR) is the union of the subgroup SO2(IR) and its coset (−10
0
1)SO2(IR).

The two are disjoint.

10.1 Now consider the three-dimensional case
proposition 11
in Dr C’s num-
bering

PROPOSITION 10 Any A ∈ SO3(IR) has an eigenvector with eigenvalue 1.

Proof:
Let χA be the characteristic polynomial of A. It will be a cubic with co-

efficients in IR. It has at least one real root. (One or three). A is distance
preserving [beco’s the determinant is 1. . . ?]

Let λ be a (possibly the) real root, and ~v the corresponding eigenvector.
|~v| = |A~v| = |λ~v| = |λ| · |~v| to λ is 1 or −1 by lemma 17.

What are the other eigenvalues of A? Bear in mind that the product of the
eigenvalues is equal to the determinant.

(i) or (ii):

(i) Suppose the other two roots are a complex pair α and α. Then we have

1 = det(A) = λαα = λ|α|2 → λ = 1IR;
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(ii) All roots are real. They must be 1, −1 and −1, or 1, 1 and 1. But at
any rate at least one eigenvalue must be 1IR.

theorem 11 ac-
cording to Dr
C

THEOREM 11 Suppose A ∈ SO3(IR). Then A is conjugate to a matrix of the
form  cosθ − sinθ 0

sinθ cosθ 0
0 0 1

 ()

for some θ ∈ [0, 2π]
In particular, A is a rotation about an axis thru’ the origin.

Proof:
We have to find the right basis. By proposition 11, (∃~v)(A~v = ~v), and we

can assume |~v| = 1IR. Let {e1, e2, e3} be the standard orthonormal basis for IR3.
There must be P ∈ SO3(IR) s.t. P~v = e3. NB: PAP−1(e3) = e3. (This will
turn the problem into a 2-dimensional one, and these we know how to solve.)
Let Π be the plane orthogonal to e3 (so Π = 〈e1, e2〉). Then PAP−1 is

(Q00
0
0
1)

Q is the action of PAP−1 on Π. So QTQ = I3 and det(Q) = 1 so

Q =(cosθsinθ
−sinθ
cosθ ) for some θ.

[end of twentieth lecture]

Every element of SO3(IR) is a product of reflections.16 Suppose r is a reflec-
tion in a plane through the origin 0IR. Then let n be the unit vector normal to
this plane. Then r(x) = x− 2(x · r) · n so r is conjugate to the matrix Not sure

about all these
underlinings
. . . can’t al-
ways see board
properly

 −1 0 0
0 1 0
0 0 1

 (C)

which is in O3(IR). So O3(IR) is SO3(IR) [which contains rotations] unioned
with the left SO3(IR) coset given by the matrix C above [which contains reflec-
tions plus other stuff].

13 according
to Dr CTHEOREM 12 Every element of O3(IR) is a product of at most three reflec-

tions.
16this reminds me of a fact about Sn that i’ve always known: every permutation is a

product of two involutions (elements of order two). Think of the permutation π as a whole lot
of polygons written on the plane (with directed edges). Then the effect of π on each polygon
can be tho’rt of a product of two reflections. On a Z-cycle fix one element to be 1, and then
consider the two involutions x 7→ −x and x 7→ 1 − x. Their composition moves each point
along one edge. . .
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Proof:
Let {e1, e2, e3} be the standard orthonomal basis for IR3. Let A be an

element of O3(IR). We will find three reflections r1, r2 and r3 s.t. A = r1r2r3.

|Ae3| = |e3| = 1IR since A is an isometry. Next we find a reflection r1 sending
Ae3 to e3. Let Π〈e1, e2〉 be the plane ⊥ to e3.17 We must have r1 ·A“Π = Π.18

So we choose a reflection r2 such that r2(e3) = e3 and r2r1A(e2) = e2, with the
effect that r2 · r1 fixes both e3 and e2. Further r2r1A(e1) = e1 or r2r1A(e1) =
−e1. If r2r1A(e1) = e1 then we set r3 to be the identity; if r2r1A(e1) = −e1
then we set r3 to be a reflection in a plane ⊥ to e1.

Then r1r2r3A fixes everything! So A = r1r2r3.

11 The Möbius Group
section 8 in Dr
C’s numbering

dfn 22 in Dr
C’s numbering

DEFINITION 19 A Möbius Transformation is a map f : C → C of the
form

z 7→ az + b

cz + d

subject to ad− bc 6= 0, and a, b, c, d all in C

Why ad− bc 6= 0? Well, if ad = bc then f is constant, which is soooo boring.
Pleasingly, if ac 6= bd then f is actually injective:

f(z)− f(w) =
(ad− bc)(z − w)

(cz + d)(cw + d)

Another tho’rt: f(−d/c) crashes. . . and we want f to be defined at the “point
at infinity”. Only one point at infinity? Yes. stereographic projection and
Riemann Sphere. Place a sphere on the complex plane, with the tangent
at the origin. Place a light source at the top of the sphere, and project light
thence downwards thru’ the sphere. All such downward rays go down thru’ the
sphere, then they come out the other side and eventually reach the plane. This
defines a bijection between the plane and the surface of the sphere. This is the
stereographic projection. To what point in the complex plane does the point
at the top of the sphere correspond? The point at infinity! That’s how there
manages to be only one point at infinity!

The complex plane equipped with this extra point is called the extended
complex plane and notated C ∪ {∞} or (i think) C∞. It is known as the
one-point compactification of C, the point being that the space with the added
point is compact.

Armed with this new gadget we can redefine Möbius transformations by
adding the following clauses:

17The symbol ‘⊥’ means ‘perpendicular to’.
18Okay, Okay, you’ll probably be socialised into writing this as “r1 ·A(Π) = Π.” My notation

is easier to read.
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DEFINITION 20
definition 23
according to
Dr C

if c 6= 0 then f(−d/c) =∞ and f(∞) = a/c;
if c = 0 then f(∞) =∞.

proposition 12
according to
Dr C

PROPOSITION 11 Suppose there are at least three z ∈ C satisfying19

az + b

cz + d
=
αz + β

γz + δ

(with ab− bc 6= 0 and αδ − βγ 6= 0). Then ∃λ 6= 0 s.t.

(ac
b
d)= λ(αγ

β
δ )

i.e., these two Möbius transformations agree on all of C.

Proof:
Suppose z is one of the three guilty parties. Then

(az + b)(γz + δ) = (αz + β)(cz + d)

so these two quadratics in ‘z’ are equal. Identify coefficients to obtain

aγ = αc, bδ = βd and bγ + aδ = αd+ βc.
i don’t trust
my copy-
ing skills—
blackboard a
long way away

Now aδ − βc = αd− bγ, so abbreviate these two strings to ‘µ’.
Then µ2 = (ad− bc)(αδ − βγ) 6= 0.
Then

(d−c
−b
a )(αγ

β
δ ) = (µ0

0
µ)

So

(αγ
β
δ ) =

µ
ad−bc(

a
c
b
d)

theorem 14 ac-
cording to Dr
C

THEOREM 13 The set M of Möbius maps C∞ → C∞ is a group under com-
position of functions.

Proof:

• The identity map is a Möbius map. (set a := 1, b := c := 0 and d := 1).

• Composition of two Möbius maps is a Möbius map? Suppose

f(z) =
az+b
cz+d and g(z) =

αz+β
γz+δ .

19we do mean C not C∞?
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There are several cases to consider. Let’s start with a nondegenerate case,
where c 6= 0 and γ 6= 0 and suppose z ∈ C∞ \ {(−δ)/γ}. Then

f(g(z)) =
a(αz+βγz+δ ) + b

c(αz+βγz+δ ) + d
=

(αa+ bγ)z + (αβ + δb)

(cα+ δγ)z + (cβ + δd)

We claim that this is in M . The justification is that

(aα+ bγ)(cβ + δd)− (aβ + bδ)(cα+ dγ) = (ad− bc)(αδ − βγ)

and neither factor on the RHS is 0, so the RHS isn’t 0 either.

Now for the degenerate cases.

f(g(−δ/γ)) = f(∞) = a/c

and

(aα+ bγ)(−δ/γ) + (αβ + bδ)

(cα+ δγ)(−δ/γ) + (cβ + δd)
=
a(α · (−δ/γ) + β)

c · (α(−δ/γ) + β)
= a/c.

(Need to check c = 0, γ = 0).

• Inverses

If f ∈M then f−1(z) is
dz−b
−cz+a .

thm 15 accord-
ing to Dr CTHEOREM 14

GL2(C)/Z 'M.

where Z is the centre of GL2(C) and M is the Möbius group.

Proof:
Z is actually {(λ0 0λ) ∈ GL2(C) : λ 6= 0}.
We define a map φ by: φ: (ac

b
d) 7→ f((az + b)/(cz + d)). We want φ to be an

isomorphism.
f = φ(ac

b
d) and g = φ(αγ

β
δ )

φ(ac
b
d) · φ(αγ

β
δ )(z) =

(aα+ bγ)z + (aβ + bδ)

(cα+ dγ)z + (cβ + dδ)

(from proof of theorem 13)

f = φ((ac
b
d)(

α
γ
β
δ ))

It’s obvious that φ is surjective

The identity 11C : C→ C is φ((a0
0
a))

COROLLARY 6 SL2(C)/{I,−I} 'M coroll 7 nac-
cording to Dr
C
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Proof: We restrict φ to SL2(|C). The restriction φ �SL2(|C) is surjective and
the kernel is {I,−I} with matrix multiplication.

proposition 13
according to
Dr C

PROPOSITION 12 Every Möbius map can be written as a composition of
maps of the form

(i) f(z) = az, with a 6= 0 dilations or rotations
(ii) f(z) = z + b translations
(iii) f(z) = 1/z inversion

Proof

Let g(z) =
az+b
cz+d be a Möbius map.

If c = 0 we do:
z 7→ (a/d)z 7→ (a/d)z + (b/a) so g is a composition of a dilator and a

translation.

If c 6= 0 then g(z) =
(a/c)z+(b/c)
z+(d/c) = a/c+

(−ad+bc
c2

)

z+(d/c)
so do:

z 7→ z + (d/c) 7→ 1

z + d/c
7→ a/c+

(−ad+bcc2 )

z + (d/c)

which is to say translation then inversion then multiplication then transla-
tion.

In definition 15 we defined what it is for a group G to act transitively on a
set. We say now that

DEFINITION 21 An action of a group G is transitive on triples if for any
three distinct x1, x2, x3 and distinct y1, y2, y3 there is g ∈ G s.t. g(x1) = y1,
g(x2) = y2, g(x3) = y3. We say the action is sharply transitive if the g is
unique:

(∀x1x2x3, y1y2y3)((
∧

0<i 6=j≤3

xi 6= xj∧
∧

0<i 6=j≤3

yi 6= yj)→ (∃!g ∈ G)(
∧

0<i≤3

g(xi) = yi))

We will show Is this a theo-
rem? A propo-
sition . . . ?

that M acts sharply transitively on triples in C∞.
Proof:

Suppose we want to send the triple x1, x2, x3 to w1, w2, w3. The key move
is to send x1, x2, x3 to 0, 1,∞. This is of course sufficient, co’s if i can do this
for every triple then i can get from any triple to any other triple via 0, 1,∞. To
this end we will reletter the three variables ‘x1’, ‘x2’ and ‘x3’ as ‘z0, ‘z1’ and
‘z∞’ to remind those of us with short attention spans that the values of these
three variables will be sent to 0, 1 and ∞ respectively.

We will construct a function that does it.
First case, in which none of the ~z are 0.
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g(z) :=
(z − z0)(z1 − z∞)

(z − z∞)(z1 − z0)

will do20

Let’s now deal with some special cases:

If z∞ =∞ set g(z) :=
z−z0
z1−z0

If z1 =∞ set g(z) :=
z−z0
z−z∞

If z0 =∞ set g(z) :=
z1−z∞
z−z∞

In exactly the same way we can construct a map h to send the ~w to 0, 1,∞.
Now set f := h−1g. That does the trick. Now we have to show that f is

unique. Suppose f ′ is competition. Consider g · (f ′)−1 · f · g−1. It sends 0 7→ 0,
1 7→ 1 and ∞ 7→ ∞

It fixes three points and so must be the identity.21

But then f = f ′.
You can reconstruct a Möbius function from three ordered pairs in its graph!

11.0.1 Conjugacy classes in M

M is a surjective image of GL2(C) so information about conjugacy classes in
M can be obtained from information about conjugacy classes in GL2(C). If A
and B are conjugated by P in GL2(C) then φ(A) and φ(B) are conjugated by
φ(P ) in M .

Recall from V& M. . .

1. (λ0
0
µ); λ 6= 0 6= µ 6= λ

This goes to f defined by f(z) = (λ/µ)z = νz with ν 6= 0

2. (λ0
0
λ);

This goes to f defined by f(z) = z.

3. (λ0
1
λ) with λ 6= 0. . . goes to f(z) = z + (1/λ)

But note that (1
0

1/λ
1 ) is conjugate to (1

0
1
1), as follows

(λ0
0
1)(

1
0

1/λ
1 )(

1/λ
0

0
1) = (1

0
1
1)

so f is conjugate to g(z) = z + 1.
theorem 17 in
Dr C’s count-
ing

20You might be confused, as i was, by the fact that the ‘z’ without a subscript is a variable
while the other zs are constants.

21A Möbius function has three degrees of freedom. You can always divide numerator and
denominator by a to get the coefficient of ‘z’ in the numerator to be 1, leaving three choices
for b, c and d. This isn’t a proof that three ordered pairs from the graph of a Möbius function
determine the whole thing but it’s suggestive and can probably be turned into one.
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THEOREM 15 Any nonidentity Möbius function is conjugate to either f(z) =
νz or f(z) = z + 1

end of twenty-fourth lecture

lectures wrong!
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