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I will try to adhere to the habit of using FRAKTUR f0n1E| for letters denoting
structures and the corresponding upper-case Roman letter for the carrier set.

A reminder of two bits of jargon: an expansion of a structure B is a struc-
ture with the same carrier set and more gadgets. e.g. the rationals as a field are
an expansion of the rationals as an additive group. The converse relation is a

reduction: the rationals as an additive group are a reduction of the rationals
as a field.

DEFINITION 1 A sentence is “universal” iff it is in PNF and its quantifier
prefix consists entirely of universal quantifiers. By a natural extension we say a
theory is “universal” iff, once you put its axioms into PNF, their quantifier pre-
fixes consist entirely of universal quantifiers. We define “universal-ezistential”
sentences and theom'eeﬂ similarly as theories all of whose axioms, when in PNF
have a block of universal quantifiers followed by a block of existential quantifiers,
and so on.

DEFINITION 2 The diagram Dgy of a structure 9 is the theory obtained by
expanding M by giving names to every m € M, and collecting all true atomic
assertions about them.

LEMMA 1 For any consistent theory T and any model MM of Ty, the set of
universal consequences of T, the theory T U Doy is consistent.

Proof:

Let 9t be a model of Ty, with carrier set M. Add to £(T') names for every
member of M. Add to T all the (quantifier-free) assertions about the new
constants that 90t believes to be true. This theory is T'U Dgy. We want this
theory to be consistent. How might it not be? Well, if it isn’t, there must be an
inconsistency to be deduced from a conjunction 1 of finitely many of the new
axioms. This rogue 1) mentions finitely many of the new constants. We have a
proof of =) from T'. T knows nothing about these new constants, so clearly we
must have a UG proof of (VZ)—1). But this would contradict the fact that 90t
satisfies every universal consequence of T. ]

THEOREM 1
T is universal iff every substructure of a model of T is a model of T.

Proof:

L — R is easy. We prove only the hard direction.

Suppose that T is a theory such that every substructure of a model of T is
also a model of T. Let 9t be an arbitrary model of T;. We will show that it
must be a model of T. We know already from the foregoing that the theory
T U Dgy is consistent, and so it must have a model—9* | say. 9* is a model of

LOften called ‘Gothic’ by the ignorant. The Goths had a different alphabet (and a different
language!) not just a different font.
2PTJ calls such theories “inductive” in his lectures.



T, and 9 is a submodel of M* and therefore (by assumption on 7') a model of
T—as desired.

But all we knew about 9t was that it was a model of the universal conse-
quences of T'. So any old 9 that was a model of the universal consequences of
T is a model of T'. So T is axiomatised by its universal consequences. [ ]

There are lots of theorems with this flavour: “The class of models of T is
closed under operation burble iff 7" has an axiomatisation satisfying syntactic
condition blah”

DEFINITION 3 The Skolem Hull of a structure 9 is what one obtains as
follows. For each sentence Jxp(x) true in M pick the first such x. For each
sentence YxIy(x,y) true in M let fy, send each = to the first y such that
¥(x,y). Close under these operations. The result is the Skolem Hull.

Of course we can generalise this by requiring that the Skolem hull should
contain some specified things to start with. It’s another recursive datatype.

DEFINITION 4 An embedding i : 9t — N is ['-elementary iff, for all ¢ € T,
If i is T'-elementary where T' is the set of all formule we say i is just plain
elementary.

Some examples:

End-extensions are elementary for formulse in which all quantifiers are re-
stricted!

Inclusion embedding from the rationals-as-an-ordered set into the reals (ditto)
is elementary. Not as an ordered field.

The simplest application of the idea of elementary embeddings known to me
is the usual proof that classical monadic predicate logic is decidable.

REMARK 1 Classical monadic predicate logic is decidable.

Proof: Suppose we have a monadic formula ®, and let 9t be a model. @
contains only finitely many monadic predicate letters, say ¢1 ...1;. Let Lg be
the language with these monadic predicates and no other predicates or function
letters. The various v divide the carrier set M into 2° classes in the obvious
way: a typical class looks like {x : 91 (x) A =9pa(z) A ...}. Any selection set for
this partition gives a submodel of 9 for which (we prove by induction on the
recursive datatype of Ly-formulae) the inclusion embedding is Ly-elementary.
The submodel is finite and it will only take a finite time to check the truth value
in it of any formula. [ |

One more definition before we get stuck in.

DEFINITION 5 Z = (I,<7) is a set of indiscernibles for a model M for a
language L iff for oll ¢ € L, if ¢ is a formula with n free variables in it then
for all distinct n-tuples £ and y from T taken in increasing order we have

M = o(Z) «— ¢(¥)-

Remember
elementary
equivalence?!



The idea of a set of indiscernibles is due to Ramsey, in that paper. He
doesn’t identify the idea or give it a name, but it’s there.

1 Products

1.1 Direct Products and Reduced Products
If {A; : i € I} is a family of structures, we define the product

[T

i€l

to be the structure whose carrier set is the set of all functions f defined on the
index set I such that (Vi € I)(f(i) € A;) and the relations of the language are
interpreted “pointwise”: the product believes f R g iff (Vi € I)(f(i) R g(7)).

The {A; : i € I'} are said to be the factors of the product H‘Ai'
i€l
For this operation to make sense it is of course necessary that all the A;
should have the same signature!
Products are nice in various ways.

DEFINITION 6 LetT be a class of formule. Products preserve I if whenever
HAi is a product of a family {A; :i € I'} and ¢ €T then
iel

HAi = ¢ as long as (Vi € I)(A; = ¢).

icl

By definition of product, products preserve atomic formulse. Clearly they
also preserve conjunctions of anything they preserve, and similarly universal
quantifications over things they preserve.

What about more complex formulae? You know that products preserve equa-
tional theories (a product of rings is a ring, after all). They also preserve Horn
formulse

DEFINITION 7 .

A Horn clause s a disjunction of atomics and negatomics of which at
most one 1s atomic.

A Horn property s a property captured by a [closure of a] Horn expression;

A Horn theory 18 a theory all of whose axioms are universal closures of
(congunctions of) Horn clauses.

REMARK 2 Products preserve Universal Horn formule

Proof:
Suppose every factor A, believes (VZ)((A;.; ¢i(Z)) — ¢;(Z)), where all
the ¢ are atomic. We want to show that the product believes it too. So let



f: f1...fr be atuple of things in the product satisfying the antecedent. That
is to say, for each factor A,, we have A, = ¢;(f1(n), f2(n)... fr(n)) for each
i < j. But then every A, believes ¢;(f1(n), f2(n)... fx(n)) so the product
believes ¢;(f1, fo... fx) as desired. [ |

In particular an arbitrary product of transitive relations is a transitive rela-
tion. [This is a good point of departure]. An arbitrary product of posets is a
poset (being a poset is horn) but an arbitrary product of tosets is not reliably
a toset because the totality condition (trichotomy, connexity) is not Horn.

This illustrates how products do not always preserve formule containing V
or —. This suggests that remark is best possible. (We won’t prove it) How so?
If ¢ is preserved, then the product will fail to satisfy it if even one of the factors
does not satisfy it (c.f. Genesis [19:23-33] where not even one righteous man
is enough to save the city) but all the rest do. (The product is not righteous
unless all its factors are). In these circumstances the product = —¢ but it is
not the case that all the factors = —¢. As for V, if ¢ and 1) are preserved, it
can happen that ¢ V v is not, as follows. If half the factors satisfy ¢ and half
satisfy 1, then they all satisfy ¢ V ¢. Now the product will satisfy ¢ V ¢ iff it
satisfies one of them. But in order to satisfy one of them, that one must be true
at all the factors, and by hypothesis it is not. Something similar happens with
the existential quantifier.

1.1.1 Reduced products

Quick revision [not written out here]. We assume ultrafilters, why they exist
etc. This is all in [2], or—if you begrudge me the royalties—is covered in my
lecture notes for Part IT Set Theory and Logic in Michaelmas 2016, available on
www.dpmms . cam.ac.uk/~tf/partiilectures2016.pdf

Worth making the point that the collection of filters on X is a complete
poset and the collection of proper filters is merely a chain-complete poset.

Given a filter F over the index set, we can define f ~p g on elements of the
product if {i € I : f(i) = g(i)} € F. Then we either take this ~p to be the
interpretation of ‘=" in the new product we are defining, keeping the elements
of the carrier set of the new product the same as the elements of the old or we
take the elements of the new structure to be equivalence classes of functions
under ~. These we will write [g]~, or [g]F or even [g] if there is no ambiguity.

This new object is denoted by the following expression:

(JI4)/F
iel
Similarly we have to revise our interpretation of atomic formula so that
(T AV/F = ofr,-- fa) i {i: $(f1(0), - fuli)} € F.
iel
REMARK 3 ~p is a congruence relation for all the operations that the product
inherits from the factors.


www.dpmms.cam.ac.uk/~tf/partiilectures2016.pdf

Can’t do any harm to write out a proof. [Not lectured but supplied for the
notes]

Let H be an operation, of arity h, and let f and ¢ be two h-tuples in the
product, with f; ~p g; for each ¢ < h. That is to say: foreachi < h, {n: f;(n) =
gi(n)} € F. Since h is finite, we can conclude that {n : A\, fi(n) = g;(n)} € F.

—

We want H(f) ~r H(g). That is to say we desire that {n : H(f1(n)--- fn(n))
H(gi(n)---gn(n))} € F. But we know (by our assumption that f; ~p g; for
each i < h) that A, (fi(n) = gi(n)) holds for an F-large set of n, so if H is
given the same tuple of arguments it can hardly help but give back the same
value.

|

It may be worth bearing in mind that to a certain extent the choice between
thinking of elements of the carrier set of the reduced product as the set of ~p-
equivalence classes or thinking of them as the functions is a real one and might
matter. I have proceeded here on the basis that the carrier set is the set of
~ p-equivalence classes because that seems more natural. However, in principle
there are set-existence issues involved in thinking of a product this way—how
do we know that the ~pg-equivalence classes are sets?’—so we want to keep
alive in our minds the possibility of doing things the second way. This will
matter when we come to consider reduced products where the factor structures
are proper classes (= have carrier sets that are proper classes). This happens
in the extensions of ZF(C) with large cardinal axioms (specifically measurable
cardinals). In practice these issues are usually swept under the carpet; this is a
safe strategy only because it is in fact possible to sort things out properly! There
is of course also the possibility of picking representatives from the equivalence
classes, possibly by means of AC.

(For those of a philosophical turn of mind, there is an interesting contrast
here with the case of quotient structures like, say, integers mod p. I have the
impression that, on the whole, mathematicians do not think of integers-mod-p as
sets of integers, nor as integers equipped with a nonstandard equality relation,
but rather think of them as objects of a new kind. These reflections may have
significance despite not really belonging to the study of mathematics: the study
of how we think about mathematics is important too.

The reason for proceeding from products to reduced products was to com-
plicate the construction and hope to get more things preserved. In fact nothing
exciting happens (we still have the same trouble with V and ——think: tosets)
unless the filter we use is ultra. Then everything comes right.

1.2 Ultraproducts and Lo$’s theorem

THEOREM 2 ( Lo$’s theorem )
Let U be an ultrafilter on I. For all expressions ¢(f,g,h...),

(AU Eé(fg,h..) i {i: A = 6(f(i), (i), h(i)...)} € U.

i€l



Proof: We do this by structural induction on the rectype of formulse. For atomic
formulz it is immediate from the definitions.

[wouldn’t hurt to write out the details for the fainthearted!]

As we would expect, the only hard work comes with — and V, though 3
merits comment as well.

Disjunction

Suppose we know that ([[,c; A)/U | ¢ iff {i + A | ¢} e U
and ([[;c; A)/U = ¢ iff {i + A | ¢} € U. We want to show
(ILes AU E (V) it {i: Ai = oVt el
The steps in the following manipulation will be reversible. Suppose
(AU E v
il
Then
(TanuEeé or (JTANUE .
iel i€l
By induction hypothesis, this is equivalent to
{i:AiE¢telU or {i: A E¢}elU,
both of which imply
{i: Ai =V} el.

{i:AiEovytis{i: A E ¢t U{i: A =9y} Now we exploit
the fact that ¢ is ultra: for all A and B it contains A U B iff it
contains at least one of A and B, which enables us to reverse the
last implication.

Negation

We assume ([],c; Ai)/U |= ¢ iff {i : A; = ¢} € U and wish to infer
(ILer Ai)/U =~ iff {i: A; = -0} e U.
Suppose ([],c; Ai)/U = —¢. That is to say,
([TAn/u i o.
iel
By induction hypothesis this is equivalent to
[i Al o} ¢ U.

But, since U is ultra, it must contain I’ or I\ I’ for any I' C I, so
this last line is equivalent to

{ZAL':_‘¢}eua

as desired.



Existential quantifier

The step for 3 is also nontrivial:

([T A0 /U &= 3o

iel

(AU = o)

i€l
A{iel: A= o(f(0)} eld,

and here we use the axiom of choice to pick a witness at each factor
{iel: A l=3xd(x)} €U.

You will notice that in the induction step for the existential quantifier you use
the axiom of choice to pick a witness from each factor, and this use of AC seems
unavoidable. This might lead you to suppose that Lo$’s theorem is actually equivalent
to AC, but this seems not to be the case. Try it! I am endebted to Phil Freeman for
drawing my attention to Paul Howard, Proc Am Math Soc Vol. 49, No. 2, Jun., 1975.

This has the incredibly useful corollary (which we shall not prove) that

COROLLARY 1 A formula is equivalent to a first-order formula iff the class
of its models is closed under elementary equivalence and taking ultraproducts.

Theorem [2| enables us to show that a lot of things are not expressible in
any first order language. Since, for example, an ultraproduct of finite p-groups
(which are all simple) is not simple, it follows that the property of being a simple
group is not capturable by a language in which you are allowed to quantify only
over elements of the object in question.

Miniexercise: If the ultrafilter is principal ({J C I : i € J}), then the
ultraproduct is isomorphic to the ith factor. So principal ultrafilters are no use.

In contrast if the ultrafilter is nonprincipal you can make good use of the
construction even if all the models you feed into it are the same.

DEFINITION 8 If all the factors are the same, the ultraproduct is called an
ultrapower, and we write ‘AX /U’ for the ultraproduct where there are |K|-
many copies of A, where K is a set and U an ultrafilter on K.

Not only are 9t and the ultrapower 91" /U elementarily equivalent by Lo$’s
theorem , we also have the following, of which we will make frequent use.

LEMMA 2 The embedding i : M — M /U defined by Am,, Ao -0 18 €le-
mentary.



(This embedding 7 is just a typed version of the K combinator!)
Proof:

It will be sufficient to show that, for any m € 9, if there is an = € IM" /U
such that 9" /U = ¢(x,i(m)) then there is z € M s.t. M = ¢(z, m). Consider
such an « € M"*/U. It is the equivalence class of a family of functions which
almost everywhere (in the sense of U) are related to m by ¢ so—by Los’s
theorem —there must be something z in 9 such that 9 = ¢(x,m). Then
i +— x will do.

|

If you are doing Set Theory you will see the utility of this later in connection
with measurable cardinals.

Ultraproducts enable us to give a particularly slick proof of the compactness
theorem for predicate calculus.

THEOREM 3 (Compactness theorem for predicate logic)
FEvery finitely satisfiable set of sentences of predicate calculus has a model.

Proof: Let A be a set of wifs that is finitely satisfiable. Let S be the set of finite
subsets of A (elsewhere in these notes notated Pey,(A)), and let X, = {t €
S :s Ct}. Pick M, = s for each s € S. Notice that {X; : s € S} generates a
proper filter. Extend this to an ultrafilter ¢/ on S. Then

(T o)/t = A

seS

This is because, for any ¢ € A, X4 is one of the sets that generated the
filter that was extended to U. For any s € X4y, M, = ¢, 50 {s5: M, |= o} € U.
|

Notice we are not making any assumption that the language is countable.

Notice the relation between Arrow’s paradox and the nonexistence of non-
principal ultrafilters on finite sets. Consider an ultraproduct of finitely many
linear orders: it must be isomorphic to one of the factors. This is Arrow’s
“dictatorship” condition.

EXERCISE 1 Let {A; : i € IN} be a family of finite structures, and U a non-
principal ultrafilter on IN. Show that the ultraproduct is finite if there is a finite
bound on the size of A; and is of size 28 if every infinite subset of {A; : i € IN}
contains arbitrarily large elements.

2 Infinitesimals

The effect of the ultraproduct construction is to add lots of things whose pres-
ence cannot be detected by finitistic first-order methods. Thus we can add
infinitesimals to the reals. Hence Nonstandard Analysis: an ultraproduct of
R (modulo a countably incomplete ultrafilter at least) is saturated (theorem
5) and therefore contains infinitesimals. This means we can reconstruct the
seventeenth century theory of differentiation and integration!

10



3 Saturated Models

Review countable categoricity. See a property S so that any two models of a
complete theory that are both S are not only elementarily equiv but iso.

There is a very beautiful theorem of Ryll-Nardzewski concerning countably
categorical structures which i shall not prove, though i shall throw out a couple
of hints.

THEOREM 4 Let 9 be a countable structure. Then the following are equiva-
lent

e For alln € IN Aut(9N) has only finitely many orbits on n-tuples from IM;

o Th(IM) is countably categorical.

Proof:
Sketch: One way we use a back-and-forth construction. The other way we
use the omitting types theorem, theorem [9 below. [ ]

It was once an exercise on a PTJ example sheet. You might like to try to
prove it.

Here is as good a place as any to introduce the idea of a saturated model.
Informally a structure is saturated iff it realises as many types as possible.

DEFINITION 9
A type is a set of formule, typically all with the same number of free variables.
If ¥ is a type with free variables & we say that a tuple @ (in a structure )
realizes ¥ if M = o(a) for every o € EE|
A type is finitely satisfiable if every finite subset of it can be realized.
A model is Ry -saturated iff every finitely satisfiable countable type is real-
ized.

We can use ultraproducts to prove the existence of saturated models.
We need one more definition:

DEFINITION 10 a-complete filter, o a cardinal. Means “an intersection of
fewer than « things in the filter is also in the filter”. Filters are automatically
No-complete. “Countably complete” always means “Ni-complete”.

THEOREM 5 (The existence of saturated models)
Let L be a countable language, and let U be an ultrafilter over an index set
I, where U is not countably complete. Then for every family {A; : i € I} the
ultraproduct (H Ap) /U is Ry -saturated.
il

3Model theorists tend to use capital Greek letters for types (in this sense of ‘type’) and
corresponding lower-case Greek letters for formulae in them.

11



Proof:

We must show that for every countable set {f; : i € IN} of elements of
(H A;)/U and every set X(z) of formulee from £ (with countably many new
iel
constants ¢; ... ), if each finite subset of ¥(x) is satisfiable in (H A;) /U (with

il

names for the f;) then so is 3(x) itself.

Since £ with the new constants is also a countable language it will be suffi-
cient to prove it without the constants.

Suppose every finite subset of ¥(z) is satisfiable in (H AU, X(z) is

iel

countable, so we can think of it as {o; : ¢ € IN}. Since U is countably incomplete,
we find a C-descending w sequence (I; : i € IN) of U-large subsets of I whose
intersection is empty.

Define a new sequence (X, : i € IN) by

X() =1

and thereafter

Xy =I,N{i€I: A @z)(\ o)}

j<n

(H A;) /U satisfies every finite subset of ¥ so, by Lo$’s theorem ,
iel

{iel: A E (ﬂx)(/\ oi(x))} €U.

j<n

This ensures that (i) each X, is in U, (ii) the X; are nested and (iii) their
intersection is empty. From (iii) it follows that for each i € I there is a last
n € IN st. ¢ € X,,. Let this last n be n(i). We are now going to construct
an [ € H‘Ai such that [f]y realizes ¥. If n(i) = 0 then f(¢) can be anything.
i€l
Otherwise set f(i) to be any z such that A; = /\ oj(x).
j<n(i)
|

EXERCISE 2 Show that any two countably saturated countable elementarily
equivalent structures are isomorphic.

3.1 The Ehrenfeucht-Mostowski theorem

Ultraproducts contain lots of nonstandard funny stuff, but they don’t obviously
admit automorphisms. However we can use them to create models that do. The
theorem of this section was proved in the 1950’s by Ehrenfeucht and Mostowski,

12



using methods of Ramsey theory and compactness, and we shall give that proof.
We also give another proof due to Gaifman that uses ultrapowers.

We can create a nonstandard model of the reals by adding to our language
a constant symbol ¢, for each countable ordinal «, and—whenever a < S—
an axiom ¢, < cg. By compactness this gives a consistent theory, so there is
definitely going to be a nonstandard model of the reals containing a copy of
the countable ordinals—or any other total order we want, come to think of it!
However nothing in this construction will ensure that constants {c, : @ < w1}
are embedded as a set of indiscernibles. The fact that this apparently much
more difficult feat can be achieved is the content of

THEOREM 6 (Fhrenfeucht-Mostowski theorem)

Let I be a total order, T a theory with infinite models and a formula P()
with one free variable s.t. T thinks that the extension of P is an infinite total
order. Then T has a model M in which I is embedded in (the interpretation of)
P and in which every automorphism of I extends to an automorphism of M.
Finally the copy of I in MM is a set of indiscernibles.

Notice that there is no suggestion that the copy of I in the model we build
is a set of that model, or is in any way definable.

We give first an outline of the original proof, due to Ehrenfeucht and Mostowski.

Proof:

Add to the language of T' names ¢; for every element of I, and axioms to say
the ¢; are all distinct. Next we add axioms providing correct order information
about the ¢;. Let this theory be T*. By compactness we know that this theory
is consistent, since T' has an infinite model, and believes that the domain of <
is infinite. That is to say, if T" believes that the domain of < is infinite, we can
find a model of T" in which I is embedded in the domain of <. This much is a
straightforward application of completeness and compactness.

Now we add axioms saying that these constants are a set of indiscernibles;
these axioms will say things like

d(ci,c5) < Plex, )

whenever ¢ <; j and k <; [ and ¢ is a two-place formula in £(T) [analogously
for higher arities] and there will be infinitely many of them. This gives us a
theory T7. We want to prove T consistent. The obvious thing to try is to
show that every finite fragment of T is consistent. Let 7" be one such finite
fragment. It mentions only finitely many constants—cy, c3, ¢4 and c5, say—and
it says that they form a set of indiscernibles for finitely many predicates—e¢1,
P2, @3 and @y, for the sake of argument.

Now the task of proving this theory consistent is precisely the same task as
proving consistent the theory T" obtained from 7" by replacing ¢, c3, ¢4 and cs
by any other sequence of constants of length 4. So if we liked we could drop the
names ci, c3, ¢4 and cs and call them something noncommittal like a, b, ¢ and

13



d. Once we have the model for the noncommittal version of T” we can restore
the c labels.

Now let 9t be a model of T*. A bit of notation: Let [X]™ be {Y C X : |Y| =
m}. These predicates—a1, @2, ¢p3 and ¢4, together with the order relation <
that T* imposes on the ¢;—divide up [{c; : i € I}™]™ (where m is the supremum
of the arities of the ¢’s) into finitely many pieces. How do they do this? If ¢4
is of arity m then it obviously splits [{c; : i € I}™]™ into two bits. But what if
m = 3 and ¢, is of arity two? What is it to do with a triple from {c; : i € I}™.
WEell, any such triple gives rise to three pairs, and we feed each pair into ¢4 in
increasing order. So ¢3 splits [{c; : i € I}™|™ into eight pieces. So the number
of pieces into which we split [{¢; : i € I}™]™ is the product of the numbers of
pieces mandated by each ¢; mentioned in 7”. Call this partition II.

Now {¢; : i € I}™ is infinite, so there must be a monochromatic set for I of
size 4, and we take its elements, read in increasing order, to be a, b, ¢ and d.

Thus T” has a model.

Now we invoke compactness to conclude that T has a model. Any model
of TT has I embedded as a set of indiscernibles.

Then the model we desire is the Skolem hull of the indiscernibles. ]

3.2 Gaifman’s proof

We now give a second proof, which uses ultrapowers but no Ramsey Theory.

We start with some standard observations about direct limits. Given a
directed family of structures with embeddings (satisfying commutation condi-
tions) there is a well-defined notion of direct limit which you should know,
but (in case you don’t) ...

Limits and Colimits: revision

A poset is directed if any two elements have a common upper bound.
What follows is a Part II Set Theory exercise.
Colimits

Let (I,<;) be a directed poset and, for each i € I, let A; be a set and, for
all i <7 7, let 0y : A; — A; be an injection, and let the injections commute.

Show that there is a set Ay with, for each ¢ € I, an injection o; : A; — Aj
and the o; ; commute with the o;.

Show also that A; is minimal in the sense that if B is any set such that for
each i € I there is an injection 7; : A; — B and the 7; commute with the o; j,
then there is a map A; — B.

Limits
Let (I,<;) be a directed poset and, for each i € I, let A; be a set and, for
all i < j,let 0;, : A; —» A; be a surjection, and let the surjections commute.

Show that there is a set A; with, for each i € I, a surjection 7; : A; —» A;.

14



Show also that A; is minimal in the sense that, if B is any set such that for
each i € I there is a surjection 7; : B — A; and the 7; commute with the o; j,
then there is a map B —» Aj.

We will need the following important banality:

REMARK 4 FEvery structure for a first-order language is the colimit of its
finitely generated substructures.

We need this only in the [particularly simple] case of total orders, where
it is obvious. After all the finitely generated substructures are just the finite
suborderings. Every total ordering is the direct limit of the family of its finite
suborderings equipped with the inclusion embedding!

REMARK 5

1. A direct limit of structures preserves lly sentences;

2. A direct limit of an elementary family (one where the embeddings are
elementary) preserves everything.

The idea underlying the proof of Gaifman’s is that one can recover any struc-
ture from the embedding relations between its finitely generated substructures:
it’s a direct limit of them (co-limit if you're a categorist).

Specifically if (I, <7) is an ordered set then it is the direct limit of its finite
substructures where the embedding relations are the obvious inclusion embed-
dings. Remarkably, this banal fact is almost all we need!

3.2.1 The Construction

We start with an infinite model 90t of T'. We are going to create a directed family
of elementary embeddings and iterated ultrapowers of 91 indexed by the set of
finite substructures of (I, <7), and the desired model will be a substructure of
the direct limit, M.,. We will use the letters ‘s’ and ‘t’ to range over these finite
substructures and we will notate the corresponding models 9.

Let P be {z : P(x)}™. We will assume that P has no last element in the
sense of the ordering of P according to 9. U will be an ultrafilter on P that
contains all terminal segments of P. (So P had better not have a last element!)

Now to define the models in the family. 9%, will simply be the result of
doing the ultrapower construction |s| times to 9, so that what 9, actually is
depends only on the length of s and in no way on what the members of s are.
My is just the M we started with.

Now we have to define a family of embeddings and establish that they com-
mute. We need to recall some notation:

last(s) is the last member of s (remember s is thought of as an
increasing sequence) and

butlast(s) is s minus its last element.
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We now define by recursion a family {I(s,t): s Ct € I<“} of embeddings:
I(s,t) will be an elementary embedding from 9, into M;. The recursion needs
two constructions:

1. K is the standard elementary embeddding by constant functions from a
structure into its ultrapower as in lemma

2. If i is an embedding from 99t to 91 then there is an injection from 90~ /U
into M* /U “compose with ¢ on the right”. Perhaps a picture will help.

RN i > M,

()" /U > ()" /U
Alf]-Pei(f(a))]

Let us call this operation L, so that L =: Ai.Af.io fE|

Now we can give the recursive definition of I(s,t) when s C t.

If s =t then I(s,t) is the identity else
If last(s) = last(t) then I(s,t) =: L(I(butlast(s), butlast(t)))
else I(s,t) =: K o I(s, butlast(t)).

Notice that A[f].[Aa.i(f())] sends “new stuff” in ML /U (by which I mean
(M /U) \ K“DM,) to to “new stuff” in MF /U (by which T mean (IMF/U) \
K “M). This will be essential later.

To check that this system of models and embeddings is genuinely a directed
system it remains only to show that the embeddings are elementary and that
they commute.

K is elementary by lemma 2] L of an elementary embedding is elementary
as follows. Suppose i : My — M, is elementary, and that ME /U = ¢(f1 ... fn)-
That is to say, {p : Ms = ¢(fi(p)... fu(p)} € U. Now i : M — M, is
elementary so this is equivalent to {p : M, = ¢(i(f1(p)) .. .i(fr(p))} € U which
is equivalent to ML /U = ¢((io f1)...(io f,)) as desired.

To check that the family is commutative it is sufficient to check that the
representative diagram below is commutative. [We really really do not wan the

4A Curry-Howard point. The constructor L explains why ‘M — N. — (K — M) — (K —
N)’ is intuitionistically correct. It is also the embedding underlying the cardinal arithmétic
banality that o < 8. — a¢ < €.
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embedding from 91; intop 9y 23 to depend on whether we think of it as the
composition of maps 9; < 9M; o — My 2 3 rather than as the composition of
maps Ny — 91711,3 — 9)?17273]

My — i » M 2

M3 > Miogs
That is to say that, for any i, K oi = L(i) o K.

o K oigives: x — i(x) — Ap.i(x);

o L(i)o K gives: z — K(z) — L(i)(K(z)) = Ap%z);)))([((:r))
— (o K(x))p
= Ap.(i(K(x)p))
= Ap.i(x).

This will show that all paths from 9t to 9, (and the number of such paths
is presumably (|t| — |s|)!) correspond to the same injection.

3.2.2 Embedding I in the direct limit. ..

The point of this direct limit construction was to obtain a structure M., in
which I was embedded. To achieve this we ensure that each finite subset s C [
is embedded in 9, in such a way that the manifestations of the elements of I in
the M, get stitched together properly. That means that inside 9 we must be
able to point to |s| distinct things. We will find these thingﬂ by a recursive
construction, and we will prove by induction on n that the construction works
for s of length n. We can think of 9, as a segmented structure: it has |s|
segments, and each new segment consists of the junk added by the ultraproduct
construction applied to the object so far, and each segment contains a thing—
each time we zap the model with our ultraproduct wand we add a new thing.

What is the [¢|th thing in 97, to be? The following train of tho’rt gives
us a fix on what it must be, and tells us how we might find the |¢|th thing by
recursion on |¢|. Suppose we know how to find the n things in 9ts; when |s| = n,
and let |t = n+ 1. Now let ¢’ be t with its penultimate element deleted (so we
are assuming that n > 2). By induction hypothesis we know already what the
last thing in 9 is. But we also know the embedding I(¢',t) from 9y — M.
This tells us that the last thing in 9, is that object to which I(t', ) sends the
last thing in 9t (We flagged this earlier.)

5Things’?? I’ve got to call them something!!
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It’s worth checking that we have got the base case right. This construction
giving us the n + 1th thing is guaranteed to work only as long as 9 (where
|s| = n) is already an ultrapower, since any embedding created by the recursion
expects its domain to be an ultrapower. But this is all right; 90, is not an
ultrapower (it is 9t) but then it isn’t expected to have a thing in it.

So how do we decide what the first thing is? We know that as the vari-
ous things get added they must form an increasing sequence according to the
(extension of the) order (in 9M) to which I will belong. It would be helpful to
ensure that the first thing—which we see for the first time in 9! /i/—is later
than everything in 9. This will be the case if (i) the total order in 9t has a
last element and (ii) the index set I is precisely the extension of the order in 9t
and the ultrafilter U contains all terminal segments of I.

So we let the first thing be an arbitrary object in the graph of the total
ordering in the ultrapower MU that is not in M.

A last thought: how do we identify the nth thing in 9%, with the nth thing
in M; where [t| > |s| > n? Well, K is an embedding from 90, into M, and
obviously we want the nth thing in 9, to be K of the nth thing in 97,.
Repeat as necessary.

3.2.3 ...as a set of indiscernibles

The things end up in M, as a subclass {¢; : i € I'}. We want to show that
the ¢; form a set of indiscernibles in M. Let § and  be two finite subsets
of T (thort of as increasing sequences). We want to show that ¢(5) iff ¢(%)
(identifying each ¢; with ¢ for the moment). Now the embedding from 9, into
Moo is elementary, so Mo, = ¢(8) iff My = &(8); similarly the embedding from
M, into Mo, is elementary, so Mo, = ¢(t) iff M; = ¢(f). Now comes the step
at which we exploit the fact that 9T, = 9, as long as |s| = |¢|. This fact tells

us that Mo, = ¢(5) iff Mo = B(F).
|

We can now do various other clever things. We can consider the Skolem hull
of the indiscernibles. We then find that any order-automorphism of Z = (I, <7)
extends to an automorphism of the Skolem hull.

4 Unsaturated models
“Any fool can realize a type: it takes a model theorist to omit one.”
Gerald Sacks.
Sacks is right—omitting types is hard!

We start by proving a theorem about propositional logic, with the intention
of proving a version for predicate logic later.

A type in a propositional language L is a set of formulae (a countably infinite
set unless otherwise specified).
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For T an L-theory a T-valuation is an L-valuation that satisfies 7. A valu-
ation v realises a type 3 if v(0) = true for every o € X. Otherwise v omits X.
We say a theory T locally omits a type 3 if, whenever ¢ is a formula such that
T proves ¢ — o for every o € X, then T F —¢.

THEOREM 7 The Omitting Types Theorem for Propositional Logic.
Let T be a propositional theory, and ¥ C L(T) a type. If T locally omits X
then there is a T-valuation omitting 3.

Proof:

By contraposition. Suppose there is no T-valuation omitting 3. Then every
formula in ¥ is a theorem of T' so there is an expression ¢ (namely ‘T’) such
that T + ¢ — o for every 0 € X but T I/ —¢. Contraposing, we infer that
if T+ —¢ for every ¢ such that T+ ¢ — o for every ¢ € ¥ then there is a
T-valuation omitting X. [ |

However, we can prove something stronger.

THEOREM 8 The Extended Omitting Types Theorem for Propositional Logic
Let T be a propositional theory and, for eachi € IN, let X3y C L(T) be a type.
If T locally omits every X; then there is a T-valuation omitting all of the 3;.

Proof:

We will show that whenever TU{—-A4;,...-A4;} is consistent, where A,, € X,
for each n < ¢, then we can find A;11 € ¥;11 such that TU{=A;,...-A;,~A;11}
is consistent.

Suppose not, then 7' ( /\ —A;) = Ay for every A; 1 € ¥;4q. But, by

1<5<i
assumption, T locally omits 3;11, so we would have T+ — /\ —A; contra-
1<5<i
dicting the assumption that T'U {—A4;,...—A;} is consistent.

Now, as long as there is an enumeration of the formule in £(T), we can
run an iterative process where at each stage we pick for A;,; the first formula
in ¥;11 such that T'U {=A4;,...—4;,7A;1+1} is consistent. This gives us a
theory T'U {—A; : i € IN} which is consistent by compactness. Any model of
T U{-A; : i€ N} is a model of T that omits each X;.

|

4.1 Omitting Types for First-Order Logic

First some some definitions

DEFINITION 11

1. An n-type is a set of formule all with at most n free variables
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2. A model M realises an n-type X if there is a tuple T s.t M = ¢(Z) for
every ¢ € ;

8. T locally omits an n-type X if, whenever ¢ is a formula s.t. T F
(Vx)(p(Z) — o(Z)) for all o in 2, then T + (VZ)(—¢(T)).

The property of theories of locally omitting a particular type is universal
Horn:

(Vo) (N (T + (Va)($(z) = o(2))) — T+ (Va)(~o(x)))

gED

(It looks like (Vz)(( /\ pi) — q).) The following is a consequence of this
iel
observation:

REMARK 6 An intersection of an arbitrary family of theories each locally
omitting a type X2 also locally omits 3.

Proof: Obvious. .. [ |

... but worth noting, since it means that we have a good notion of closure:
keep adding axioms to T until you obtain something that locally omits 3.

DEFINITION 12 Let T° be T. Obtain Tt! from T as follows. Whenever
¢ is a formula s.t. T = (Vz)(p(x) — o(x)) for all o in X, then add to T* the
new aziom (Vz)(—¢(x)). The result of doing this for all o € X is T*H1.

I can’t think of any reason why this process should close up at w so we iterate
transfinitely until it closes or becomes inconsistent. Let the result be T,, where
o0 is the closure ordinal (countable if L7 is countable). I suppose the ‘X’ should
appear in this notation somewhere!

THEOREM 9 IfT locally omits ¥ then it has a model omitting X.

Proof:

Let T be a theory locally omitting a type ¥ and let C' = (¢; : i € IN) be a
countable set of new constant letters. Let (¢; : ¢« € IN) be an enumeration of the
sentences of L.

We will construct recursively a C-increasing sequence (7T; : i € IN) of finite
extensions of T" with the property that, for each m € IN,

1. Ty 41 decides ¢, for all n < m;

2. If ¢y, is (Fx)(x) and ¢y, € Thpy1, then ¢(cy) € Thpt1 where ¢, is the first
constant not occurring in T, or ¢.,;

3. There is a formula o(x) € ¥ such that (—o(¢p)) € Thmt1-
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Given T,,,, we construct T, as follows. Think of T,,, as TU{6; ...0,.}, and
the conjunction of the theta’s as ©. Let {c; ...c,} be the constants from C that
have appeared in © (this set is always an initial segment of C), and let ©(Z%)
be the result of replacing ‘c;” by ‘@;’ in ©. Then (obviously!) ©(Z) is consistent
with T. Therefore, for some o(x) € X, O A =0 (xy,) is consistent with T. Put
‘=0 ()’ into Typq1. This makes (3) hold.

If ¢, is consistent with T, U {—o(c;m)}, put it into Tp,yq1. Otherwise put
in —=¢,,. This takes care of (1). If ¢, is (3z)y(x) and is consistent with
T U{—o(cm)}, put o(cp) into Ty 11 (Where ¢, is the first constant not occurring
in T}, or ¢p,) This takes care of (2). This ensures that (1-3) hold for T,.

Now consider T* = U T;. T* is complete by construction. Consider an

i€eN
arbitrary countable modeel of T* and the submodel of that model generated by
the constants in C'. This will be a model of T, and condition 3 ensures that it
omits 3. ]

We can prove an analogue for first-order logic of the extended omitting types
theorem, theorem [8] but we haven’t got time.

Omitting Types matters because the standard model of PA omits
the type that says of a constant that it denotes a nonstandard natural.
There are plenty of nontrivial mathematically natural formulae that
locally realize this type, for example “z is the gnumber of a proof of
—con(PA).

5 Preservation Theorems

(This lemma is probably not going to be lectured. It’s here beco’s, well .. .it’s
the key lemma one uses for proving preservation theorems)

LEMMA 3 Let T be a consistent theory in L and let A be a set of sentences
of L which is closed under V. Then the following are equivalent

1. T has a set T' of axioms where I' C A;
2. If A is a model of T and (V6 € A)(Al=d — B=0d) then B=T.

Proof:

It is obvious that 1 implies 2. For the converse, assume (2), and suppose A
and T given. Let I' = {¢ € A : T F ¢}. Then T F I'. We will show that '
entails the whole of T'. Let B be a model of T'. Let

S ={-5:5 T ABE -}

We show that T'UX. is consistent. T is consistent by hypothesis; Suppose TUX. is
inconsistent. Then there are =4 ... —d, all in ¥ such that T = = (=41 A. .. A—d,)
which is to say T+ d1 V...V §,. Since A is closed under V this theorem belongs
to A, and therefore to I'" and therefore holds in 5. But this contradicts the fact
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that these d; are false in B. So X U T must have been consistent, and has a
model A. Then every sentence § € A which holds in A holds also in B (by (2)).
So I' is an axiomatisation of T as desired.

DEFINITION 13

The triple (A, B,C) form a sandwich if AC B CC and A <C;

A is sandwiched by B if there are elementary extensions A" of A and B’ of
B such that BC A’ C B'.

THEOREM 10 (Chang-tos-Suszko)
the following are equivalent

1. T has a set of universal-existential axioms
2. T is preserved under unions of chains of models

3. Whenever Al=T and A is sandwiched by B then B |=T.

Proof:
We prove 1 -2 —3 — 1.
1 — 2 is easy; 3 — 1 follows from lemma 3} we now prove 2 — 3.
Suppose A is sandwiched by B. We shall construct a chain of models

BoCAyCBiCA...B,CA,...

where By = B; each triple B,,, Ay, B,11 forms a sandwich; A < A, and each
A, is elementarily equivalent to A. We will attempt to construct this sequence
by recursion, and to do this we will need to be able—on being presented with
B, A, and B, ;1 forming a sandwich—to find A, 11 elementarily equivalent to
A, and an elementary extension B, s of B,11 so that B,11, 4,11 and B, 1o
form a sandwich.

How do we do this? We extend the language-in-hand by adding a new one-
place predicate U and a constant name ¢, for every element b € B,, 1. Let us
call this new language L’. Note let 7" be the theory

(elementary diagram of By, 11) U{oY : A,, E ¢}U{U(ch) : b € Bpyr}
where ¢V is the relativisation of ¢.

Thus any model of 77 will be an elementary extension B, 15 of B,; which
contains a subset U that includes at least all the elements of B, 1. Also the
submodel determined by the extension of U (in B;,+2) is elementarily equivalent
to A,,. That T" is consistent can be shown as follows:

o A sentence F(cp, ...cp,) such that B,11 = S(by...by)
e A sentence ¢V such that A, = ¢

22



e The sentence U(cy, ) A U(cp,) A ... U(cep,).

Since B,, < By,41 there will be d; ...d, € B, such that

Bo = S(dy...dy), Buyil=S(d...dy)

Now we find that B, 11 is a model of T if we interpret U as membership in A,
and the constant cq4, as d;.

Now consider the sequence of models in this chain we are building. Clearly
all the A,, are models of T' and so (since we are assuming 2) the union is also a
model of T'. But this union is also the union of the B,,, which are all elementarily
equivalent, and is therefore elementarily equivalent to them too, and is a model
of T', so B was a model of T too.

We have used the fact that a direct limit of a family of elementary embed-
dings is an elementary extension. This was theorem ]

This lemma is the crucial lemma in the proof of lots of completeness theo-
rems: a formula is equivalent to a [syntactic property] formula iff the class of
its models is closed under [some operations].

5.1 Ultralimits and Frayne’s Lemma

LEMMA 4 Suppose A and B are elementarily equivalent. Then there is an
ultrapower A JU of A and an elementary embedding from B into it.

Recall here the terminology from model theory: expansion, reduction, ex-
tension
Proof:

Supply names b for every member b of B. Let £ be the language with the
new constants. There is an obvious way of expanding B to a structure for this
new language, namely to let each constant b denote that element b of B which
gave rise to it. (Of course this is not the only way of doing it: any map B — B
will give rise to an expansion of B of this kind—and later we will have to consider
some of those ways). Let us write ‘B’ to denote this obvious expansion of 5,
and let I be the set of sentences of L true in B’. (Use of the letter ‘I’ for this
is a bit of a give-away!)

Consider ¢ a formula in I. It will mention finitely many constants—Ilet us
say two, for the sake of argument. Replace these two constants by new variables
‘v1” and ‘ve’ (not mentioned in @!) to obtain ¢” and bind them both with ‘&’
to obtain (Jvy)(Jve)¢” which we will call ‘¢’ for short. This new formula is a
formula of the original language which is true in B and is therefore also true in
A (since A and B are elementarily equivalent).

The next step is to expand A to a structure for the language £ by decorating
it with the with the extra constants b etc that we used to denote members of
B. Of course any function B — A gives us a way of decorating .4 but with ¢
in mind we are interested only in those decorations which give us a structure
that satisfies ¢. If ¢ contained the constants b and b”’ for example then the
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obvious way to expand A involves using those two constants to denote the
witnesses in A for the two existential quantifiers in ¢’. Since ¢ contains only
finitely many constants this nails down denotations for only finitely many of the
constant-names-for-members-of- B. However any finite map from B to A can be
extended to a total function B — A so we can extend this to a way of labelling
members of A with these constants in such a way that the decorated version of
A satisfies the original formula ¢.

Pick one such labelling and call it a(¢). (Thus a(¢) is merely an element of
B — A satisfying an extra condition parametrised by ¢. We can think of a as a
function £ — (B — A) or as a function (£ x B) — A ad libitum). A expanded
with this decoration we call (A, a(¢)). Now consider the set

J(@) =AY € I: (A a(y)) = ¢}

It is easy to check that the family {J(¢) : ¢ € I} of subsets of I has the
finite intersection property and so gives rise to a ultraﬁlteﬁl/{ on I and thence
to an ultrapower A’ /U. Evidently if ¢ € I then J(¢) € U and the ultrapower
will believe ¢.

We have to find an elementary embedding from B into this ultrapower. Given
b € B whither do we send it? The obvious destination for b is the equivalence
class of the function A¢.a(d,b) that sends ¢ to a(¢,b). The function that sends
b to [Ap.a(¢,b)] is Ab.[A¢.a(¢, b)]—which we will write ‘h’ for short. We must
show that h is elementary.

The best way to understand what h does and why it is elementary is to think
of the ultrapower as a reduction of the ultraproduct

[T (A aw)).

Ypel

(“expand the factors; take an ultraproduct; reduce the ultraproduct—to
obtain a ultrapower of the factors ...”)

Each of the factors (A, a(1))) is a structure for £ and therefore the ultraprod-
uct is too. By the same token, for each b € B, each of the factors has an element
which is pointed to by b-the-constant-name-of-b, and therefore the ultraproduct
will too. The key fact is that h is the function that sends each b € B to the
thing in the ultraproduct that is pointed to by b the constant-name-of-b.

As for the elementarity of h, suppose B = ¢(¢). Then, for some choice of
constants b, B = ¢(b), and B’ = ¢'. But now J(¢) is U-large, so the ultrapower
believes ¢. ]

I lifted this proof from [I].
But what we really need is Scott’s lemma:

LEMMA 5 Suppose g: A — B is an elementary embedding. Then there is an
ultrapower A JU of A and an elementary embedding from B into it making the
triangle commute.

SThere doesn’t seem to be any reason to conclude that this ultrafilter will be nonprincipal,
but then nor does it seem to matter if it isn’t. Bell and Slomson don’t say that it will be
nonprincipal. Thanks to Phil Ellison for drawing my attention to this point.
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Al Ju

Proof:

The ideas are the same, but we need to be slightly more careful in the
definition of a(¢). Fix once for all a member a of A. As before, we extend the
language by adding names for every member of B, thus obtaining the language
L as before. Now we expand B by decorating B with these names, but not in
the obvious way. If b is in the range of g we allow b the constant-name-of-b to
denote b; if b is not in the range of g, then b will denote g(a). Let’s call this
expanded structure B'.

If we are to expand A to obtain a structure for £ then we must ensure that,
for each b € B, the constant-name-b-of-b points to something in A. The obvious
way to do this is to ordain that b point to g~! of the thing that that b points to
in the expansion B’ of B. This decorated version of A and the decorated version
B’ of B are elementarily equivalent (with respect to the extended language with
the names) (*)

As before, let I be the set of sentences of £ true in B’. Consider a formula
¢ € I. Recall what we did at the same stage in the proof of Frayne’s Lemma.
This time we replace with existentially-quantified variables only those constants
denoting elements of B not in the range of g. Let’s call this formula ¢’ like last
time. Evidently B’ = ¢’ and so, by the remark (*) at the end of the last
paragraph, the decorated version of A also satisfies ¢'. So, as before, there is
another decoration of .4 which actually satisfies the original ¢. Pick one such
decoration and call it a(¢), and call the structure thus decorated (A, a(¢)). We
define

J(@) ={v e I: (A a(9)) I ¢}
as before, and it has the finite intersection property as before, it gives us an
ultrafilter U as before, and we have the same elementary embedding h from
B into the ultrapower as before. It remains only to check that the diagram is
commutative. I think this can safely be left as an exercise to the reader. [ ]
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