Part III Computability and Logic:
24 Lectures in 2020/21

Thomas Forster

October 10, 2020

l*lﬁ "' lﬁ*l

Contents

Recursive Dataypes|

2.2 Inductively Defined Sets|o 0oL

2.3 Horn Clauses and the Uniqueness Problem|.

2.5 Engendering Relations| 000

2.6 Rectypes and Least Fixed Points|

2.6.1 Fixed Point Theoremsl

[2.6.2 Rectypes as least fixed points|
2.7 Finite vs Bounded vs Unbounded Character|

Rectypes of Unbounded Character are Paradoxicall

[2.7.2 Natural Numbers and Quine’s trickl.

2.9 Restricted Quantifiers|

[2.10 Infinitary Languages|

[2.10.1 “*Wellfounded” 1s Infinitary Hornf

[2.10.2 Some Remarks on Infinitary Languages|

[2.11 Greatest fixed points (“Co-rectypes”)[.

[2.12.1 Free vs non-free rectypes (ambiguous parses)|

[2.12.2 A TLast Crazy Thought].

B—Functions|

8.1 Primitive Recursion|

[3.1.1 Some quite nasty functions are primitive recursive

[3.1.2 Justitying Circular Definitions]

4 CONTENTS
[3.2.1 Primitive Recursive Relations 61

322 Simultaneous Recursion| 65

3.3 p-recursion| L. 66
B.3.1 The Ackermann function| 66

13.3.2 The Ackermann function dominates all primitive recursive |

[functions| 68
[4_Machines| 75
4.1 Finite State Machineso o000 75
4.1.1 Kleene’s theoreml L. 76

4.1.2 The Thought-experiment and Myhill-Nerode] 78

4.1.3 Nondeterministic Machines| 80

M2 Stufftofitinl 83
21 FExercises 84

4.3 Machines with infinitely many states| 88
4.4 p-recursive = register machine-computable] 92
4.4.1 A Universal Register Machine|. 93

4.5 Decidable and Semidecidable Sets. 94
4.5.1 Zigzagging Autoparallelism: Volcanoes|. 94

4.5.2 Decidable and Semidecidable Setsl 96

4.5.3 A Nice Illustration and a Digression| 101

4.5.4 “In finite time”—a warning| L. 102

4.6 Decidable and semidecidable sets of other things| 103
4.6.1 Applications to Logic] 104

4.7 The Undecidablity of the Halting Problem|. 107
K471 Rice’s Theoreml 109

4.8 Recursive Inseparability| 112
O EBxercises . . o v vovv o 114

[5 Representability by \-terms| 119
BI Some A-calculus.o oo 119
5.2 Arithmetic with Church Numerals 120
5.3 Representing the p operator in A-calculus| 124
5.4 Typed Lambda terms for computable functions| 125

) 5 127

6 _Recursive and Automatic Structures| 129
[6.1 Automatic Structured oo oL 129
6.1.1 Automaticordinalsl. 0oL, 131

[6.1.2 Automatic theorfed 131

6.2 Recursive structures|o oo 132
[6.3 Tennenbaum’s Theoreml 134
[6.4 Recursive Saturation] 138
6.5 Teftoverd. 138

CONTENTS 5

7 Incompleteness| 143
[7.1 Proofs of Totality|. 143
[[2 A Theorem of G&del’sl 144

[c2.1 The T-bad functionl, 144
7.3 Undecidablity of Predicate Calculus| 147
[r.4 Trakhtenbrot’s theorem| 147
[(.5 Refinements of theoremI19. 149

I8 Notes and Appendices| 151

8 hapter [2[. 151
[8.1.1 Horn clauses in rectype declarations| 151
[8.1.2 Infinitary Languages| 152

8.2 Chapter|3| 154
[8.2.1 A bit of pedantry|.o 154
B.22 The Ackermann functionl 155

8.3 Chapterld o 157

84 Chaptero| 157

8.5 Chapter|ol 157

8.6 Chapter 77| 157

8.7 Chapter 22| 157

19 Answers to selected questions| 165
9.1 Questions for Tripos 2013, 202
9.2 Questions for Tripos 2014] 202

92,1 Answers 203

9.3 Questions for Tripos 2015 203

1ol 205

(10.0.1 Friedberg-Muchnikl, 206

[10.1 Questions for Tripos 2016 225
[0.1.1 Finite Trees 231
[10.1.2 A topological angle... 7| 232
M01.3 Multisets?« oo i 233

Dear Reader,

Please do not download this document. I update it and reload it all the time
as errors and infelicities come to light, and students make helpful remarks—
or prompt me to make helpful remarks—which need to be incorporated. It’s
probably a good idea to bookmark it.

This file contains more stuff than I am going to be able to lecture, but all of
it is good for your soul. At some point in the lent term i will make an official
pronouncement on what has been lectured and what i consider examinable.
This doesn’t mean that everything that has been pronounced examinable will
actually be examined (there aren’t enough questions available for that!); what
it means is that you will not suffer in the exam by skipping material that has
not been declared examinable. I think that, nearer the time, the stuff that i
consider examinable will be printed in red.

6 CONTENTS

At this stage this text contains lots of messages to myself. but they are
my notes-towards-a-lecture-course and are emphatically not tested-on-animals
materials for you; while you are of course welcome to eavesdrop, these notes
come with no guarantees.

0.1 Revision material

Mostly what follows in this section is Part IT Set Theory and Logic. Very little
of the material traditionally covered that course genuinely essential for Part III
Computability and Logic. Really only the fixed point theorems (and Dr Russell
read the small print of the schedules and concluded that he wasn’t required to
lecture Tarski-Knaster, so he didn’t. However tyou need to know it). Altho’ the
Part II material is not really essential, finding it scary is a predictor of a bumpy
time ahead, so it will do you no harm to skim through it, and take steps should
you feel scared. Much of it is genuinely useful for the Part III Set theory course,
and many of these exercises (dating from when i lectured Part IT ST&L in 2016)
will be helpful. Sheet 5 was designed as an extra sheet for people who were
thinking of pursuing that material in Part III, tho’ it has to be said it was with
the Part III Set Theory course in mind. If you are doing Part III Computability
and Logic you are quite likely to be doing Set Theory as well, so tuck in.

My lecture notes from 2016 are linked here www.dpmms.cam.ac.uk/~tf/
cam_only/partiilectures2016.pdf

0.2 Example Sheets from Part II

Questions marked with a ‘+’ are brief reality-checks; questions marked with a
“ are for enthusiasts/masochists only; & means what you think it means, and

particularly tasty questions are decorated with a pink marzipan pig: L)

Sheet 0: Numbers and Sets Revision

1A Numbers and Sets is the only prerequisite for Part IT Set Theory and Logic,
and—even if you are a Part III student not a Part II student—it can do you no
harm to give a quick going-over to your notes for that course. You might like
to have a quick glance at my supervision/lecture notes for Discrete maths for
Computer Scientists, linked from my la teaching page. Those notes dwell on
Sets rather than Numbers but that’s OK beco’s there is no number theory in
Part II ST&L. And none to speak of in Part IIT Computability and Logic.

Countability

“uncountably many” wasn’t ever a complete answer to the question “How many
wombats are there?” It just may (sometimes) still be an adequate answer but—
now that you are doing Part II you should always be prepared to give more

www.dpmms.cam.ac.uk/~tf/cam_only/partiilectures2016.pdf
www.dpmms.cam.ac.uk/~tf/cam_only/partiilectures2016.pdf

0.2. EXAMPLE SHEETS FROM PART II 7

detail. Read www.dpmms.cam.ac.uk/~tf/countability.pdf and do the exer-
cises therein; it won’t take you long.

(i)
Explain briefly why the diagonal argument that shows that P(IN) is uncountable
doesn’t show that there are uncountably many finite sets of naturals.

Set Theory and Logic, Michaelmas 2016, Sheet 1:
Ordinals and Induction

Questions marked with a ‘*’ may be skipped by the nervous.

(i)

Write down subsets of IR of order types w + w, w? and w?® in the inherited order.

(i)
Which of the following are true?

(a) o+ B is a limit ordinal iff 8 is a limit ordinal;

(b) a - B is a limit ordinal iff @ or § is a limit ordinal;
(c) Every limit ordinal is of the form a - w;

(d) Every limit ordinal is of the form w - a.

For these purposes 0 is a limit ordinal.

(iii)
Consider the two functions On — On: a — 2% and o — a?. Are they normal?

(iv)

Prove that (X, <x) is a total order satisfying “every subordering is isomorphic to an
initial segment” iff it is a wellordering.

v)

What is the smallest ordinal you can not embed in the reals in the style of question

()7

(vi)

Prove that every [nonzero] countable limit ordinal has cofinality w. What about w;?

www.dpmms.cam.ac.uk/~tf/countability.pdf

8 CONTENTS

(vii)*
Recall the recursive definition of ordinal exponentiation:
a®=1; o' =0a” - q, and o*?B) = sup({a”® : B € B}).

Ordinal addition corresponds to disjoint union [of wellorderings], ordinal multiplication
correponds to lexicographic product, and ordinal exponentiation corresponds to ...7
Give a definition of a suitable operation on wellorderings and show that your definition
conforms to the spec: a7 =af . a7.

(viii)
Let {X; : 4 € I} be a family of sets, and Y a set. For each i € I there is an injection

X; < Y. Give an example to show that there need not be an injection (|J,.; Xi) — Y.
But what if the X; are nested? [That is, (Vi,j € I)(X; C X; VX; C X;).]

(ix)
Prove that every ordinal of the form w® is indecomposible: v+ § = w* — ~ =
w® V B =w".

(%)

Show that an arbitrary intersection of transitive relations is transitive. The transitive
closure R* (sometimes written ‘¢r(R)’) is the C-least transitive relation 2 R.

Let (X, R) be a wellfounded binary structure, with rank function p. Prove that

(Vo € X)(Va < p(x))(Ty) (p(y) = o).
[A later—perhaps preferable—version of this question. . .

Let (X, R) be a wellfounded binary structure, with rank function p. Prove that
(Vo € X)(Va < p(x))(Fy € X)(p(y) = @)]

(xi)
Let {X; : ¢ € IN} be a nested family of sets of ordinals.

(a) Give an example to show that the order type of | J, . X: need
not be the sup of the order types of the X;.

(b) What condition do you need to put on the inclusion relation
between the X; to ensure that the order type of UiG]N X;
is the sup of the order types of the X;?

(¢) Show that the ordered set of the rationals can be obtained as the
union of a suitably chosen w-chain of some of its finite subsets.

(xii)
Using the uniqueness of subtraction for ordinals, and the division algorithm for normal
functions, show that every ordinal can be expressed uniquely as a sum

w™ar +w*? a4+ W™ an

where all the a; are finite, and where the «; are strictly decreasing.

0.2. EXAMPLE SHEETS FROM PART II 9

(xiii)

Let f be a function from countable [nonzero] limit ordinals to countable ordinals
satisfying f(a) < « for all (countable limit) «. (f is “pressing-down”.) Can f be
injective?

10 CONTENTS

Set Theory and Logic, Michaelmas 2016, Sheet 2: Posets

‘4’ signifies a question you shouldn’t have trouble with; ‘4’ means what you think it
means.

)
(a) For n € IN, how many antisymmetrical binary relations are there on a set of
cardinality n? How many binary relations satisfying trichotomy: (Vay)(R(z,y) V
R(y,z) Vx =y)? How are your two answers related?

(b) How many symmetric relations and how many antisymmetric trichotomous
relations are there on a set of cardinality n? How are your two answers related?

(c¢) Contrast (a) and (b)

(ii)
Consider the set of equivalence relations on a fixed set, partially ordered by C. Show
that it is a lattice. Must it be distributive? Is it complete?

(iii)
Cardinals: Recall that o~ 8 is |A x B| where |A| = a and |B| = 8. Show that a union
of « disjoint sets each of size § has size o - . Explain your use of AC.

(iv)

Let (A, <) and (B, <) be total orderings with (A, <) isomorphic to an initial segment
of (B, <) and (B, <) isomorphic to a terminal segment of (A, <). Show that (A, <)
and (B, <) are isomorphic.

(v)
(Mathematics Tripos Part II 2001:B2:11b, modified).

Let U be an arbitrary set and P(U) be the power set of U. For X a subset of
P(U), the dual X" of X is theset {y CU : (Vz € X)(yNz #0)}.

1. Is the function X — X" monotone? Comment.

2. By considering the poset of those subsets of P(U) that are subsets of their duals,
or otherwise, show that there are sets X C P(U) with X = X".

3. XVVisclearly a superset of X, in that it contains every superset of every member
of X. What about the reverse inclusion? That is, do we have Y € XVV — (37 €
X)(ZCY)?

4. Is AVVY always equal to AY?

(vi)
Use Zorn’s Lemma to prove that

(i) every partial ordering on a set X can be extended to a total ordering of X;

(ii) for any two sets A and B, there exists either an injection A < B or an injection
B — A.

0.2. EXAMPLE SHEETS FROM PART II 11

(vii)
(Tripos IIA 1998 p 10 q 7)

Let (P,<p) be a chain-complete poset with a least element, and f : P — P an
order-preserving map. Show that the set of fixed points of f has a least element and
is chain-complete in the ordering it inherits from P. Deduce that if f1, fa,..., fn are
order-preserving maps P — P which commute with each other (i.e. f; o f; = fj o fi
for all 4,7), then they have a common fixed point. Show by an example that two
order-preserving maps P — P which do not commute with each other need not have
a common fixed point.

(viii)
IN — IN is the set of partial functions from IN to IN, thought of as sets of ordered pairs
and partially ordered by C.

Is it complete? Directed-complete? Separative? Which fixed point theorems are
applicable?

For each of the following functions ® : (N — IN) — (IN — IN), determine (a)
whether @ is order-preserving, and (b) whether it has a fixed point:

1) ®(f)(n) = f(n) + 1 if f(n) is defined, undefined otherwise.

(ii) @(f)(n) = f(n) + 1 if f(n) is defined, ®(f)(n) = 0 otherwise.

(iii) ®(f)(n) = f(n — 1)+ 1 if f(n — 1) is defined, ®(f)(n) = 0 otherwise.

(i%)
Players I and II alternately pick elements (I plays first) from a set A (repetitions
allowed: A does not get used up) thereby jointly constructing an element s of A%, the
set of w-sequences from A. Every subset X C A® defines a game G(X) which is won
by player I if s € X and by II otherwise. Give A the discrete topology and A“ the
product topology.

By considering the poset of partial functions A<¥ — {I} (A< is the set of finite
sequences from A) or otherwise prove that if X is open then one of the two players
must have a winning strategy.

(x) S

R = (0,1,+x%,<) is a field. Consider the product RN of countably many copies
thereof, with operations defined pointwise. Let U be an ultrafilter C P(IN) and con-
sider R™ /U. Prove that it is a field. Is it archimedean?

(xi)
(i)* How many order-preserving injections IR, — IR are there?

(ii) & Let (X, <x) be a total order with no nontrivial order-preserving injection X — X.
Must X be finite?

12 CONTENTS

Set Theory and Logic, Michaelmas 2016,
Sheet 3: Propositional and Predicate Logic

(i)
Show how A, V and — can each be defined in terms of — and L. Why can you not

define A in terms of V? Can you define V in terms of —7 Can you define A in terms
of — and V7

(ii)
(a) Show that for every countable set A of propositions there is an independent
set B of propositions with the same deductive consequences.

(b) If A is finite show that we can find such a B with B C A.
(¢) Give an example to show that we should not expect B C A if A is infinite.

(d) Show that if A is an infinite independent set of propositions then there is
no finite set with the same deductive consequences.

(iii)
Explain briefly the relation between truth-tables and Disjunctive Normal Form.

Explain briefly why every propositional formula is equivalent both to a formula in
CNF and to a formula in DNF.

Establish that the class of all propositional tautologies is the maximal propositional
logic in the sense that any superset of it that is a propositional logic (closed under =
and substitution) is trivial (contains all well-formed formulae).

(iv)
A formula (of first-order Logic) is in Prenex Normal Form if the quantifiers have
been “pulled to the front”—every propositional connective and every atomic subfor-
mula is within the scope of every quantifier.

Explain briefly why every first-order formula is equivalent to one in PNF.

Axiomatise the theory of groups in a signature with ‘=" and a single three-
place relation “x times y is 2”. Put your axioms into PNF. What are the
quantifier prefixes?

Find a signature for Group Theory which ensures that every substructure
of a group is a semigroup-with-1.

(v)

Show that the theory of equality plus one wellfounded relation is not axiomatisable.

0.2. EXAMPLE SHEETS FROM PART II 13

(vi)
Write down axioms for a first-order theory 7' with equality plus a single one-place
function symbol f that says that f is bijective and that for no n and no x do we have

() = .
(a) Is T finitely axiomatisable?

(b) How many countable models does T have (up to isomorphism)?

(¢) How many models of cardinality of the continuum does it have (up to isomorphism)?
(You may assume that the continuum is not the union of fewer than 2%°
countable sets, a fact whose proof—were you to attempt it—would need AC.)

(d) Let x be an uncountable aleph. How many models does T have of size k?

(e) Is T' complete?

(vii)
Show that monadic predicate logic (one place predicate letters only, without equality
and no function symbols) is decidable.

(viii) &=

(a)* Suppose A is a propositional formula and ‘p’ is a letter appearing in A.

Explain how to find formulee A; and A2 not containing ‘p’ such that A is logically
equivalent to (A1 Ap) V (A2 A —p).

(b) Hence or otherwise establish that, for any two propositional formulee A and B with
A = B, there is a formula C, containing only those propositional letters common
to both A and B, such that A = C and C |= B. (Hint: for the base case of the
induction on the size of the common vocabulary you will need to think about
expressions over the empty vocabulary).

(ix)
Why does T not follow from K and S?
Show that Peirce’s Law: ((A — B) — A) — A cannot be deduced from K and S.

(x*)
Look up monophyletic. Using only the auxiliary relation “is descended from” give a
definition in first-order logic of what it is for a set of lifeforms to be monophyletic.

(xi)
Is
(Vo) (3y) (F(z,y)) = (V2)(By) (V2") 3y)[F(z,y) A F(', ¢) A (z = 2" = y=1)]

valid?

14 CONTENTS

(xii)
(a) Show that the theory of fields of characteristic zero is (first-order)

axiomatisable but not finitely axiomatisable. Show that the theory of fields
of finite characteristic is not first-order axiomatisable.

(b) Recall that a simple group is one with no nontrivial normal subgroup.
Is the theory of simple groups first order?

(c) A local ring is a ring with a unique maximal ideal. Is the theory of local
rings first-order? [Hint: what might the unique maximal ideal be?]

(d) Is the theory of posets in which every element belongs to a unique maximal
antichain first-order?

(e) A theory T is equational iff every axiom of T is of the form (VZ)® where
¢ is a conjunction of equations between T-terms.

Prove that, if T is equational, then a pointwise product of models of T’
is another model of T, and substructures and homomorphic images of
models of T" are models of T.

Which of the theories in (a)-(d) are equational?

(xiii) S=
A type in a propositional language £ is a countably infinite set of formulae.

For T an L-theory a T-valuation is an L-valuation that satisfies 7. A valuation v
realises a type ¥ if v satisfies every o € ¥. Otherwise v omits ¥. We say a theory T’

locally omits a type X if, whenever ¢ is a formula such that T proves ¢ — o for every
o € X, then T F —¢.

(a) Prove the following:
Let T be a propositional theory, and ¥ C L(T) a type. If T locally omits ¥ then
there is a T-valuation omitting .

(b) Prove the following
Let T be a propositional theory and, for each ¢ € IN, let ¥; C £(T) be a type. If
T locally omits every X; then there is a T-valuation omitting all of the ;.

(xiv)

Prove that, for every formula ¢ in CNF, there is a formula ¢’ which
(i) is satisfiable iff ¢ is;
(ii) is in CNF where every conjunct contains at most three disjuncts.
(Hint: there is no assumption that £(¢') = L(¢).)

Set Theory and Logic, Michaelmas 2016,
Sheet 4: More Predicate Logic and Some Set Theory

0.2. EXAMPLE SHEETS FROM PART II 15

H*
Show that if x is a transitive set, then so are | Jz and P(z). Are the converses
true?

(if)*

Show that the Pair-set axiom is deducible from the axioms of empty set, power
set, and replacement.

(iii)*

Show that {z : =(Ju1, ..., un)((z € ur) A (u1 € u2) A-+- A (un € 2))} is not a
set for any n. What assumptions have you made?

(iv)

Write down sentences in the language of set theory to express the assertions
that, for any two sets z and y, the product = x y and the set y” of all functions
from x to y exist. You may assume that your pairs are Wiener-Kuratowski.

Which axioms of set theory are you going to have to assume if these assertions
are to be provable?

(v)

(a) Prove that every normal function On — On has a fixed point.

(b) Prove that the function enumerating the fixed points of a normal
function On — On is itself normal.

(c) If « is a regular ordinal and f is a normal function show that f has a
fixed point of cofinality a.

(d) Are any of your fixed points regular?

(vi)

Show that the axiom of choice follows from the assumption that cardinals are
totally ordered by <.qrq.

(vii)
Explain briefly the equivalence of the four versions of the axiom of foundation
given in lectures: (i) The axiom scheme of e-induction; (ii) The assertion that

every set is wellfounded; (iii) Axiom of Regularity; (iv) Every set belongs to the
cumulative hierarchy.

16 CONTENTS

(viii)

f is an €-automorphism if f is a permutation of V' that preserves €: = € y +—
f(z) € f(y). Show that a model of ZF (with foundation of course) can have no
nontrivial e-automorphisms.

Give an example to show that the surjectivity condition on f is necessary;
that is to say, there are non-trivial injective €-homomorphisms.

(ix)

For the Wiener-Kuratowski ordered pair p({z,y)) = max(p(z), p(y)) + 2. (p is
set-theoretic rank.)

but finitely many x and y?

(*)

There are various ways of constructing implementations (as sets) of Q, Z, R
and C from an implementation (as sets) of the naturals. For one of these
constructions compute the ranks of the sets that have the roles of Q, Z, IR
and C.

Different implementations will almost certainly give you different answers.
Are there any lower or upper bounds on the answers you might get?

(xi)
Consider the binary relation E on IN defined by: n E m iff the nth bit (counting

from the right, starting at 0) in the binary expansion of m is 1. What can you
say about the structure (IN, E)?

(xii)

Prove that, for each n € IN, there is a set of size N,,. Is there a set of size N7

(xiii)

Assume that the cartesian product x x y always exists however you implement
ordered pairs. Infer the axiom scheme of replacement.

(xiv)

Assume that every normal function On — On has a regular fixed point. Con-
sider the function that enumerates the initial ordinals and deduce that there is
a “weak inaccessible” x. Which axioms of ZF hold in V.7

0.2. EXAMPLE SHEETS FROM PART II 17

(xv)
Suppose {A; : ¢ € I'} and {B; : i € I} are families of sets such that for noi € I is
there is a surjection A; —» B;. Show that there is no surjection U A —» H B;.
iel el
You will need the axiom of choice. Is there a converse?
Using these ideas you can show that X, # 280 without using AC.

Sheets from here on are still under construction!!

Set Theory and Logic, Michaelmas 2016, Sheet 5

Sheet 5 is for Part II enthusiasts who want to take this stuff further; it’s a
mixture of revision, consolidation and looking-ahead. It is also for Part III
students who want something to get them used to what they are going to be
doing later in the year. (Part III Logic is lectured in Lent.)

(i)
Explain to your supervision partner (or to anyone listening who might be con-
fused) the difference between

(i) Nonstandard naturals
(ii) Countable ordinals
(iii) Infinite Dedekind-finite cardinals

(ii)
For P a poset, let P* be the poset of chains-in-P partially ordered by end-

extension. (Chains are allowed to be empty). Show that there is no injective
homomorphism P* — P.

(iii)

Any two countable dense linear orders without endpoints are isomorphic. Give
an illustration to show how your back-and-forth construction might not work
for dense linear orders of size ;. How do you have to spice up the denseness
condition to prove an analogous result for linear orders of size 817

(iv)
(For those of you who did Languages and Automata)

A wellordering of IN is recursive iff its graph (subset of IN x IN) is decidable
(“recursive”); an ordinal is recursive iff it is the order type of a decidable (“re-
cursive”) wellordering of IN. Which of the countable ordinals you have learned
to know and love are recursive? Come to think of it, are all countable ordinals
recursive?

18 CONTENTS

(v)*

(For those of you who did Languages and Automata)

Prove Trakhtenbrot’s theorem that if S is a signature with equality and at
least one binary relation symbol then the set of S-sentences true in all finite
structures is not semidecidable (“r.e.”).

(vi)
(A taster for forcing)

A poset (P,<p) is [upwards] separative if (Vz,y € P)(x £ y — (3z >
y)(Yw)(w # 2V w # 7))

For each of the following posets say whether or not it is (i) separative (ii)
directed (iii) chain-complete.

The set of finite sequences of countable ordinals (thought of as sets of ordered
pairs) partially ordered by C.

The set {f : f is an injection from some set of countable ordinals — R}
ordered by C. Think of f as a set of ordered pairs.

(vii)
(For those of you who did some graph theory in Lent term)

Using propositional logic only, show that a(n undirected) graph and its com-
plement cannot both be disconnected. (Hint: propositional letters will corre-
spond to edges)

(viii)

A poset (P, <) is called downwards separative if for all © € y there is z < x
with z incompatible with y. (“incompatible” means “have no lower bound”).
We say that a poset is downwards splitting if for every x there are y and z such
that y, z < z, and y and z are incompatible.

(a) Show that not every downwards separative poset is downwards splitting.

(b) Show that if a poset has no minimal elements and is downwards separa-
tive, then it is downwards splitting.

A set D C P is called downwards dense if for every p in P there is a d in D
such that d < p.

Suppose X X is a collection of subsets of P. We say that G C P is X X-
generic if G has nonempty intersection with every downwards dense element of
XX.

We say that G is a filter if

1. for any z,y in G there is z in G such that z <z and z < y, and
2. for any z in G and x < y, we have y in G.

(c) If XX is countable, show that there is an X X-generic
filter.

0.2. EXAMPLE SHEETS FROM PART II 19

(d) Let (P, <) be a downwards separative poset with no
minimal elements and let X X be a collection of subsets of
P closed under complementation (i.e., if X € XX, then
also P\ X € X X). Show that if G is an X X-generic filter,
then G ¢ X X.

(e) Let (P, <) be the set of finite sequences of zeros and
ones, ordered by reverse inclusion. Show that this is a
downwards separative poset without minimal elements.
(f) Let XX be the collection of recursive sets of finite
sequences of zeros and ones. Show, using (c), (d), and (e),
that there is a non-recursive such set.

(ix)
(Concrete constructions of limits in ZF)

Let (I,<;) be a directed poset and, for each i € I, let A; be a set and, for
all i <7 7, let 0y : A; — A; be an injection, and let the injections commute.

Show that there is a set A; with, for each ¢ € I, an injection o; : A; — Aj
and the 0; ; commute with the o;.

Show also that A; is minimal in the sense that if B is any set such that for
each i € I there is an injection 7; : A; — B and the 7; commute with the o; ;,
then there is a map A; — B.

Let (I,<;) be a directed poset and, for each i € I, let A; be a set and, for
all i <7 7, let 0;,; : Aj; = A; be a surjection, and let the surjections commute.

Show that there is a set A; with, for each i € I, a surjection 7; : A; —» A;.

Show also that A; is minimal in the sense that, if B is any set such that for
each i € I there is a surjection 7; : B — A; and the 7; commute with the o j,
then there is a map B —» Aj.

(%) &

Let G be the alternating group of permutations of V,,. For each n € IN its
members can move = by permuting those elements of |J" x that are of finite
rank and fixing the remainder. A set that is fixed by everything in G under
the nth action of G is said to be n-symmetric; if it is n-symmetric for all
sufficiently large n it is just plain symmetric.

Consider the collection of sets that are hereditarily symmetric. Which ax-
ioms of ZFC are true in this structure?

(xi)* (A taster for Large Cardinals)

Prove Lo$’s theorem :

20 CONTENTS

THEOREM 1 LetU be an ultrafilter C P(I). For all first-order expressions ¢,

([[AV U Eoiff {i: A ¢} U

i€l

(You may assume AC)

Suppose there is a set K with a nonprincipal ultrafilter 4 C P(K) that
is closed under countable intersections. By using Scott’s trick concretise the
elements of the ultrapower VX /U. Prove that it is wellfounded. What can you
say about the Mostowski collapse?

(i) S

T = (I,<z) is a set of indiscernibles for a model M for a language L iff <z
is a total order, and for all ¢ € L, if ¢ is a formula with n free variables in it
then for all distinct n-tuples # and ¥ from 7 taken in <z-increasing order
we have M = ¢(Z) +— o(¥).

Now let Z be a total order, T' a theory with infinite models and a formula P()
with one free variable s.t. T thinks that the extension of P is an infinite total
order. Then T has a model 9 in which Z is embedded in (the interpretation
of) P as a set of indiscernibles.

(Notice that there is no suggestion that the copy of Z in 91 is a set of 9, or
is in any way definable.)

It is comparatively straightforward, given Z and T" and P(), to find 9t as in
the theorem if we do not ask that I should be embedded as a set of indiscernibles:
compactness does the trick. To get the set of indiscernibles you need to use
Ramsey’s theorem from Graph theory.

(xiii)
(GRM revision from a logical point of view). Wikipeedia says:

Commutative Rings O Integral Domains O Integrally Closed Do-
mains O GCD domains O Unique Factorization Domains O Principal
Ideal Domains O Euclidean Domains 2 Fields

All these families-of-structures can be thought of as belonging to the one
signature: 0, 1, 4+, - and —. Which of them are first-order axiomatisable? In
each case provide axiomatisations or explain why there are none. Identify the
quantifier complexity of the axiomatisations you find.

(xiv) (&)

How many countable [linear] order types are there whose automorphism group
is transitive on singletons?

0.2. EXAMPLE SHEETS FROM PART II 21

(xv)

How many transitive subsets of V,, are there?
How many transitive sets are there all of whose members are countable?

(xvi)
Recall the difference between a wellorderable set and a wellordered set.
Prove without using AC or foundation or ordinals that every set of wellorder-
able sets has a member that injects into all the others.
Is this the same as saying that the collection of alephs is wellordered by the
order relation on cardinals?

(xvii)

A directed limit of wellfounded structures under end-extension is wellfounded.

Languages and Automata Extra Sheet

Recall Cantor Normal Forms for ordinals below €3. Show that if we don’t care
about writing the terms in decreasing order then the language is context-free,
but that if we write them out properly, with terms in decreasing order, then it
is not context-free.

22

CONTENTS

Chapter 1

Introduction and some
History

Start with Hilbert and diophantine equations. The key notion behind com-
putability is the slangy informal notion of finite object.

There is a surprisingly illuminating history to be found in [25].

To apply the theorems and insights of computation theory widely in math-
ematics we need the notion of a finite object or (perhaps better put): object of
finite character. Classic contrastive explanation: rationals are finite objects but
reals are not. (“Finite precision” vs “Infinite precision”). This matters to us
because any sensible concept of algorithm that we come up with is going to be
one that can cope with only a finite amount of information at any one time: its
inputs must be things that are finite-objects in the sense we are trying to get
straight.

Roughly, a finite object is an object that has a finite description in a count-
able language (and a countable language that has a finite description, at that).
Such objects may well be infinite in some other sense. The graph of an polyno-
mial function IR — IR certainly contains infinitely many points but it can still
be given a finite description and is a finite object in our sense (at least if it has
coefficients in Z). (The function-in-extension is literally infinite, thought of as
a set). Any countable language can be gnumberecﬂ and we can contemplate
which of the manipulations of the finite objects it characterises correspond to
the computable manipulations of the gumbers of the expressions of the language.

The concept of finite object has applications outside pure mathematics. Verte-
brates have skeletons made from bones that (from the point of view of the animal)
are rigid; movement only occurs at [a small finite number of] joints. Thus the hu-
man arm has only finitely many degrees of freedom so controlling its movements is a
tractable problem: we have a motor cortex! The octopus tentacle has no skeleton and
has infinitely many degrees of freedom, so controlling its movement is an intractable
problem. There is no detailed central control of movements of the octopus tentacle:

1Godel-numbering; the ‘g’ is silent.

23

at some point have to explain ‘acceptable
enumeration’. If we are to deal with com-
putation out in the wide world as com-
puting with numerals then we have to be
sure that our encoding/gnumbering is un-
der control.

24 CHAPTER 1. INTRODUCTION AND SOME HISTORY

movements are controlled locally by a nextwork of ganglia, one for each sucker. The
octopus brain does not know the configuration of the tentacles.

Word problems for groups. Group presentations. Note that (remember from
last year a Part IT ST&L question about the theory of simple groups of order 60)
a presentation of a group does not straightforwardly give rise to a categoricaﬂ
first-order theory that characterises it. You cannot compute the first-order
theory of a group from a presentation of it. Burnside groups?

r-process and s-process: an example from Physics

Physicists who study nucleosynthesis distinguish between s-process nuclei and
r-process nuclei (the ‘s’ and the ‘r’ connoting slow and rapid respectively) One
can think of the two sets of s-process and r-process nuclei as inductively defined
sets as follows[]

e You are an s-process nucleus if you have very long (or infinite) half-life
and are the result of a neutron capture by an s-process nucleus or the result of
a [-decay of a result of neutron capture by an s-process nucleus;

e You are an r-process nucleus if you are stable to neutron-drip and you
are either (i) the result of a neutron capture by an r-process nucleus or (ii) the
result of a B-decay of an r-process nucleus.

But we’ll start with finite+bounded (not least because it enables us to mo-
tivate the (otherwise rather odd) move of taking nondeterminism seriously).

Hilbert’s 1900 address set a number of tasks whose successful completion
would inevitably involve more formalisation. It seems fairly clear that this
was deliberate: Hilbert certainly believed that if formalisation was pursued
thoroughly and done properly, then all the contradictions that were crawling
out of the woodwork at that time could be dealt with once and for all.

One of the tasks was to find a method for solving all diophantine equations.
What does this mean exactly? Let us review the pythagorean equation z2+y? =
22, to see what “solving” might mean. It is easy to check that, for any two
integers a and b,

(2~ 1) + (2ab)? = (a® + 2P,
and so there are infinitely many integer solutions to z? + y? = z2. Indeed we
can even show that every solution to the pythagorean equation (at least every
solution where z, y and z have no common factor) arises in this way:

Notice that if 2 + y2 = 22, then z is odd and precisely one of z and y is
even. (We are assuming no common factors!) Let us take y to be the even one
and x the odd one.

Evidently 22 = (2 — y)(2 + y), and let d be the highest common factor of
z —y and z + y. Then there are coprime a and b satisfying z + y = ad and

2A Categorical theory is a theory with a unique model (up to isomorphism).
30ne could make a type-token point here: i think physicists sometimes refer to these
nucleus-types as species.

25

z —1y = bd. So x? = abd?. This can happen only if a and b are perfect squares,
say u? and v?, respectively. So x = uvd.

This gives us z = “2“2”}2 -dand y = "25”2 -d and in fact d turns out to be 2.
Thus we have a complete description of all solutions (in integers) to the
pythagorean equation.
You probably learnt in Part II how to use continued fractions to find all

solutions to Pell’s equation.

Hilbert’s question—and it is a natural one—was: can we clean up all diophan-
tine equations in the way we have just cleaned up this one?

If there is a general method for solving diophantine equations, then we have
the possibility of finding it. If we find it, we exhibit it, and we are done. To
be slightly more specific, we have a proof that says “Let E be a diophantine
equation, then ...”, using the rule of universal generalisation (UG).

On the other hand, if there is no such general method, what are we to do?
We would have to be able to say something like: let 2 be an arbitrary algorithm;
then we will show that there is a diophantine equation that 2l does not solve.
But clearly, in order to do this, we must have a formal concept of an algorithm.
Hilbert’s challenge was to find one.

There are various formal versions of computation. We shall see how the
set of strings recognised by a finite state machine gives rise to a concept of
computable set. However, we will also see a fatal drawback to any analysis of
computable set in terms of finite-state machines: the matching bracket language
is not recognised by any finite-state machine but is obviously computable in some
sense. The problem arises because each finite-state machine has a number of
states (or amount of memory, to put it another way) that is fixed permanently
in advance. Despite this, the concept of computablity by finite-state-machines
turns out to be mathematically interesting and nontrivial. However it is not
what we are primarily after. The most general kind of computation that we
can imagine that we would consider to be computation is deterministic, finite
in time and memory but unbounded: no predetermined limit on the amount of
time or memory used. There have been various attempts to capture this idea in
machinery rigorous enough for one to prove facts about it. The (historically) first
of the most general versions is Turing machines. There is also representability
by A-terms which we will see in chapter

Another attempt is u-recursion, which we will do in detail below. The other
approach we explore in some detail is an analysis in terms of register machines.
They do not have the historical cachet of Turing machines but are slightly easier
to exploit, since they look more like modern computers.

What became clear about 70 years ago is that all attempts to formalise
the maximal idea of a computable function result in the same class of func-
tions. This gives rise to Church’s thesis. Although not normally presented as
such, Church’s thesis is really just a claim that this endeavour to illuminate—by

This syntactic/semantic
distinction is not the
same as the function-
in-intension/function-in-
extension distinction of
course

26 CHAPTER 1. INTRODUCTION AND SOME HISTORY

formalisation—our intuitive idea of a computable function has now been com-
pleted: we will never need another notion of “computable”ﬁ

How can we be so confident? Well, we have a completeness theorem. All
completeness theorems have two legs: a semantic concept and a syntactic con-
cept. In Part II Logic and Set Theory you saw an elementary and pleasing
example of a completeness theorem: the completeness of propositional logic. It
states that two classes of formula are one and the same class. (i) The set of
truth-table tautologies; and (ii) the class of formulee deducible from axioms K,
S and T by means of substitution and modus ponens. (ii) is a syntactic concept,
and (i) is a semantic concept.

The semantic concept in the computability case is Turing-computable or
register machine-computable. The syntactic concept is a bit harder. The first
attempt at it is primitive recursive; we will discover the correct syntactical
concept by examining what goes wrong with primitive recursive functions.

But before that we have to get all our definitions out of the way.

1.1 Definitions

Intension-extension (talk over this); graph of a function. We will use lambda
notation.

‘W signifies the end of a proof.
We use the pig classification for cuteness of theorems. (The pigs are made

of pink icing sugar). The more occurrences of S the tastier the theorem:;
the more occurrences of ‘&’ the nastier the construction.

IN is the set of natural numbers and N is its cardinality, Z is the set of
integers, Q is the set of rationals, and w is the first infinite ordinal.

Cardinality: ‘|X|” denotes the cardinal of the set X.
[X]™is {z C X : |z| = n}.
we write ordered pairs as (z,y)
range of a function: f“IN := {f(n):n € IN}
Dom(f) :={n e IN: f(n)l} (see p.
for consing—both ways round, for both cons and snoc

X — Y is the set of partial functions from X to Y

4Philosophically inclined readers may wish to reflect on the curious fact that Church’s
thesis is a metamathematical allegation of which no formal proof can be given. As soon as we
formalise “All attempts to formalise our informal notion of finite-but-unbounded computation
result in the same formal notion”, the reference to informal computation becomes a reference to
a formal notion and the sense is lost. You may wish to google ‘Church’s translation argument’
in this connection.

Chapter 2

Induction, Wellfoundedness

and Recursion in a General
Context

Induction can only be understood backwards, but it must be lived
forwards.

Kierkegaard

2.1 Wellfounded Induction

Suppose we have a carrier set with a binary relation R on it, and we want to
be able to infer

Vo ¢ (z)
from

(Vo) (Vy) (R(y,z) — () = ¢(x))

In words, we want to be able to infer that everything is ¢ from the news that
you are 9 as long as all your R-predecessors are 1. y is an R-predecessor of x
if R(y,x). Notice that there is no “case n = 0” clause in this more general form
of induction: the premiss we are going to use implies immediately that a thing
with no R-predecessors must have 1. The expression “(Vy)(R(y,z) — ¥(y))”
is called the induction hypothesis. The first line says that if the induction
hypothesis is satisfied, then x is ¥ too. Finally, the inference we are trying to
draw is this: if z has ¥ whenever the induction hypothesis is satisfied, then
everything has 1. When can we do this? We must try to identify some condition
on R that is equivalent to the assertion that this is a legitimate inference to draw
in general (i.e., for any predicate).

Why should anyone want to draw such an inference? The antecedent says
“r is 1 as long as all the immediate R-predecessors of x are v, and there are

27

28 CHAPTER 2. RECURSIVE DATAYPES

plenty of situations where we wish to be able to argue in this way. Take R(z,y)
to be “x is a parent of y”, and then the inference from “children of blue-eyed
parents have blue eyes” to “everyone has blue eyes” is an instance of the rule
schematised above. As it happens, this is a case where the relation R in question
does not satisfy the necessary condition, for it is in fact the case that children
of blue-eyed parents have blue eyes and yet not everyone is blue-eyed.

To find what the magic ingredient is, let us fix the relation R that we are
interested in and suppose that the inference

(Vy) (R(y, 2) = ¥(y)) — ¢(x)

V) (y(x

R-induction

has failed for some choice 1 of predicate. Then we will see what this tells us
about R. To say that R is well-founded all we have to do is stipulate that this
failure (whatever it is) cannot happen for any choice of .

Let ¢ be some predicate for which the inference fails.

Then the top line is true and the bottom line is false. So {z : —¢(z)} is
nonempty. Let us call this set A for short. Using the top line, let z be something
with no R-predecessors. Then all R-predecessors of = are v (vacuously!) and
therefore x is 1 too. This tells us that if y is something that is not v, then
there must be some y' such that R(y',y) and y' is not 1 either. If there were
not, y would be . This tells us that the collection A of things that are not 1
“has no R-least member” in the sense that everything in that collection has an
R-predecessor in that collection. That is to say

(Vo € A)(Fy € A)(R(y,x))

To ensure that R-induction can be trusted it will suffice to impose on R
the condition that (Vo € A)(Jy € A)(R(y,z)) never hold, for any nonempty
A C dom(R). Accordingly, we will attach great importance to the following
condition on R:

DEFINITION 1 R iswell-founded iff for every nonempty subset A of dom(R()
we have (3x € A)(Vy € A)(—R(y,x))
(x is an “R-minimal” element of A.)

This definition comes with a health warning: it is easy to misremember. The
only reliable way to remember it correctly is to rerun in your mind the discussion
we have gone through: well-foundedness is precisely the magic property one
needs a relation R to have if one is to be able to do induction over R. No more
and no less. The definition is not memorable, but it is reconstructible.

Wellfoundedness is a very important idea to be found all over Mathematics,
even in places where the word is not used. Noetherian rings are rings with
a certain wellfoundedness property. Hilbert’s basis Theorem is the news that
certain constructions preserve wellfoundedness.

You may be more familiar with a definition talking about “no infinite de-
scending chains”. These two definitions are not equivalent without DC, the
Axiom of Dependent Choices:

2.1. WELLFOUNDED INDUCTION 29

(Ve € X)(3y € X)(R(z,y))
(Ve e X)3f : IN = X)(f(0) = = A (Vr)(R(f(n), f(n+1))))

If DC fails we can let X be an infinite Dedekind-finite set (not the same size
as any of its proper subsets) and consider the tree of wellorderings of subsets
of X ordered by reverse end extension (so that longer wellorderings come lower
in the tree). This tree is not wellfounded (it has subsets—such as the tree
itself—with no minimal elements) but has no infinite descending chain.

REMARK 1 Suppose R’ C R are wellfounded relations on a fixed domain.
Then R'-induction is a weaker principle than R-induction.

Proof:

If R'(z,y) — R(z,y) then (Vy)(R(y, =) — ¢(y)) implies (Vy)(R'(y,z) — é(y))
and
(Vz)%(Vyﬁ(R’(yw) — ¢(y)) = ¢(x)) implies (Vz)((Vy)(R(y,z) — ¢(y)) = ¢(z))
and finally

(V) (Vy) (R(y, z) = o(y)) = d(x)) = (V2)(6(2))
implies
(V) (YY) (R (y,) = 8(y)) = ¢(z)) — (V2)((2))
|

Reflect that if R’ is the empty relation then R-induction is trivial. For consider:
if R is the empty relation then

(Vo) (Vy) (R(y, ©) = 6(y)) = ¢(z)) = (V2)(6(2))

(V) (V) (L = ¢(y)) = d(x)) = (V2)(é(2))
which is
(V2)((Vy)(T) = o(z)) = (V2)(9(2))
which is

(V) (¢(z)) = (V2)((2))-

R’-induction allows you to infer ¢(x) as long as everything that bears R’ to
2 has ¢. R-induction similarly. If R’ C R then there are fewer things that bear
R’ to x than there are that bear R, so you are inferring ¢(x) on the basis of less
information; a stronger inference.

This explains why wellfounded induction over longer wellorderings is stronger
than wellfounded induction over shorter wellorderings. This matters beco’s,
typically, (the graph of) a wellordering of IN to length « (where a >) is a
proper subset of (the graph of) a wellordering of IN to length S.

EXERCISE 1 (*[]]

Yes, i know, you haven’t been lectured natural deduction or sequent calculus at this stage.
This is for revision

30 CHAPTER 2. RECURSIVE DATAYPES

Provide a sequent calculus or natural deduction proof that

(V) ((Vy) (R(y,) = ¢(y)) = o(x)) = (V2)(¢(2))

and
(Vay) (R (z,y) = R(x,y))
together imply

(vV2) (V) (R (y,) = 6(y)) = ¢(x)) — (V2)(8(2)).
If (Vy)(—R(y,x)) then we say z is a zero or a zero element.

EXERCISE 2 Let (A, R) and (B,S) be wellfounded binary structures.

(i) Show that the pointwise product is also a wellfounded binary
structure.

Define a relation T on A — B by T(f,g) iff Va,a’ € A)(R(a,a’) — S(f(a),g(a’)).

(i) Give an example to show that T need not be wellfounded even if
R and S are.

(#i) Show that in contrast the restriction of T to those elements of
A — B that take only finitely many nonzero values is wellfounded.

THEOREM 2 The Recursion Theorem
If (X, R) is a wellfounded structure and G : X x P(V) — V then there is a
unique f satisfying

(Vo e X)(f(x) = G(z,{f(y) : R(y,x}))

[Aside: In earlier versions i had G : X x V — V, and various people picked
me up on it. The point is that you want G to be able to cope with any ordered
pair whose first component is in X and whose second component is a subset of
the range of f. Such a thing is at any rate a set, and so is in P(V), that being
the collection of all sets. If you are in the world of sets V' and P(V) are the
same thing, so there doesn’t seem to be much point in distinguishing between
them—particularly if it makes the statement of the theorem longer. But yes,
P(V) is better than V|

EXERCISE 3 Prove theorem[d

The proof is entirely straightforward once wellfoundedness is understood.
You need the concept of an attempt, and you prove by induction that every
element of the domain of R is in the domain of some attempt. You also show
that any two attempts agree on their intersection. Then you form the union of
all attempts. []

2.2. INDUCTIVELY DEFINED SETS 31

2.2 Inductively defined sets aka Recursive Datatypes
aka Rectypes

Rectypes: have founders and constructors.

Examples of rectypes:

e The empty set is Kuratowski-finite (“Kfinite”); if X is Kfinite then X U{y}
is Kuratowski-finite.

e The empty set is Nfinite; if X is Nfinite and y ¢ X then X U {y} is
Nfinit?]

e The empty set is hereditarily ﬁniteﬂ if x and y are hereditarily finite so
is x U {y}.

Classically Kfinite and Nfinite are the same; constructively they are not. In
this context sets which are plain vanilla-finite (both K-finite and Nfinite in the
way you know and love) are said to be inductively finite:

e The empty set is inductively finite; if is inductively finite so is
z U {y}.

[put somewhere a proof that Kfinite sets closed under binary union and [J X
is kfinite if X is a kfinite set of kfinite sets]
Further examples:

L)

e Natural numbers

e Formulae (Backus-Naur Form),

e Proofs

e The family of words in a group presentation
e primitive recursive functions (later!)

e lists, trees.

You might benefit from looking at exercises 6 and 10 on PTJ’s Part II Set
Theory and Logic sheet 3 2012/3 on https://www.dpmms.cam.ac.uk/study/
II/Logic/2012-2013/LSqns3.pdf| There is a discussion of them in the materi-
als on my Part IT Materials page (probably not linked at the moment

All these rectypes are of finite character: the operations that construct them
are finitary. [Is IN the terminal object in the category of rectypes of finite
character...? Only if the maps are parsimonious]

The collection HC' (aka Hy,) of hereditarily countable sets is a rectype
of infinite (but bounded) character. The constructor (“grab countably many
sets”) is not of finite character. There is an old tripos question on it wot i
set years agohttps://www.maths.cam.ac.uk/undergrad/pastpapers/files/
2017/1ist_ii_1.pdf| 15H p 61

2This property is also called ‘cardinal-finite’. There doesn’t seem to be a standard notation
for it.

3vide old Set Theory and Logic example sheets. See q 8 on https://www.dpmms.cam.ac.
uk/study/II/Logic/2019-2020/20sheet4.pdf

https://www.dpmms.cam.ac.uk/study/II/Logic/2012-2013/LSqns3.pdf
https://www.dpmms.cam.ac.uk/study/II/Logic/2012-2013/LSqns3.pdf
https://www.maths.cam.ac.uk/undergrad/pastpapers/files/2017/list_ii_1.pdf
https://www.maths.cam.ac.uk/undergrad/pastpapers/files/2017/list_ii_1.pdf
https://www.dpmms.cam.ac.uk/study/II/Logic/2019-2020/20sheet4.pdf
https://www.dpmms.cam.ac.uk/study/II/Logic/2019-2020/20sheet4.pdf

32 CHAPTER 2. RECURSIVE DATAYPES

2.3 Horn Clauses and the Uniqueness Problem

An inductively defined set can always be thought of as The Least thing above
X satisfying F' and containing y. When can we do it? Sometimes obviously
possible sometimes obviously impossible. Interesting cases in the middle: forcing
and field extensions. There is an Existence Problem and a Uniqueness
Problem: is there a minimal thing above X satisfying F' and containing y? If
there is, is it unique? For example: if thing means total order then there is a
minimal thingﬂ but it’s not unique. There is a syntactic reason for this.

DEFINITION 2

A Horn clause s a disjunction of atomics and negatomics of which at
most one is atomic.

A Horn property s a property captured by a [closure of a] Horn expression;

A Horn theory 18 a theory all of whose axioms are universal closures of
(congunctions of) Horn clauses.

If ‘least’ means ‘least with respect to C’ then there is a nice logical theorem:
it works iff F' is Horn. Intersection-closed. ¢ f“X™ C X ’ is Horn. The easy
direction i am leaving as an exercise; it will say: if F' is a Horn property, then
for every x the F-closure of x exists and is well-defined and uniqueﬂ

Observe that “is a total order” is not a Horn property.

The reason for the appearance of Horn clauses here is that a rectype decla-
ration is always a pile of Horn sentences. For example, we declare the natural
numbers by

IN(0); (V) (IN(z) — IN(S()))
We declare the datatype of a-lists by

a-list(null); (VI)((a-list(l) A a(x)) — a-list(cons(z,1)))

The class of models of a Horn theory is closed under various constructions,
e.g. substructure, direct limits. This is a cute fact that you should remember
(and prove, too—it’s not difficult), but we won’t make any use of it in this
cours

4That is the order extension principle, a consequence of Zorn’s lemma.

5You may recall from an earlier Part II Set Theory and Logic sheet that the collection of
transitive relations on a fixed set is a complete poset. If you didn’t prove it then, prove it
now. Observe that the only feature of the property transitive that you have used in the proof
is the fact that it is a Horn property.

6There is even a converse, something along the lines of: if the class of models of ¢ is closed
under substructure and direct limits [and certain other things which i forget] then ¢ is logically
equivalent to a Horn sentence. You can see results like this in a model theory course.

2.4. STRUCTURAL INDUCTION 33

Symmetric, irreflexive, antisymmetric, transitive, reflexive are Horn prop-
erties. If F is a Horn property [of relations] then we have the notion of the
F-closure of a relation. The [graph of] the F-closure of a (binary) relation-|in-
extension] Ris (1{S 2 R: F(9)}.

The significance of these ideas for us here is that the [graph of the] F-closure
of a relation is a rectype. For example, the transitive closure of a relation—
thought of as a set of ordered pairs—is closed under a certain binary operation
on pairs. The assertion that a set of ordered pairs is so closed is a Horn sentence.
And, since it is a Horn sentence, the union of a C-directed family of transitive
relations is another transitive relation.

Being a group is a universal horn property [by which we mean that the
axioms of group theory are universally quantified Horn formula] and we have the
notion of closing a set of elements under an operation to obtain a group. Ditto
ring, integral domain ...but not field! [miniexercise: which of the field axioms
is not horn?] That is why the concept of “least field extending F containing
some given elements” is not completely straightforward. You can obtain the
least field extending F containing some given elements but you don’t do it by
taking the intersection of lots of fields.

Horn-ness of the declaration is not only sufficient for the closure to be legit-
imate, well-defined etc etc, but is necessary. See appendix |8.1.1

2.4 Structural Induction

Recursive datatypes support Structural Induction (“ancestral induction” in
Russell-and-Whitehead. The terminology ‘ancestral’ for what is nowadays often
called the transitive closure (of a relation (not a set—that’s something different!)
is in Russell-and-Whitehead, the idea—if not this particular terminology—goes
back to Frege) and declaration of functions by recursion. Observe that this
justification is constructive.

The way to understand structural induction is as a simple-minded general-
isation from mathematical induction over IN: if one wants to show that every
member of a rectype has property F one first establishes that all the founders
are F' (as it were, prove F'(0)) and that F-ness is preserved by the constructors
(as it were: F'(n) — F(n+ 1)) at which point one infers that everything has F.

This section is so short because—altho’ this idea is epoch-making—it’s ter-
ribly simple, and there’s actually not much to say. One could make the point
that lots of inductions that are represented as induction over IN are best un-
derstood as inductions over other rectypes. For example in Logic there are
various results about languages that one usually proves by mathematical in-
duction over the number of quantifiers and connectives. These proofs are all
(morally!) structural inductions over the rectype of the language that is being
reasoned about. There now follows a rather nice illustration from Part Ia of the
Computer Science Tripos.

34 CHAPTER 2. RECURSIVE DATAYPES

EXERCISE 4

“We define the length of a propositional formula by recursion as follows:

|a" =1,
ITI=1,
Ll =1,

|AAB| = |A]+|B| + 1,
|AV B| = |A| +|B| + 1,
I~A| = |A]+ 1.

We define a translation which eliminates disjunction from propositional formule
by the following recursion:

tr(a) =a, tr(T)=T, tr(L) =1,
tr(A A B) =tr(A) Atr(B),
tr(AV B) = =(=tr(A) A —tr(B)),
tr(—A) = —tr(A).

Prove by structural induction on propositional formule that
ltr(A)] < 34| -1,
for all Boolean propositions A.”

Message for students on the 20/21 reading course: this next question is a
sleeper for WQO theory and can be omitted.

EXERCISE 5

e Declare the rectype of a-lists. (Observe that it is free.) Suppose the type
«a has been equipped with a quasiorder <,. We say that an «-list l; stretches
into another a-list ls if there is a 1-1 increasing map [from the addresses of Iy
to the addresses of lo such that, for all addresses a, a <, f(a). That is to say:
think of an a-list as a function defined on a proper initial segment of IN. Give
a definition of stretching by list-recursion.
e Declare the rectype of a-trees, and observe that it is free. Define stretching
Should really provide a for a-trees, and give a recursive definition.

model answer
kfiniteness exercises here. . . ? With IN we can prove things by induction and define things by recursion.

With other rectypes we can (as i have just illustrated) do (“structural”) in-
duction, and we can also define functions by recursion. Natural and important
examples of functions defined by recursion on other rectypes include recursive
semantics for languages (which of course are recursive datatypes). There are
communities who care a very great about the details of recursive semantics:
theoretical computer scientists (there is even a 1B CS course devoted to it) and
Linguists (the linguists speak of compositional semantics rather than recursive
semantics). Mostly (but see subsection we can take this kind of thing
for granted.

2.5. ENGENDERING RELATIONS 35

2.5 Engendering Relations

All rectypes—since they are generated by constructors—will have a sort of engen-
dering relatiorﬂ that is related to the constructors that generate the recursive
datatype rather in the way that <py is related to the successor function. The
engendering relation is that binary relation that holds between an object = in
the rectype and those objects “earlier” in the rectype out of which = was built.
Thus it holds between a formula and its subformulae, between a natural number
and its predecessors and so on. Put formally, the (graph of the) engendering
relation is the transitive closure of the union of the (graphs of the) constructorsﬁ

Some examples: < is the engendering relation of IN; €* (the transitive
closure of the membership relation) is the engendering relation of the cumulative
hierarchy; the subformula relation is the engendering relation of the set of wifs
of a language.

The (graph of, extension of) the engendering relation is itself a rectype. For
example, <y is the smallest set of ordered pairs containing all pairs (0, n) with
n > 0 and closed under the function that applies S to both elements of a pair

(i.e., Ap.(S(fst p), S(snd p))).

The following triviality is important.
THEOREM 3 The engendering relation of a rectype is well-founded.

Proof: Let X be a subset of the rectype that has no minimal element in the
sense of <, the engendering relation. We then prove by structural induction
(“on 2”) that (Vy)(y <z —y & X).]

HOLE Actually we have to be very careful how we state this (Thank you,
Julian Ziegler Hunts!) beco’s it’s not correct as stated. It’s certainly true
if the rectype is free, but we can make it fail for silly reasons. Suppose
we add to the constructors for the rectype IN the identically zero function
An.0. We must find a way of excluding perverse cases like that!

EXERCISE 6 (*)

(i) Prove by structural (“mathematical”) induction on n that every X C IN
such that n € X has an S-least member;

(ii) Prove by structural induction on n that
(Vm < n)(every set containing m has a minimal element).

So obuviously every nonempty subset of IN has an S-minimal element.

7This is not standard terminology.
8A joke from Allen Hazen: “is the transitive closure of” is the transitive closure of “is the
transitive closure of”.

The rest of this section is an
amusing aside which can be
skipped

36 CHAPTER 2. RECURSIVE DATAYPES

Related to this is the observation that if we can prove (Vn)F(n) by course-
of-values induction then we can prove (Vn)(¥m < n)F(m) by ordinary mathe-
matical (structural) induction.

And it is of course dead easy to prove by course-of-values induction that
(Vn)(¥m < n)(VX CIN)(m € X — X has a <-least member).

You have probably always been more-or-less happy that mathematical in-
duction over IN and “strong” induction (or whatever you called it) over IN are
equivalent. The time has come to make this explicit in your own mind so you
can explain it to your students when the time comes.

Does every wellfounded relation arise from a rectype?

In general, structural induction over a rectype is equivalent to wellfounded in-
duction over the engendering relation over that rectype. Wellfounded induction
is in principle more general because there is always the possibility (in princi-
ple) of a relation being wellfounded without being the engendering relation of
any rectype. Does this ever happen? It’s not quite clear how to frame this
question so as to launch an illuminating research project. For the moment you
might wish to contemplate the following amuse gueule which looks rather like a
counterexample.

REMARK 2 FEwvery nonempty set of power sets has an €-minimal member.

Proof:

Let X be a nonempty set of power sets with no €-minimal element. We will
show that X" is empty.

Suppose not; we will prove by induction that every wellfounded set belongs
to everything in X'. Suppose A is a set such that, for all a € A, a belongs to
everything in X'. Let P(y) be an arbitrary member of X', and let X be a member
of X that is also a member of P(y). Then (Va € A)(a € X), which is to say,
A C X. But X € P(y) so all subsets of X are also in P(y), so in particular
A € P(y) as desired. But P(y) was an arbitrary member of X.

This proves by €-induction on the wellfounded sets that they all belong to
everything in X'. But then (| X must be a proper class, which is impossible. So
X must have been empty. [|

I am endebted to Tonny Hurkens for drawing my attention to this delightful
fact. Savour the extreme minimalism! Not only does this proof not use choice,

replacement or hardly any separation...it doesn’t use any foundation: the fact
that €] power sets is wellfounded is not a fact about the cumulative hierarchy.

2.6 Rectypes and Least Fixed Points

2.6.1 Fixed Point Theorems

We start with some old material from Part II, no longer examinable.

2.6. RECTYPES AND LEAST FIXED POINTS 37

I assume you know the Tarski-Knaster theorem from course materials of
earlier incarnations of Part II Logic—and-Set—Theoryﬂ so i shall not recapitulate
it here. You were told the Bourbaki-Witt theorem, but i’ll recapitulate anyway.

We say f: X — X is inflationary if (Vz € X)(z < f(z)).

THEOREM 4 FEvery inflationary function from a chain-complete poset into
itself has arbitrarily late fized points.

Proof: Let (X, <) be a chain-complete poset, f an inflationary function X — X
and x a member of X. We will show that f has a fixed point above x.

The key device is the inductively defined set of things obtainable from x
by repeatedly applying f and taking sups of chains—the smallest subset of X
containing = and closed under f and sups of chains. Let us call this set C(x).
Our weapon will be induction.

We will show that C(x) is always a chain. Since it is closed under sups of
chains, it must therefore have a top element and that element will be a fixed
point.

Let us say y € C(z) is normal if (Vz € C(x))(z <y — f(2) <y). We prove
by induction that if y is normal, then (Vz € C(z))(z < y V f(y) < z). That is
to say, we show that—for all normal y—{z € C(z) : 2 < y V f(y) < z} contains
x and is closed under f and sups of chains and is therefore a superset of C(z).
Let us deal with each of these in turn.

1. (Contains x) x € {z € C(z) : 2 <y V f(y) < z} because z < y. (x <y
because x is the smallest thing in C'(z)-by induction!) The set of things
> x contains z, is closed under f and sups of chains and is therefore a
superset of C(x).

2. (Closed under f) If z € {z € C(x) : z <y V f(y) < z}, then either

(a) z < y, in which case f(z) < y by normality of y and f(z) € {z €
Clx):z<yV fly)<z}or

(b) z =y, in which case f(y) < f(z)so f(z) e {z € C(x): 2 <yVf(y) <
z}; or

(¢) f(y) < z, in which case f(y) < f(z) (f is inflationary) and f(z) €
{z€eCx): 2<yV fly) < z}.

3. (Closed under sups of chains) Let S C{z € C(x): 2 <yV f(y) <z} be a
chain. If (Vz € S)(z < y), then sup(S) < y. On the other hand, if there is
z €8st z £y, we have f(y) < z (by normality of y); so sup(S) > f(v)
and sup(S) e {ze C(x): z<yV f(y) < z}.

Next we show that everything in C(z) is normal. Naturally we do this by
induction: the set of normal elements of C(x) will contain z and be closed under
f and sups of chains.

9Tt was not lectured in 19/20, so you might have to scout around: wikipeedia is a good
place to start.

38 CHAPTER 2. RECURSIVE DATAYPES

1. (Contains x) Vacuously!

2. (Closed under f) Suppose y € {w € C(z) : (Vz € C(2))(z < w — f(2) <
w}. We will show (Vz € C(x))(z < f(y) = f(2) < f(y)). So assume
z < f(y). This gives z < y by normality of y. If z = y, we certainly have
f(z) < f(y), as desired, and if z < y, we have f(z) <y < f(y).

3. (Closed under sups of chains) Suppose S C {w € C(z) : (Vz € C(2))(z <
w — f(z) <w)} is a chain. If z < sup(S), we cannot have (Vw € S)(z >
f(w)) for otherwise (Yw € S)(z > w) (by transitivity and inflationarity
of f), so for at least one w € S we have z < w. If z < w, we have
f(z) < w < sup(S) since w is normal. If z = w, then w is not the greatest
element of S, so in S there is w’ > w and then f(z) < w’' < sup(S) by
normality of w’.

If y and z are two things in C'(z), we have z <y V f(y) < z by normality
of y, so the second disjunct implies y < z, whence z < y Vy < z. So C(x) is
a chain as promised, and its sup is the fixed point above x whose coming was
foretold. [|

I do not propose to regard this proof as examinable. It is worth noting
that the definition of C(x) is—more-or-less bang-on-the-nose—the same as a
declaration of the recursive datatype On of all ordinals.

1 Exercises on fixed points

EXERCISE 7 Show that the fixed point of the Tarski-Knaster theorem is <x-
minimal.

EXERCISE 8 Let (A, <) and (B, <) be total orderings with (A, <) isomorphic
to an initial segment of (B, <) and (B, <) isomorphic to a terminal segment of
(A, <). Show that (A, <) and (B, <) are isomorphic.

You used an analogue of the function in the Tarski-Knaster proof of the
Cantor-Bernstein theorem (theorem ?7?). What can you say about the set of its
fixed points?

EXERCISE 9 Let R be a binary relation on a set X. Let F be a fuzzy on X.
Define a new fuzzy on X by x F'y iff V2') (¢’ Rx — (Y)y RyAz' Fy')) A
Vy") (¥ Ry — (32') (2’ Rx ANy F')). Show that for all X, R and F there is a
fized point for the function taking F to F'. Naturally you have used the Tarski-
Knaster theorem. What is the lattice you are using? Now do the same with the
assumption that F' is an equivalence relation not a mere fuzzy. What lattice are
you using now? Prove that it is not distributive.

EXERCISE 10 (The Gale-Stewart theorem) A combinatorial game G of length
n is defined by a set A (the “arena”) from which players I and ITI pick elements
alternately, thereby building an element of A™ (a “play”). G is a subset of A™,
and I wins a play p of G iff p € G. Otherwise I1 wins.

2.6. RECTYPES AND LEAST FIXED POINTS 39

Provide a formal notion of winning strategy for games of this sort, and
prove that one of the two players must have a winning strategy in your sense.

Now replace ‘n’ by ‘w’ in the above definition, so that plays are infinite
sequences. Give A the discrete topology and A% the product topology.

Use Bourbaki- Witt to show that if G is open in the product topology then one
or the other player must have a winning strategy.

[This is not best possible. The game is determinate as long as G is Borel. . . but
that needs AC]

EXERCISE 11 What might the well-founded part of a binary relation be? Use
one of the fized point theorems to show that your definition is legitimate.

EXERCISE 12 An old Part II examination question, principally for revision.

(i) State and prove the Tarski-Knaster fixed point theorem for complete lat-
tices.

(ii) Let X andY be sets and f: X =Y and g : Y — X be injections. By
considering F : P(X) — P(X) defined by

F(A) = X \g“ (Y \ f*4)

or otherwise, show that there is a bijection h : X — Y.

(iii) Suppose U is a set equipped with a group ¥ of permutations. We say
that a map s : X — Y is piecewise-X just when there is a finite partition
X=X1U...UX, and 01...0, € X, 50 that s(x) = o;(x) forx € X;. Let X
andY be subsets of U, and f : X — Y and g :Y — X be piecewise-X injections.
Show that there is a piecewise-¥ bijection h : X — Y.

() If (P,<p) and (Q,<qg) are two posets with order-preserving injections
f:P—=Q and g : Q — P, must there be an isomorphism? Prove or give a
counterexample.

EXERCISE 13 (Probably only for Group Theorists)

A group G is complete iff it is isomorphic to Aut(G), its automorphism
group. Show that every group embeds in a complete group. (You may assume
that for any G there is a set of groups containing G and closed under Aut and
unions of chains.)

Show also that if G has trivial centre so does Aut(G), and thence that every
group with trivial centre embeds in a complete group with trivial centre.

2.6.2 Rectypes as least fixed points

If you are a rectype it is because you are the Ifp of a certain increasing function
from the complete poset (V, C) of all setﬂ into itself. Here are some examples.

10And don’t tell me that (V,C) isn’t a complete poset because it hasn’t got a top element.
Go And Sit In The Corner.

Explain this in more detail!!

40 CHAPTER 2. RECURSIVE DATAYPES

N = {X: ({0} US“X) C X}.
(which says that IN is the lfp for AX.({0} U S“X))

Hy, is the least fixed point for z — Py, ().

1

(Px, (x) is the set of countable subsets of x.

It is possible to think of the way that rectypes support structural induction
as arising from their status as least fixed points for monotone operations.

EXERCISE 14 A D-finite set is a set without a countably infinite subset.

(i) Prove that every hereditarily D-finite set is inductively finite;

(i) Provide a constructive proof that every hereditarily Kfinite set is
Nfinite.

In (i) you are of course not allowed to use countable choice—that would
make it trivialJ]

Do not attempt part (ii) unless/until you are fluent in constructive logic.

In both these case we mean ‘hereditarily’ in the sense of the least fized pointE

[Brief excursion into Set Theory. If we do not assume that € is wellfounded
then “hereditarily finite” could mean something other than V,,. It could be the
greatest fixed point for « — Py, (z) (the set of finite subsets of x) which of
course will be [J{z : # C Py, (x)}. This object might or might not be a set. All
bets are off.]

2.7 Finite vs Bounded vs Unbounded Character

Restricting oneself to Horn Clauses in a datatype declaration solves the Unique-
ness Problem. There remains the Existence Problem. The first attempt at
cracking the Existence Problem represents the target object as a least fixed
point for some function from the complete poset of sets-under-inclusion into
itself. Such a fixed point is the intersection of a family. Can we be sure that the
family is nonempty? The intersection of the empty set is the universe, and that
is clearly not the answer one wants! This is one of the situations where the fact
that ZFC countenances only small sets makes for very unnatural developments.
This is the Empty Intersection Problem. It plays out differently depend-
ing on whether the datatype being declared is of finite, infinite-but-bounded or
absolutely infinite character.

We have seen examples of rectypes of finite character (IN, language of first-
order Logic, etc etc). Here are some of infinite character

11 And you actually have to prove that every hereditarily D-finite set is hereditarily finite.
12That is: the set of hereditarily D-finite sets is the C-least set identical to the set of its
D-finite subsets.

2.7. FINITE VS BOUNDED VS UNBOUNDED CHARACTER 41

(1) HNl)

(ii) The set of Borel sets in a topological space;
(iii) The family of Conway games;

(iv) The collection of all ordinals;

(v) The Cumulative Hierarchy.

Rectypes (i) and (ii) are of bounded (countable) character; (iii)—(v) are of
unbounded (“absolutely infinite”) character.
Miniexercise: provide recursive declarations of (ii)—(v). (We declared (i) in

section [2.6.2])

You have probably not worried at all about whether or not rectypes of finite
character (IN, language of first-order Logic, etc etc) exist as sets, having taken
it for granted all along that they do—as indeed they do. The existence-as-sets
of any and all rectypes of finite character is actually the precise content of the
axiom of infinity; that’s what it’s for. Another way of saying that these objects
can be taken to be sets is to say that they are not paradoxical objects.

2.7.1 Rectypes of Unbounded Character are Paradoxical

Let’s get out of the way the fact that rectypes of unbounded character are
practically guaranteed to not be sets: they are paradoxical. (Interestingly the
corresponding co-rectypes tend not to be paradoxical). The following are all
paradoxical:

(i) The class of hereditarily transitive sets (the lfp for
e {y Cx:Uy Cy});

(ii) The class of wellfounded sets (the lfp for z — P(x));

(iii) The class of hereditarily wellordered sets (the lfp for
x+— {y Cx:y is wellordered}).

(i) corresponds to the Burali-Forti paradox via the von Neumann implemen-
tation of ordinals; (ii) is Mirimanoff’s paradox.

If you are planning to master Set Theory you may wish to work through (i)
and (ii). For (i) you want to show that the collection of hereditarily transitive
sets is a paradoxical object (cannot be a set), and you also want to show that
the collection of Von Neumann ordinals is precisely the collection of hereditarily
transitive sets.

(A word of warning: not all the paradoxical collections that you may know
are rectypes: the Russell class and its congeners—{x : & €™ x}—are paradoxical
but are not recursively defined.)

The contradictions associated with Least-fixed-points for constructors of Ab-
solutely Infinite Character tend to be very easy to prove. Typically one needs
only subscission:

Explain these expressions

42 CHAPTER 2. RECURSIVE DATAYPES

x\ {y} exists for all and y. Subscissiorﬂ

I'm pretty sure that subscission suffices for (i)—(iii), and (i think) it suffices for
the following, which is the most general impossibility result in this direction
known to me. Be sure to use only subscission when answering exercise

EXERCISE 15 (%)
Suppose f is monotone and injective: (Vxy)(z Cy<+— f(z) C f(y))-
Let A:=({z:P(f(x)) Cx}. Then A is not a set.

So let’s not worry too much about trying to prove the sethood of rectypes of
absolutely infinite character: it’s not to be expected, and indeed one can often
prove the non-sethood of a least fixed point with quite modest set-theoretic
assumptions (such as subscission, above).

The Empty Intersection Problem is a huge problem for rectypes of un-
bounded character (which in any case tend not to be sets). The problem is
not merely that the collection of things over which we are intersecting is not a
set, the problem is that the things we are intersecting over might not themselves
even be sets but merely proper classes, and that in turn means—prima facie at
least—that membership of the least fixed point is not first-order.

Wellfounded and “Regular” Sets in Set Theory

The cumulative hierarchy is a rectype of unbounded (absolutely infinite) char-
acter: the obvious inductive definition of wellfounded sets defines W F(x) as
(Vy)(P(y) Cy —x €y).

If we want to do this is ZF we have an Empty Intersection Problem, because
we can prove there are no such y.

There are various ways round this problem. We can say that x is wellfounded
iff it belongs to all classes that contain all their subsets (so that the ‘y’ ranges
over all classes and not just those that happen to be sets). But of course that
would mean we are no longer in ZF but instead in Godel-Bernays).

So let’s assume that the variables range only over sets, and play a few tricks,
have some fun.

Suppose z satisfies (Vy)((Vz)(z Cy — z €y) = x € y).
Substitute V' \ y for y getting

(V) ((V2)(zNy=0—z2¢y) =z &y).
Contrapose getting
(Vy)(x €y = =(V2)(z2Ny =0 — 2 ¢ y)).

This is
Vy)(xey— F2)(zNny=0Az€y))

131 don’t think this is standard terminology; i learnt it from Allen Hazen and I think the
expression is his coinage.

2.7. FINITE VS BOUNDED VS UNBOUNDED CHARACTER 43

... which says that z is regular. Regular set is a way of defining wellfounded set
without quantifying over classes. You will recall from Part II Set Theory and
Logic that regular sets obey €-induction. This tells you why they do!

In this piece of trickery we have used an axiom of complementation. You
probably find that alarming but actually it’s harmless. The real damage is
done by things you probably didn’t notice. We exploited the fact that any
conditional A — B is logically equivalent to its contrapositive =B — —A, and
that —V is equivalent to 3—. These two principles are not constructively valid.
There is a constructive theory of wellfounded sets, and it supports induction
over €, but it does not support proofs using “€-minimal elements”. (Similarly
constructive arithmetic supports mathematical induction but does not support
the least-number principle).

2.7.2 Natural Numbers and Quine’s trick

IN is a rectype of finite character, and there is no problem about its sethood as
long as we have an axiom of infinity. However there are subtleties that remind
one of the definition of the cumulative hierarchy and which it is sensible to
consider in connection with it.

The “top-down” definition of IN involves quantifying over infinite sets. The
finite/infinite dichotomy feels a bit like the set/proper-class dichotomy so—
just as we wanted to be able to define well-founded set without talking about
classes—we would like to be able to define natural number without talking about
infinite sets.

We now give a definition of IN (due to Quine) that does not involve quan-
tification over infinite sets and prove that it is the same as the usual definition.

EXERCISE 16 (*)(Part III Logic and Combinatorics Exam 2006 q 12)

Let P(|z|) be |x\ {y}| if y € and 0 if © is empty.
Define
a(n) «— (YY) (n €Y A(PY CY)) > 0€Y)

Establish that g(n) iff n is a natural number according to the usual definition.

For a more detailed discussion of the history of this idea see [52] pp. 75-6.

The critical fact about this definition of ¢(n) is that it makes sense even if
the Y we are quantifying over are all finite. One can check whether or not g(n)
without examining any infinite sets.

(Like the definition of regular set this definition is not constructive.)

We can also define finite as
Fin(z) +— (VX C P(x))((0 € XA(V2' € X)(Vy € x)(2'U{y} € X) = z € X)).

If n is, in fact, finite in this sense then the investigation that will establish this
fact will not commit us to examining any infinite sets. However if it is not then

44 CHAPTER 2. RECURSIVE DATAYPES

the investigation will lead us into the infinite. So this definition is less clean
than the definition of g(n). Also it needs power set.

This definition is actually, literally, Kuratowski’s definition of “finite”, from
which our earlier definition of Kfinite was borrowed.

2.7.3 Bounded Character

In contrast the general idea is that recursive families of bounded character are
safe (i.e. not paradoxical) and can be proved to be sets if we try hard enough.
How does one try?

There are two ways.

“From Below”

This is the usual solution in the ZF world: define a function that enumerates
the “layers” of the rectype, and then use an instance of the axiom scheme of
replacement to form the set of all the layers. The | J axiom then gives you the

trim this para a bit rectype. This works for rectypes of finite character because there are only w
layers, and we use replacement for a function defined on IN that enumerates the
layers. Rectypes of infinite but bounded character require a longer construction
but the idea is the same. (For example the construction of Hy, closes off within
wo steps, or in precisely wy steps if we have AC).

“From above”

This is the morally correct way, but if you define a rectype as the intersection of
all sets containing the founders and closed under the constructors you will be in
trouble unless there are some sets containing the founders and closed under the
constructors. In these circumstances one is in peril of the Empty Intersection
Problem that we mentioned earlier.

The Empty Intersection Problem is much more obviously a problem for rec-
types of infinite character than for rectypes of finite character (tho’ not for Borel
sets in a fixed topological space). HC (see https://www.dpmms.cam.ac.uk/study/II/Logic/2012-
2013/LSqns3.pdf Q9) the set of hereditarily countable sets, is the C-least set
containing all its countable subsets, so it’s the intersection of all the sets that
contain all their countable subsets. How do we know there are such sets? If we
have countable choice then V,,, is such a set [miniexercise: why?] but we can
actually prove it without any use of choice.

One powerful argument in favour of adopting the axiom scheme of replace-
ment is that it enables us to prove the sethood of least fixed points for operations
of infinite (if bounded) character.

2.8 Ordinals

One particularly important rectype of infinite character is the ordinals. The
ordinals are a rectype of unbounded character. In this course—mostly—the

h

2.9. RESTRICTED QUANTIFIERS 45

only ordinals we will be concerned with are the countable ordinals, and the
countable ordinals form a set, Cantor’s second number class. It’s a set because
it’s a surjective image of IR.

See my TMS talk [23] and my tutorial on countable ordinals [24].

We can declare the ordinals in the same way that we declare the naturals,
but we have to add another constructor, of sup that takes a set of ordinals and
returns an ordinal. This is not free, because {2n : n € N} and {2n+1: n € IN}
give the same output when whacked with sup. This means that proving that
the engendering relation on ordinals (or, strictly, its restriction to the ordinals
themselves, namely <o) is a wellorder is actually quite tricky. Look again at
the proof of theorem [4] You will now see that the bulk of the work goes into
showing that the family of all the iterated images of the bottom element under
the inflationary function form a total ordering. But this family has a recursive
declaration which is the same as the recursive declaration of the ordinals.

The engendering relation on On is simply <o,. Transfinite induction and
recursion work because this relation is wellfounded.

2.8.1 Rank functions

Every wellfounded structure has a homomorphism into the ordinals, a rank
function, defined by recursion. And vice versa: every structure with a rank
function is wellfounded. = Rank functions are parsimonious in the following
sense.

DEFINITION 3 When (X, R) and (Y,S) are wellfounded structures a mor-
phism f : (X,R) — (Y,S) is parsimonious if for all x € X, f(z) is an S-
minimal member of {y : (V&' Rx)(f(«') Sy)}.

If (X, R) be a wellfounded structure, then the rank function p: X — On is
the unique parsimonious morphism f : (X, R) — On.

I’'m no categorist so don’t take my word for it, but i think the following is
true. On is the terminal object in the category of wellfounded structures where
the morphisms are parsimonious maps; IN is the terminal object in the category
of rectypes of finite character and parsimonious maps.

This section is very short beco’s the idea of rank functions is very simple.
But they are ubiquitous and very useful. A rank function for a wellfounded
structure is a measure of the complexity of the structure. Look at https:
//en.wikipedia.org/wiki/Sylver_coinage. What is the rank of the tree of
possible positions in this game?

2.9 Restricted Quantifiers

Quantifiers in the style ‘(Vz Ry)(...)” and ‘(3z Ry)(...)" are said to be re-
stricted. The intended semantics treats them as ‘(Va)(z Ry — ...) and

https://en.wikipedia.org/wiki/Sylver_coinage
https://en.wikipedia.org/wiki/Sylver_coinage

Explain axiom scheme of col-
lection here

46 CHAPTER 2. RECURSIVE DATAYPES

‘(Fz)(x Ry A...). In principle this syntax can be used whatever the relation R
is (and there is CS literature on this general situation, where this phenomenon
is called ‘guarded quantiﬁcationﬁ) but the two loci classici of restricted quan-
tifiers are

(i) [wellfounded] set theory, with the quantifiers ‘(Vz € y)(...)" and ‘(3z €
vy

and

(ii) arithmetic of IN, where the quantifiers are ‘(Vax < y)(...)” and ‘(Fz <
D).

In both these classical settings the binary relation doing the guarding is the
engendering relation of the rectyp

Notion of end-extension (preserves formulae in which the only quantifiers are
restricted quantifiers)

DEFINITION 4

Let M C M be structures for a language with a binary relation symbol ‘R’.
We say M’ is an end-extension of M (with respect to ‘R’ understood) if
(Vm € M)(¥m' € M")(m' Rm — m' € M)[[Y]

EXERCISE 17 (%)
Review exercise [I1] on the wellfounded part of a binary structure, and establish
that every [binary] structure is an end-extension of its wellfounded part.

Next we note without proof quantifier-pushing and quantifier-squashing for
<n-restricted formulee. .. “Collection”.

REMARK 3

(Vo <N v)(32)Y(x,y, 2) is equivalent to

(Fw) (Ve < y)(Fz <N w)Y(z,y,w); (“quantifier pushing”)
(Fu)(Fv)o(u,v) is equivalent to

(Fw)(Fu <N w)(Fv <N w)P(u,v) (“quantifier-squashing”)

You learnt in Part IT that quantifier-free formulee are preserved upward and
downward; formulae that have no unrestricted quantifiers are preserved upward
and downward where the extensions are end-extensions.

More formally:

141 don’t think this different terminology reflects a difference in motivation. My guess is
that the reason why CS people use a different word is simply that they didn’t know that
logicians had got there before them.

15Well, € is not the engendering relation of the cumulative hierarchy, but its transitive
closure is, and a binary relation is wellfounded iff its transitive closure is. This is an exercise
somewhere—or should be! Prove it

16However, we will also use this expression in a setting where a string ¢ is a string s with
extra stuff on the end...we will say that ¢ is an end-extension of s.

2.9. RESTRICTED QUANTIFIERS 47

If 9 is a substructure of M and ¢ is quantifier-free then M = ¢ iff
n o

If 91 is a substructure of O is an end-extension of 9 and ¢ has no
unrestricted quantifiers then 9 = ¢ iff N = ¢.

Quantifier hierarchies for restricted quantifiers. (Not sensible without a well-
foundedness condition. If there is a universal set then every expression in the
language of set theory is in IIs N ¥s. Miniexercise: how so?)

In the theory of the cumulative hierarchy there is a normal form theorem
for restricted quantifiers proved using collection/replacement.

A Ap-formula in the language of set theory is a formula built up from atomics
by means of boolean connectives and restricted quantifiers. Thereafter a 3,1
(respectively IT,, 1) formula is the result of binding variables in a IT,, (repectively
¥,) formula with existential (respectively universal) quantifiers. We immedi-
ately extend the 3,, and II,, classes by closing them under interdeducibility-in-
a-theory-T', and signal this by having ‘T” as a superscript so our classes are ¥7
and TIZ.

This linear hierarchy of complexity for formulae will be very useful to us in
understanding 7' if we can be sure that every formula belongs to one of these
classeﬂ it is standard that we can give a Il,,; 1 truth-definition for 3, formulze.
That is to say, we desire a normal form theorem for T.

It is easy to check that if T is not ludicrously weak we can show that ITZ
and X7 are closed under conjunction and disjunction. To complete the proof of
the normal form theorem we would need to show that these classes are closed
under restricted quantification. After all, if ¢ is a IIZ formula what kind of
a formula is (3z € y)¢? It would be very simple if it, too, were II1. Tt’s
plausible that it should be IIZ (it has the same number of blocks of unrestricted
quantifiers after all) but it is not at all obvious. Nevertheless there are sound
philosophical reasons why we might expect it to be—at least if V.= WF. The
point is that W F is a recursive datatype, and recursive datatypes always have
a sensible notion of restricted quantifier, and typically one can prove results
of this kind for the notion of restricted quantifier that is in play. In general,
when dealing with a recursive datatype, we can define Ay formulee—as above—
as those with no unrestricted quantifiers, where we take restricted quantifiers
to be ‘(Fz)(R(z,y) A...) and ‘(Vz)(R(z,y) — ...)’, and R is the engendering
relation. We find that Ag formula behave in many ways as if they contained no
quantifiers at all. An unrestricted quantifier is an injunction to scour the whole
universe in a search for a witness or a counterexample; a restricted quantifier
invites us only to scour that part of the universe that lies in some sense “inside”
something already given. The search is therefore “local” and should behave quite
differently: that is to say, restricted universal quantification ought to behave like
a finite conjunction and ought to distribute over disjunction in the approved de
Morgan way. (And restricted existential quantification too, of course).

17You proved this in Part II.
8well, Iots of these classes: after all if ¢ is in X7 it is also in TIZ ;.

Explain axiom scheme of col-
lection at this point

collection follows trivially
from the existence of a uni-
versal set

48 CHAPTER 2. RECURSIVE DATAYPES

The Prenex Normal Form Theorem states that every expression in LPC
is logically equivalent to a formula in Prenex Normal Form, which is to say a
formula wherein all the propositional connectives lie within the scope of all the
quantifiers. You were not told this at Part II, but you might like to prove it
now.

What we will now see is that, if we have the axiom scheme of collection,
then we can prove an analogue of the Prenex Normal Form Theorem:

THEOREM 5 Given a theory T, which proves collection, for every expression
¢ of the language of set theory there is an expression ¢’ s.t. T F ¢ +— ¢' and
every restricted quantifier and every atomic formula occurs within the scope of
all the unrestricted quantifiers.

Proof: It is simple to check that (Vz)(Vy € z)¢ is the same as (Vy € z)(Vx)o
(and similarly 3), so the only hard work involved in the proof is in showing that

(Vy € 2)(3x)¢

xis equivalent to something that has its existential quantifier out at the front.
(This case is known in logicians’ slang as “quantifier pushing”.) By collection
we now infer

(3X)(Vy € 2)(3z € X))o,

and the implication in the other direction is immediate.

This shows that ¥, is closed under restricted universal quantification. Dually
we infer that II, is closed under restricted existential quantification. It is of
course immediate that ¥, is closed under restricted existental quantification
and that II,, is closed under restricted universal quantification. [|

Now have the analogue of the prenex normal form theorem we can complete
the proof that every formula belongs to one of the classes 11X or X7

2.10 Infinitary Languages

DEFINITION 5 The language Ly is (like first-order Logic) a recursive datatype
but differs from it in being closed under conjunctions and disjunctions of lists

of expressions of length < k and allows us to bind < X\ variables with ¥V at one
hit.

(All the quantifiers in an infinite block have to be of the same flavour)

Thus ordinary predicate calculus is L, .,. There are various other languages
we can notate in this way, some of which we will consider. On the whole these
other languages are quite nasty: compactness fails, for example. L, ., is often
considered, and it admits a kind of compactness theorem. L, , is well-behaved
if k has some nice large cardinal properties of the kind you may learn about if
you are doing Part III Topics in Set Theory. Our immediate use is for L, -

(Don’t be spooked by the infinitary nature of the constructors into thinking
that the subformula relation for these languages is illfounded.)

2.10. INFINITARY LANGUAGES 49

2.10.1 “Wellfounded” is Infinitary Horn

Exercise[18]is a simple exercise in the style of Sheet 3 of last year’s Part II Logic
and Set Theory. (It’s actually part (iv) of Part IT Paper 3 q 16H in 2011.)

EXERCISE 18 Show that there is no first-order theory of a wellfounded rela-
tion.

However wellfoundedness is first-order in Ly, -

(Vz1)(Vaa) . .. \/ “R(xj,x;)

i<j<w
This is a formula of Ly, ,. Indeed it is even Horn!

Given that wellfoundedness is infinitary Horn we should not be surprised to
find that the class of wellfounded structures is closed under products, quotients,
substructures and directed unions under end-extension (recall p . Question
2009-3-16G from http://www.maths.cam.ac.uk/undergrad/pastpapers/2009/
Part_2/index.html makes you think about why the directed unions have to be
ordered by end-extension ...and mere inclusion is not enough.

The following non-obvious fact will come in useful later, and the reader is is
invited to prove it if they have not already done so.

EXERCISE 19 (%)
The lexicographic product of two wellfounded strict partial orders is well-
founded.

The pointwise product of two wellfounded strict posets is wellfounded by
horn-ness, and every subset of a wellfounded relation is wellfounded because
‘wellfounded’ is V in L, 4, -

2.10.2 Some Remarks on Infinitary Languages

Some of the infinitary expressions to which we are accustomed are illfounded.
And semantics for them can depend sensitively on things that it would seem
shouldn’t matter. There are ways of putting brackets into an infinite sum so
that the result is no longer an infinite sum but an illfounded expression:

a0+(a1+(a2+...))

Some are straight-out illfounded™}

\/2+\/2+\/2+\/ﬁ.

Since the subformula relation on these expressions is not wellfounded there is no
way of defining a recursive semantics for them. Indeed it is a condign lesson of

191 made the foolish mistake of evaluating this expression and—yes!—it’s the bloody golden
section. Would be. That is so sad.... Serves me right.

http://www.maths.cam.ac.uk/undergrad/pastpapers/2009/Part_2/index.html
http://www.maths.cam.ac.uk/undergrad/pastpapers/2009/Part_2/index.html

50 CHAPTER 2. RECURSIVE DATAYPES

first-year Analysis that semantics for these infinitary expressions is not a trivial
exercise, and (pace the remarks on p. one spends a lot of the early stages
of Analysis learning that a lot of things that shouldn’t matter do, indeed, not
matter. See the footnote on page [89

It is presumably in some sense undecidable whether or not an expression of
this kind has semantics at all.

For example:

Solve

... but first of all make sense of it!

The exponent on the LHS is 2" which we are told is 2, so 22 = 2 and
z = /2. That was easy. The problem with this is that the second equation
gives * = 4 and thence z = /2 again. They can’t both be right!

Of course the answer is that the reasoning that led us to conclude that
x = /2 in the first place doesn’t prove that that is the answer. All we have
done is show that if there is a solution it must be /2. We haven’t shown that
there is a solution. In fact it is a simple matter to show by induction that the
approximants to the LHS, which we generate as follows

ao =1 V2, apy1 =: (V2)%
...are all less that 2. We do this as follows

ani = (VD™ < (V2)? =2

where the middle inequality follows by induction hypothesis. So the sequence
has a limit which is < 2. (tho’ of course we have to prove that the approximants
converge to the answer).

Let’s see what we can do that is more general.

2T

Let F(I) =df fEmI
We have z¥(*) = F(z). The inverse to this function is the function o s 2/%,
obtainable as follows.

=y
y - log(z) = log(y)
log(x) = (1/y)log(y)
T = yl/y

This is much easier to understand. For example we can differentiate it. It is
the same as e(!°9)/ whose differential is of course e #)/*.(1 /2% —(log x)/z?).
This is zero when x = e, and this is clearly a maximum. The fact that the
differential is zero there of course means that F' reaches a maximum at e'/¢ and

2.11. GREATEST FIXED POINTS (“CO-RECTYPES”) 51

that F’(e!/€) is infinite. This gives us the amusing but (as far as i know) useless
fact that
1/e) (/)

(1/9)(E1/e)(61/e)(6
€

(el/® =e

(Check this: if the LHS is to evaluate to z we must have (e(1/¢))* = z and
e is certainly a solution to this equation.)

We can get a power series expansion of F' for values of z not much bigger
than 1. Let ¥ be the power series for F'(1 +). Then we have

(1—1—33)2:2

and we can use the binomial theorem to expand the left hand side. This gives
us a sequence of equations expressing later coefficients of ¥ in terms of earlier
coefficients in a wellfounded way. I haven’t worked out the general formula for
ayn, the coefficient of 2™ in F(1 4 z) tho’ in principle it could be done. (ag =1
for a start!)

A slightly better example is continued fractions. These are wifs in a lan-
guage with an ill-founded subformula relation. Might be an opportunity to say
something about lazy evaluation. One can decide the truth-values of things like
F > n (where F' is a continued fraction) sometimes by lazy evaluation.

If we try to write out the first epsilon number without using epsilon notation
we end up with an infinite formula with an illfounded subformula relation.

2.11 Greatest fixed points (“Co-rectypes”)

Rectypes are least fixed points. If you have used Tarski-Knaster to prove the
existence of rectypes as least fixed points, you will be prepared for the news
that there are things called co-rectypes that are greatest fixed points.

e The collection Hy, of (wellfounded) hereditarily finite sets is the least

fixed point ({Y : Py, (Y) C Y} for the function A\y.Py,(y) where Py, (y)
={z Cy.lz| <Ro}. (Y : Py, (Y) C Y} is better known as V.
The corresponding greatest fixed point is [J{Y : Y C Py, (Y)}. Whether
or not this object is the same as V,, depends on whether or not the axiom
scheme of foundation holds. In principle it might contain Quine atoms
(objects x = {z}) and other such suspect entities.

e The cumulative hierarchy is the lfp for P: (\{Y : P(Y)C Y}

The greatest fixed point corresponding to this is (J{Y : Y C P(Y)}. On
the (modest) assumption that every set has a transitive superset this is
the whole of V.

EXERCISE 20

But they don’t yet know
about € numbers!

52 CHAPTER 2. RECURSIVE DATAYPES

1. The rectype of a-lists is the lfp for a certain function. What function,
precisely? The corresponding gfp is the datatype of a-streams (infinite
lists). Declare a co-rectype of a-trees and define stretching for it.

2. Do the same for a-trees.

EXERCISE 21 Co-rectypes support co-induction. Explain and justify co-induction.

2.12 Certificates

We close this chapter with a little sleeper. Most of the rectypes we are interested
in are rectypes of finite character. If you are an element of a rectype of finite
character then there is a good finite reason for you to be a element. These
good finite reasons are sometimes called certificates, tho’ of course there can be
certificates for infinite things too. A certificate that p (wrt some very weak
background theory T) is an object x satisfying some [very elementary, probably
quantifier-free] property ¢ s.t. T+ (3z)(¢(x)) — p.

[a warning (for the future, not the present); ‘p’ could have parameters in it,
so that a certificate (wrt some very weak background theory T') that p(¥) is an
object x satisfying some [very elementary, probably quantifier-free] property ¢
s.t. T B (Vi) ((Fz)(o(7, x)) — p()).]

These things are sometimes called proofs but I shall stick to ‘certificate’,
because the word ‘proof’ has other uses here. (In fact proofs will be certificates
of a special kind). For example, if you are the number 0 you are a natural
number by fiat; if you are S(n) for some natural number n then a good finite
reason for you to be a natural number is whatever-is-a-good-reason-for-n-to-be-
a-natural-number plus a cry of “successor!”. This evidently gives us a recursive
conception of certificate-that-an-object-is-a-natural-number, and that certificate
is evidently the act of counting from 0 up to that number.

More generally, if an object in a rectype is constructed from objects
Y1 ...Yn by means of a constructor f, then a certificate that x belongs to the
rectype is the ordered pair of f and the list of certificates for the 7. [the word
pedigree or perhaps provenance might be better]. Clearly certificates for a rec-
type themselves form a rectype.

When T is a theory, the rectype of T-proofs is the rectype of proofs/certificates
of membership of the rectype that is the theory T

Presumably “p is a certificate that = is in rectype A” is Ay or perhaps A;
in the language with the engendering relation. So belonging to a rectype is 3
in some suitable language. . . semidecidable sets!

2.12.1 Free vs non-free rectypes (ambiguous parses)

A rectype if free is every element of it has precisely one certificate. Any free
rectype is a surjective image of its rectype of certificates (and rectypes of cer-
tificates are always free). If a rectype is not free, and not of finite character,

2.12. CERTIFICATES 53

there will be a mess, and we need the axiom of choice to clear it up. Consider
for example the rectype founded by all the countable sets, where the single (in-
finitary) constructor is countable union (union of countably many inputs). The
assertion that every object of this rectype has a certificate implies that a union
of countably many countably sets is countable.

The rectype of finite sets is not free: a finite set can be constructed from
¢ and adjunction (z,y — = U {y}) in more than one way: “there is more than
one certificate”. This complicates definition by recursion because it requires
us to check that all certificates for a set = get treated the same way by the
recursion. It doesn’t make recursion illegitimate, but it does mean we have to
be careful. For example if we declare V,, as containing () and being closed under
z,y — x U {y} then one cannot successfully define f : V,, — V by f(0) = 0;
flxu{y}) = f(x) x {y}, because we could have z U {y} = z U {w} with

T F#z Ny F w.

2.12.2 A Last Crazy Thought

The set of diatonic melodies (or, for that matter, the set of piano pieces of
finite length that are compatible with the rules of late C19th harmony) is a
countable set, indeed a rectype (as countable sets typically are). It is the job of
composers to create such melodies. So what is it to create one of its members?
Surely all we can do is discover them? This is a known problem for platonistic
philosophies of mathematics: they appear to leave no space for creativity. This
looks to me like a problem that the notion of rectype-with-certificates can shed
light on. You create a piece by executing the certificate.

54

CHAPTER 2. RECURSIVE DATAYPES

Chapter 3

Functions: Primitive
Recursive and p-recursive

“Can you do addition?” the White Queen asked. “What’s one and one
and one and one and one and one and one and one and one and one?”

“I don’t know,” said Alice “I lost count.”

“She can’t do addition” the Red Queen interrupted.

see [I1], available online at http://www.gutenberg.org/ebooks/12

3.1 Primitive Recursion
We consider primitive recursion over IN in the first instance.

DEFINITION 6 The rectype of primitive recursive functions is the C-least
class of functions containing the initial functions, which are

e the successor function: n+— n+ 1, written S;

e the projection functions: proj," is an m-ary function which re-
turns the nth of its arguments;

e the constantly zero function: the function that always returns 0.

...and closed under

e composition (see below) and
e primitive recursion:

f(@0):=g(@); [(&SW):=hZy f(Zy). GBI
In we say [is declared by primitive recursion over g and h.

We recurse on the variable y’. The ‘¥’ variables are the snail
variables—those you just carry around and do not recurse on.

95

http://www.gutenberg.org/ebooks/12

This is a sleeper for Kruskal’s
theorem and can be skipped

56 CHAPTER 3. FUNCTIONS

Observe the extremely restricted nature of the construction of primitive recur-
sion. You “recurse” on only one variable, and you are allowed only one call
to earlier values of that variable, and that one call must be to its immediate
predecessor. This means that—to take a familiar example—the usual declara-
tion of Fibonacci numbers is not primitive recursive. (That’s not to say that the
function enumerating them is not primitive recursive . . .1t is, but that’s because
we can declare it in other ways).

Primitive recursion is not the only kind of recursion, but it is special in that
the clauses of a primitive recursive declaration echo precisely the clauses in the
recursive definition of IN as a recursive datatype. You are a natural number iff
you are 0 or the successor of a natural number; a function defined by primitive
recursion knows what to do to 0 and, if it knows what to do to n, knows what
to do to successor of n.

What might primitive recursion on other rectypes be?

EXERCISE 22 (%)

1. Consider for example the rectype of a-lists from p. [28. What is primitive
recursion on a-lists?

If « is equipped with an order <, we say that an «-list l; (thought of
as a function Iy : [1,n] — «, for some n) stretches into an a-list lo
(thought of as a function ls : [1,m] — «, for some m > n) if there is an
order-preserving injection g : [1,n] < [1,m] such that (Vi < n)(l1(7) <q

l2(9(4)))-

Give a definition of stretching by primitive recursion on «-lists.
2. Next consider the rectype of a-trees, where the set of children of each node
(a litter) is a list of a-trees.
Give a rectype declaration for rectype of a-trees.
What is primitive recursion on o-trees?

Define stretching for a-trees, both directly as above (for lists), and by
primitive recursion.

EXERCISE 23
IN <IN is a rectype, with a founder (0,0) and two constructors S-left and S-right.
What is primitive recursion on this datatype?

We define (;) by (5) =1 and (31) = (1) + (3)-
Is this a primitive recursive declaration in your sense?

Some observations

Fit in somewhere: can
by rule induction that
are all total, dominats
ackermann, and compt
by register machine

3.1.

PRIMITIVE RECURSION o7

e Make a mental note, for use later, that we will write ‘n’ for the string

n times

—_——
S(S(S...0...)).) ‘n’ is thus a constant term not a variable

This rectype of functions is a rectype of function declarations, pieces
of syntax. To be strictly correct one should think of them not as functions
at all, but as notations for functions. If you want to think of them as
functions (and people do, he acknowledges wearily) one has to think of
them as functions-in-intension. We will consider a function(-in-extension)
to be primitive recursive if it has a primitive recursive declaration (as a
function-in-intension).

In the recursion step for primitive recursion we find the line:

f(fvy + 1) = h(f7y7f(fv y))

One might wonder what the ‘y’ is doing in the second argument place in
the deﬁnjenaﬂ the thimg on the right.. One of my students thought it
was there to tell you how often you had been through the loop. It does
do that, true, but that’s not all it does. For consider: if, for any primitive
recursive function f, the value of f(y + 1) depended only on f(y) and not
also on y, then if f ever took the same value twicdﬂ it would be forced to
be eventually periodic.

Observe that in our projection functions (“pick the ith thing from these
k things”) the ‘i’ and ‘k’ are concrete numerals. We have countably many
functions not one. If the positions occupied by these numerals could be
occupied by variables then the rule of substitution would allow us to write
things like: “take the f(i)th thing from this g(n)-tuple” and for suitable
choices of primitive recursive f and g this would be a primitive recursive
function that might not be total. Worse still [for all i know] it could even
be unsolvable whether functions declared in this way are total. Don’t go
there.

The composition operation under which the rectype of primitive recursive
function declarations is closed is slightly more complicated than the fa-
miliar composition of functions of one argument, simply because we are
allowing functions of many variables. It is fiddly but it’s obvious in the
sense that it is what you think it is. In some of the literature it is called

1Syntax buffs might wish to think about the precise status of formulse containing such

terms. I suspect they may have the same status as expressions like (3z1 ... zp) /\i¢j<n(mi #*
x;). See the discussion on page B
2Latin: definiendum = the thing being defined; definiens = the thing doing the defining.
Probably neo-latin not classical latin.
3Well, not quite, because if it’s only twice or k times for some concrete k that it takes the
same value, then that fact can be hard-coded with lots of if then else commands but if it
took the same value infinitely often. ..

58 CHAPTER 3. FUNCTIONS

substitution and it is worth noting though that, if z,y — f(z,y) is a prim-
itive recursive function of two variables, then z — f(z,z) is a primitive
recursive function of one variable.

e For any numeral n, the function with constant value n is primitive recursive—
compose x — 0 with successor n times.

e Notice that, although there is no limit on the number of variables we can
compute with, we recurse on only one. On the face of it this declaration
looks very restrictive: “only allowed one call”, but it turns out to be
surprisingly fertile.

e Note at the outset that this datatype of function declarations is countably
presented (see section ??) and so has only countably many elements.

e The basic functions are in some obscure but uncontroversial sense com-
putable; clearly the composition of two computable functions is com-
putable, and if g and A are in some sense computable, then f declared
over them by primitive recursion is going to be computable in the same
sense. That is why this definition is prima facie at least a halfway sensible
stab at a definition of computable function.

Here are some declarations:

DEFINITION 7

(i) Predecessor: P(0) :=0; P(S(x)) :==.

(i) Bounded subtraction: x =0 :=x; x = S(y) =Pz ~vy).
(iii) Addition: x+0:=uz; z+ S(y) =Sz +y)
(iv) Multiplication: x-0:=0; z-(Sy) =z -y) +a

In (iii) we find the significance of the Red Queen’s claim that Alice can’t do
addition.

Consider the following sequence of binary functions N? - IN:

DEFINITION 8

folm, k) :=m +k;

fS(n)(ma O) =my

fS(n)(Ovm) = fn(mv 1);

fS(n)(S(m)a S(k)) = fn(ma fS(n)(S(m)’ k))

EXERCISE 24 (*) Check that all the f; with i € IN are primitive recursive.

This is from Doner-Tarski [19], who actually define this hierarchy of functions
on all ordinals, not just finite ordinals, tho’ of course they need some clauses to
deal with limit ordinals. In fact one clause suffices:

3.1. PRIMITIVE RECURSION 59

DEFINITION 9

f’Y(a’ﬁ) = Z fC(fW(O‘)n)’a)'

n<B,(<vy

[Observe that, for v > w, all values of f, are infinite ordinals]

[Check this: i think the Doner-Tarski functions of finite subscript all restrict
to total functions IN x IN — IN, whereas any D-T function with an infinite
subscript sends at least some pairs of naturals to infinite ordinals.]

EXERCISE 25 What is the next function in the Doner-Tarski hierarchy after
exponentiation? And the one after that?

EXERCISE 26 (¥)
Show that, if f is primitive recursive, so are

1. the function) ¢(n) = Z f(zx) that returns the sum of the first n values
0<z<n
of f; and

2. the function [[,(n) = H f(z) that returns the product of the first n
0<z<n
values of f.

3.1.1 Some quite nasty functions are primitive recursive

EXERCISE 27 (For those who did Graph Theory in Part II)

You saw a proof of the finite version of Ramsey’s theorem. FEzxamine this
proof and characterise the bounds it gives. Are these bounds described by a
primitive recursive function?

3.1.2 Justifying Circular Definitions

Recursive definitions are prima facie circular and therefore prima facie illegit-
imate. (Chapter 8 of [65] contains a beautiful discussion of the criteria a def-
inition must meet if it is to be legitimate. It inspired an entire generation of
logicians.) In section we proved that, for example, every primitive recursive
function is total, but in no case did we prove that there actually was a function
answering to the circular definition. Not only do we have to do that, we also
have to show, for any constraint (co’s at this stage it is only a constraint not a
definition) that any two functions answering to that constraint have the same
graph.

So we have to prove existence and uniqueness. There are several ways to do
it.

Consider everybody’s favourite example of a recursively defined function:

fact(n) = if n =0 then 1 else n- fact(n—1)

60 CHAPTER 3. FUNCTIONS

It is circular, since the definiendum appears inside the definiens.

One thing we can do immediately is define each restriction fact|[0, k]. That’s
easy. The hard part is to glue them together. For each k we can define a function
which we can call fact-k which will of course be fact [[0, k]. We show that any
two functions in {fact-k : k € IN} agree wherever they are both defined, so there
is a good notion of limit of the family—and that limit is what we want. There
is no problem in showing that the limit is unique, and the obvious strategy
for doing this merely writes out in detail the proof of a particular instance of
a fixed-point theorem. We could even spell out the fixed-point theorem. The
connections between fixed point theorems as recursive datatypes was set out in
the previous chapter. We will return to this theme in chapter

The other thing we can do is outline a general strategy for transforming
a circular recursive definition into a direct non-recursive definition. There is
some heavy machinery to hand that will do the work for us immediately: the
graph of any primitive recursive function is an inductively defined set, so we
can define—for example—the graph of the factorial function as:

ﬂ{YQ]Nx]N:(O,l}eYA(‘v’u,v)((u,v)eY—><u+1,(u+1)-v>EY)}

This is noncircular (at least it will be once we have a noncircular definition
for multiplication(!)) but it is logically expensive, since it uses a higher-order
quantifier, which makes it V2. And we can do much better than that.

Eliminating the circularities in a first-order way

We will need the concept of a certificate or proof from section [2.12

Suppose we have defined f by primitive recursion:

f(0,8) := g(5);
f(S(n)>§) = h(f(nag)’nvg)'

This declaration can be thought of as a definition of a rectype of tuples, to
wit: the graph of f. The founders of this rectype are the tuples (0, 3, g(5));
the constructor is the operation that takes a tuple (n,3,k) and returns the
tuple (n+ 1,8, h(k,n,§)). Thus y = f(x, §) iff the tuple (z, 5, y) belongs to the
rectype of the preceding paragraph, and if it does there will be a certificate to
that effect. It turns out that we can assert the existence of such a certificate in
a noncircular way.

What are these certificates? Actually it won’t matter much precisely how we
think of them. A certificate that f(S(n), §) = x could be the ordered pair of a-
certificate-that- f(S(n), §) = y-for-some-y with a-certificate-that-h(y,n, §) = z,
but in practice we can get away with taking the certificate that f(S(n),s) =«
to be the list of all pairs (4, 5, f (¢, 5)) with 0 < ¢ < n, and that is what we will
in fact do.

Rewrite this section
define |

3.1. PRIMITIVE RECURSION 61

Now that we have decided that a certificate is a list, we have to explain how
to code up lists (as well as the things listed) as numbers, so that the existence
of a certificate turns out to be assertable in the language of arithmetic.

We can encode sequences of natural numbers as natural numbers using the
prime powers trick, which we see on page

The prime powers trick enables us to prove the following:

REMARK 4 If f is a function IN® — IN declared by primitive recursion then
there is a formula ¢(y,x1 ... xx, Z) in the language with 0, 1, +, X, exponentia-
tion and = containing no unrestricted quantifiers such that y = f(x1...xx) iff
(Fz1...z0)0(y, 21 .. 2k, 2)

This works because by means of the prime powers trick we can encode finite
sequences from IN as naturals, so we can encode certificates. We observed that
y = f(xz,5) holds iff there is a certificate to that effect. So we need to be able
to express “C is a certificate that y = f(z,5)”. To do that we need to be able
to code up lists of ordered pairs as natural numbers, and it is for this that we
can use the prime powers trick. I won’t go into the details because we are going
to prove something rather stronger, namely that we can achieve the results of
remark [4| even with the extra restriction of not using exponentiation.

THEOREM 6 If f is a function IN¥ — IN declared by primitive recursion then
there is a formula ¢(y,x1 ... 2k, Z) in the language with 0, 1, +, X, < and =
(“the language of ordered rings”) containing no unrestricted quantifiers such
that

Y= f(ml .- ~xk) Zﬁ (EIZ)(;S(y,f, 5)

(In fact—and this is a famous theorem of Davis, Putnam, Robinson and
Matiyasievic}EFvve can even find a ¢ that contains no quantifiers at all, not
even restricted quantifiers. T doubt if i will get round to proving it.)

Proof:

We will be using base-p representations of arbitrary numbers, and we will
need to know that there are arbitrarily large primes. Well, there just are arbi-
trarily large primes, and we appeal to their existence when we want to establish
the correctness of the recursive definition. The theorem we are trying to prove—
that a function defined by primitive recursion can be captured by an 3; formula
in the language of ring theory—is a metatheorem about the language of ring
theory, not a theorem of ring theory. So we don’t need to worry about whether
or not we can prove the infinitude of primes in ring theory. Anyway, fix val-
ues for ‘c’ (‘’ is the variable on which we are recursing) § (the § are the snail
variables) and ‘y’.

It is clear that the ring language can express “p is a prime” and “z is a power

of p” and these will give us all the freedom in manipulating base-p representa-
tions that we need.

41 would like to lecture it but it involves a bit tooo much number theory—for me at least.

check this dfn

62 CHAPTER 3. FUNCTIONS

There is going to be a large number I and another large number O (“inputs”
and “outputs”), encoding somehow the inputs (the list of naturals less than x)
and a list of outputs (the corresponding values of f), and we are going to think
of these two numbers as being written in base p where p is going to be a prime
larger than any number that appears anywhere in the certificate. Thus our
formula will begin with three existential quantifiers: <(3I)(30)(3p)(...)’. The
prime p will be chosen big enough so that the following picture makes sense.

P pt P

2 T 0 |1
@) f) f0)] O

We have to be very careful in talking about base-p representations of num-
bers in this context where we have neither exponentiation nor order information.
(The display above is potentially very misleading!) One way of describing our
predicament is that we normally think of the addresses in the base-p represen-
tation of a number as indexed by an ordered set that is a proper initial segment
of (IN, <)—but we cannot use that index set here. Our places are indexed by a
set X of numbers about which we know only that all its members are powers of
p and that X contains all factors of its members. It is true that we can define
an order relation on X and we do have an adjacency relation on X, since we
can divide by p or multiply by p. However we do not have access to any bijec-
tion between X and any initial segment of IN. In particular, although we can
identify a column in the above display by reference to a z-that-is-a-power-of-p,
we cannot recover the exponent and thereby enumerate the columns.

Let’s get some definitions out of the way.

Some Local Definitions
“z divides into y” is x =y V (w < y)(x - w = y). Let’s write this as z|y.

x DIV y is the largest integer z s.t. y- 2 <z <y-(z241) and

x rem y is the remainder when x is divided by y.

Strictly Speakingﬂ this is naughty, because introducing new terms like this
expands the language and takes us out of the language of ordered rings; we
should say instead

“2=x DIVyiffz-2<y<z-(2+1)” and
“w=g rem yiff (V2 <z)(z=(x DIV y) = z-y+w=2x)".

Then, when we want to say ¢(x DIV y) we can write either
V2)(z-z <y < z-(241) = ¢(2))

GF2)x 2z <y <z-(2+1) A ¢(2))

5Thank you, David Edey!

3.1. PRIMITIVE RECURSION 63

...depending on whether we want the quantifier to be ‘3’ or ‘v’ (which will in
turn depend on whether the occurrence of ¢(x DIV y) is negative or positive).

We can say “p is a prime” since that is (Vz < p)(Vy < p)(z -y # p).

We can capture “z is a power of p” by (Vw < z)(w|z — p|lw)—at least when
p is prime. (And the task in hand will not require us to capture “z is a power
of p” when p is not prime.)

We can express in the ring language what it is for a natural number O to
have the entry o, at the place in its base-p representation corresponding to z
(where z is a power-of-p). We say:

“If we divide O by z and look at the remainderﬁ then divide that
remainder by (z/p), we find that the quotient is 0,.”

In symbols:
(O rem z) DIV (z/p) = o,. (R)

Jack Webster says ...

“I might be wrong here, but I think there is a small mistake in a
formula there (not that the actual formula is important):

That is, (O rem z) div (z/p) = 0.. Suppose O = a+bp-+cp?+dp?,
and we take z = p?>. Then (O rem p?) div p = (a +bp)/p = b,
but we want c.

I think (O div 2) rem p works though. (O div p?) rem p= (c+
dp) rem p = c. Alternatively (O rem pz) div z does it too I
think.”

EXERCISE 28 Is Jack Webster correct? Bottle of college port for RTEX source
code of a corrected version.

Let us abbreviate (R) to ‘R(O, z,0.)’, and let us write

‘4.’ for the I-entry at the place corresponding to z (i.e., the unique
i such that R(I, z,i), namely I rem z) DIV (z/p);

and

‘0, for the O-entry at the place corresponding to z (i.e., the unique
o such that R(O, z,0), namely (O rem z) DIV (z/p)).
How do we tie together I and O? We have to say several things:

(1) For any z < I that is a power-of-p, (i, 0,) is related-by-the-recursion-for-
f to (i(z/p);0(z/p)). We declared f by f(n 4+ 1,5) = g(f(n),n,3) so this is
0z = 9(0(/p), Uz /p)> 5);

Swhich of course is just the truncation of O, the places remaining to the right of the place
corresponding to z.

64 CHAPTER 3. FUNCTIONS

(2) Initialising: we have to say i1 = 0 and o1 = f(0, §);
(3) The nth place of I is n, thus: i, =i/ + 1;
(4) And of course we have to say (3z)(x =i, ANy = 0,).

So our first order formula will be

p is prime
(Fz<I)((zisapowerof p A y=o0. ANz =1)
@EDEO)E) A | i1 =0ro1 = £(0,5) (A)

(Vz < I)(z is a power of p — i, = i(,/p) + 1)
(Vz < I)(z is a power of p = 0. = g(0(z/p)si(2/p)+ 5)))

Some clarifying observations

e How many powers of p are we interested in? Well, obviously the first x of
them. Clearly if we take p to be the least prime bigger than any f(n, 3)
for n < z (the § are fixed, remember) then the powers of p that are of
interest (the “columns”) are precisely those powers of p that are less than
I =1-p+ 2-p* + This explains the bound “< I” whevever we
quantify over powers of p.

e Why does the base for the representation of I and O have to be a prime?
Base-ten representations have served us well enough. The answer is that
we need to be able to identify powers of the base, and (as we saw above)
it is easy to express “z is a power of p” in the ring language if p is a prime;
not so easy if p is composite ...but then we don’t need to!

e The last line in formula (A) above contains the function letter ‘g’ which
is assumed to call a primitive recursive function. This is the clause that
requires us to do some work in the proof by structural induction that
‘y = f(x,8) can be captured by a J; expression when f is primitive
recursive. By induction hypothesis ‘0. = g(0(./p),i(z/p)»5) is equivalent
to an 3; expression—because g is primitive recursive. We can pull the
existential quantifiers to the front by appeal to remark

e We have considered only the induction step concerning the constructor
of primitive recursion, not composition. And we haven’t considered the
founder functions. But all that is easy.

3.2 Exercises

(Both from a Part II sheet of PTJ’s years ago)

3.2. EXERCISES 65

EXERCISE 29 (%)
For each of the following functions ® : (IN — IN) — (IN — IN), determine
(a) whether ® is order-preserving, and (b) whether or not it has a fixed point:

(i) (f)(n) = f(n) + 1 if f(n) is defined, undefined otherwise.
(i) ®(f)(n) = f(n) + 1 if f(n) is defined, (f)(n) =0 otherwise.
(i1i) ©(f)(n) = f(n—1)+ 1 4f f(n—1) is defined, ®(f)(n) =0 otherwise.

EXERCISE 30 (%)

(i) For partial functions f,g : IN — IN, define d(f,g) = 27™ if n is the
least number such that f(n) # g(n), and d(f,g) = 0 if f = g. [The inequality
f(n) # g(n) is understood to include the case where one side is defined and
the other is mot.] Show that d is a metric, and that it makes [IN — IN] into a
complete metric space.

(ii) Show that the function ® which corresponds to the recursive definition
of the factorial function is a contraction mapping for the metric d, and hence
obtain another proof that it has a unique fixed point.

(iti) [if you know what a contraction mapping is] Which (if any) of the
functions defined in[29 are contraction mappings?

3.2.1 Primitive Recursive Relations

A relation is primitive recursive if the characteristic function of its graph is
primitive recursiveﬂ [we haven’t defined characteristic function yet]

A relation-in-extension R(Z) is a primitive recursive relation (or predi-
cate, the words are used interchangeably) iff there is a primitive recursive func-
tion 7 : IN” — {0, 1} (p is the arity of R) such that r(#) =0 «— R(Z). That
is to say, an m-ary relation is primitive recursive iff the characteristic function
of its graph is primitive recursive. Of course we can also talk of subsets of IN*
as being primitive recursive.

In the above setting we say that r represents R. We can take 1 to be true
and 0 to be false, or vice versa, or 0 to be true and all other values to be
false—-it does not matter which way one jumps as long as one is consistent. In
what follows true is 0, and false is 1. Other naturals don’t get used for this
purpose.

EXERCISE 31 (%)

Show that < is a primitive recursive relation;
Show that < is a primitive recursive relation;
Show that = is a primitive recursive relation.

The family of primitive recursive relations is closed under lots of operations.

Strictly: there is a primitive recursive function with the same graph as the characteristic
function

66 CHAPTER 3. FUNCTIONS

Boolean Operations

We observe that) and IN¥ have primitive recursive characteristic functions (as
do all finite and cofinite subsets of IN*).

If R and S are primitive recursive predicates represented by r and s, then

RV S is represented by 7 - s;
R A S is represented by 7 + s;
—R is represented by 1 = r;

so boolean combinations of primitive recursive relations are primitive recursive.

Relational Algebra

Converse of a primitive recursive relation is primitive recursive.

What about composition of primitive recursive relations? We will see later
(exercise that relational composition (as in: nephew-of is sibling-of com-
posed with son-of) of primitive recursive relations might not preserve primitive
recursiveness.

Transitive closures? Presumably not

Substitution

If R(Z) is a primitive recursive relation then we can substitute terms g(%) for the
xs as long as the g are primrec. (use composition/substitution). So “x = f(¥)” is
a primitive recursive relation if f is primitive recursive. [substitution performed
on ‘a ="b.
Bounded Quantification
If R(z,) is represented by r(z, %) then (3x < z)(R(z, %)) is represented by
H r(x,).
0<z<z

We can capture bounded universal quantification by exploiting duality of the
quantifiers, so (Va < z)(R(z,¥)) is represented by

L= @ = @@

0<zLz

If-then-else

The set of primitive recursive functions is also closed under if then else, in
the sense that if r is a primitive recursive predicate, then if R then x else y
is also primitive recursive. Here’s why. Declare:

if-then-else(0, z,y) := x; if-then-else(S(n),z,y) :=y.

3.2. EXERCISES 67

if-then-else is evidently primitive recursive (and in fact it’s so primitive
that it doesn’t actually involve any recursion at all!) and it is mechanical to
check that

if—then—else(proj(r, z, y)?v pT’Oj(?“, z, y)%a p?“Oj (T, z, y)g)

evaluates to x if r =1 and to y if r = 0.

Putting this together with the fact that bounded quantification is primitive
recursive tells us that

THEOREM 7 Functions declared in the style
f (Jz < y)R(z,Z) then f(y,Z2) else g(y,Z).

are primitive recursive, as long as R, f and g are. []

This is bounded search. Hofstader [32] memorably calls this “BLOOP”.

We will use the string ‘pair’ to represent a primitive recursive bijection
IN? — IN. The following is a standard example:

z+y)-(z+y+1
pair(x,y):7(y)2(ytl) +x

and fst and snd are the corresponding primitive recursive unpairing functions,
so that

fst(pair(m,n)

)
snd(pair(m,n))
pair(fst(r) nd

)

r)

EXERCISE 32 (*) Check that pair is a bijection between IN x IN and IN, and
show that it and the unpairing functions £st and snd are all primitive recursive.

In future when we write ‘pair(z,y)’ without comment we shall assume it is
this function we are using. ‘(n,m)’ will denote a primitive (anonymous) pairing
function.

We observe without proof that the graph of a primitive recursive function is
a rectype; so too is the graph of a primitive recursive relation. For example, the
graph of the primitive recursive relation <y has all the pairs (0,n) (for n € IN)
as founders, and has the single constructor (n,m) — (S(n), S(m)).

We shall see in section ?? how evaluation sequences, where the value y
of a recursive function f at some argument x is computed by unravelling the
recursion, correspond pretty exactly to a certificate that the pair (y,z) belongs
to the rectype that is the graph of f.

Except perhaps when we are
doing A-calculus. Check.

68 CHAPTER 3. FUNCTIONS

EXERCISE 33 (*) Euler’s totient function ¢ is defined by
d(n) :=|{m <n: HCF(m,n) = 1}|.
Prove that ¢ is primitive recursive.

EXERCISE 34
Show that, if R is a primitive recursive predicate, then the function sending n
to the least y < k such that R(n,y,Z) is also primitive recursive.

We will see later that we really do need the bound if we wish to secure primitive
recursiveness. See exercise [64] p

EXERCISE 35 (%)
1. The declaration:

Fib(0) := 1;
Fib(1) :=1;
Fib(n 4 2) := Fib(n + 1)+Fib(n);

18 not primitive recursive. Find a declaration of this function-in-extension
that is primitive recursive.

2. The iterate It(f) of f is defined by: Tt(f)(m,n) = f™(n). Notice that,
even if f is a primitive recursive function of one argument, this function
of two arguments is not prima facie primitive recursive. Show that it is
primitive recursive nevertheless.

Take T to be the inductively defined class of functions containing the suc-
cessor function S(n) = n + 1, the functions pair, fst, snd and closed
under composition and iteration. Show that if a € N and G(z,y) is in T
and H(z) is defined by H(0) = a, H(n+ 1) = G(H(n),n), then H(x) is
in Z. [Hint: Consider pair(H(y),y).]

EXERCISE 36 Show that all primitive recursive functions are total by struc-
tural induction on the rectype. The induction step for primitive recursion uses
induction over IN.

This means that functions like the one that returns n when given 2n and
fails on odd numbers are not primitive recursive. Nevertheless, you will often
hear people say—as I say to you now—that you would be extremely unlucky to
encounter computable functions that are not primitive recursive unless you are
a logician and go out of your way to look for trouble. The Ramsey functions
(some of them, at least) are primitive recursive. (That was exercise on
page . Waring’s g and G are not—at least they aren’t defined that way
as functions-in-intension—but it turns out after all that they are too...in the
sense that the graphs of G and g are also the graphs of primitive recursive
functions-in-intension.

The resolution of this apparent contradiction is that the function

3.2. EXERCISES 69

n— (if n =2k then k else fail)

is in some sense coded by the primitive recursive function that sends 2n + 1
to 0 (meaning fail) and sends 2n to n + 1 (meaning n), and this function is
primitive recursive.

So there is a way of thinking of the M&bius function as primitive recursive.

EXERCISE 37 The Mébius function p is defined by
u(n) := if n is not square-free then 0 else (—1)*

where k is the number of distinct prime factors of nﬁ
Prove that p is primitive recursive. (You will somehow have to code up the
negative integer —1.)

3.2.2 Simultaneous Recursion

A simultaneous recursion or mutual recursion is where two or more func-
tions are declared by recursions in which each calls some of the others as well
as possibly itself.

The usual example is the odd and even functions, which represent the set
{2n : n € IN} of even naturals and the set of odd naturals respectively. (Miniex-
ercise: supply this definition.) Here is another example—from a la Computer
Science exam of some years ago.

fn):=if n=0then O else g(f(n—1)+1,1)—1;
g(n,m) = f(f(n—1))+m+1.

(It turns out that f(n) =n and g(m,n) =m+ n.)

EXERCISE 38 On the face of it a simultaneous declaration like that of even
and odd is not primitive recursive. Use the pipelining technique above to show
how, nevertheless, any function that is declared in such a bundle can be given a
declaration as a primitive recursive function.

Enthusiasts might like to try to prove the following theorem of Rozsa Péter
which T found in [53] p 12.

EXERCISE 39 Suppose functions g, h, and the j; for 0 < i < k are primitive
recursive, with (Vx)(j;(x) < x) for every i < k, and that f is defined by

f(0,y) := g(y)

Show that f is primitive recursive too.

8Be warned that we will later use the letter ‘i’ for the function that returns the least object
in a set (“pinimum” not pobius”)

Where do we prove this?

I may have my ms and ns
muddled up

70 CHAPTER 3. FUNCTIONS

We will later need the fact that that the function enumerating the primes
in increasing order is primitive recursive. For this we need that a search
(3z < f(n))(...) is primitive recursive if f and the dots are primitive recur-
sive. Bertrand’s postulate might come in handy.

EXERCISE 40 Show that the function w(n) = the nth prime is primitive re-
cursive

3.3 jp-recursion

Does the rectype of primitive recursive functions exhaust the class of (total)
functions that reasonable people would consider computable?

There are some functions that are clearly not everywhere defined but are
equally clearly in some sense computable: n — n/2 if n is even and fail other-
wise. We know that every primitive recursive function is everywhere defined, so
does it follow that not every computable function is primitive recursive? Well
no, not really, because we can encode this partial function by the total function
n — (n/2) + 1 if n is even and 0 otherwise. If we want to demonstrate that
there are computable functions that are not primitive recursive we have to do
a bit more work, and that is where the Ackermann function comes in.

3.3.1 The Ackermann function

The following function:

A(0,n) = S5(n)
A((S(m)),0) = A(m,1)
A(S(m), S(n)):= A(m, A(S(m),n))

is the Ackermann function. Brief inspection will reveal that this declaration
is not primitive recursive. This function—unlike the Fibonacci function and the
simultaneous recursion cases we saw—doesn’t seem to have a primitive recursive
declaration at all. We shall in due course establish that it does, indeed, not
have a primitive recursive declaration. That is where the significance of the
Ackermann function lies: it is a kosher recursive function—provably defined
everywhere—that nevertheless has no primitive recursive declaration. As such it
torpedoes the project to capture all computable functions by means of primitive
recursion. So we have to establish that (i) it is total and (ii) has no primitive
recursive declaration. We will do both of these.

Actually the project (i) has some interest independent of (ii). The proof
obviously is going to procede by an induction of some kind. The allegation (i)
is of the form “for all m and for all n, something happens”. An allegation of
the form “for all n, something happens” might, on the face of it, be provable in
either of two ways. It might be universal generalisation: “Let n be an arbitrary
natural number ...”; one then reasons about this natural number, establishes
whatever it is, and then reflects that the proof crucially didn’t depend on n

3.3. u-RECURSION 71

being any particular number, so we have in fact proved it for all n. Or we might
do an induction on n. This means that when trying to prove an assertion that
starts “for all ny ...ny ...” we have (in principle) 2¥ different strategies. In this
case—the totality of Ackermann—there are apparently four ways of attacking
it. As it happens, only one way works. You have to do two inductions, one on
each variable.

THEOREM 8 A(m,n) is defined for all n,m € IN.

Proof:
We prove by induction on m that (¥n)(A(m,n) is defined), and the induction
step requires an induction on n.

Base case: m = 0.
This is straightforward; we have A(0,n) :=n + 1 by stipulation.

Induction step:

Now assume A(m, n) is defined for all n. We will prove that A(m + 1,n)
is defined for all n, and we will do this by induction on ‘n’.

Base case:

n=0. A(m+1,0) := A(m, 1) by stipulation, and A(m,1)
is defined by induction hypothesis.

Induction step:

So assume A(m + 1,n) defined. We wish to be reassured
that A(m + 1,n + 1) is defined as well. The definition
stipulates that A(m+1,n+1) := A(m, A(m+1,n)), and by
induction hypothesis (on ‘n’, in the inner loop) A(n+1,m)
is defined, and by induction hypothesis (on ‘m’; in the
outer loop) A(m, A(m + 1,n)) is defined.

(You will note (i hope) how i have artistically indented the inner loop!)

Here is another proof of theorem [§] this time by induction on the lexico-
graphic order of IN x IN. (You proved in exercise [19| that a lexicographic prod-
uct of finitely many wellfounded strict partial orderings is a wellfounded strict
partial ordering).

Proof:
Assume A(z,y) is defined for all pairs (x,y) that precede (m,n) in the lexi-
cographic ordering. One of the three possibilities below must happen:

1. m = 0. In this case A(m,n) =n+ 1;

2. n=0. Then A(m,n) = A(m—1,1) which is defined by induction hypoth-
esis, since (m — 1,1) <jez (M, n);

Check that the ms and ns
have not got jumbled

72 CHAPTER 3. FUNCTIONS

3. n,m # 0. Then A(m,n) is A(m — 1, A(m,n —1)). Now (m —1,2) <jex
(m,n) for all z. So A(m,n) is defined as long as A(m,n — 1) is defined,
because this enables us to take z to be A(m,n —1). But (m,n — 1) <je,
(m,n), so by induction hypothesis A(m,n—1) is defined and can be taken
to be one such z.

The more jaded among you may feel that these two proofs are the same
proof underneath. Perhaps they are. At any rate what we are seeing here is the
simplest possible illustration that a total function might be proved total by an
induction over a lexicographic product of length w® for some «, or by induction
over IN using nested loops. If we need to do an induction over a wellorder of
length w? we need (look at the exponent) two nested inductions.

It’s probably not unduly fanciful to think of double recursion (& la Acker-
mann) as primitive recursion over a different rectype—IN x IN tho’rt of in the
right way.

3.3.2 The Ackermann function dominates all primitive re-
cursive functions

Perhaps the best way to emphasise this point is to prove that the Ackermann
function dominates all primitive recursive functions.

[The idea behind this proof is very simple but the details are horrible and I
do not propose to lecture it. It will not be examinable. Nevertheless you might
like to try the exercises in this section.]

We need some technical details. They are not hard enough to justify being
lectured, but they do matter enough to be worth doing as an exercise. (Do the
various parts of the exercise in the order indicated). This exercise has something
of the nature of writing machine code for register machines. You don’t want to
spend time doing it, but it’s a good thing to have done once.

EXERCISE 41 (*) Prove the following:

(1) (Ym, n)(A(m, n) > n);

(2) A is strictly monotone increasing in its second argument;
(3) A(m +1,n) > A(m,n + 1);

(4) A is monotone increasing in its first argument;

(5) A(m,2n) < A(m +2,n).

EXERCISE 42 (For those who did Number Theory in Part II)
Is the class number function h primitive recursive?
Justify your answer in general terms.

Now that you are familiar with the concept of primitive recursive function
and with at least one function that isn’t primitive recursive it can do you no
harm to get into the habit of asking questions along the lines of exercise
May as well put the concept to good use!

3.3. u-RECURSION 73

DEFINITION 10
f:IN — IN dominates g : N — IN if (In € IN)(Vm > n)(f(m) > g(m)).

Actually, what we are about to prove does not use this definition exactly,
but it has the same flavour.

THEOREM 9
For every primitive recursive function f there is a constant cy such that

(V) (/@) < Aley, max)).
(We say cy is suitable for f.)

Proof:

We prove this by structural induction on primitive recursive functions.

It’s easy to see that the theorem holds for f = S (the successor function), f
the 0 function, and f a projection.

Composition.
Suppose that the hypothesis is true for primitive recursive functions f1, ..., fn,
g and that g is (post-)composable with (f1,..., f,). We will show that the hy-
pothesis holds for g(f1(=),..., fn(-)).
Write ¢y, ,...,cy,, cq for the constants suitable for fi,..., f,,g. Defining m
tobemax{cy,,...,cy,,cq}, we will show that m+2 is suitable for g(f1(—), ..., fn(—))-
Let & be a member of the domain common to the f;. Renumbering if neces-
sary, we may assume that f1(Z) = max; f;(#). We have the following inequali-
ties:

g(f1(Z), ..., fu(@)) < Aleg, f1(Z)) definition of ¢,
< Aleq, Acy, , max &)) definition of ¢y,
< A(m, A(m, max %)) definition of m
< A(m, A(m + 1, max %)) mono in both args
< A(m, A(m + 2, max ¥ — 1)) EX part (iii)
<A(m+1,A(m+2,max# — 1)) mono in first arg
= A(m + 2, max &)

Therefore m + 2 is suitable for g(fi(—),..., fu(=)).

You might be worried, Dear Reader, by the thought that the renumbering that
ensures that it is fi that gives the biggest input to g depends on the choice of Z. It
does, but this affects only the second argument to the Ackermann function in what
follows, whereas it is the first argument that matters.

Primitive Recursion.
Suppose our hypothesis holds for g and h and that f is declared by primitive
recursion over g and h; that is, f is defined by:

74 CHAPTER 3. FUNCTIONS

Let ¢4 and ¢, be constants suitable for g and h; put m = max{cg,cp} + 1.
We will show by induction on y that, for every Z, f(Z,y) < A(m, maxZ+y).
This is clearly true for y = 0:

f(Z,0) = g(Z) < A(cg, maxx) < A(m, max).

Suppose that the assertion holds for 4y > 0. For every & we have, using the
induction hypothesis and basic properties of A,

@y +1) =hZ,y, [(Zy))
< A(cn, max{max 7.y, f(,y)})
< Alen, A(m, max 7 +1))
< A(m — 1, A(m,max T + y))
=A(m,maxZ+y + 1).
This completes the induction. Writing = for max &, we have the inequality
f@y) <A(m,z +y) < A(m, 2max{z,y}) < A(m + 2, max{z, y}).
(The final inequality follows from part (5) of exercise Therefore m + 2 is
suitable for f. This completes the proof. [|

What this is telling us is that the ‘slices’ of the Ackermann function—that
is to say the functions An.A(m,n)—form an increasing w-sequence of elements
of the poset IN — IN ordered by dominance and that this sequence is cofinal in
the primitive recursive functions (has no primitive recursive upper bound).

COROLLARY 1 The Ackermann function A is not primitive recursive.
Proof: Suppose A is primitive recursive. Then a : n — A(n,n) is also primitive
recursive, so there is a constant ¢, such that A(c,,n) > a(n) for every n. But
this is definitely false for n = ¢, + 1:

A(cg,n) = A(car o +1) < A(cq +1,¢6 + 1) = a(n).

You might think, Dear Reader, that this means there is a quantifier-pushing
theorem along the lines of

(Ve < y)(3n)o(n, z,y, W) «— (3a)(a = A(cy, maz(y, z, W))A (Ve < y)(3n < a)p(n, z,y,W))

3.3. u-RECURSION 75

where ¢ is a primitive recursive predicate. Observe that the RHS is 3
because the stuff after the existential quantifier is a primitive recursive predicate:
“a = A(cg, maz(y, z,w))” is a primitive recursive predicate.

If we are to prove this, we would need a lemma to the effect that: for every
primitive recursive relation ¢(y, &), there is a ¢4 s.t., for all Z,

(Fy)(@(y, ¥)) «— By < A(cy, maz(Z)))(6(y, T))

However, as we shall see later (exercise|52)) the desired lemma is false. Prim-
itive recursive relations and primitive recursive functions do not behave in the
same way!

For a good readable discussion of the significance of the Ackermann function
have a look at [60].

Why do we not simply gnumber the primitive recursive functions and diag-
onalise out of them? That would give us a total computable function that is
demonstrably not primitive recursive—and at less effort. It would indeed, but
this route to the result, via the Ackermann function, is more informative and
more fun.

EXERCISE 43 (%) (1991:5:10 (CS)[]

Define the terms primitive recursive function, partial recursive function, and
total computable function.

Ackermann’s function is defined as follows:

A0.y) ==y + 1 A(w +1,0) = Al 1); A(x+ Ly+1) == Az, A(z + 1,y)).

For each n define f,(y) := A(n,y). Show that for all n > 0, fri11(y) =
furl(1), and deduce that each f, is primitive recursive. Why does this mean
that the Ackermann function is total computable?

EXERCISE 44 (%)

1. Write out a definition of a constructor of double recursion so that you
now have a rectype of doubly recursive functions. (Do not worry unduly
about how comprehensive your definition is.)

2. What would a ternary Ackermann function be? Sketch a proof that the
ternary Ackermann function you have defined dominates all doubly recur-
sive functions.

3. Outline how to do the same for higher degrees.

The Ackermann function involves recursion on two variables in a way that
cannot be disentangled. The point of exercise is that there is also treble
recursion and so on. A function is n-recursive if it is declared by a recursion
involving n entangled variables. Exercise [44]invites you to prove analogues—for

9This was question 10 on paper 5 of the Cambridge Computer Science tripos 1991.

76 CHAPTER 3. FUNCTIONS

each n—of the facts we have proved about the Ackermann function: namely, for
every n there are functions that are n recursive but not (n—1)-recursive, and one
can prove their totality by a well-founded induction over the lexicographic prod-
uct ordering on IN". Is every total computable function n-recursive for some n?
Sadly, no, but I shall not give a proof. [we will see later an example of a man-
ifestly computable total function that is not n-recursive for any n]lﬂ It turns
out that the correct response to the news brought by the Ackermann function to
the effect that not every total computable function is primitive recursive is not
to pursue 2-recursive, 3-recursive and so on but rather to abandon altogether
the idea that computable functions have to be total in order to be computable.
For a sensible general theory we need to consider partial functionsE This is
because we want unbounded searcl”m to be allowed. The new gadget we need
is p-recursion, which corresponds to unbounded search. This is a sensible new
constructor to reach for because any strategy for computing g will give rise to
a strategy for computing ¢~!: simply try ¢g with successively increasing inputs
starting at 0 and continue until you get the answer you want-if you ever do.
The point is that, if we have a deterministic procedure for getting values of g,
we will have a deterministic procedure for getting values of g~—!. That is to
say, it appears that the class of functions that are plausibly computable (in an
intuitive sense of ‘computable’) is closed under inverse.

So we augment the constructors of the rectype of primi-
tive recursive functions by allowing ourselves to declare f
by f(n,Z) := (ny)(9(y, %) = n), once given g. Then uy.® is
the least y such that ® (if there is one) and is undefined
otherwise.

Notice that, even with this new constructor, the rectype of p-recursive func-
tions is still countably presented.

But there is a catch. The unbounded search constructor preserves com-
putability as long as its argument is a total function, but the inverse function
that it gives us is not guaranteed to be total itself! Think about inverting
n +— 2n. The result is a function that divides even numbers by 2 and fails on
odd numbers. No problem there. For the moment let f be that function. The
problem comes when we try to invert f: how do we ever discover what f~1(3)
is? It ought to be 6 of course, but if we approach it by computing f(0), f(1)
and so on, we get stuck because the endeavour to compute f(1) launches us on
a wild goose chase. We could guess that the way to compute f~1(3) is to try

10The multiply recursive (n-recursive for any n) functions are all provably total in the S
inductive fragment of PA.

110n page we encountered a naturally occurring computable partial function that was
not really strictly partial because there was a computable total function that in some sense
encoded the same information. When I write that we must embrace partial functions I mean
we must embrace even those partial functions that cannot be coded as total function in the
way division by 2 can.

12Fans of [32] might be helped by a reminder that Hofstader calls unbounded search FLOOP
(as opposed to BLOOP, bounded search, which we saw on page .

3.3. u-RECURSION 7

computing f(6), but we do not want to even think about nondeterminism, be-
cause this severs our chain to the anchor of tangibility that was the motivation
for thinking about computability in the first place.

The upshot is that we cannot rely on being able to iterate inversion, so we
just cannot simply close the set of primitive recursive functions under both the
old constructors and this new one and expect to get a sensible answer. As the
n — 2n example shows, FLOOP might output a function that you cannot then
FLOOP. Nor can we escape by doctoring the datatype declaration so that we
are allowed to apply inversion only to functions satisfying conditions that-like
totality—are ascertainable solely at run-time. That would not be sensibleH

Fortunately it will turn out that any function that we can define by more than
one inversion can always be defined using only onelEI I am going to leave the
precise definition of p-recursive up in the air for the moment. We will discover
what it is by attempting to prove the theorem that a function is y-recursive iff
it is computable by a machine.

At first blush it seems odd to formalise computability in such a way that
a function can be computable but undefined, but this liberalisation is the key
that unlocks Computation Theory. Perhaps, on reflection, it isn’t so odd after
all: all of us who have ever written any code at all know perfectly well that the
everywhere-undefined function is computable-since we have all inadvertently
written code that computes it!

Specifically, this enables us to connect syntactic concepts of computability—
namely, function declarations—to semantic concepts—namely, computability by
machines . ..to which we now turn.

131t is true that one can obtain a declaration of the p-recursive functions as a rectype by
simply adding to the constructors for the primitive recursive functions the declaration:
If ¢(Z,y) is a total p-recursive predicate, then f(Z) := (uy)(¢(Z,y) = 0) is a
p-recursive function.
and some writers do this, but this is philosophically distasteful for the reasons given: it makes
for a less abstract definition.
MUnfortunately (as we shall see) this is not proved by exhibiting an algorithm for eliminating
extra inversions: it’s less direct than that.

78

CHAPTER 3. FUNCTIONS

Chapter 4

Machines

There are various flavours of machines you may have heard of: Finite state
machines both deterministic and nondeterministic, pushdown automata, linear
bounded automata, Minsky machines, Turing machines and no doubt others.
Each flavour of machine gives rise to a concept of computable function, and of
course that is why they crop up here. However there are in fact only two kinds
of machine we will be concerned with here (life is shortE[) and they are Finite
State machine and Turing Machine (or Register Machine). They correspond
somehow to a minimal concept and a maximal concept of finite computation.

4.1 Finite State Machines

Let’s start off with a nice picture that is just complicated enuff to show all the
features of interest and yet still simple enuff for one still to be able to see what
it’s doing.

1Some of you encountered pushdown automata and contxt-free languages in Part II: I have
nothing to say about them in this course

79

80 CHAPTER 4. MACHINES

You start at the state indicated by the finger, and move from one state to
another by following the labelled arrows—the labels on the arrows are letters
from the input alphabet. If you land on a state (in this case there is only one)
decorated with a smiley you accept the string. (And ‘accept’ is a term of art)

If you think about this machine for a bit you will see that it accepts precisely
those strings that contain an odd number of 0s and an odd number of 1s. We
express this by saying that it recognises the set

{s : s contains an odd number of 0s and an odd number of 1s}.

That is to say: a machine accepts a string, but recognises a set of strings.
Do not confuse these two verbs.

It’s worth saying a little bit about finite state machines because nondeter-
minism arises naturally in this context.

Look at the Regular languages and Finite Machines notes on [51]. You might
also derive some entertainment from the embarrassingly elementary http://
www.dpmms . cam.ac.uk/~tf/cam_only/laCSmaterials.html (designed for first-
year computer science students!)

Pumping Lemma; nonexistence of a universal machine
Equivalence of deterministic and nondeterministic machines
Kleene’s theorem

Th pumping lemma says that the language recognised by a FSA is closed
under a certain [“pumping”] operation.

For any two natural numbers a and b, the set of all base-a representations of
natural-numbers-divisible-by-b is a regular language. However it is much easier
to test whether a number is divisible by 7 if it is presented to us in octal than if
it is presented to us in decimal. This reminds us that we are never computing
with numbers but always with representations of numbers. See the remark of
Enderton quoted on p 77.

No, that’s not true, but something like it is, and can be used to make the
same point.

EXERCISE 45 Show that, for any base b, the set of base-b notations for natural
numbers is a regular language.

4.1.1 Kleene’s theorem

Kleene’s theorem states that a language is regular if it can be notated by a
regular expression. One direction of this is fairly easy: showing that if there is
a regular expression for a language L then there is a machine that recognises L.
This breaks down into several steps, one for each constructor: slash, concate-
nation and Kleene star. We’ve seen how to do slash—after all L(K;|K>) is just

http://www.dpmms.cam.ac.uk/~tf/cam_only/1aCSmaterials.html
http://www.dpmms.cam.ac.uk/~tf/cam_only/1aCSmaterials.html

4.1. FINITE STATE MACHINES 81

L(K;) U L(K2)—but to do the other two involves nondeterministic machines
and we don’t encounter those until later.

The hard part is the other direction: showing how to find a regular expression
for the language recognised by a given machine.

What we prove is something apparently much stronger:

For every machine 9, for any two states ¢; and g2 of 9, and for any set
Q of states, there is a regular expression ¢(q1, g2, Q) which notates the set of
strings that take us from state g; to state ¢o with all intermediate states lying
within the set Q.

Of course all we are after is the regular expression formed by putting slashes
between all the expression ¢(qi,q2,Q) where ¢; is the initial state, ¢o is an
accepting state, and @) is the set of all states. But it turns out that the only
way to prove this special case is to prove the much more general assertion.

We prove this general assertion by induction. The only way to have a hope of
understanding this proof is to be quite clear about what it is we are proving by
induction. You are probably accustomed to having ‘n’ as the induction variable
in your proofs by induction so let’s do that here.

“For all machines 2, and for all subsets @ of the set of 9’s states
with |@Q] = n, and for any two states ¢; and ¢ of 9, there is a
regular expression ¢(qi, g2, Q) which notates the set of strings that
take us from state q; to state g2 while only ever moving between
states in the set QQ”

We fix 9 once for all (so that we are doing a ‘V-introduction rule, or “uni-
versal generalisation” on the variable ‘OV’) and we prove by induction on ‘n’
that this is true for all n.

At the risk of tempting fate, I am inclined to say at this point that if you
are happy with what has gone so far in this section (and that is quite a big if!)
then you have done all the hard work. The proof by induction is not very hard.
The hard part lay in seeing that you had to prove the more general assertion
first and then derive Kleene’s theorem as a consequence.

Proofs by induction all have two parts. (i) A base case, and (ii) induction
step. I submit, ladies and gentlemen, that the base case—with n = 1—is
obvious. Whatever 91, s and ¢ are, you can either get from ¢; to g2 in one
hop by means of—character ¢, say (in which case the regular expression is ¢)—
or you can’t, in which case the regular expression is e.

Now let’s think about the induction step. Suppose our assertion true for n.
We want to prove it true for n + 1.

We are given a machine 91, and two states g; and g2 of M. We want to show
that for any set @ of states of M, with |Q| = n+ 1, there is a regular expression
that captures the strings that take the machine from ¢; to go without leaving
Q.

What are we allowed to assume? The induction hypothesis tells us that for
any two states s’ and ¢’ and any set Q' of states with |Q’| = n, there is a regular
expression that captures the strings that take the machine from ¢ to ¢} without

82 CHAPTER 4. MACHINES

[PW]

leaving @'. (I have written ‘q}’ and ‘¢}’ and @’ because I don’t want to reuse
the same variables!)

For any state r in @), we can reason as follows: “Every string that takes 9t
from ¢; to gz without leaving () either goes through r or it doesn’t.

The strings that take 9t from ¢; to g2 without either going through r or
leaving) are captured by a regular expression because |Q \ {r}| = n. Let w;
be this regular expression.

The strings that take 9t from ¢; to g2 via r are slightly more complicated.
By induction hypothesis we have a regular expression for the set of strings that
take 9 from ¢; to r without going through ¢ (while remaining in Q)—because
|Q\ {g2}| = n—=s0 let’s call that regular expression wq. Similarly by induction
hypothesis we have a regular expression for the set of strings that take 9t from r
to go without going through ¢; (while remaining in Q)—because |Q\{q1}| = n—
so let’s call that regular expression ws. Finally by induction hypothesis we have
a regular expression for the set of strings that take 9 from r back to r without
going through ¢; or g2 (while remaining in Q)—because |Q\{q1,¢2}| = n—1—so
let’s call that regular expression wy.

Now a string that takes 9t from ¢; to g2 via r will consist of a segment that
takes 9 from ¢; to r (captured by ws) followed by a bit that takes it from r
back to r any number of times (captured by wj) followed by a bit that takes 9t
from r to g2 (captured by ws).

So the regular expression we want is wq|wa(ws4)*ws.

This concludes the proof.

If you are a confident and fluent programmer in a language that handles
strings naturally then you should try to program the algorithm on which this
proof relies. It will give you good exercise in programming and will help you
understand the algorithm.

4.1.2 The Thought-experiment and Myhill-Nerode

I am in a darkened room, whose sole feature of interest (since it has neither
drinks cabinet nor coffee-making facilities) is a wee hatch through which some-
body every now and then throws at me a character from the alphabet 3. My
only task is to say “yes” if the string of characters that I have had thrown at
me so far is a member of L and “no” if it isn’t (and these answers have to be
correct!)

After a while the lack of coffee and a drinks cabinet becomes a bit much for
me so I request a drinks break. At this point I need an understudy, and it is
going to be you. Your task is to take over where I left off: that is, to continue
to answer correctly “yes” or “no” depending on whether or not the string of
characters that we (first T and then you) have been monitoring all morning is a
member of L.

What information do you want me to hand on to you when
I go off for my drinks break? Can we devise in advance a
form that I fill in and hand on to you when I go off duty?

4.1. FINITE STATE MACHINES 83

That is to say, what are the parameters whose values I need
to track? How many values can each parameter take? How
much space do I require in order to store those values?

The thought-experiment encourages us to think about what distinctions we
need to make between strings from >* if we are to be able to tell members of
L C ¥* from members of ¥*\ L. We can give a more formal, more mathematical
account, due essentially to Myhill and Nerode.

The definition we have given of regular language can be rephrased by saying
that if we start with a machine 9, and think of it as a digraph with edges
decorated with characters from 3, and some vertices decorated with smilies
(and one with a pointy finger thingy) then we can think of the corresponding
regular language as a kind of unfolding of 91, the set of paths thru’ 21 that start
at the pointy finger and end on a smilie—or rather the sequence of decorations
of the edges along such a path. That’s how a machine gives rise to a regular
language, by an unfolding. Can we sensibly describe an inverse to this process?
In the course of the unfolding we make lots of copies of the various states of the
machine; the challenge is, on being given something that might have arisen by
an unfolding of this kind, to recover what the machine was that was unfolded.
We have to discover which things in the unfolding are copies of a single thing
(state) in the machine. In other words we are looking for an equivalence relation
on X* whose quotient will turn out to be 9.

Accordingly let L C ¥*, be a language not assumed to be regular. We will
define an w-sequence (~,:n € IN) of equivalence relations on ¥*. ~y is the
equivalence relation of index 2 whose two equivalence classes are L and ¥* \ L.

Thereafter we say

Wy W w e~y w A (Vo € D) (wix ~, w'iz)

The equivalence relations in this sequence are of monotonically increasing
strictness, so if we iterate long enough we will reach a fixed point. Observe that
the ~,, are all of finite index [might be an idea to prove this in some detail].
The recursion is of finite character, so we know that we will reach a fixed point
at stage w (with (), o ~n) if not before. Let ~ (without the subscript) be
the fixed point. Evidently we can think of the equivalence classes in ¥*/ ~ as
the states of a machine: the initial state is the equivalence class of the empty
string and the accepting states are those equivalence classes that meet L. If the
machine is finite then clearly L is a regular language.

And vice versa: equally clearly, if L is regular, then there will be a fixed
point of finite index: every machine that recognises L embodies a fixed point.
Observe that we can prove by induction on n that ~,, is a superset of any fixed
point, so the fixed point supplied by this construction must be the least fixed
point. Accordingly we can conclude that, for any regular language L, there is a
unique minimal machine that recognises it.

This is the Myhill-Nerode theoremP]

2Look at https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2009p2q9.pdf It de-

https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2009p2q9.pdf

84 CHAPTER 4. MACHINES

[The existence of a fixed point follows from general results such as Knaster-
Tarski (and probably Bourbaki-Witt) which you saw in Part II. Knaster-Tarski
not only tells you there are fixed points but that there is a complete lattice of
them, so there is probably quite a lot to be said.]

What if L is not regular? The construction we have just seen is a sensible
construction and may well give us a sensible answer—as it does for example
when L is the matching brackets language. The machine we get for the matching
brackets language will have, as it were, 1 + w states. The start state (which is
also the sole accepting state) is 0; —1 is the fail state, and n is the state where
there are n outstanding left brackets. (I must put in the missing ‘(’ pushing us
to the right ...)

This machine has infinitely many states, but is a finite object in the sense
that it admits (as we have just shown!) a finite description. Our determination
to think of mathematical objects as finite objects (wherever possible) leads us
to invent other machine architectures which will enable us to think of these
sensible (infinite) quotients as explicitly finite objectﬂ by somehow turning the
finite description of the infinite machine into a specification of a finite machine of
the new architecture. One such architecture is pushdown automaton. However
we probably won’t get round to them, and we will occupy ourselves with finite
state machines only, while allowing them to be nondeterministic.

4.1.3 Nondeterministic Machines

A nondeterministic machine is just like a deterministic machine except that its
transition behaviour isn’t deterministic. If you know the state a deterministic
machine 9 is in then you know what state it will go to when you give it character
a (or b or whatever). With a nondeterministic machine you only know the set of
states that it might go to next. Notice that a deterministic machine is simply a
nondeterministic machine where this set-of-states-that-it-might-go-to is always
a singleton.

fines an equivalence relation on * by w ~ w’ iff (Vu € ©)(wu € L +— w'u € L). Tt
invites the reader to notice that, if L = a"b™, for n # m, a™ and b™ are inequivalent,
There is a raven-protected discussion answer on https://www.cl.cam.ac.uk/teaching/exams/
solutions/2009/2009-p02-q09-solutions.pdf!

SWe will see later something of the same flavour: every theory with an (infinite but)
decidable axiomatisation has a conservative extension in a new language that is finitely ax-
iomatisable. See remark [}

https://www.cl.cam.ac.uk/teaching/exams/solutions/2009/2009-p02-q09-solutions.pdf
https://www.cl.cam.ac.uk/teaching/exams/solutions/2009/2009-p02-q09-solutions.pdf

4.1. FINITE STATE MACHINES 85

Nondeterministic machines (hereafter NFAs—“nondeterministic finite au-
tomata”) are a conceptual nightmare. The fact that they are nondeterministic
makes for a crucial difference between them and deterministic machines. In
the deterministic case you don’t have to distinguish in your mind between its
behaviour in principle and its behaviour in practice, since its behaviour in prac-
tice is perfectly reproducible. That means that you can think of a deterministic
machine either as an abstract machine—a drawing perhaps—or as a physical
machine, according to taste. With NFAs there is a much stronger temptation
to think of them as actual physical devices whose behaviour is uncertain, rather
than as abstract objects. And the difficulty then is that NFAs are not physically
realisable in the way one would like.

If NFAs are so nasty, why do we study them? The answer is that they
tie up some loose ends and enable us to give a smooth theoretical treatment
that improves our understanding and appreciation. So let us get straight what
they are for. We started this chapter with a connection between machines and
languages. A machine accepts strings and recognises a language. A (physical)
nondeterministic machine can accept strings in exactly the same way that a
(physical) deterministic one does: you power it up, and feed in the characters
one-by-one and when it’s finished reading the string its either in an accepting
state or it isn’t. The subtlety is that a nondeterministic machine, on having read
a string, might be in any of several states, perhaps some of which are accepting
and perhaps some not. The only sensible definition we can give of an (abstract)
nondeterministic machine recognising a language is this:

The language recognised by a nondeterministic machine 9t
is the set of strings that one of its physical realisations might
accept.

The task of remembering and understanding this definition is made much
easier for you once you notice that the definition for recognition of languages
by deterministic machines is simply a special case of this.

Nondeterministic machines are useful to us because of the combination of
two facts.

(i) If L is a language recognised by a nondeterministic ma-
chine 91 then there is a deterministic machine 9" which can
be obtained in a systematic way from 91 that also recognises
L.

(ii) There are circumstances in which it is very easy to pro-
duce a nondeterministic machine that recognises a language
but no obvious easy way to produce a deterministic one.

Let us now prove (i) and illustrate (ii).

(i): Finding a DFA that emulates an NFA

Suppose I have a nondeterministic machine 90, presented to me in its start state.
I have a handful of characters {c, ca,c3...} that I feed to the machine one by

86 CHAPTER 4. MACHINES

one. Initially I know the machine is in the start state. But after I've given it
c1 I know only that it is in one of the states that it can go to from the start
state on being given ¢;. And after I've given it co I know only that it is one of
those states it can reach from the start state in two hops if given ¢; followed
by c2 ...and so on. We seem to be losing information all the time. But all is
not lost. Although I do not have certain knowledge of the state 9t is in, I do
nevertheless have certain knowledge of the set of states that it might be in. And
this is something I can keep track of, in the following sense. I can say “If it’s in
one of the states s or s’ or s” and I give it character c¢ then either it was in s in
which case it’s now in s or s or it was in ' in which case it’s now in ...”.
In other words

If I know the set of states that it might be in now
(and know that it must be in one of them)

and I know the character it is being given

then I know the set of states that it might be in next

(and I know that it must be in one of them)

Now comes the trick. Think of the set-of-states-that-it-might-be-in as a
state of a new machine! One way of seeing this is to think of the states of
the new deterministic machine as the states of uncertainty you might be in
concerning the state of the nondeterministic machine. We have seen something
like this before: in the discussion of the thought-experiment we were viewing
states of the machine as states of knowledge of the string-so-far; this time we are
thinking of states of the new (deterministic) machine as states-of-knowledge-of-
what-state-the-nondeterministic-machine-might-be-in.

Observe that this “power set construction” supplies us, free, with the empty
set of states. Clearly there can be no arrow to it! This empty set of states can
thus correspond to a fail state, and we can now make sense of the convention
that missing arrows take you to a fail state. If you “cannot go anywhere” from
state s when you receive character ¢, then in the power set construction of a
DFA any (meta)state that contains s must have an arrow labelled ‘¢’ to the
empty set of states.

(ii) An Application of NFAs

I mentioned earlier that the concatenation of two regular languages is regular.
Suppose I have a deterministic machine 9t; that recognises L and a deterministic
machine 91, that recognises K. The idea is to somehow “stick 2y on the end
of My”.

The difficulty is that if w is a string in LK, it might be in LK for more
than one reason, since it might be decomposible into a string-from-K followed
by a string-from-L in more than one way. So one can’t design a machine for
recognising LK by saying “I’ll look for a string in K and then—when I find one—
swap to looking for a string in L”. You have to start off imagining that you

4.2. STUFF TO FIT IN 87

are in 9My; that much is true. However when you reach an accepting state you
have to choose between (i) staying in 9t; and (ii) making an instantaneous hop
through a trap-door to the start-state of 915. That is where the nondeterminism
comes in. These instantaneous hops are called “e-transitions”. You do them
between the clock ticks at which you receive new characters. I don’t like e-
transitions and I prefer theoretical treatments that don’t use them. However,
they do appear in the literature and you may wish to read up about them.

For those who do like e-transitions, here is a description of a nondeterministic
machine that recognises LK. It looks like the disjoint union 2t; U My of My
and M. Transitions between the states of My are as in M; and transitions
between the states of 9y are as in My. In addition for each accepting state of
My there is a e-transition to the start state of M.

For those of you who—like me—do not like e-transitions, here is a different
nondeterministic machine that recognises LK. Like the last one, it looks like
the disjoint union 9%y LI Mo of My and IM,. Transitions between the states of
I, are as in MMy and transitions between the states of My are as in My. In
addition, whenever s is a state of 2%, and ¢ a character such that d(s,c) is an
accepting state of 911, we put in an extra arrow from s to the start state of 9y,
and label this new arrow with a ‘¢’ too. The effect of this is that when you are
in s and you receive a ¢, you have to guess whether to stay in 9; (by going to
an accepting state in 9;) or make the career move of deciding that the future
of the string lies with K, in which case you move to the start state of 9is.

The manner in which we got rid of e-transitions in this case is perfectly
general. You can always get rid of them by introducing a bit of nondeterminism
in the way we have just done.

4.2 Stuff to fit in

If w sends 9 thru’ a loop and M accepts ww?v then one tends to assume that
hd(w) # hd(v). Should make a fuss about this. It can confuse people.

We ideally need the concept of a stream, so we can explain how we start the
machine in the designated start state, and then give it a *stream* of characters.
Ever thereafter, at each stage, when it has has been given an initial segment of
a stream, it must be in an accepting state iff that initial segment belongs to the
language in question. And it must be able to do this for all streams.

Of course we should say something here about how, in the natural realistic
motivation for this stuff—parsers—the machines do in fact sit and field streams
of stuff in precisely this way. Of course in that realistic setting there is a sort
of RESET command which we might want to say something illuminating about.

Say something about string search engines. They use regular expressions

If you are a Part III student doing the reading course then you probably did
all this stuff in Part II, so there should be no need to do the exercises which
follow. Cast a very quick eye over to check you genuinely are on top of this
stuff. I'm not going to set any questions on material that examined last year!

And you can go in the other
direction too.

88

CHAPTER 4. MACHINES

4.2.1 Exercises

1.
2.

4.

Prove that L((r|s)*) = L((r*s*)*) (Use induction on word length)

Prove that L((rs*)*) C L((r*s*)*) but that the reverse inclusion does not
hold.

Describeﬁ deterministic automata to recognise the following subsets of

{0, 1}~

(a) The set of all strings with three consecutive 0’s; provide a regular
expression corresponding to this set as well;

(b) The set of all strings w such that every set of five consecutive char-
acters in w contains at least two 0’s;

(c) The set of all strings such that the 10th character from the right
end is a ‘0’; provide a regular expression corresponding to this set as
well. For pedants: This could mean one of two things. Answer both
of them.

Let L be a regular language over an alphabet 3. Which of the following
are regular languages?

(a) {fweX: (Fue) (wuglL)}

(b) {we L: (Yue X*)((length(u) > 0) - wu & L)}

(¢) {w € L: (Vu,v € ¥*)((w = uv Alength(u) > 0) - u & L)}

(@)

(e)

(f) {weX*: (3u,v € ¥*)(w=wuv A vu € L)} (hint: needs a different

approach ...)

The preceding question has a typo in it. Find it.
S, an arbitrary subset of L.

A combination lock has three 1-bit inputs and opens just when it receives
the input sequence 101, 111, 011, 010. Design a finite deterministic au-
tomaton with this behaviour (with accepting state(s) corresponding to the
lock being open).

Let ¥ be an alphabet and let B and C' be subsets of ¥* such that the
empty string is not in B. Let X C ¥* and show that if X satisfies the
equation X = BX U, then B*C' C X and X C B*C), i.e. the unique
solution is X = B*C. [Hint: use induction on number of “blocks”.]

Show that if in the previous question we allow € € B, then X = B*D is a
solution for any D D C.

Let A = {b,c}, B = {b}, C = {c}. Find the solutions X, Xo C A*
of the following pairs of simultaneous equations: (i) X; = BX; U CXy;
X2 == (BUC)Xl UCXQU{E} (11) X1 == (BXl U{E}), X2 == BC(Xl U{G})

4This word is very carefully chosen!

4.2.

10.

11.

12.

13.

14.

STUFF TO FIT IN 89

. There is an alphabet ¥ with six letters a, b, ¢, d, e and f that represent

the six rotations through m/2 radians of each face of the Rubik cube.
Everything you can do to the Rubik cube can be represented as a word in
this language. Let L be the set of words in ¥* that take the cube from its
initial state back to its initial state. Is L regular?

you have had a sleepless night over this you may consult the footnote for
a hint [

Construct an FDA to recognise binary representations of multiples of 3.
You may assume the machine starts reading the most significant bit first.
Provide a regular expression for this language.

For which primes p can you build a FDA to recognise decimal representa-
tions of multiples of p? How many states do your machines have?

Let ¢ be a number between 0 and 1. Let L be the set of sequences s €
{0,1}* such that the binary number between 0 and 1 represented by s is
less than or equal to g. Show that L is a regular language iff ¢ is rational.
What difference would it have made if we had defined L to be be the set
of sequences s € {0,1}* such that the binary number between 0 and 1
represented by s is less than q.

Give regular grammars for the two following regular expressions over the
alphabet ¥ = {a, b} and construct finite non-deterministic automata ac-
cepting the regular language denoted by them:

(a) bal(albb)a*b

(b) ((alb)(alb))|((alb)(alb)(alb))"
For each of the following languages either show that the language is regular
(for example by showing how it would be possible to construct a finite state
machine to recognise it) or use the pumping lemma to show that it is not.

(a) The set of all words not in a given regular language L.

(b) The set of all palindromes over the alphabet a, b, c.

(¢) If L is a regular language, the language which consists of reversals of
the words in L; thus if L contains the word abcd, then the reversed
language L contains dcba.

(d) Given regular languages L and M, the set of strings that contain
within them first a substring that is part of language L, then a sub-
string from M; arbitrary characters from the alphabet a,b, ¢ are al-
lowed before, between and after these strings.

(e) Given regular languages L and M, the set of strings that contain
within them some substring which is part of both L and M.

5Tf this is to be a regular language, there must be a FDA that recognises it. What might
this FDA be?

90 CHAPTER 4. MACHINES

15. What is the language of boolean (propositional) logic? Is it regular? What
about the version without infixes (“Polish notation”) What about reverse
Polish notation?

16. Give context-free grammars generating the following languages:
(a) {aPbic" :p#qVq#r}
(b) {w € {a,b}* : w contains exactly twice as many as as bs}

17. Let M be a finite deterministic automaton with n states. Prove that
L(M) is an infinite set if and only if it contains a string of length ! with
n <l <2n.

EXERCISE 46 (Part III Computability and Logic 2014, modified).

An interleaving of two words wy and we is a word obtained by inserting the
characters from wy into wy in the order in which they appear in wy. Thus, for
example, both the strings b0alc and baOlc are interleavings of the two strings
bac and 01.

Now let Ly and Lo be reqular languages over alphabets X1 and Yo respectively.
Let the interleaving L1 & Lo of two languages Ly and Lo be the set of words that
can be obtained by interleaving words from L1 with words from Lo. Prove that

1. The interleaving of two regular languages is regular
2. The interleaving of a regular and a context free language is context free

3. The interleaving of two context free languages is not always contemt-freeﬂ

1. Does the set of strings in {a, b, c}* which have as many as as bs and ¢s put
together make a regular language?

2. Let K, L and M be regular languages. Is {u € L : (Jv € K)(uv € M)} a
regular language?

3. Is the language of Roman numerals regular?

Stuff to fit in

[this stuff is messages to myself: do not read!!l]
To show that the reverse L~! of a regular language L is regular, use regexps.
Define an operation recursively:

(RS)™ = SR ()™ = (R™Y)*; (R|S) " = R'5

6 There is a pumping lemma for context-free languages which is not in the course. With
the hint that a™b™c™d™ is not context-free it all becomes terribly easy!

4.2. STUFF TO FIT IN 91

The interleaving RIS of two regular languages is defined recursively as
follows:

The interleaving of RS with RS’ is

RS’

R/*

The interleaving of R* with

R'S is

R'|S

R/*

The interleaving of R|S with

RS’ is

R'|S"is (RIR)|(RISH|(SIR)|(STS")

R/*

How are we to think of a nondeterministic machine? If it’s in state s and we
give it character ¢ (‘¢’ here is a variable!) then it goes into another state, but
we just don’t know what that state is?

Must make a big fuss about the recovery of a DFA from an NFA. This is
interesting because this is a DFA arising abstractly.

Have to explain this business of maintaining more info than you actually
need to answer questions on.

Prima facie every string has its own state, in the sense that a state is simply
a state-of-knowledge about the string you have seen so far. You can think of
the string as a history. Some states are alike in the sense that the differences
between them have no bearing on the questions you have to answer.

It’s a PROLOG program

The presence on the scene of nondeterministic machines rubs in the impor-
tance of distinguishing between accepting and recognising. A deterministic ma-
chine recognises the set of those strings which it accepts. A nondeterministic
machine recognises the set of those strings that it might accept.

LAC students wonder: what happens if you give the machine a character
that doesn’t belong to its input alphabet? The answer is that this is absurd: you
can’t! It’s a bit like saying what happens if the batsman’s response to a googly
is to play the ace of spades. The answer is; there is no action the batsman can
make which constitutes playing the ace of spades. ..

Sometimes we need to think abstractly. Sometimes we need to think con-
cretely. (The Rubik cube question)

Remember to distinguish between states and bits. If the machine needs to
remember the truth-value of n propositions, then it will need 2™ states.

How you need the three characterisations at different times. You need regular
expressions to explain why the reverse of a regular language is regular; you need
machines to explain why the complement of a regular language is regular. (Still
need examples to illustrate why you need NFAs and grammars)

finish this off

92 CHAPTER 4. MACHINES

We ideally need the concept of a stream, so we can explain how we start the
machine in the designated start state, and then give it a *stream* of characters.
Ever thereafter, at each stage, when it has has been given an initial segment of
a stream, it must be in an accepting state iff that initial segment belongs to the
language in question. And it must be able to do this for all streams.

Of course we should say something here about how, in the natural realistic
motivation for this stuff—parsers—the machines do in fact sit and field streams
of stuff in precisely this way.

There is a sort of reset command which we might want to say something
illuminating about.

We can glue the streams together to get a tree if we like.
Make a point about the pigeonhole principle and the pumping lemma.

How to get a machine from a language. Ask yourself: “I am a machine:
when i power myself up and look at the first character, what do i want to know?
And depending on what answer i get, what might i want to know next?”

Fit in somewhere: overloading of juxtaposition: abc uvw and ABC. 1 think
this is something to do with quasiquotation ...

4.3 Machines with infinitely many states

Finite state machines are the most impoverished conception of computing ma-
chine. Rather than progress through gradually richer architectures we are going
to jump straight to the maximal concept of [finite!] computing machine. It does
not matter what kind of architecture our machines have as long as they have
unbounded memory and can run arbitrarily long. The paradigm we use for the
sake of illustration is the register machine.

If you want to see a Turing machine at work go to

https://www.youtube.com/watch?v=E3keLeMwfHY

I don’t know about you, but I for one am very struck by the fact that the Turing
machine in this video has a camera to look at the tape. I suppose it ought to be obvious
that—from the machine’s point of view—the tape is part of the external world, so it
has to use its exteroceptors (not its proprioceptors) to examine it.

A register machine has

(i) finitely many registers R; ... R,, each of which holds a natural
number; and

(ii) A program that is a finite list of instructions each of which
consists of a label and a body. Labels are natural numbers, and a
body has one of the three forms:

1. Rt — L: add 1 to contents of register R and jump to instruc-
tion with label L.

https://www.youtube.com/watch?v=E3keLeMwfHY

4.3. MACHINES WITH INFINITELY MANY STATES 93

2. R~ — L', L": if contents of R is nonzero, subtract 1 from it
and jump to the instruction with label L’; otherwise jump to
the instruction with label L”.

3. HALT!

We can represent instructions of flavour (1.) as triples (j, +, k) and instruc-
tions of flavour (2.) as quadruples (j, —, k,1). Then a register machine program
is a finite sequence of triples-or-quadruples, where the nth member of the se-
quence is the instruction to be executed when in state nm

The output of the register machine is the contents of register 1 (say) when
the machine executes a HALT command. Notice that we don’t really specify the
number of registers by stipulation but only indirectly by mentioning registers
in the instructions in the program. If the program has only ten lines, it cannot
mention more than ten registers, and so the machine can be taken to have only
ten registers.

We say that a register machine 9t computes a function f iff, for all n € IN,
f(n) is defined iff whenever we run 9 starting with n in register 1 (and 0—
say—in every other register) it halts with f(n) in register 1 and does not halt
otherwise.

For functions of arity greater than 1 we use more registers. Details could be
provided, but they don’t really matter.

It is very important that the register machines can be effectively enumerated,
but deeply unimportant how we do it, though one can collect a few hintsﬁ

We need to think about how to encode machines ...

The sequence of length k whose nth entry is e, is sent to H pplten.

0<n<k
(pn is of course the nth primeE[) Thus—for example—the sequence
(1,8,7,3) is sent to 2171 . 38+ . 5T+L. 73+1

The prime powers trick lets us code lists of numbers as numbers. If we do this,
the usual list-processing functions head, tail and cons will be primitive recur-

1 lifted this from PTJ’s book, but I won’t make much use of it. There are some exercises
in the body of this text which come from his Part II lectures of long ago. Pursue them at
your own risk.

8Indeed it is deeply important that it is unimportant, for this is another invariance point:

“That’s very important,” the King said, turning to the jury. They were just
beginning to write this down on their slates, when the White Rabbit interrupted:
“Unimportant, your Majesty means, of course,” he said in a very respectful tone,
but frowning and making faces at him as he spoke.

“Unimportant, of course, I meant,” the King hastily said, and went on to himself
in an undertone, “important—unimportant—unimportant—important—" as if he
were trying which word sounded best.

Some of the jury wrote it down “important,” and some “unimportant”. Alice
could see this, as she was near enough to look over their slates; “but it does not
matter a bit,” she thought to herself.

see [I1], available online.
90bserve that this encoding is not surjective: for example the number 14 does not encode
any sequence. I don’t know if this matters.

I think this is the first place
where we use the {n} no-
tation for computable func-
tions

We don’t yet know what
“computable” means.

94 CHAPTER 4. MACHINES

sive. Although it is simultaneously very important that the register machines
can be effectively enumerated yet deeply unimportant how we do it, there is
one fact about how we do it that we will need, and that is that the map from
numbers to machines should be computable in some sense. We can describe a
machine completely in a specification language of some kind, because a machine
is after all a finite object, and it will have a finite description, and we can have
a standardised uniform way of presenting these descriptions.

The specification language can be written in an alphabet with perhaps 256
characters (alphanumerics and punctuation; ASCII codes are numbers below
256!), so we can assign to each formula in the specification language a Gddel
number which is a number to base 256. Thus if we identify a machine with its
description in the language, it can be thought of as a numeral to base 256. This
numeral will not be a mere name of the machine, but an actual description of
it.

IN is a rectype, and so is the set of machine descriptions in the specification
language. The gnumbering function given is nice in the sense that it is a rectype
homomorphism. (It’s an acceptable enumeration).

If a formula is a list of symbols, we can define a Godel enumeration of
formulee by list-recursion as shown in the following ML pseudocode.

ASCII of h
256*gnumber (t) + ASCII of h;

gnumber h::[]
| h:: t

DEFINITION 11 Hartley Rogers [£9] says a system of indices 1 is acceptable
if, for every n, there are total computable f and g such that

Ve = Py N e = Vyie

Here’s what i think is going on. The obvious way to enumerate functions-in-
intension is by gnumbering the syntax, or the machines. That way, if i give you
a number, you can examine it and see which function it is the gnumber of. If i
do things that way it turns out that, for example, the set {n : {n}(0)}} is indeed
semidecidable in the operational sense—i can indeed verify membership in it of
any actual member in finite time. Now suppose I compose that gnumbering with
some extremely nasty incomputable permutation—you can see what happens.

So an enumeration is going to be acceptable if it respects the structure of the
syntax or of the family of machines (the two constraints will presumably turn
out to be equivalent). If one tries to make this rigorous one will presumably find
oneself exploiting the idea of a function from machines/syntax to IN defined by
recursion on the recursive structure of the counted set of machines/wffs. Finally
one will discover that any two enumerations defined in this way are mutually
conjugate via some computable permutation of IN. And I think that is what
the dfn of Rogers is saying.

From now on we are going to assume we have fixed an enumeration of register
machines in this style, so that the mth machine is the machine with gnumber

4.3. MACHINES WITH INFINITELY MANY STATES 95

m. There is a convention of writing ‘{e}’ for the function computed by the eth
machine/eth program (we do not distinguish between machines and programs),
and also writing

DEFINITION 12

o el (n)l=k” to mean that the eth machine halts with input n and outputs

)

o {e}(n)” means that the eth machine does not halt with input n. In these
circumstances we say {e}(n) diverges.

o Ye}.(n)” to mean that the eth machine halts with input n in < z steps.

e “e}.(n)l= x” to mean that the eth machine halts with input n in < z
steps and will output x.

I am writing ‘{e}’ for the function computed by the program with gnumber
e (or the machine with modeﬂ number ¢). But since there is a correspondence
between machines and programs we will sometimes write ‘{p}’ for the function-
in-intension (program) with gnumber p.

The following notation is standard: ‘W.’ for {n € IN : {e}(n)l}. (The ‘W’
comes from the German Wertebereich, meaning range of values.) Left to my
own devices i would write ‘{e}“IN!!

One of the delights of the theory of computable functions is that we can
equivocate over our data objects: it is of central importance that an object can
be a number at one time and a computable function at another. Indeed, it can
be both at the same time. This permanent possibility of equivocation makes for
notational quicksand, so some explanation is in order.

When we equivocate on ‘n’ between a number and a function, it is always
between a number and a function-in-intension, not between a number and a
function-in-extension. If we write ‘n’ simpliciter then we are thinking of n
as a number. The point of the braces is that when we write ‘{n}’ it is in
order to disambiguate the equivocation, and to make it clear that it is the
function that is meant. Further, if we want to make it crystal-clear that it is
the function-in-extension that we mean not the function-in-intension then we
can write ‘Graph({n})’. We do this (for example) in the proof of theorem

In the spirit of this equivocation I should record that I shall sometimes write
‘M’ to denote the machine with gnumber m: thus 9 computes the function

{m}.

DEFINITION 13

10In earlier draughts I had “chassis number” here. That is of course wrong. Two cars of
the same model (which do the same thing) have different chassis number but the same model
number. The chassis number belongs to the token of the machine, whereas the part that
matters to us pertains to the type.

Make
earlier

this

announcement

Scrape together all earlier
uses of ‘{n}’

96 CHAPTER 4. MACHINES

n s always a natural number;

{n} is the nth program;

Graph({n}) is the function-in-extension computed by {n};
N is the machine that computes {n}.

4.4 The p-recursive functions are precisely those
computed by register machines

An essential gadget is

DEFINITION 14 (Kleene’s T function)

Input m and © and t, then output a list of t states of the mth machine started
with input i, one for each time t' < t. (The state of a register machine is the
tuple of contents of the registers and the current instruction.)

The output, T(m,i,t), of Kleene’s T-function is commonly called a com-
plete course of computation. It is entirely plausible that T is computable
since, as long as (1) the gnumbering is sensible in the sense that the gnumber of
a machine is a description of it, and (2) the machines have standard architecture
then, on being given a gnumber m, one can go away and build the machine de-
scribed by m and then feed it input ¢ and observe it for ¢ steps. This is plausible
because the machines have finite descriptions and are deterministic. Not only
are they deterministic, but the answer to the question, “What state will it go
to next?” can be found by looking merely at the machine and its present state,
without consulting the positions of the planets or anything else that—however
deterministic-is not internal to the machine. It is a lot less obvious that T is
primitive recursive, but—as it so happens—it is. The proof is extremely laborious,
but it relies merely on checking that all the functions involved in encoding and
decoding are primitive recursive: nothing worse than exponentiation is required.
(In fact, because of theorem |§| on p. we can get by without even using expo-
nentiation.) Observe, too, that the only searches we make are bounded searches,
and bounded search is primitive recursive, as we saw earlier. (see theorem [7|p.
63})

There is something to think about here. Kleene’s T-function, properly under-
stood, is really a hyperintensional object, something even more intensional than a
function declaration. Really it has a secret extra parameter, which is the enumeration
of machines: it’s not a primitive recursive declaration in the same sense in which
mult O n = O; mult (succ m) n = plus (n (mult (m, n))) is a primitive recur-
sive declaration of mult. The point is that the code for Kleene’s T-function will
not be what the CompScis call self-validating: that is to say that you can’t tell of a
primitive recursive declaration that it is a declaration of T" merely by looking at it.
There is a notion of acceptable enumeration lurking in the background.

Mind you, as Ben Millwood says, is this any more than the fact that all low level
languages are (his word) inscrutable?

4.4. pu-RECURSIVE = REGISTER MACHINE-COMPUTABLE 97

Another thought...the predicate “o = T'(m,i,t)” is primitive recursive. This
will eventually give us an easy proof that the composition of two primitive recursive
relations might not be primitive recursive.

This shows that

THEOREM 10 The function {m} computed by M, the mth machine, is u-
recursive.

In other words, the machine with gnumber m computes the p-recursive func-
tion: ¢ +— the least k such that m started with ¢ halts with output k.

Now for the converse.

THEOREM 11 FEwvery u-recursive function can be computed by a register ma-
chine.

Sketch of proof:

Consider the rectype of functions built up from the initial functions (as
in the declaration of primitive recursive functions) by means of composition,
primitive recursion and p-recursion. This class contains all sorts of functions
that are undefined in nasty ways because it allows us to invert the results of
inversions, and the result of inverting a function might not be total—as we have
seen. Nevertheless, we can prove by induction on this datatype that for every
declared function in it there is a register machine that computes it. That is,
in the sense that whenever these declarations do not fall foul of common sense
by attempting to invert functions that are not total, the machine that we build
does indeed compute the function.

The details of how to glue together register machines for computing f and g
into one that computes fog will be omitted, as will the details of how to compose
register machines to cope with the primitive recursion constructor, and how to
front-end something onto a register machine that computes f(z,y,Z) to get
something that computes px.(f(z,y, 2) = k). |

This completes the proof of the completeness theorem for computable func-
tions.

4.4.1 A Universal Register Machine

Kleene’s T-function is primitive recursive, so there is a machine that computes
it. Any such machine can be tweakedE into a universal or all-purpose machine:
one that can simulate all others.

We need three auxilliary functions on memory-dumps:

current_instruction(d) and register_0(d), which return respec-
tively the current instruction and the contents of register 0;

last returns the last element of a list.

1By a process the computer scientists call wrapping.

98 CHAPTER 4. MACHINES

It is mechanical to check they are all primitive recursive. Once we have got
those, we can build a machine that, on being given m and ¢, outputs:

register_0(last(T'(m,i, (ut)(current_instruction(last(7T'(m,i,t))) = HALT))))
which is what the mth machine does on being given 3.

This machine is a Universal Register Machine.

4.5 Decidable and Semidecidable Sets

Mohammad is the last prophet; there are to be no further revelations. In con-
trast, both Christianity and Judaism hold out the possibility that there will be
more revelation. Thus the set of truths revealed to/by Islam is decidable. The
set of truths that are (to be eventually) revealed by Christianity or Judaism is
semidecidable. It has a decidable axiomatisation of course but we have no idea
what that axiomatisation is.

Well no, actually. That’s a striking thought, but it’s wrong.

One wants to say that the hallmark of the semidecidable set is that each and
every one of its members get revealed to us at some point before the end of time.
That is the intuition one tries to get across to students, but it’s not the whole
story. It’s a necessary condition all right, but it’s not sufficient. It’s necessary
also that the revelation be done by a humble finite engine. For consider the
set of gnumbers of total computable functions. The oracle for this set could
divulge all its members to us over time—in increasing order indeed—and we
would know all its members and all its nonmembers by the end of time, but
that doesn’t make it semidecidable. The oracle is not a finite engine!

4.5.1 Zigzagging Autoparallelism: Volcanoes

Suppose X is the range of a computable function f and 9 is a machine that
computes f. The idea of autoparallelism is that at stage n we run 9 with input
fst(n) for snd(n) steps. When we do this with a machine the effect is that we
keep trying the machine with all inputs, continually breaking off and revisiting
old inputs—and continually starting computations on new, later inputs—so that
every computation is given infinitely many chances to halt. Of course once a
computation with input k has halted, we do not revisit it: we emit the answer
and carry on with the zigzag. (Therefore, at stage n, if £st n is an input that
has already halted, we procede at once to stage n + 1.)

4.5. DECIDABLE AND SEMIDECIDABLE SETS 99

5015 ...
N
4110 16
pN N
316 11 17
pN p N
2|3 7 12 18
pN p pN N
1)1 4 8 13 19
p p p p N
0] 0 2 5 9 14 20
1 2 3 4 5 6

The y axis is inputs, the x axis is the number of steps you run. Thus, at
stage 18, you run 9% on input 2 for 4 step@

This autoparallelism is really a breadth-first search through all the compu-
tations that 90 is capable of.

We need a nice snappy name for engines that do this. I like to call them
volcanoes. The idea is that volcanoes emit things unprompted—they don’t
need input; all you have to do is power them up. Any machine can give rise
to a volcano, since all we need is a computable implementation of pairing-and-
unpairing. It is true that the volcanoes we can get from a machine 9 will differ
in the order in which they emit their emissions, this order depending on our
choice of implementation of pairing-and-unpairing, but this won’t matter. We
can plump for one such implementation and have done with it. Given time, 9’s
volcano will emit every number that is a value of the function {m} computed
by 9t. It is not guaranteed to emit the value for input 4 before it emits the
value for input 3 (even if they both halt). Exercise addresses this question
and might merit a pit stop.

Volcanoes can come in more than one architecture. The crude architecture
causes a volcano to keep revisiting computations that have already finished;
there are more subtle volcano architectures that do not fall into this trap. Yet
another (yet more subtle) style of volcano keeps track of the numbers it has
emitted, and never emits the same number twice: if one of its computations
halts giving a value the volcano has already reported it passes over this event
in tactful silence.

12The reader might be wondering whether or not the volcano, when (for example) it revisits
the computation of f(2) for 4 steps, is supposed to be able to remember the results of the
computation of f(2) it did earlier for 3 steps. Perhaps it leaves little caches of information
by each input. That would mean that it only ever had to do one step of computation at each
stage, and thereby speed things up a bit. To be able to do that it would have to have available
to it an ever-increasing amount of memory. Ever-increasing, but always finite. It’s a natural
thing to wonder about, but reflection will show that it makes no difference one way or the
other.

100 CHAPTER 4. MACHINES

Volcanoes (of whatever architecture) can always be thought of as functions
from time to IN. [might be a good idea to use the letter ‘¢’ for inputs to
volcanoes.]

EXERCISE 47 Ezplain to people in your bubble why, if we think of a volcano
as a function IN — IN, then that function is p-recursive.

Next explain why the cost function of a computable function-(in-intension)
is computable. “Cost function”? A function-in-intension f is wlog a machine
9 and we define its cost function F' by F(n) = number of steps used by 9t on
input n if M(n)] and 1 o/w. Then show that every total computable function
is (= has the same graph as) a volcano for a computable partial (in fact total)
function. Suppose f is a total computable function IN — IN, and F' its cost
function. Consider now the volcano for the function-in-intension f* that, on
being given input n, twiddles its thumbs for 3, . F(k) clock ticks, and then
starts computing f(n). The volcano for f* will emit the values of f in the
sequence f(0), f(1), f(2) ... (miniexercise) [each step that the volcano does in
the computation of f*(1) is immediately after it does a step in the computation
of f*(0) and—in computing f*(1)—it twiddles its thumbs until the computation
of £(0) has finished.]

4.5.2 Decidable and Semidecidable Sets

One of the intentions behind the invention of computable functions was to cap-
ture the idea of a decidable set. One tries something like “a set is decidable iff it
is the range of a computable function” It turns out that that does not straight-
forwardly give us what we want. Suppose we want to know whether or not n is
a member of a putatively decidable set, presented as f“IN, for some computable
function f. If we use f’s volcano then, if n is indeed a value of f, we will learn
this sooner or later; but if it isn’t, this process will never tell us. However, this
does at least give us a verification procedure: we can detect membership
of f“IN in these circumstances even though we are not promised an exclusion
procedure. Thus the natural idea seems to be that of a semidecidable set: one
for which membership can be confirmed in finite time. Perhaps nowadays one
would be more likely to use words like ‘authenticate’ and ‘authentication’.

But is this the only way we can exploit computable functions to get a concept
of semidecidable set? Being the range of a computable function seems a pretty
good explication of the concept of a semidecidable set, but then being the set
of arguments on which a computable function halts—{n : f(n)|}—seems pretty
good too. After all, if f(n)], then we will certainly learn this in finite time.
Fortunately for us, all obvious attempts to capture the concept of semidecidable
set using these ideas give the same result.

REMARK 5
The following conditions on a nonempty™| set X C IN are equivalent:

13The empty set is obviously decidable!

4.5. DECIDABLE AND SEMIDECIDABLE SETS 101

(i) X is the range of a p-recursive function;
(i) X is the set of naturals on which a p-recursive function is defined;
(i1i) X is the range of a u-recursive function that happens to be total.

Proof:

(i) — (iil). Use volcanoes.

(The converse is obvious since (iii) is a special case of (i).)

Let g be the function that sends an input n to the nth thing emitted by 91’s
volcano. g is total, and clearly it outputs all and only the members of X. (I am
ignoring the case where X is finite: it is a miniexercise to check for yourselves
that it is in fact safe to ignore it!)

(i) — (ii)

Given a machine 97 that outputs members of X, we can build a machine 2V
that, on being given a number n, runs 9’s volcano until it produces the output
n: M’ then outputs 0, say (it does not matter). ' is then a machine that halts
on members of X and on nothing else.

(i) — (i)

Given a machine 91 that halts on members of X, we can build a machine that
outputs members of X by simply trapping the output of 9t and outputting the
input instead of the output. [|

EXERCISE 48 Show that every computable partial function has a computable
(partial) right inverse.

EXERCISE 49 Show how to modify the volcano in part (iii) of remark@ S0
that the total computable function that enumerates its emissions is one-to-one.
(So it emits each member of X precisely once.)

Incurable optimists might hope that volcanoes might give us a cure to the
problem discussed on page in section After all, there is always the
possibility of running ¢ in parallel with itself. Will this help? Although that
will turn up an input y to g s.t. g(y,Z) = n if there is one, there is no reason
to suppose it will turn up the smallest such y.

EXERCISE 50 Cook up an example to show that sometimes it won’t.

Yes!

Define the partial function f by

f(2z) = if {z}(z) | then =z else fail,
fRx+1) ==z

Provide a discussion answer

Haven’t i got a nice example
from Beeson about this?

develop the parallels with
the graph of a p.r. function
being a p.r. set

102 CHAPTER 4. MACHINES

Then f is partial recursive, and surjective. f~!“{x} is either {2z + 1} or
{22,2x+1}. The hard inverse of f, on being given z, returns either 22:+1 (which
it does if {z}(x) 1) or 2z (if {z}(x) |). Since this solves the diagonal HALTing
problem for us we conclude that the hard inverse of f is not computable.

Indeed, quite which one it turns up will depend on how we have implemented
volcanoes, so even which functions turn out to be computable would depend on
how we implement the algorithm! This is clearly intolerable.

We can now give a formal definition of ‘semidecidable’.

DEFINITION 15
(1) A set satisfying the conditions in remark@ is semi-decidablelﬂ
(2) A set X is decidable if X and IN\ X are both semidecidable.

There is an obvious generalisation of this definition of semidecidable to sub-
sets of IN¥.

The original definition of decidable set as a set that is both semidecidable
and the complement of a semidecidable set looks cumbersome and long-winded,
and it might be felt that it would be more natural to define a set X to be
decidable iff there is a total computable function f : IN — {0,1} such that
X = f~1“{1}. However if one starts with that definition it is much harder to
motivate the concept of semidecidable set and the connection between the two
ideas is less clear.

Observe that the graph of a computable function IN* — IN is a semidecidable
subset of IN¥¥! and the graph of a total computable function IN* — IN is a
decidable subset of INF+1,

Just as “computable function” is better than “recursive function” (because
recursion is not always prominent in the declaration of a computable function)
so “decidable set” is better than “recursive set” (the old terminology), since
“recursive set” would suggest that there also ought to be “primitive recursive
set”—you are one if you are the range of a primitive recursive function. But in
fact

EXERCISE 51 (*)

(1) Every nonempty semidecidable set is the range of a primitive recursive
function. (Hint: Modify volcanoes by using Kleene’s T-function.)

(2) Show that condition (i) of remark@ is equivalent to “X is f“Y for some
computable f and semidecidable Y C IN”.

14The old terminology is ‘recursively enumerable’, which is gradually giving way (particu-
larly across the pond) to ‘computably enumerable’ abbreviated to “c.e.”. That notation arises
because any set of natural numbers can be enumerated (and enumerable or denumerable are
old words for ‘countable’), but not necessarily by a computable function. If the set is enumer-
ated by a recursive (or computable) function, it is recursively (or computably) enumerable.
Bear in mind too that in some of the literature ‘semidecidable’ is used to mean ‘semidecidable
and not decidable’.

4.5. DECIDABLE AND SEMIDECIDABLE SETS 103

EXERCISE 52 (%)
Give a primitive recursive relation ¢ for which the following fails:

There is cg s.t., for all T,

(FY)(0(y, 7)) «— By < Aley, max(T)))(6(y, T))-

OPEN QUESTION 1[0
Suppose f: IN — IN is total with no odd cycles.
Then there is d : IN — {0,1} with (VYn € IN)(d(f(n)) =1 —d(n)).
Such a d is a discriminator for f.
If f is computable must it have a computable discriminator?

EXERCISE 53 (%)
Check that, for all A,B C IN, the set {2n : n € Ay U{2n+1: n € B} is
semidecidable iff both A and B are semidecidable.

DEFINITION 16 A infinite subset of IN is immune iff it has no infinite
semidectdable subset.

‘Immune’ is a computable analogue of ‘infinite Dedekind-finite’.

EXERCISE 54 (Too easy perhaps)
Prove that the cartesian product of two immune sets is immune.

EXERCISE 55 (Part IIT 2012 Paper 24 q 8—slightly modified)(*)

Prove that there is a semidecidable set X C IN with IN \ X infinite such
that X meets every infinite semidecidable set. What is the asymptotic density
of your X ?

See also exercise [T9in section [4.91

Note the parallel between the idea of a regular language, which is the set of
strings accepted by a finite-state machine, and the idea of a semidecidable set,
which is the set of natural numbers on which a Turing machine will halt.

If X is semidecidable, it is f“IN for some total computable f, so whenever
n € X there is k € IN and a finite computation verifying that f(k) = n, so that
n € X. This finite computation should be thought of as a proof or certificate
in the sense of the discussion on page [55] so a semidecidable set of naturals
can be thought of as a subset of IN that happens to be a rectype in its own
right. Indeed, we can take this further: by means of gnumbering, every finitely
presented rectype can be thought of as a semidecidable set.

The following observation comes under the heading of soothing triviality.
Not difficult but it makes you feel better. Actually we will need it later, in the
proof of remark

15This question was put to me years ago by my Ph.D. supervisor, Maurice Boffa. It was
open then, but i don’t know if it is still open.

104 CHAPTER 4. MACHINES

REMARK 6 Let X be a subset of IN*~1. Then X is the projection of a decid-
able subset of IN* iff it is semidecidable.

Proof:

left-to-right

Suppose X is {Z : (3n)(Z::n € Y)} where Y is a decidable subset of IN.
Then to check, for any candidate (k — 1)-tuple #, whether or not it is in X it
suffices to find an n such that the k-tuple Z::n is in Y. For each k-tuple Z the
question “Z:n € Y77 can be answered mechanically in finite time, so if there is
such an n we will find it in finite time by trying n := 0, n := 1 and so on. (No
need for volcanoes.) But this is just to say that X is semidecidable.

right-to-left

Suppose X is semidecidable, so that X = dom({m}) for some computable
function {m}. Then

reX iff
{m}(@)N iff
(Fy)({m}y (@) iff
(Fy) (T, y) € {(Z,y) : {m}y(2)U})

Observe that {(Z,y) : {m},(Z)} is clearly decidable, and that X is a projection
of it [T]

Observe that

e The left-to-right implication, above, is best possible. The projection of a
decidable set is not always decidable: {(n,m, k) : {n}r(m)} is a decidable
set, but the halting set—{(n,m) : (3k)({n}r(m)})}—is a projection of it.
We will see below (theorem that the halting set is not decidable.

e The projection of a semidecidable subset of IN* is likewise a semidecidable
subset of INF~1, (This is because we can use pair to squash like quanti-
fiers). This means that if X is the projection of a semidecidable set then
it is the projection of a decidable set. Remark[8] below, of Craig is related
to this.

So it’s definitely all right to think of semidecidable sets as projections of
decidable sets.

From now on we say “computable” instead of “up-recursive”. You may also
hear people saying “general recursive” or “partial recursive”, which mean the
same thing. Confusingly, you will also hear people talk about functions being
partial recursive in contrast to being total recursive. (We would say ‘total

16Thanks to Philipp Kleppmann for this improvement on my original.

4.5. DECIDABLE AND SEMIDECIDABLE SETS 105

computable’). A set is decidable if its characteristic functiorﬂ is total
computable.

DEFINITION 17 The characteristic function x4 of A CIN is
Az. if £ € A then 1 else 0.

(The Greek letter “x’ is the first letter of the Greek word for ‘character’.)

4.5.3 A Nice Illustration and a Digression

There is a natural example of an immune set, and it arises in a context of some
independent interest.

It is natural to feel that the string 0™ (of n zeroes) is simple, in the sense
that one can capture it by a description that has fewer than n characters.

What one wants to say is that a string o is simple if there is a short string 7
and a program f which outputs o on being given 7. Well, of course there is: we
can simply hardcode o into f. We need to work a little harder. What we want
is a universal Turing machine U, which—for any computable f—will compute
f(1), by the following contrivance. U will associate—to each such f—a string
py such that, for any 7, f(7) is obtained as U(ps::7). (I think the idea is that
we compute py from f before we fire up U). It is true that f can cheat, but he
has to tell U how he did it, and that takes up bits.

We now say that C(o) is |u| where u is the shortest inpuﬂ on which
U gives out 0. Wesay o € {0,1}<% is incompressible if C(c) > |o|/2.

REMARK 7 {0 €{0,1}<¥: C(0) > |0]/2} is immune

Proof:

[First we have to show that it’s infinite! T assumed this was so obvious that
i forgot to establish it!!]

Suppose this set had an infinite semidecidable subset, B, say. B is infinite
and so must contain strings of arbitrary length. Since it is semidecidable there
is a total function f whose range it is. Let h, be the first string of length
> n that f puts into B. Then, by assumption, C(hy,) > |h,|/2 > n/2. But
manifestly the string h,, can be computed from n—by computing f. So this
gives us C(h,,) < C(n)+ the (constant) length |cs| of the string c; that U uses
to compute flﬂ C(n) = loga(n) of course. This gives n/2 < loga(n) + |cy|, and
for n sufficiently large this is impossible; now B is infinite so we can take n as
large as we like and obtain our contradiction. [|

17In other traditions they are sometimes called indicator functions.
18part of u is of course the string py for the function f that U is calculating.
19 As Ben Millwood says, the overhead is not literally cy, but it’s at least a constant.

sy

Not this year you don’t!

106 CHAPTER 4. MACHINES

4.5.4 “In finite time”—a warning

“In finite time” is a nice snappy expression, and it encapsulates a useful in-
tuition. However one has to use it with care, since it can mislead. There are
circumstances in which one is trying to construct a set X of natural numbers,
by a process of length w. At each stage one puts some stuff in and takes some
other stuff out. So far so general. Suppose further that it is true of each n € IN
that it only gets added or removed finitely often, so that it is determined “in
finite time” whether or not n will be in X at close of play. This sounds as if X
ought to be semidecidable or even decidable, but of course nothing of the sort
can be guaranteed merely by the conditions outlined, since one might be unable
to compute, for a number n, the stage f(n) such that the final status of ‘n € X’
has been determined by stage f(n). Of course, if there is such a computable f
then X is decidable, but the “in finite time” thought does not guarantee that
there should be.

I got into a tangle over this “in finite time” stuff, Dear Reader, and you
might do too.

Consider the following example [which T only sketch here, co’s it’s best done
at a board, and I will in fact do it at the board]. Suppose R and S are two
decidable subsets of IN? which are wellorderings of IN of order type w. They are
isomorphic, of course. Is the isomorphism a semidecidable set of ordered pairs?

Put (IN, R) on the left of the board and (IN,.S) on the right. Clearly we can
discover the isomorphism by the following deterministic process, of progressive
refinements of finite approximations.

We start off by pairing 0 on the left with 0 on the right. Thereafter, at stage
n we have paired off {0,1...n — 1} on the left somehow with {0,1...n—1} on
the right. After all, the ordering {0,1...n — 1} equipped with R is isomorphic
to {0,1...n — 1} equipped with S! Then we add the extra element n to both
sides. We know where n stands in relation to the numbers 0...n — 1 in the
R ordering because by assumption R was a decidable set of pairs. S similarly.
Sticking n into both sides might involve some rearranging! We aren’t going to
reorder the things on the left (or on the right) but we might insert n in the
middle, and therefore be compelled to redirect some arrows. How long can this
faffing about go on, for heavan’s sake? Well, if 0 is the 23rd element according
to R and the 17th element according to S then we will have finally paired off
0 on the left with its destined partner on the right and 0 on the right with its
destined partner on the left by...by when? By the time we have seen all the
numbers that R-precede 23 and all the numbers that S-precede 17. There are
only finitely many such numbers, so there does come a point after which 0 lives
happily ever after. The trouble is, we have no idea when that is, so this analysis
does not give a proof that the bijection is decidable.

[It might be worth giving an example of such R and S to show that the
bijection need not be decidable. I'm guessing there is such a pair, i don’t know!
For the moment, the point is that this example presses the ‘in finite time’ button
but not in a way that guarantees computability of the result.]

4.6. DECIDABLE AND SEMIDECIDABLE SETS OF OTHER THINGS 107

Another realistic case in point is the task of mentally reconstructing the
proof of Friedberg-Muchnik, (this is theorem still to come) once you have
forgotten the details ...and, believe me, you will forget the details.

The following exercise might help/amuse you.

EXERCISE 56 (%)

A question from James Cranch, a real live Part III student in 2012/3. I
can’t remember what he needed it for. (Nor, it seems, can he)

Suppose g : INxIN — IN is total computable, and (Vz)(Jy)(Vz > y)(g(x, 2) =
9(x,y)).

Then we can define f : IN — IN by f(n) = the eventually constant value of
g(n,z) as z — oo.

There is of course mo reason to suppose that f is going to be computable.
What can we say about the graph of {2 (Vu,v)({u,v) € f +— Fy)(Vz > y)(v =
9(u, 2))). In other words, the graph of f is an IV set.

Cranch’s question is: if we are given a total function f : IN — IN and told
that its graph is an 3V set, can we find g : IN x IN — IN, total computable, such
that (Vz)(Jy)(Vz > y)(9(x, 2) = g(z,y)), and f : IN = IN is defined by f(n) =
the eventually constant value of g(n,z) as z — 00 ?

4.6 Decidable and semidecidable sets of other
things

You will sometimes hear people talk about recursive or r.e. (or, as we say here,
decidable and semidecidable) sets of—for example—computable functions, or
formulze. What they mean, of course, is a (semi-)decidable set of indices or
gnumbers (of functions, or formulee). You will even hear people say things like
“A union of an r.e. set of r.e. sets is r.e.” [sic]. This is true, and so are some
other things with the same kind of sound-bite. The way to understand this is
to grasp that the concept of semidecidable set is much more like the concept of
counted set than it is like the concept of countable set.

EXERCISE 57

(i) A union of a semidecidable set of semidecidable sets is semidecidable;
(ii) A union of a semidecidable set of decidable sets is decidable;

(iii) A union of a semidecidable set of semidecidable sets is decidable;

(iv) A union of a decidable set of decidable sets is decidable.

In each case provide a proof or a countererample.

In set theory we have the notion of a setlike function. If f“x is always
a set whenever x is we say is l-setlike. Only “1”7-setlike? If, additionally,

108 CHAPTER 4. MACHINES

{f“y : y € z} is a set whenever z is a seﬂ we say f is 2-setlike. Similarly
3-setlike. A function that is n-setlike for every n is just plain setlike. In ZF we
have the axiom scheme of replacement, and it tells us that every function-class
is setlike, so one’s attention is liable not to be drawn to this useful concept if
one studies too much ZF.

There is a notion of “setlike” applicable also to theories that are not explicitly
theories of sets. We can interpret a certain amount of second-order (and third-
order and so on) arithmetic in the first-order theory of computable functions by
encoding a semidecidable set of natural numbers as the gnumber of a function
whose range it is. Thus in this context an externally visible set of things is a
set from the point of view of computable function theory as long as its members
are coded somehow as naturals, and the set itself is the range of a computable
function defined on those naturals. Then we can repeat the trick, to represent
(some!) sets of sets of naturals, and so on up.

In this setting it is natural to ask which functions IN* — IN are setlike.
Of course all computable functions are setlike. For example the nice primitive
recursive pairing-and-unpairing gadget for natural numbers is setlike in the sense
that if X and Y are (semi-)decidable subsets of IN, then so too are X xY', fst“X

rewrite this section...S-m-n ...

theorem

Because of the natural bijection between (A x B) — C and A — (B — C)
one can think of a natural-number—valued function of two (natural number)
variables either as a function IN? — IN or as a function IN — (IN — IN). We
have a notion of primitive recursive function IN> — IN or as a function and
a notion of a primitive recursive function IN — (IN — IN). One would hope
that these are in some sense the same. What the primitive recursiveness of
pairing/unpairing shows is that changing the way you think of a particular
function of two natural-number variables from one of these ways to the other
won’t alter its primrec/non-primrec status.

4.6.1 Applications to Logic

We are now in a position to give a definition of axiomatisable theory. An axioma-
tisable theory is one with a set of axioms whose gnumbers form a semidecidable
set. (It is assumed that the theory only has finitely many rules of inference.
Without that condition, every theory in a countable language would be axioma-
tisable: take an empty set of axioms, and for each theorem have a nullary rule
of inference whose conclusion is that theorem.) Take a moment to reflect on the
significance of this notation: “axiomatisable” for “recursively axiomatisable”.
If the set of axioms is not at least semidecidable then it fails of its purpose as
an axiomatisation.

Have a look at all the theories you have met so far. Those with finitely
many axioms are recursively axiomatisable; if you check you will see that all
those with infinitely many axioms are recursively axiomatisable, too. Indeed
most (but not all) of them have the stronger property that their axioms form a

20PTJ would have me write this as ‘f“a’!

4.6. DECIDABLE AND SEMIDECIDABLE SETS OF OTHER THINGS 109

regular language. We will return to this in section

There are theories whose obvious axiomatisation is semidecidable without
being decidable, but all the cases known to me are of the one same flavour. Here
is one.

RCAy is a second-order theory of arithmetic. Two-sorted. It has A? com-
prehension (which says that {n € IN : ¢} exists as long as ¢ has no bound set
variables) Y induction (which is the axiom scheme of mathematical induction
for predicates that...errm ...) Parameters are allowed.

A formula is AY if it is equivalent to both a XY formula and a I1Y formula.
So we want our axiom scheme of A} comprehension to be

If

= (V) (0(x) «— (3y)(o(x,y))) and
= (Vz)(0(z) «— (Vy) (¢ (2, y))) then
(y)(Vz)(z € y «— 0(x))

is an axiom.

This axiomatisation is clearly semidecidable and pretty clearly not decidable.

EXERCISE 58 (%)
Find a decidable axiomatisation of RC'Ag.

It turns out that the functions whose totality this theory can prove are
precisely the primitive recursive functions.

REMARK 8 (Craig)
If T has a semidecidable set of axioms, then a decidable set of axioms can
be found for it (in the same language).

Proof:
Let 9 be a volcano that emits axioms of T, and notate the nth axiom
emitted by 9 as ¢,,. Then we obtain a decidable axiomatisation for T" as

{C \ @)= ¢n:neN}

0<i<n

It’s probably worth spelling out why it is decidable. Let {¢,, : n € IN) be the
stream of axioms emitted by the volcano that is zigzagging over the computable
function f whose range is the set of axioms. The axioms in the decidable set
are

i<n
My decision procedure for this set of axioms is as follows
If the formula is not a conditional, reject.

If the antecedent A is not a list-conjunction ask whether or not A is
the first thing emitted by the volcano. If it isn’t, reject;

get the definition straight

110 CHAPTER 4. MACHINES

If the antecedent is a list conjunction of length n check that, for
each ¢ < n, the ¢th thing in the list is the ith thing emitted by the
volcano and that the consequent is the nth thing emitted by the
volcano. Accept iff this condition is satisfied.

[Suppose I am given a formula and i wish to know if it is an axiom of the
decidable axiomatisation. I might have to wait for the volcano to emit n axioms
from the semidecidable set, where n depends on the length of the candidate.
How long might that take? One’s first thought is that it might take a ridiculously
long time. (Indeed it might). So long, in fact, that there is no computable bound
on the time taken. But that doesn’t follow. The question is not:

(If f“IN is not recursive can we bound time taken to learn that
x € f“IN by a computable function applied to z? (1)

but

How long does a volcano for f take to emit x values? Can we bound
this time by a computable function applied to =7 (2)

The answer to (1) is—obviously—“no”, and for the usual reasons; the answer
to (2) might be ‘yes’!]

Miniexercise: Is this axiomatisation independent? [See exercise 9 on https:
//www .dpmms . cam.ac.uk/study/II/Logic/2011-2012/LSqns2. pdf]

If a theory has a semidecidable set of axioms then in some sense it has
finite character, and remark [§] captures part of this sense by telling us it will
have a decidable set of axioms. In both these descriptions the finite character
is expressed in a metalanguage. The following remark tells us that this finite
character can be expressed in a language for 7.

As alluded to at the start of section[£.5] the axioms for your system of revealed
truth (prima facie) form a semidecidable set rather than a decidable set. There
is of course a decidable axiomatisation but you have no way of knowing what
it is. On the assumption that the semidecidable axiomatisation with which we
start is not actually decidable (and the situation is not interesting otherwise)
the decidable axiomatisation we obtain from it isn’t very nice.

I suppose the point that is disquieting me is the thought that the finite
object that is the Turing machine or register machine that guards the decidable
axiomatisation is one that we can’t locate in finite time. Or can we? It’s finite,
so we must have found it at some finite stage. It’s just that we don’t know
when we’ve found it. We have lots of candidates of course but we never know
when we have reached a stage when no revision is necessary. See exercise A
detailed discussion may be in order.

REMARK 9 (Kleene, [38])

If T is a recursively axiomatisable theory in a language L with only infinite
models, then there is a language L' O L and a theory T' in L' and T' is finitely
axiomatisable and is a conservative extension of T.

https://www.dpmms.cam.ac.uk/study/II/Logic/2011-2012/LSqns2.pdf
https://www.dpmms.cam.ac.uk/study/II/Logic/2011-2012/LSqns2.pdf

4.7. THE UNDECIDABLITY OF THE HALTING PROBLEM 111

n’t know what a conservative ex-

s, so you’ll have to tell them. PI'OOf' Omltted ﬂ

(We can uniformly expand any L-structure that is a model of T into a £'-
structure that is a model of T".)
(The idea in the proof is to formalize the inductive clauses of the truth
definition for 7. The basic references are [38] and [I4]. There is a very clear
review of both papers by Makkai [41] that also provides a sketch of the proof.)
You will have seen some examples of this phenomenon in Part II Logic and wignt it be easier to prove Kleene’s the-
Set Theory last year. Bipartite graphs, algebraically closed fields. .. Another §§?§2r§°"r§;‘:§’;§‘f§; et isante. thon
illustration of this process is afforded by the way in which the (pure) set theory " ot
ZF (which cannot be finitely axiomatised) corresponds to the class theory NBG,
which can be finitely axiomatised. Why would one expect this to be true in
general? A theory that is recursively axiomatisable is underpinned by a finite
engine that generates all the axioms. It ought to be possible to hard-code this
engine into the syntax, if necessary by enlarging the language. I have the feeling
that it should be possible to do this without invoking truth-definitions.

EXERCISE 59 Since propositional logic is decidable, the set of falsifiable propo-
sitional formule over an alphabet is semidecidable, so it is a rectype. Give a
presentation@

EXERCISE 60
Suppose f: IN — IN is computable.
Show that there a computable partial function g s.t (Vn € IN)(f(n)l—

Suppose further that {n : f(n)l} is semidecidable but not decidable.
Show that there is no computable total function g such that (Yn € IN)(f(n)l—

4.7 The Undecidablity of the Halting Problem

The set of register machine programs is countable because of the prime powers
trick. The set of all subsets of IN is not, because of Cantor’s theorem. There
simply are not enough register machine programs to go round: inevitably some
subsets of IN are going to be undecidable. In fact, almost all of them are, in the
sense that there is the same number of subsets of IN as there are undecidable
subsets. This argument is nonconstructive and does not actually exhibit a subset
of IN that is not decidable, but we can do that too.

Suppose we had a machine 9t that, on being given a natural number n,
decoded it (using the primitive recursive unpairing functions alluded to on page

21T am omitting the proof since i cannot find a proof that doesn’t use truth-definitions, and
i haven’t got time or space to go into them.

22] have to confess that i have no model answer to this! I thought I had a reference in
the literature but that was to a paper which shows that the set of negations of tautologies is
axiomatisable. But that’s pointless!

wrapping again

SrErS)

112 CHAPTER 4. MACHINES

into fst n and snd n (ny and ng for short), and then,= 0 if the n;th machine
halts when given input no and|= 1 otherwise.

We can tweak this machine (by using something to trap the output) to get
a machine M*# with the following behaviour: on being given n, it decodes it
into ny and ne (fst and snd of n) and then|= 1 if the nyth machine diverges
on input ng (just as before) but diverges if the n;th machine halts when given
input no.

Front-end onto this machine a machine that accepts an input « and outputs
pair(x,x). We now have a machine M=% with the following behaviour.

On being given n, it tests to see whether or not the nth machine
halts with input n. If it does, it goes into an infinite loop (diverges);
if not, it halts with output 1.

This machine is the ngth, say. What happens if we give it ng as input? Does
it halt? Well, it halts iff the ngth machine loops when given input ng. But it is
the ngth machine itself!

Formally we can write {ng}(no)l iff (by definition of {ng}) {no}(no). Notice
the similarity with the proof of Cantor’s theorem (and, later, the incompleteness
theorem, theorem

What assumption can we discard to escape from this contradiction? Clearly
we cannot discard the two steps that involve just trapping output and front-
ending something innocent onto the hypothesised initial machine. The culprit
can only be that hypothesised machine itself!

So we have proved
THEOREM 12 The set of numbers {pair(p,d) : {p}(d)}} zﬁ not decidable.

Though it is obviously semidecidable! []

Observe how absolutely critical it is in this proof that we can equivocate
over the nature of natural numbers. A natural number can be an input to a
program and it can be a code for a program...and it can be both at the same
time. If you want to type your language so that every number variable ranges
only over inputs to programs or only over codes for programs then you can’t
run this proof.

There is an aspect of this that often bothers beginners. We assumed that 9t
solved the Halting problem and we then exhibited—on that assumption—one
(only one!) instance of the halting problem that 9t couldn’t solve. One might
think that all one had to do was modify 9t so that the first thing it did was check
for that one case. That doesn’t work—because that modification changes 9’s
gnumber: the target is not stationary! In fact any 9t that aspires to solve the
halting problem must give infinitely many wrong answers. Any finite amount of
tweaking can be hard-coded so if per impossibile we got our hands on a machine

23] trust the overloading of the curly brackets does not wrong-foot the reader ... (!)

4.7. THE UNDECIDABLITY OF THE HALTING PROBLEM 113

that made only finitely many mistakes we could (by wrapping) obtain one that
made no mistakes at all. And that, as we have just shown, we can not have.

We saw earlier that many non-total functions can be encoded by primitive
recursive functions, leaving open the possibility that all computable functions
(even those that are not total) are in some sense primitive recursive. We saw
that not every total computable function is primitive recursive. But might
it still be the case that every computable partial function can be analogously
encoded by a total computable function? No. The partial “evaluation” function
(x,y) = {z}(y) cannot be encoded by any total computable function. If it were
so encoded we would be able to solve the halting problem. The “evaluation”
function is irreducibly and inescapably non-total.

It might be an idea to say a bit more about this fact ...

4.7.1 Rice’s Theorem

Theorems and are manifestations of a general phenomenon, and in this
section we examine that phenomenon. Its canonical expression is Rice’s theo-
rem. (Though theorem [18]is not exactly a special case of Rice’s theorem but
something a little bit more.) We prove a number of results en route to Rice’s
theorem.

THEOREM 13 (The “S-m-n theorem”)
There is a computable total function S of two variables such that, for all e,
b and a,

{e}(b,a) = {S(e,)} (a),

and so on for higher degrees (more parameters).

That is to say: currying, thought of as a function from gnumbers
of functions to gnumbers of functions, is computable.

This is a corollary of the equality between p-recursiveness and computability
by register machines: one can easily tweak a machine for computing Aab.{e}(a, b)
into a machine that, on being given a, outputs a description of a machine to
compute A\b.{e}(a,b).

It’s called the “S-m-n theorem” because in the general case the b could be
an m-tuple and the a could be an m-tuple; the ‘S’ comes from the function in
the statement. It probably has an official name but I have never known i@

In turn we get a corollary:

COROLLARY 2 (The fized point theorem).
Let h : IN — IN be a total computable function. Then there is n such that

{n} = {h(n))]

24Wikipaedia sez it’s called the parametrisation theorem and was proved by Kleene.
25In case you are wondering, we of course mean the graphs of these two functions are equal

sy

114 CHAPTER 4. MACHINES

Proof: Consider the map

pair(e,z) — {h(S(e,e))}(x).

This is computable and is therefore computed by the ath machine, for some
a. Set n = S(a,a). Then

{n}(@) =" {S(a,a)}(x) =* {a}(a,2) =* {A(S(a,a))}(z) =" {h(n)}(x)
(

1) holds because n = S(a, a);
(2
(3
(4

holds by definition of S;
holds by definition of a and
holds by definition of n.

O —

On Sun, 29 Apr 2012, Zhen Lin Low wrote:

Dear Dr Forster,
If ’'m not mistaken, the proof of corollaryis almost exactly the recursion-theoretic
translation of the Y combinator. To be precise, it corresponds to the combinator

Y’ = [Mh[Azy.h(zz)y][A\ey.h(zz)y]]

which 7n-reduces to the usual Y combinator.

Best wishes,

Zhen Lin

At this point I am going to put my hand up and admit that i learnt this next
bit from the wikipeedia article https://en.wikipedia.org/wiki/Kleene,27s_
recursion_theorem. I should’ve learnt it years ago.

In section we considered the justification of recursive definitions, and
the removal of circularities. The second recursion theorem enables us to do that
internally. Consider declarations of the form:

f(0,%) = g(2);
f(sucen, @) = h((f(n),n,T)

There is a function that, on being given code for g and h (in the form of
indices for two machines that compute g and h) will output an index for a
function that obeys that recursion. Admittedly, this is sort-of obvious from
Church’s thesis. The extra information we get here is that if g and h are
computable then so is f, and that code for f can be computed uniformly from
code for g and h.

To be explicit, the way we use the second recursion theorem is as follows.
We are trying to recursively define a function f—as it might be the example
immediately above. The desired f is a fixed point for an operation H, which
enjoys the following noncircular definition.

H(f)(0,7) = g(2);
H(f)(sucen, @) = h((f(n),n,Z)

https://en.wikipedia.org/wiki/Kleene%27s_recursion_theorem
https://en.wikipedia.org/wiki/Kleene%27s_recursion_theorem

4.7. THE UNDECIDABLITY OF THE HALTING PROBLEM 115

H is total computable, so the fixed point theorem applies. So there is a € IN
s.t. {a} and {H(a)} have the same graph. Then that graph is the graph that
we want for our f.

There is a powerful corollary of the second recursion theorem that is a sort
of omnibus undecidability theorem.

THEOREM 14 (Rice’s theorem)

Let A be a nonempty proper subset of the set of graphs of all computable func-
tions of one variable. That is to say: A is a set of functions-in-extension. Then
{n :Graph({n}) € A} is not decidable.

Proof: Suppose x, the characteristic function of {n :Graph({n}) € A} is com-
putable; we will deduce a contradiction.

Find naturals a and b so that Graph({a}) € A and Graph({b}) ¢ A. If x is
computable the following function will also be computable:

g(n):= if Graph({n}) € A then b else a

(“wrong way round”!). By corollary [2 there must now be a number n such that
{n} = {g(n)}. We also need to minute the fact that g swaps a and b.

Is Graph({n}) in A? Let’s assume it is, and derive a contradiction.

Graph({n}) € A

Graph({g(n)}) € A because {n} = {g(n)}

U W N~
- D=

gn)="> from (1) and definition of ¢
glg(n)) =0 from (2) and definition of g
g(b) =10 from (4), substituting

b for g(n) (by (3)).

...contradicting the fact that g swaps a and b. So we infer Graph({n}) ¢ A

But Graph({n}) ¢ A also leads to contradiction:

Graph({n}) ¢ A 6)

Graph({g(n)}) & A 7) because {n} = {g(n)}
gln)=a 8) from (6) and definition of g
g(g(n)) =a 9) from (7) and definition of g
gla) =a 10) from (9), substituting

a for g(n) (by (8)).

SIS

... again contradicting the fact that g swaps @ and b. So we infer ~—Graph({n}) €

A. But we proved Graph({n}) ¢ A above. This gives a contradiction. So x was
not computable after all.
|

116 CHAPTER 4. MACHINES

(We can probably leave out ‘Graph’ beco’s ‘{n} = {m}’ means that the two
functions-in-intension have the same graph, but i think it helps to leave it in.
Rams the point home.)

This theorem is very deep and very important, but the moral it brings is very
easy to grasp. It tells us that we can never find algorithms to answer questions
about the behaviour of programs (“Does it halt on this input?”; “Does it always
emit even numbers when it does halt?”) on the basis of information purely about
the syntax of programs (“Every variable occurs an even number of times”). In
general, if you want to know anything about the behaviour of a program, you
may be lucky and succeed in the short term and in a small number of cases, but
in the long run you cannot do better than by just running it.

In particular it has the consequence that it is not decidable whether or
not two programs compute the same function(-in-extension). This makes it
particularly important to bear in mind that the theory of computable functions
is in the first instance a study of function declarations (functions-in-intension)
rather than function graphs.

One can also express this insight by saying: syntax is intensional, behaviour
is extensional. And extensions are undecidable. (which sounds the wrong way
round ...)

EXERCISE 61 Suppose that f is a u-recursive function of two variables.

(i) Show that there is a u-recursive function g of one variable such that for
each m, if (In)(f(m,n) = 0), then f(m,g(m)) = 0.

(i) Show that it is not always possible to choose g so that g(m) is the least
n with f(m,n) =0.

EXERCISE 62 Input a natural number n;

If there are any machines that recognise the range of {n} (thought of a set of
strings over the alphabet {0,1}) then output a description of the minimal one;
o/w loop forever.

Is this function computable?

4.8 Recursive Inseparability

Two disjoint sets X and Y are said to be recursively inseparable if there is no
decidable set Z with X C Z and ZNY = (). (The idea of separable/inseparable
comes from descriptive set theory).

REMARK 10 The two sets

A={e:{e}(e)l> 0} and
B = {e: {e}(e)l=0}

are recursively inseparable. That is to say, if f is a total function with
f“A={0} and f“B = {1}, then f is not computable.

4.8. RECURSIVE INSEPARABILITY 117

Proof:
Consider any n € IN; we will show that {n} is not an f as in the statement
of the remark.

If {n}(n)t then clearly {n} # f, because f is total

If {n}(n)l= 0 then n € B so we must have f(n) = 1. But {n}(n) =0
so clearly {n} # f.

If {n}(n),> 0 then n € A so we must have f(n) = 0. But {n}(n) >0
so, again, {n} # f.

And here is another result with wider ramifications.

DEFINITION 18 If ~ is an equivalence relation on a set A we say f is a
classifier for ~ iff (Va,y € A)(f(x) = f(y) +— x ~y).

EXERCISE 63 Show that if ~ is a decidable equivalence relation on IN, then
there is a computable classifier for it.

You might have expected that further if ~ is a decidable equivalence relation
on a subset of IN (so that there is a computable two-valued function g defined
on pairs from that subset such that if x and y are both in that subset then
g(z,y) = 0iff z ~ y) then there is a computable partial function f that classifies
~. Remarkably this is not true.

THEOREM 15 There is a decidable equivalence relation on a subset of IN that

has no computable classifier.
S

Proof:

Consider the relation R that is the reflexive symmetric closure of

{(8n,3n+1):n € N}U{(3n,3n+2) : n € IN}.

Its graph looks like lots of isolated paths of length 2. It’s not transitive, but
whenever A is a subset of IN s.t. |AN{3n,3n+1,3n + 2}| < 3 for all n, then
the restriction R [A is transitive, and is therefore an equivalence relation. We
will cook up such an infinite set A.

For each n € IN, A, will be a one-or-two—membered subset of {3n,3n +
1,3n + 2}. A will be the union of the A,,, which we define as follows.

If the function {n} on any of {3n,3n +1,3n + 2}, set A,, to be the
singleton of the smallest such. Otherwise. ..

If {n}(3n) #{n}(Bn+1) set A, :={3n,3n+ 1};

If {n}(3n) ={n}(Bn+1) # {n}(3n+ 2) set A, := {3n,3n + 2};

If {n}(3n) ={n}Bn+1) = {n}Bn+2) set 4,, := {3n+1,3n+ 2}.

118 CHAPTER 4. MACHINES

Evidently the restriction of R to A is an equivalence relation, and it’s easy
to see that this equivalence relation is decidable. However the construction of
the A, is a diagonal construction that ensures, for each n, that the function {n}
does not classify R.

Observe that A is not (apparently) semidecidable. What about IN \ A?

See Terwijn, [66], section 3.2.32. (pages 153—-154).

Contrast this with the 2013 tripos question exercise [65| which follows.

4.9 Exercises

EXERCISE 64
The relational product (see p. @) of two primitive recursive relations might not
be a primitive recursive relation.

EXERCISE 65 (Part III Paper 20 2013)(*)

A transversal for a family X of pairwise disjoint subsets of a set X is a
subset X' of X s.t. | X'Na|=1 forallzeX.

Let ~ be an equivalence relation on IN, of infinite index, whose complement
is semidecidable (considered as a subset of INx IN). Show that there is a semide-
cidable transversal on the set of ~-equivalence classes.

EXERCISE 66 (%)

Suppose f : IN®¥ — IN is total computable and increasing: f(Z) > max(Z).
Show that there is a decidable A C IN satisfying f“A* = 1IN\ A.

EXERCISE 67 (%)

Show that for any corruptible operating system there can be no program
IS-SAFE that, when given program p and data d, says “yes” if p applied to
d does not corrupt the operating system and “no” otherwise.

EXERCISE 68 (Mathematics Tripos ITA 1997 Paper 3 Question 8)(*)

Does there exist a computable function f such that, for all m and n, if the
mth register machine program halts with input n, then it does so in at most
f(m,n) steps? Does the answer change if [is required to be total?

EXERCISE 69

This is an old example sheet question from Professor Johnstone. I know
nothing about it: use at your own risk. You may like to read the Wikipedia
article on this subject.

The “programming language” FRACTRAN, invented by J. H. Conway, has
“programs” which are finite lists (q1,q2,--.,qk) of positive rational numbers.
Such a program accepts as input a positive integer n: a single step of the pro-
gram replaces n by q; - n for the least i such that q; - n is an integer, if this is
possible; if no q; - n is an integer, the program terminates. [Thus, for example,
the program (%, %,2) means ‘replace n by 2n/3 if it’s a multiple of 3, by 3n/4

4.9. EXERCISES 119

if it’s a multiple of 4 but not of 3, and by 2n otherwise’; note that in this case,
since the last number in the list is an integer, the program will run for ever.]

Show that, for any (unary) recursive function f, there is a FRACTRAN program
which, given an input of the form 2™, will reach 27 (if f(n) is defined) before
it reaches any other power of 2, and will never reach a power of 2 if f(n) is
undefined.

[Hint: show that the action of a register machine program can be simulated by a
FRACTRAN program; you will need to use powers of distinct primes to represent not
only the contents of the registers, but also the numbers of the states in the register
machine program.]

Describe the behaviour of the FRACTRAN program

5 567 7817297727 637 9 6 3

[Ezplicitly, if the register machine program uses r registers and has s + 1 states
including the terminal state, represent the situation when it is in state j and
has n; in R; for each i <1 by the number pi*py? - - - pr " pr4;, where py is the tth
prime number. The instruction (i,+, k) corresponds to the fraction p;prii/Prij,
and (i,—, k,1) to the pair of fractions pyir/pipr+j, Pr+i/Pr+j (in that order),
with slight modifications to cope with initial and terminal states. The given
example uses a different coding, in which powers of the two primes 3 and 5 are
used to represent the state numbers; it computes the function n — 2™.]

EXERCISE 70 (*) For which of the following functions-in-intension are there
computable functions-in-intension with the same extension?

1. Az. if there is somewhere in the decimal expansion of w a string of exactly
x 7’s, then 0, else 1;

2. Ax. if there is somewhere in the decimal expansion of m a string of at least
x 7’s, then 0, else 1;

8. Ak. the least n such that all but finitely many natural numbers are the sum
of at most n kth powers.

EXERCISE 71
Show that the graph of a total computable function f : IN" — IN is a decidable
subset of IN" L. Is the graph of a partial computable function decidable?

EXERCISE 72

1. Let ¢ be the partial computable function defined by ¥ (x) = py.{z},(x)].
Show that for any total computable function f there is an n with f(n) <
¥(n). Deduce that 1 cannot be extended to a total computable function.
You may assume that a coding of tuples is in use according to which any
number coding a tuple is bigger than all of the numbers in the tuple that
it codes.

120 CHAPTER 4. MACHINES

2. Show directly in the manner of the proof of the undecidability of the Halting
Problem that the following sets are not decidable:
(i) {e : [{e} IV = o}
(ii) {e: {e} “IN strictly contains Dom({e})}.

EXERCISE 73 (%)

A box of tiles is a set of rectangular tiles, all of the same size. The tiles
have an orientation (top and bottom, left and right) and the edges have colours.
The idea is to use the tiles in the box to tile the plane, subject to rules about
which colours can be placed adjacent to which, and each box comes with such a
set of rules. (Naturally every set of rules includes all the obvious things, like,
a bottom edge can only go next to a top edge, and so on.) So of course the box
has infinitely many tiles in it. Nevertheless, the tiles in each box come in only
finitely many varieties. (It is a bit like a scrabble set: only 27 letters but many
tokens of each.)

With some bozes one can tile the plane; with some one cannot. Sketch how
to gnumber boxes and explain why the set of gnumbers of boxes that cannot tile
the plane is a semidecidable set.

Hint: you will need Kénig’s Infinity Lemma.

EXERCISE 74
Let f: IN — IN be a strictly order-preserving total computable function. Con-
struct a semidecidable subset A of IN such that

(i) for all e, if the domain Dom({e}) of the eth partial computable function
is infinite, then Dom({e}) N A # () and
(i) there are at most e elements less than f(e).

Deduce that there is a semidecidable set B such that IN \ B is infinite and
contains no infinite semidecidable subset.

EXERCISE 75
Is it possible to decide, given that {e} is total, whether or not

L. (vn)({e}(n) = 0)?
2. (@n)({e}(n) < {e}(n +1))?
3. (3n)({e}(n) = {e}(n +1))?

EXERCISE 76 Show that the following sets are not decidable.
(i) {e : {e} everywhere undefined }. (i) {e : {e}is total}.
(i) {e : Vi<e.({e}(i)])}. (iv) {e:Vi.({e}(i)— i<e)}.

Which of the above sets R and their complements IN\ R are semidecidable?
EXERCISE 77

Show that there is an e € IN such that dom({e}) = {z : z > e}.
Show that there is an e € IN such that dom({e}) = {z : {z}(e)l}.

In each case can one decide whether or not an index e is of the given kind?

4.9. EXERCISES 121

EXERCISE 78
Suppose that f,g: IN*> — IN are total computable.
Show that there exist i, j with {i} = {f(i,4)} and {5} ={9(,7)}
[Hint: Show first that there is a total computable h with {h(i)} = {g(i, h(2))}.]
(Hard)

EXERCISE 79 (%)

1. Show that the range of an increasing total function f : N — IN is a
decidable set, and

2. conversely, that every decidable subset of IN is the range of an increasing
total computable function IN — IN.

3. What if [is merely nondecreasing (but still total)?

4. What if f is increasing but perhaps not everywhere defined? (i.e.,
(Vr)(vm)(((n <m) A f(n)l Af(m)) — f(n) < f(m))?)

5. What is the notion of “increasing function IN — IN™” that one would need
were one to prove that every decidable subset of IN" is the range of an
increasing computable function IN — IN™ ¢

EXERCISE 80 (%)
Show that every infinite semidecidable set has an infinite decidable subset.

EXERCISE 81 (*) (Part III Computability and Logic examination 2014)

Let <1 and <g be recursive (decidable sets of ordered pairs) dense linear or-
derings of IN without endpoints. There are isomorphisms between (IN, <) and
(IN, <2). Are any of them recursive?

EXERCISE 82 (*)

Show that, for any partial computable function ¥ not everywhere undefined,
there is an index e with {e} =1 and such that, for some n < e, {e}c(n).

Deduce that there is a recursive enumeration . of the partial computable
functions such that vy = L and such that for all n > 0, ¢, # L. Why is this
certainly not an acceptable enumemtionﬁ

By considering enumerations of the partial computable functions, find a par-
tial computable function that cannot be extended to a total computable function.

EXERCISE 83 (*)

For a finite family (Ao, A1, ..., Ay) of subsets of IN, show that the following
conditions are equivalent:

(i) There exists a partial recursive function f of two wvariables such that
f(x,y) = 0 whenever x and y belong to the same set A;, but f(xz,y) = 1 if
x €Ay andy € Aj for some i # j.

26See p for definition of “acceptable”.

122 CHAPTER 4. MACHINES

(i) There exists a partial recursive function g of one variable, which takes
distinct constant values on each of the A;.

Such a family of sets is called recursively separated. Give an example of a
recursively separated pair of sets (Ao, A1) which cannot be separated (in either
of the above senses) by a total recursive function (equivalently, such that there
is no recursive set containing Ao and disjoint from A;).

EXERCISE 84 [marked by PTJ as HARD]

A set A C N is called Diophantine if there exists a polynomial p(x,y1,...,Yn)
with integer coefficients such that x € A if and only if there exist y1, ..., yn Such
that p(x,y1,...,Yn) = 0. Show that any Diophantine set is semi-recursive. [A
famous result due to Yu. Matiyasevich asserts that the converse is true.] Show
also that a set is Diophantine if and only if it is the set of non-negative values
taken by some polynomial with integer coefficients.

EXERCISE 85 (%)

Ezplain what a model of a sentence is. If ® is a sentence the spectrum
of @ is the set of n € IN such that ® has a model of size n. Is every spectrum
decidable? Use a diagonal argument to find a decidable set that is not a spectrum.

(P’ve mislaid my answer to this one!!!)

Chapter 5

Representability by A-terms

Best local thing to read is [46]. I'm going to cover only as much A-calculus as is
needed to show the principal connections to computability. This is not a course
on the A calculus.

5.1 Some \-calculus

Must say a bit about the Curry-Howard correspondence here. And typing.

[B-reduction, a-conversion, n-reduction. An expression is in normal form
if there are no B-redexes—a [-redex being something to which you can do a
[B-reduction.

The only uniformly definable function A — A is the identity 14. Any
definable function A — A must commute with all permutations of A, and we
all know that the centre of a symmetric group S is {1g}!

What about uniformly definable functions (A — A) — (A — A)?

Well, there’s obviously K144 and 14, 4)—(a—a).- Then, for each n, there
is the function that takes f : A — A and returns f™. We need to explain why
that’s the lot [T

EXERCISE 86

By using Curry-Howard on a two-membered set B with a five membered superset
A of it, or otherwise, show that Peirce’s Law: ((A — B) — A) — A is not a
constructive thesis.

LAs Julian Ziegler Hunt points out, there must be more to being a A-term than having a
denotation that is invariant under permutation of the base sets. After all, the function that
asks whether f : A — A is invertible and returns its inverse if it has one, and returns f
otherwise has no A-term pointing to it, but it commutes with all permutations of A. The idea
is to use invariance-under-permutations as a kind of first check.

123

Don’t ask

124 CHAPTER 5. REPRESENTABILITY BY A-TERMS

5.2 Arithmetic with Church Numerals

K and S. I know they sound like spymasters but they aren’t. (Karla and
Smiley. .. 7)
0 is K of the identity. Iterators. They are all typed.

suc AnAf Az f(nfz)
plus AndmAf A z.mf(nfz)

times An. dmAf \x.m(nf)x
which n-reduces to

AnAmAf.m(nf)

exp AnmAf A r.mnfx
which n-reduces first to
AndmAf.mnf
and then to
An.Am.mn

(Brief reality check: succ n is S-equivalent to plus n 1. mult similarly).
Wikipeedia supplies: pred= An.Af. x.n (Ag.A\h.h (g f)) (Au.z) (Au.u)

In lambda-talk the Church numerals are often written with underlinings: n.
This overloads the notation on p. [53] but doesn’t actually violate its spirit.

In this development we will trade heavily on the apercu that a function
IN* — IN defined by recursion can always be thought of as a fixed point for a
function (IN* — IN) — (IN* — IN).

Fixed point combinators.

Y A f.(Az. f(zz)) (M. f(zx)).
Az f(zx)) Az f(zx)) = f((Ax.f(z2)) (M. f(21)))).

Somewhat to my surprise I learnt recently (from [28]) that the set of [gnum-
bers of] A-terms that are fixed-point operators is semidecidable. I find this fact
so striking that I supply a proof. [How can one possibly detect in finite time
that, for all ¢, ¢t and t(¢t) have a common § — n reduct??] The point is that
¢ is a fixed-point combinator iff ¢ and A\x.z(dz) have a common S — 7 reduct,
and that fact can be detected in finite time. Presumably the set is not actually
decidable, but I know no proof.

(Zhen Lin has pointed out to me that Y is lurking inside the proof of corollary
The moral of this is presumably that there are as many proofs of corollary
as there are fixed-point combinators.)

5.2. ARITHMETIC WITH CHURCH NUMERALS 125

Talk a bit about the A term for (A - B) - A. - (A — B) — B.

Recall that the class of primitive recursive functions is closed under if-then-else,
so we’d better have a lambda version of this construct.

Azy.x works like true and

Azy.y works like false.

EXERCISE 87 (*)

true is of type A — (B — A) and false is of type A — (B — B), so they
are both of type A — (A — A).

Show that they are the only definable functions of this type.

Now we can set: if b then z else y is Abxy.bzy.
The point being that if b is a boolean it must have a normal form that is
one of {true, false}...that is to say, one of {\zy.x, \xy.y}.

iszero:= An.n(Az.false)true

iszero z evaluates to true or to false depending on whether or not x
evaluates to (church numeral) 0:

On this subject Wikipaedia sez:

IsZero = An.n (Az.false) true

The following predicate tests whether the first argument is less-than-or-
equal-to the second:

LEQ = Am.An.IsZero (minus m n),

Because of the identity ¢ = y = (z < y Ay < x), the test for equality may
be implemented as

EQ = Am.An. AND (LEQ m n) (LEQ n m)

Once we have pred (which is primitive recursive as we saw earlier) we can
test for equality with other numerals.

We also need pairing and unpairing:
pair:= Axyf.fzy
fst:= A\p.p true

snd:= Ap.p false
nil:= Az.true

Check that £st (pair = y) = = and that snd (pair = y) = y:

fst (pair z y) =
(Ap.p true)(Af.fzy)
(Mf.fzy)true =
truexr y =

T

Write out the calculation

126 CHAPTER 5. REPRESENTABILITY BY A-TERMS

We obtain snd (pair z y) = y similarly.
EXERCISE 88 What are the types of these expressions? Discuss.

Lists can be tho’rt of as ordered pair of head and tail, so fst and snd double
up as hd and t1; pair = y doubles up as x::y, and nil is the empty list.

NULL := Ap.p(Azy.false)

NULL tests for the empty list. There is probably an EOF (end-of-file) character
but we won’t need it: it will be quite useful to us to have lists that are of infinite
length. Compscis call things of this data type streams.

Another way of doing lists
Here is another way of thinking of [finite] lists. If T have

(i) an «-list I,

(ii) a § and

(iii) a function f:ax g — 3
then I can take the pair of the head of [and the 8, and whack it with f to
obtain another S—which I then pair with the second member of [, whack that
with f to obtain a third 8 and so on until I exhaust the a-list. Thus anything

that takes a (ii) and a (iii) and gives back a 8 can be thought of as an a-list.
So a-list is of type

(VB)(B = (ax B = B) = B)
The empty list is thus Azg.Af(axs—p)-¢ which is to say: K.

EXERCISE 89 On this way of thinking about lists, what are cons and hd and
t1?

A message from Toby Miller . ..

A naive approach to choosing a type for lists in the Polymorphic Lambda
Calculus (hereafter PLC) would be to consider an « list as being an ordered
pair « * («list). This doesn’t work because Nil cannot be encoded like this,
and also because we have just defined a recursive type, which isn’t allowed in
PLC.

Ordered pairs can be encoded in PLC thus:

a* B =4t VY (@ = B =) =)
makePair =qef A, B (At o, 2’ i B(Ay(Af :a— B =y (fzx'))))
ﬁT’St =def AOZ,B ()‘p ok 5 (p (A(L’ : a,x' : B (1')))
second =qot Ao, B(Ap:a x B (p(A\z:a, 2" : B ()

5.2. ARITHMETIC WITH CHURCH NUMERALS 127

This demonstrates how one can have a PLC term capable of returning mul-
tiple, differently typed, values by using a polymorphic return type (here v), and
passing in a function that chooses which value to return.

To make something that works for lists we need to address the two issues
described earlier. First we need some way to encode Nil using the same type
as a cons cell. Secondly we cannot use the type «list in its own definition,
as PLC has no support for recursive types. We address these by re-imagining
the concept of a list as, rather than a head and a tail, an object on which an
iteration can be performed. The functions head and tail become secondary to
the principal operation performed on lists: listlter. This function accepts a
cumulative function, which is performed recursively on the elements of the list.
If we pass the function Aa : int,b: int (a + b) then we get the sum of all the
elements of the list. This is similar to the ML fold functions. Functions to get
the head and tail of a list can be built on top of this fold, although as we shall
see, tadl is far from elegant.

The list object itself is a polymorphic function which takes a base case, and
a fold function, returning the result of running the fold on each list item in turn.
Nil simply returns the base case, while Cons recurses on the next item in the
list, and then returns the result of applying the fold function to the result, and
its own list item. The listlter function essentially just wraps a call to the list
itself.

alist =4t VB8 (B — (a = B — B) = B)
Nil =get A, B(Az: B, f :a— = B (x))
Cons =get Ao (A : o, alist (AB(\' B, f:a— B—= B (fz(B2'f)))))
listlter =gt A, B(Ax: B, f:a— B — B (N :alist [z f)))

In PLC, traversing a list using head and tail is not very easy, or useful.
Most often one would want to pass a cumulative function over the entire list.
An example for summing a list of integers is presented below. I assume that 0,
+ and int are defined. In practice one would use Church Numerals.

sum =gef Al : int list (listIter int int 0 (Az : int,x" : int (z +2))1)

Although we have established that head and tail are not easy to use in PLC,
we can define them anyway. The main problem we face is how to deal with the
base case. Nil has neither a head nor a tail, but by the type we have assigned
it, it must return something of the correct type in both cases. We can allow the
user to provide a ‘null’ value, which is returned in the case of Nil, and leave it
to them to deal with the difficulties this presents. Therefore both head and tail
will take a ‘null’ value and a list.

The tail function presents something of a challenge, because we are required
to submit for iteration a function which reassembles the list as it goes. We could

128 CHAPTER 5. REPRESENTABILITY BY A-TERMS

submit Nil as the base case, and Cons as the cumulative function, but then we
would get the entire list back, rather than just the tail. The method I use here
instead returns an ordered pair of two lists, the first being the complete list up
to the point in question, and the second being the list from one iteration prior.
The base case returns (Nil * z) (where z is the ‘null’). Subsequent cases shift
the first value into the second, and uses a cons cell of the new head with the
previous list for the first. The tail function itself just returns the second item
in the pair. The pair is used as a delay mechanism, so that the list can be
assembled normally, but with the previous version of the list still available.

head =qef Ax (A = o, L2 alist (listIter aavx (A2’ @ o, 2" o (2))) 1))
taillter =qef M@ : o, 1" : (alist * «list) (makePair (Cons x’ (firstl')) (first1'))
tail =ger Aav (A\x : alist, 1 : v list (second (listlter o (v list * « list) (makeList Nil x) taillter 1)))

end of message from Toby

5.3 Representing the i operator in A-calculus

Must prove Church-Rosser
So far we have pairing and unpairing, if-then-else, and fixed point combinators

to give us recursion, so clearly we can capture all of primitive recursion. Lists
will enable us to describe certificates. In fact we can even do partial computable
functions as well, because lists enable us to present Kleene’s T-function.

[I wrote this section as an exercise from first principles, for my own improvement—
without looking it up—so you may well find in the literature a better way of
doing it. On the other hand you might—as did I—find that reinventing the
wheel turns out to be a character-forming experience.]

THEOREM 16 Fvery p-recursive function can be represented by a \-term.

Proof:

We need a lambda term to do what ML calls ‘map’: when [is a list and f a
function defined on I’s entries then map f [returns the list whose nth entry is
the f of the nth entry of the list [. It has the recursive definition

map f # =if null(x)then nil else (f(fst(x))):(map f(snd(x)))
so it will be a fixed point for
Amfl.(if null(l) then nil else (f(fst(l)))::(m f (snd(1)))),

namely

Y (Amfl.(if null(l) then nil else (f(fst(l)))::(m f snd(1))))

5.4. TYPED LAMBDA TERMS FOR COMPUTABLE FUNCTIONS 129

Next we need the stream of naturals—which we may as well call ‘IN'—and which
is a fixed point for Al.(0::(map suc !)). Then the stream of values of f is just
nap f IN.

To finally obtain u all we need is a way (on being given n) of searching
through the stream of values of f until we find one that is n. How do we
do that? Well, I wouldn’t start from here, I’d start instead from over there,
where—rather than having the stream of values of f—we have the stream of
values of the function n — pair(n, f(n)) instead. (That is to say, the graph of
f tho’rt of as a list of pairs). We then do miaow to itE|

miaown x =if (snd(hd z) =n)then (fst (hd z)) else miaow n (tl z).

If we apply miaow n to the stream of pairs pair(m, f(m)) it returns the least m
such that f(m) = n. Pleasingly, if there is no pair in the stream whose second
component is n then the computation does not halt.

The above declaration of miaow is recursive, so we can obtain a A-term for
it by using a fixpoint combinator as usual. [|

Thus: every p-recursive function can be represented by a A-term. To com-
plete the picture we need to prove the converse to theorem that is to say,
that every function that can be A-represented is computable. A rigorous proof
would be extremely laborious but the idea is very simple. If f is represented by
a A-term L then L applied to the Church numeral n will S-reduce to the Church
numeral for f(n). But this S-reduction is a deterministic process and can be
captured by a Turing or Minsky machine.]

It’s worth thinking a bit about this because our lambda terms are nasty
things arising from Y and it is possible to S-reduce them in such a way that
they do not terminate. However it so happens that if you S-reduce from the top
level down (so that, when confronted with Az.M N, you turn it into M[N/x]
rather than S-reducing M or N) then if there is a normal form you will find it.

5.4 Typed Lambda terms for computable func-
tions

This presentation of computable functions in A-calculus exploits fixpoint combi-
nators and gives us A-terms that are not typed. The list gadgetry that we relied
on (for example) is not well-typed. However, initially (for addition, multipli-
cation and exponentiation) we had A-terms that were typed. If we work a lot
harder we can get typed A-terms for a lot more functions. Paulson [46] supplies
this A-term for the Ackermann function:

amm(Afn.nf(f1l))suc

2Joke! Jokel!

Does any enthusiast feel like
providing me with A-terms
for any of the Péter functions
from exercise @4

130

CHAPTER 5. REPRESENTABILITY BY A-TERMS

There is some interesting mathematics tied up in the question of how much of
computable function theory can be reproduced in typed fragments of A-calculus.
The answer can depend sensitively on the small print of the definition of ‘typed’.

Here is system-T as presented in [27]:

datatype num = 0O
| S of num
datatype bit = T | F

fun

fun

fun
fun
fun

fun
fun
fun
fun
fun

fun

fun
fun

val

fun

fun

val
val
val
val
val
val

Ruv0=nu
Ruv (S8n) =v (Ruvn)n

Du_T=nu
D_vF=yvw
NOT u=DFTu

ANDuv=DvVvFu
ORuv=DTvu

ADD x y =R x (fn z => fn 2z’ => S z2) y

PRED n = R 0 (fn x => fn x’ => x’) n
SUBxy=Rzx (fn z => fn 2z’ => PRED 2z) y

MUL x y =R O (fn z => fn z’ => ADD x 2z) §y
EXPx y=R (80) (fn z => fn 2z’ => MUL x z) y

ISZERO x =R T (fn z => fn z’ => F) x
ITER fn =R (f (S0)) (fnz => fn z’ => f z) n
ACKm =R S (fn x => fn z’ => ITER x) m

r = ADD (S(S(s 0))) (8(s 0))

o
]

0
S(num (n-1))

num
num n

mun 0 = O
mun (S n) = (mun n) + 1

= mun (ADD (num 3) (num 3))
= mun (MUL (num 3) (num 3))
= mun (EXP (num 3) (num 3))
mun (ACK (num 3) (num 3))
= ISZERO (num 3)

= ISZERO O

H O &0 T e
1]

5.4. TYPED LAMBDA TERMS FOR COMPUTABLE FUNCTIONS 131

5.4.1 Combinators??

EXERCISE 90 Prove that every A term s equivalent to a combinator word in
K and S.

Tlz] =
T[ElEz} = T[EA|T[E,]
T[A\z.E] = KT[FE] (if ‘2’ does not occur free in E);
Thx.x] = I;
T[Az\y.E] = T x.T[Ay.E]] (if ‘@’ occurs free in E);
T[Ax.(E1Es)] = (ST[Ax.E1|T[Ax.E2]) (if ‘z’ occurs free in E; or Es)
Observe that every A-term matches the LHS of precisely one of these rewrite
rule.

132 CHAPTER 5. REPRESENTABILITY BY A-TERMS

Chapter 6

Recursive and Automatic
Structures

I assume you know what a structure is from Part II. Any notion of computability
gives rise to a corresponding notion of a computable structure. A computable
structure will be one the graphs of whose decorations (predicates, functions etc)
are computable in the sense of that notion.

We have considered two computability paradigms in this course: finite state
machines and Turing machines. There are others of course (linear bounded
automata, pushdown automata) but only those two in any detail, and the two
notions of computable structure that they give rise to are the only kinds of
computable structure we will consider.

Structures that are computable in the finite state machine sense are auto-
mati(ﬂ and those that are computable in the wider Turing-machine sense are
recursive. The concept of computable structure arising from Turing-machine
computability has been around much longer, and the automatic structures of
the immediately following section are very recent.

We deal with these two notions in the following two sections, the stricter
one first.

6.1 Automatic Structures

You might think that this notion of computability is too restrictive to be useful
but you’d be wrong ...tho’ admittedly it is only relatively recently that struc-
tures computable in the regular-language sense have attracted interest. [36]
surveys the possibilities of applying this kind of analysis more generally, but we
will concern ourself primarily with its use in group theory, since that is where
all the action seems to be currently.

Tt might seem natural to say that the structure is regular but automatic is the word that
seems to be used.

133

134 CHAPTER 6. RECURSIVE AND AUTOMATIC STRUCTURES

First, a connection with Turing machines and complexity classes. Everything
solvable in linear time and constant space is automatic. Ashley Montanaro
tells me: “Yes, the languages decidable in constant space are just the regular
languages. Interestingly, apparently even the class of languages decidable in
o(log log n) space is still just the regular languages! see [63].”

The nicest application currently known to me of ideas of computable-by-
finite-state-machine is the application to Group theory.

An automatic group is a finitely generated group equipped with several finite-
state automata that represent the Cayley graph of the group, i. e. they can tell
if a given word representation of a group element is in a “canonical form” and
can tell if two elements given in canonical words differ by a generator. More
precisely. . .

DEFINITION 19

Let G be a group and A be a finite set of generators. Then an automatic
structure of G with respect to A is a set of finite-state automata:

e the word-acceptor, which accepts, for every element of G, at least one word
in A* representing it;

e multipliers, one for each a € AU {1g}, which accept a pair (wy,ws), for
words w; accepted by the word-acceptor, precisely when wia = wy € G.

The property of being automatic does not depend on the set of generators.

It turns out that many natural classes of groups are automatic. Braid groups
for example, and [word] hyperbolic groups. “Hyperbolic”?

The reader is assumed to know what a Cayley graph of a group is.

We can put a metric on a Cayley graph by deeming every edge to have length
1, and by this means we can give lengths to paths in the graph. The distance
d(x,y) between two vertices is the least number that is the length of a path
between x and y. A path between x and y of length d(z,y) is a geodesic. A
triangle (of paths) is a geodesic triangle if its three sides are geodesics. A
(geodesic) triangle is §-thin as long as, for all « on the triangle, there is y on an
edge of the triangle other than that containing x s.t. d(z,y) <.

DEFINITION 20
A geodesic space is said to be 6-hyperbolic (in the sense of Gromov) if § is
a positive real and, given any geodesic triangle and any point on any side, the
[least] distance from that point to [any point in] the union of the other two sides
is bounded by 6 P

It is just plain hyperbolic if there is a 0 such that it is 6-hyperbolic.

A group G is said to be word hyperbolic if the Cayley graph T'(G, A) is
hyperbolic.

2This is known in Group Theorists’ slang as The Skinny Triangle Property as in: a space
is hyperbolic if there is § s.t. every geodesic triangle is J-skinny.

6.1. AUTOMATIC STRUCTURES 135

(It can be shown that if X and Y are geodesic spaces and f : X — Y is a
pseudoisometry, X is hyperbolic iff Y is. So whether or not a group is hyperbolic
does not depend on a choice of generators. So definition [20]is legitimate.)

Clearly for any finite Cayley graph there is § such that it is §-thin: this idea
is interesting only for infinite groups.

It turns out that, for every group G, if the Cayley graph for G under some
presentation is hyperbolic, then the Cayley graph for any other presentation is
also hyperbolic. This means that hyperbolicity is a property of the group not
of any particular presentation.

EXERCISE 91 Show that if the Cayley graph for G under some presentation is
hyperbolic, then the Cayley graph for any other presentation is also hyperbolic.

A good place to start reading about automatic groups would be Baumslag’s
review [5] of [2I]. There is also a Wikipeedia article.

EXERCISE 92 Show that if G under some presentation is automatic, then it
s automatic under any presentation.

Free groups of finite rank are hyperbolic.

6.1.1 Automatic ordinals

Delhommé [I7] has proved that w“ is the least ordinal not the length of an
automatic wellorder of IN. (What does this mean, exactly?). Mathias [43] p 5
wonders whether this is anything to do with the fact that w® is not “suitable”
for the set theory Sy. My guess is: not, but one never knows.

6.1.2 Automatic theories
The language of propositional logic is not regular.

A theory is automatic if it has an axiomatisation that is automatic. The
question always is: “Is this axiom scheme a regular language?”

Is any theory synonymous with an automatic theory synonymous? Or do
we need a notion of automatic synonymy?

An automatic version of Kleene’s theorem on finitely axiomatisable conser-
vative extensions?

How on earth do we prove that the theory of algebraically closed fields is
not automatic?

Which theories have automatic models?

Every decidable theory has a countable model for which the satisfaction
predicate is decidable: given a formula with n free variables and an n-tuple
from the structure can say whether or not that tuple bears that predicate.

Th({IN, -)) is decidable but not automatic and has no automatic model.

136 CHAPTER 6. RECURSIVE AND AUTOMATIC STRUCTURES

“You deal with the existential quantifier by the same trick that gives you a
FDA from an FNA’
[what did T have in mind there?]

The canonical random graph is not automatic but it does have a decidable
(and countably categorical!) theory.

For example the theory of fields of characteristic 0 is clearly automatic.
Careful! Khoussainov says that it isn’t automatic because you have to put
in the brackets. Clearly the situation is complicated. What if you use the
LISP convention that you can close any number of ‘(” with a single |’? The
set of [unary notations for] primes is not a regular language, but we take our
characteristic-0 scheme to be the scheme nx # 1 over all n not just prime n.
(Exercise asked the reader to show that, for any base b, the set of base-
b notations for natural numbers is a regular language.) Algebraically closed
fields? The algebraically closed scheme seems to me to need a PDA.

These could give us lots of exercises

EXERCISE 93 (*) Show that the intersection of two automatic theories is au-
tomatic.

6.2 Recursive structures

The definition of recursive structure is to be interpreted liberally, in various
ways. . .

e A recursive ordinal is going to be the ordinal of a wellordering (IN, <)
where < is a wellordering of IN whose graph is decidable.

e We will have a good notion of a recursive partition of the set [IN]* of
unordered k-tuples of natural numbers, since a partition of a set can be
canonically identified with an equivalence relation on that same set, and
we have a good notion of decidable equivalence relation.

e The carrier set does not have to be literally IN, but it must at least be a
set that can be gnumbered.

A countable ordinal is an ordinal that is the length of a wellordering of IN
or of a subset of IN—it makes no difference. Cantor called the set of countable
ordinals the Second Number Class (the first number class is IN). A recursive
ordinal is an ordinal that is the length of a recursive [= decidable] wellordering
of IN or of a recursive [decidable] wellordering of a decidable subset of IN—it
makes no difference: either way it’s a wellordering whose graph (set of ordered
pairs of natural numbers) is a recursive (= decidable) set. A decidable relation
on a decidable infinite subset of IN is isomorphic to a decidable relation on
the whole of IN because the function enumerating the decidable subset is itself

decidable. (This was exercise [1] on p. [98])

6.2. RECURSIVE STRUCTURES 137

There is a simple cardinality argument to the effect that not every countable
ordinal is recursive. Rosser’s extended axiom of counting (explain) tells us that
the length of the wellordering of all the countable ordinals has uncountable
length, so there are uncountably many (in fact ;) countable ordinals. However
the set of recursive ordinals is a surjective image of the set of all machines, and
that set is countable. Clearly every recursive ordinal is countable, so there must
be countable ordinals that are not recursive.

DEFINITION 21
The sup of the recursive ordinals is the Church-Kleene wy, aka w{'X.

A standard application of countable choice tells us that every countable set
of countable ordinals is bounded below wy, so we know that w{'¥ is actually a
countable ordinal. But we can do much better than that, and without using the
axiom of choice.

REMARK 11 The family of recursive ordinals is a proper initial segment of
the second number class.

Proof:

Suppose <pg is a wellordering of IN whose graph is a decidable subset of
IN x IN. That is to say that the length of <p is a recursive ordinal. Now
consider any ordinal « less than the length of R. This is the length of a proper
initial segment of <z—the length of <gz/[{m € IN: m <g n} for some n, say—
and this initial segment of <p is a decidable subset of IN x IN (it has the number
n as a parameter) and its length is therefore a recursive ordinal. [|

This means that w{X is not merely the sup of the recursive ordinals but the

least nonrecursive ordinal—and this is indeed how it is usually defined.

REMARK 12 FEvery recursive limit ordinal has cofinality w—recursively. That
18 to say: whenever R is a decidable binary relation on IN that wellorders IN to
a length that is a limit ordinal there is a decidable X C N s.t. otp(R]X) = w.

Proof: Recycle the usual “picking winners” proof that countable limit ordinals
have cofinality w. It works in this context. We enumerate the members of X in
increasing order xg,x; We set xg := 0. Thereafter x,,41 is the least natural
number x such that (x,,z) € R. There is always such an z and it is always
decidable for any candidate whether or not the candidate passes. This ensures
that X is a semidecidable set which can be enumerated in increasing order, and
this makes it decidable (by exercise . [|

Observe that this proof is effective: there is a computable function which,
on being given the gnumber of a characteristic function of a wellordering of IN,
returns the gnumber of the characteristic function of an unbounded subset of
length w.

138 CHAPTER 6. RECURSIVE AND AUTOMATIC STRUCTURES

EXERCISE 94

The class of recursive ordinals is closed under the Doner-Tarski function fo
(see deﬁm’tion@ D. for every recursive ordinal ozE|

Thus w{'¥ is huge. This is contrast to the corresponding ordinal for auto-
matic structures: the least ordinal not the ordertype of an automatic wellorder-
ing is w¥, see [I7T]

Something to be alert to. Do not confuse the concept of a recursive ordinal
with the concept of a recursive pseudowellordering of IN. This would be a
decidable binary relation R on IN which is a total order with the property that
every decidable subset of IN has an R-least member.

When reasoning inside a formal system of arithmetic care is needed in ap-
proaching the concept of recursive ordinal. It’s one thing to have a definable
binary relation on IN, it is quite another to have a proof that this definable
binary relation is a wellorder. Come to think of it, how on earth can a system
of first-order arithmetic (such as Peano Arithmetic) ever prove that a binary
relation is wellfounded? After all, to show that a relation is wellfounded one
has to be able to reason about all the subsets of its domain, and a first-order
theory cannot reason about arbitrary subsets. The answer is that whenever T
(being a first order theory of arithmetic) proves that a relation R on IN is a
wellorder what is going on is that T" proves all instances of R-recursion that can
be expressed in the language of T'.

EXERCISE 95 (Jockusch)(*)

Show that there is a decidable two-colouring of [IN]* such that any infinite
set monochromatic for it can be used to solve the halting problem.

[Hint: consider the 3-place relation {p}.(d)).]

EXERCISE 96 (*)
Construct a recursive counterexample to Konig’s Infinity lemma: a recursive
finitely-branching tree with no infinite recursive path.

6.3 Tennenbaum’s Theorem

O Tennenbaum, O Tennenbaum!
Wie treu sin’ deine Bléatter!!

See [7] (but not all editions), [62] and [35].

We know from compactness arguments that there must be nonstandard mod-
els of PA—models containing nonstandard naturals. In this section we explore
what we can do with them.

You may recall from Question 11 on Example Sheet 3 of Professor John-
stone’s Set Theory and Logic course in Part IT in 2012/3 the relation n Em on

3Come to think of it i’m not really entirely happy about this ...but Stan says it’s obvious
so it must be OK

6.3. TENNENBAUM’S THEOREM 139

natural numbers, which holds when the nth bit of m (m considered as a bit-
string) is 1. Clearly E is a decidable relation. It is useful to us because it holds
out the possibility of using a natural number to code a set of natural numbers:
for any n, {m : m En} is an actual set (a subset of the model) and it is coded
by the element n of the model. There are other encoding schemes that pop up
in the literature, and they are there because they are syntactically simpler. For
example we can think of a number n as encoding the set {m : the mth prime
divides n}.

Once we have erected a coding scheme we can use it to think of any nonstan-
dard model 21 of PA as a structure for the language of second-order arithmetic,
in the following way. 9 has a standard part, and any nonstandard element
of M has the potential to encode sets that are unbounded in the standard
part. According to the PTJ-example-sheet scheme no two (nonstandard) nat-
urals can encode the same set, while according to the prime-number scheme
distinct (nonstandard) naturals can encode the same set. However we are inter-
ested in the standard part of any set coded by a (nonstandard) natural, and—
on this view—two distinct (nonstandard) naturals can encode the same set of
standard naturals even under the PTJ-example-sheet scheme. The structure-
for-the-language-of-second-order-arithmetic to which 9t corresponds has as its
carrier set the standard part of 9. The range of the second order variables is
the whole of M. Let us call this structure “91*”.

We start with a simple observation.

REMARK 13 In 9", every decidable set of standard naturals is encoded by a
[nonstandard] natural [of M.

Proof:

Let’s write ‘z @ 3’ for the logical or of the two naturals z and y thought of
as bit-strings. [There is nothing specific to 91* here: this is happening in PA].
Let P() be a decidable predicate.

We will need the function f defined as follows.

) =0
fn+1) =if P(n) then f(n)®2" else f(n).

Of course, if we prefer coding with primes then we obtain a different defini-
tion.

Now we find, in 9, that {n : n is standard AP(n)} is encoded by f(m)
whenever m is nonstandard, and f(m) is of course a set of 9*. That is to say
that, in 9, any decidable set of standard natural number is a set of 9t*—as
desired. [|

Are there any undecidable predicates we can encode? If there is, then we
can derive a contradiction from the assumption that the graph of + and X in
the model is decidable. This is

140 CHAPTER 6. RECURSIVE AND AUTOMATIC STRUCTURES

THEOREM 17 (Tennenbaum)
PA has no nonstandard model with carrier set IN in which the graphs of +
and x are decidable.

Proof:

Suppose some undecidable set A is encoded by a nonstandard natural m.
Then—Dbecause the membership relation is decidable—it follows that member-
ship in A becomes the relation “n E'm” which is of course decidable. Now the
obvious undecidable predicate is the halting set. You might think (as did i!)
that one can encode it by the following ruse. Define f as follows:

) =0
fn+1) =let n+1={(p,it) in

if {p}:(é)l then f(n)EB2<p7i> else f(n).

The key to understanding what f does is to fix some pair (p,7) in one’s
mind and think about what happens to the (p,i)th bit of f(n) as n gets bigger.
It starts off clear, but gets set if {p}(i) ever halts; and—once set—it remains
set. The values of f are an ever-improving sequence of approximations to a
numerical code for the halting set, {(p,%) : {p}(i)l}.

So why doesn’t f(n) for some (indeed any) nonstandard n encode the halting
set? The answer is that 9T might lie about whether or not {p}(¢) halts, by saying
that it halts when in fact it doesn’t. For example, let T' be the theory PA +
—Con(PA). T is consistent but unsound. Since PA C T and 7'+ —-Con(PA) then
certainly T+ —Con(T"). T is recursively axiomatisable so the predicate “...is
a T-proof” is decidable. Now let P be the program which, on being given an
input ¢, examines [in order| all numbers bigger than ¢ and stops when it finds
one that encodes a T-proof of =Con(T). P clearly halts on all standard inputs,
and never halts in standard time, since all proofs of =Con(T") are of nonstandard
length.

It simply isn’t true that a standard p, applied to a standard ¢, halts in
standard time if it halts at allf

So this ruse doesn’t prove the promised theorem of Tennenbaum. Neverthe-
less it does give us a flavour of the proof that we will eventually end up with,
and it does prove a weaker version:

REMARK 14 If 9 is a nonstandard model of true arithmetic with carrier set
IN then the graphs of + and x cannot both be decidable.

Proof: The only thing that prevented the preceding discussion from being a
proof of Tennenbaum’s theorem was the possibility of a Turing machine with
standard gnumber taking a nonstandard number of steps to halt on some stan-
dard input. But if 9t models true arithmetic then this cannot happen. If true
arithmetic proves that there is an n s.t. p(i) halts in n steps then there is some

4Tho’ it is of course true that every concrete p applied to a concrete i halts in finite (indeed
concrete) time if it halts at all!!

6.3. TENNENBAUM’S THEOREM 141

n such that true arithmetic proves that p(i) halts in n steps, and this n is of
course standard. [|

In fact we can indeed encode some undecidable sets even without this extra
condition on M—and we will need this fact—but one has to do rather more
work.

Meanwhile, to be going on with, we have the following observation of Dana
Scott’s, which I think I will leave as an exercise.

WKL (“Weak Konig’s lemma”) is the assertion that every rooted binary tree
with infinitely many nodes has an infinite branch.

EXERCISE 97 (Scott)(*)
If M is a nonstandard model of PA and ON* the corresponding structure for
second-order arithmetic, then IM* = WKL.

We procede to Tennenbaum’s theorem.

We recall from remark that there is a pair of semidecidable recursively
inseparable sets. It doesn’t matter what they are—any pair will do. Let them
be A = {n : Jy)A(n,y)} and B = {n : (3z)B(n,z)}. Because 2A and B are
recursively inseparable we must have (Vn)(Vy)(Vz)(—=A(n,y) V - B(n, z)).

So the standard model believes

(Vn < m)(Vy < m)(Vz < m)(—-A(n,y) vV -B(n,z)) (1)

—_—~
for any numeral m. (Recall from p. that m is the string S(S(S...0...)).)

Now observe that expression (1) is absolute and so must be true in any model
of PA, and so—in particular—in our 9. So 9 believes there is an [standard!]
m such that

(Vn < m)(Vy < m)(Vz < m)(—A(n,y) V -B(n,x)). (©)

Indeed it believes this for all standard m. Since 99T does not know how to
define standard-ness for its members, it must believe that there are nonstan-
dard elements bearing the property C'. This trick is known in the trade as an
overspill argument. Let e be one such. Then we have:

M= (Yn < e)(Vy < e)(Vo < e)(mA(n,y) V ~B(n,)). (D)

Now let X be the set of those naturals n [in the real world] satisfying 9 |=
(Jy < e)A(y,n). We will show that X separates 2 and ‘B.

2A C X holds because any member of 2 bears A(,) to some genuine natural,
and any such is less than e.

B N X =) holds for similar reasons. Suppose n € B. Then there is some
m such that B(n,m), whence 9 = B(n,m), and this m is certainly less than
e. So M = (Im < e)B(n, m). But then, by (D) above, n ¢ X. |

Better supply the details

This section is a stub

142 CHAPTER 6. RECURSIVE AND AUTOMATIC STRUCTURES

The final piece of the jigsaw is that if 9t is a model of PA in which even
one undecidable set is encoded by a (nonstandard) element then it cannot be
recursive. Since—as we have just shown—every nonstandard 9t has a model
that encodes a set 2’ separating 2 and 9B, it will follow that every nonstandard
model fails to be recursive.

The idea is that
if
(i) there is an element ¢ of the model that encodes an undecidable set 2, and
(ii) the relations of the model are recursive,
then
the element ¢ can be used as an oracle to answer questions about membership
in 2('—thereby rendering 2’ decidable.

A funny Logic

Consider now the Logic £ of those sentences true in all recursive (decidable)
structures. Let us write ‘T =g ¢’ to mean that every recursive structure that
models T also models ¢. Since the only recursive model of PA is the standard
model, it follows that—according to this logic L—PA is complete. We must
have PA =g Con(PA) or PA =r —Con(PA).
The second is false, because PA has a model, so we infer PA =r Con(PA).
It’s a pretty safe bet that £ is not axiomatisable!

6.4 Recursive Saturation

The models of Presburger arithmetic that can be expanded to models of PA are
precisely the recursively saturated ones.

6.5 Leftovers

Any connection between Quantifier elimination and automaticity? Presburger
is a theory with signature (IN, 4+, <,0,1). It does not have QE. However, if we
add, for each concrete k, a unary predicate is-divisible-by-k we have a theory
that does have QE. There is also, for each concrete k, a unary function div k.
This is in [42].

Observe that there is a 2-state Mealy machine that adds two binary strings.
Its alphabet is ({0, 1} x{0,1})U{EQF}. It has two states: carry and don’t-carry.
The initial state is don’t-carry, and its transition table is

If in state and reading go to state and emit
carry (0,0) don’t-carry 1
carry (0,1) carry 0
carry (1,0) carry 0
carry (1,1) carry 1
carry EOF don’t-carry 1

6.5. LEFTOVERS 143

don’t-carry (0,0) don’t-carry 0
don’t-carry (0,1) don’t-carry 1
don’t-carry (1,0) don’t-carry 1
don’t-carry (1,1) carry 0
don’t-carry EQF don’t-carry null

Take a moment or two to think about the challenge of designing a Mealy
machine to multiply two bit strings.

Mind you, we didn’t define automatic structure in terms of Mealy machines
but rather in terms of FSAs. So what one should really be doing is defining a
finite state machine whose alphabet is {0, 1,EQF}3. It will have three ports not
two, and it will have an accepting state which it reaches if the string of entries
in the third port is the sum of the string of entries in the first two ports. (It
will also need a fail’ state. The reader might like to supply details of this
machine.)

Khoussainov sez: Product of automatic structures is automatic.

The first-order theory of an automatic structure is decidable.
Presburger arithmetic is automatic, which is why it’s decidable.
(N, -) not automatic.

Khoussainov sez: if I have an automatic structure with some operations, then
if I apply the operations n times to get terms of depth n, then there are only
exponentially many (instead of doubly exponential—be alert to the difference
between the length of a word and the depth of a word).

The problem of finding whether or not two automatic structures are isomor-
phic is as hard as the same problem for recursive structures.

Khoussainov says there is a good notion of automatic isomorphism.

Khoussainov sez (Z,+) is automatic, and that there are uncountably many
countable total orders elementarily equivalent to it—and they can’t all be au-
tomatic. (Q,+) is automatic.

If you represent natural numbers in binary then “x is a power of 2” is regular.
If you write them in ternary, it ain’t! So automaticity is not a property of the
predicate but of its representation.

Automatic Groups

A good place to start reading about automatic groups would be Baumslag’s
review [5] of [2I]. There is also a Wikipeedia article.

An automatic group is a (countable) group serviced by certain FDAs. What
might these machines be? An obvious place to start looking for a machine is
the Cayley Grap}ﬂ for a group-with-a-presentation, since it is quite literally
a machine even as it stands (albeit an infinite machine).

5The Cayley Graph for a group-with-a-presentation is a directed graph whose vertices are
the elements of the group, and where the directed edges are labelled by generators. Multiply
the group element that is the vertex at the fletch of the arrow by the generator that labels
the arrow to obtain the group element that is the vertex at the point of the arrow.

144 CHAPTER 6. RECURSIVE AND AUTOMATIC STRUCTURES

We aren’t going to take the machine to be the Cayley graph—that way the
only automatic groups would be finite groups, and that is not what we want.
What we want is a way of understanding how an infinite machine might secretly
be merely a finite machine written out many times.

Let GEN be an alphabet of letters for generators (and their inverses!) for a
group G. We will say what is is for G to be automatic.

Richard Parker says:

Little note. The correct starting point seems to be a set of generators that are
closed under inversion. Therefore if a generator has order two, you can cope with this
in the generators and do not need the square of the generator to be an extra relator. I
therefore call a group an “inv-tab” group (Inverse-Table group) if it is the free product
of free groups and (cyclic) groups of order 2.

Since GEN generates G there is an evaluation map ¢ : GEN* — G. Of
course there might be languages L C GEN™* such that the restriction o [L is
onto the whole of G. If even one of these L is regular then we have satisfied one
part of the definition of an automatic group.

One condition is obviously going to be that the word problem for the group is
solvable by an FSA. How do we know that this constraint is nontrivial? Are there
any group presentations for which the word problem is not solvable by an FDA?
Yes. There are even group presentations for which the word problem is not
solvable at all. This is not obvious. It’s pretty obvious that there are semigroup
presentations for which the word problem is unsolvable, and one establishes this
by coding up the halting problem for a Turing Machine as a word problem for a
semigroup presentatiorﬂ but the introduction of the inversion operator greatly
complicates matters, and it is a tricky task to produce a group presentation for
which the word problem is not solvable.

How might an FSA solve the word problem for a group? If we feed it two
words w; and wsy simultaneously then it ends up in an accepting state? If w,
and wy are the same length then one can imagine a machine that eats characters
from the alphabet GEN x GEN. When it has finished reading the string of
pairs-of-characters we want it to be in an accepting state. That’s OK if w; and
wy are the same length. To accommodate the need to answer questions about
equality between words of different lengths we have to include the unit 1 as one
of the generatorsm

Richard Parker says:

There is also a generalization of FSA where the state includes information as to
which word it wants a generator from next. I prefer that approach myself. Holt’s main
programs actually only work with cases where the input is taken one-letter-from-each-
word, and as far as I know this is a genuine restriction. You cannot try all strings of
identity elements in all places in a finite time and I do not think the two approaches
are equivalent.

%You might like to try this, Dear Reader!
"That’s not how it’s done in the literature but Benson Farb thinks it’s OK.

6.5. LEFTOVERS 145

Take a cartesian product G of two copies of the Cayley graph. The result
is a graph whose vertices are ordered pairs of group elements, and the edges
are labelled with ordered pairs from GEN. This is the basis for the FDA that
will solve the word problem. The ordered pairs are to be tho’rt of as states and
every “diagonal” vertex (x,x) as an accepting state. (Any path through this
product that leads to a state (x,x) represents a pair of words in the generators
that both evaluate to the group element x.)

The key thought now is that all the diagonal vertices can be thought of as
the same accepting state. (This is because groups have an inverse operation .. .)
Identifying all the diagonal vertices induces an equivalence relation on elements
of G as follows.

We seek a binary “resemblance” relation on vertices satisfying the condition
that for all 21, xa, x5 and x4, vertex (x1,x2) “resembles” vertex (x5, x4) iff, for
every character y from GEN x GEN, the vertex (yi,y2) that we reach from
(x1,x2) by travelling along an edge labelled ‘x’ “resembles” the vertex (ys, y4)
that we reach from (zs,z4) by travelling along the edge labelled ‘y. That is
to say, if we think of elements of GEN x GEN as one-place operations, our
resemblance relation must be a conguence relation for all of them.

Richard Parker says:

Not quite got my head around this. As far as I know, your group has to have
the “fellow traveller” property, which means that the set of all nice words for group
elements A - B~! for pairs of nice words that are the same group element is a finite
set. I think that’s right.

The relation we desire is clearly a fixed point for the operation + defined as
follows:

(Vpip2 € G)(p1 ~ p2 «— (Yx € GEN x GEN)(x(p1) ~ x(p2)))-

This + operation is clearly monotone and there are various fixed-point the-
orems we can use to obtain a fixed point for it.

Miniexercise: which fixed-point theorem are you going to use? Tarski-
Knasterff] or Bourbaki-Witt?

The equivalence relation we start with makes all diagonal pairs (x, z) equiv-
alent and otherwise makes all other ordered pairs equivalent only to themselves.
Then we apply + repeatedly until we reach a fixed point.

If there is a fixed point that is (an equivalence relation) of finite index then
we are happy. The quotient will be a machine with alphabet GEN x GEN.

Check that if a group hosts a machine of this kind that can detect when
two words are equivalent then it also hosts a machine that recognises the set of
words that evaluate to the unit. The converse is not obvious. (I don’t know if
it’s even true)

EXERCISE 98 Show that if G under some presentation is automatic, then it
18 automatic under any presentation.

8Tarski-Knaster was not lectured at Part IT in 2019/20, but there are proofs in the course
materials from previous years.

We really should prove this

146 CHAPTER 6. RECURSIVE AND AUTOMATIC STRUCTURES

[RP sez: Replace the generators of one presentation for words in the other
group that they are equal to.]

Farb sez that [26] uses the pumping lemma to show that finitely generated
infinite torsion groups (no elements of infinite order) are not automatic. Khous-
sainov sez: shurely shome mishtake? Product of lots of copies of Ss is automatic
(in his sense). Is an infinite torsion group an infinite locally finite group?

What is the conection between frieze groups and automatic groups? Is the
Cayley graph of a frieze group a frieze? We presumably need in this context
(showing that certainly infinite groups are automatic by looking at their Cayley
graphs) whatever device we used to extract a finite description of a frieze.

Braid groups are hyperbolic and Thurston-automatic.
Presumably the free product of two automatic groups is automatic?
finitely generated group is K-automatic iff it’s abelian-by-finite.

Grigorchuk group is automatic but not finitely presented. It’s interesting
because it has intermediate growth. Not automatic in Khoussainov’s sense, not
known if it’s Thurston-automatic.

7 X 7 is finitely generated but not hyperbolic.

Free groups of finite rank are hyperbolic.
Hyperbolic groups are automatic.

A group is virtually free iffq; it has a subgroup of finite index that is free of
finite rank. (Exercise: can require the free subgroup to be normal, using Nilsen-
Schreier. Richard sez: consider the action of the group on the set of cosets, then
the kernel of this action). A group is virtually free iff its word problem can be
solved by a PDA.

Chapter 7

Incompleteness

7.1 Proofs of Totality

I emphasised on p[72]that concentrating on partial functions was the conceptual
breakthrough: it was that that enabled us to prove the completeness theorem
for computable partial functions. Quite how big a mess we would have got into
if we had stuck with total functions is shown by the diagonal argument:

THEOREM 18 The set of gnumbers of machines that compute total com-
putable functions is not semidecidable.

Proof: Suppose the set of gnumbers of machines that compute total functions
were semidecidable. Then there would be a total computable function f whose
values are precisely the gnumbers of machines that compute total functions.
Now consider the function An.{f(n)}(n)+ 1. This function is total computable
and should therefore be {f(m)} for some m. But it cannot be {f(m)}, because
its value for argument m is {f(m)}(m) + 1 and not {f(m)}(m).]

We knew from Rice’s theorem (theorem [14]p that this set could not be
decidable, but this claim is stronger. However, it should not come as a surprise.
Ask yourself: if I am given the gnumber of a machine, can I confirm in finite
time that the function computed by that machine is total? (And we would have
to be able to do that if {n : (Vm)({f(n)}(m)})} were semidecidable). At the
very least, it is obvious that there is no straightforward way of confirming it in
finite time. So one should not be surprised to be told that there is in fact no
way at all of doing it—in finite time.

Consider the total computable function f that we hypothesised in the proof
of theorem [I8 What happens if we assume that f“IN is not the whole of
{n : (Vm)({f(n)}(m)})} but merely a subset of it? Then the construction in
the proof exhibits a total computable function not in the range of f.

This property of {n : (Vm)({f(n)}(m))} is important enough to deserve a
name. . .

147

148 CHAPTER 7. INCOMPLETENESS

DEFINITION 22
Suppose X C IN is not only not semidecidable but also comes equipped with a
computable function g which “diagonalises out of” any semidecidable {n}“IN C
X in the sense that g(n) is a member of X \ {n}“IN.

Then we say X is productive.

It can be hard to see whether or not a function specification specifies a func-
tion with the same graph as a recursive specification (recall Waring numbers).
However it is mechanical to check whether or not a piece of syntax is literally a
definition of a computable function.

That’s the easy part; the interesting hard part generally is establishing
whether or not a palpably p-recursive definition defines a total function.

It turns out that stronger theories of arithmetic can prove totality of more
function declarations than weak theories can. This will lead us to a famous
theorem of Godel’s.

7.2 A Theorem of Godel’s

DEFINITION 23 A sound theory of arithmetic is one all of whose axioms are
true.

(Don’t panic! ‘unsound’ does not imply ‘inconsistent’. There are plenty of
unsound consistent theories of arithmetic.)

Fix a theory T of arithmetic, with a semidecidable set of axioms.

We proved in theorem [I8] p. [[43] that the set of gnumbers of programs that
compute total functions is not semidecidable. Observe however that, in contrast,
the set of gnumbers of programs that compute functions-that-T-can-prove-to-
be-total definitely is semidecidable. It is obviously decidable whether or not a
given proof is a proof that a given function is total. So, given a program, we
can systematically examine all T-proofs to see whether or not any one of them
is a proof that the program computes a total function.

Observe that this brings us some unwelcome news. If T' is a recursively
axiomatised system of arithmetic then the set of gnumbers of machines for
which T can demonstrate that they compute total functions is a semidecidable
set—unlike the set of gnumbers of machine that compute total functions. So
these sets cannot be the same. So either T proves some function to be total
when it isn’t, or fails to prove total some function that happens to be total.
This is bad enough, but a refined analysis will tell us more, and will explicitly
provide a total function whose totality T cannot prove—if it is sound.

7.2.1 The T-bad function

Consider the machine 9t that tests, for each pair (p,n) of a T-proof p and a
machine n, whether or not p is a T-proof that the function computed by n is
total. Naturally we use a volcano for 9. We modify the volcano to obtain
a total function V' which emits all pairs (p,n) where p is a T-proof that the

7.2. A THEOREM OF GODEL’S 149

function {n} is total. For each k € IN, we take V(k), which will be a pair (p,n).
We then compute {n}(k) + 1 and emit this as our output for input k.
Let us call this the T-bad-function. That is to say, the T-bad function is

Mk € N.(let (p,n) =V (k) in {n}(k)+1)

Consider now the project of proving that the T-bad-function is total. Obvi-
ously we are not going to be able to do this in 7! So our refined analysis has
already given us another nugget: a computable total function whose totality T’
cannot prove if it is sound.

A fruitful question to ask is: how can T fail to prove that the the T-
bad-function is total?

We have to prove the following:

For every n, if we take the nth program that T proves to be total,
evaluate it at n and add 1 to the result, we get an answer, and this
defines a total function (A)

Notice the difference between (A) and

For every n, if we take the nth total program, evaluate it at n and
add 1 to the result, we get an answer, and this defines a total
function. (B)

(B) is obviously going to be provable (in T or any halfway-sensible system
we choose), but sadly it is not (B) we are attempting to prove in T but (A).
That is to say: in 7" when we pick up an arbitrary n we are asking not whether
or not the nth program is total, but whether or not T' proves that it is total.

Observe that if T' is merely consistent (never mind sound) it cannot prove
(A), for were it to prove (A) it would both prove and not prove that the T-
bad-function is total.

Thus we have established

THEOREM 19 If T is a sound theory of arithmetic with a semidecidable set
of axioms than T is incomplete.

Indeed the proof explicitly exhibits an assertion that 7' cannot prove—
namely the assertion that the T-bad-function is total. (This assertion is IIs,
which is not best possible). Later, in chapter 7?7, we will see an example of a
specific theory T and a specific function whose totality cannot be proved in T
because it would imply the consistency of T

Now suppose we add to T" a rule of inference (the “T-soundness’ rule) al-
lowing us to infer ¢ from the fact that 7'+ ¢. Observe that in this system we
can actually prove (A)—as follows. ..

The set {n € IN: T+ “{n} is total”} is a semidecidable set, and is
therefore f“IN for some computable total function f.

expand this

Clearer if we appeal to
Godel’s argument

If T ever get round to it

150 CHAPTER 7. INCOMPLETENESS

Now let n be an arbitrary natural number, and consider the function
{f(n)}. By the new rule of inference we infer that {f(n)} is in fact
genuinely a total function, so {f(n)}(f(n)) + 1 is defined; n was
arbitrary, so the diagonal function An.({f(n)}(f(n)) + 1) is total.
So we have proved (A).

COROLLARY 3
The T-soundness rule of inference cannot be a derived rule of inference for T.

Observe that corollary [3|doesn’t say that the T-soundness rule of inference is
invalid or unsound, merely that it is not a derived rule of inference for T'. There
is nothing to stop us adding ¢ as an axiom whenever T proves that T F ¢.

The theory A of truths of arithmetic is obviously complete and sound. From
the foregoing it now follows that it cannot be recursively axiomatised. But the
construction actually shows a bit more than that. If T" is any sound recursively
axiomatised theory of arithmetic the above construction shows how we can we
can “diagonalise out of” T" while remaining entirely within the set of arithmetic
truths. What we have in our hands is an algorithm which, on being presented
with a recursively axiomatisable T C A (such a T is a finite object and is a
possible input to an algorithm), returns something in A\ 7.

So what we proved above can be stated as:

REMARK 15 The set of (gnumbers of) arithmetic truths is productive.

Indeed {n : {n} is total}, the set that kicked off this chapter, is productive.
We will see later that A is productive iff A is in some sense “at least as
undecidable” as the complement of the halting set, the set {(p,) : {p}{ (9)}.

EXERCISE 99 (%)

Jason Long said to me the other day that the complement of the Halting set
1s productive. Which version of the Halting set did he mean? And what did he
mean by ‘complement’?

EXERCISE 100 (*)
Stephan [64]] says that both {e : |[W.| < R} and N\ {e : |[W,| = Ry} are
productive.

Although the set of arithmétic truths really is productive, and there really
is an algorithm that will accept a decidable axiomatisation of a fragment of
arithmetic and emit something unprovable in that fragment, the fact remains
that the algorithm is a bit unwieldy. Producing actual arithmetic truths that
are demonstrably unprovable in specific recursively axiomatisable fragments of
arithmetic requires ingenuity. We will see an example in chapter 77.

7.3. UNDECIDABLITY OF PREDICATE CALCULUS 151

7.3 Undecidablity of Predicate Calculus

THEOREM 20 The set of (gnumbers of) valid expressions of First-Order Logic
s not decidable.

Proof:

We have to be careful to state this properly. Monadic first-order logic with-
out equality is decidable, as one can easily see once one notices that the language
with n monadic predicate letters can distinguish only 2™ things and so any fal-
sifiable formula has a finite countermodel which can be found by systematic
exhaustive search. [In fact, what this shows is that every structure for monadic
first-order-logic-without-equality has a finite elementary substructure].

We mean sufficiently rich [valid expressions of ...]. How rich is sufficiently
rich? Rich enough to describe the working of a Turing machine. We know
that truth-in-all-models is finitely detectable, we want to use Turing machines
to show that falsifiability is not finitely detectable. So we have to show that if
falsifiablity is finitely detectable, then we can detect computations that will not
HALT. So, given a computation of p with input ¢, we have to find a sentence in
the appropriate language with a counter model. The sentence will be the one
that says that p applied to ¢ does not HALT.

We want to use the unsolvability of the Halting problem to prove the un-
decidablity of First-Order-Logic. On being given a Turing machine 9t and an
input ¢ to 91, we can compute a formula ¢ which has the property that every
model of ¢ is a complete course of computation of 9t on input ¢ and has a last
stage at which 91 has HALTed. If the set of valid expressions of First-Order-Logic
is decidable then we can determine whether or not this ¢ has a model. But ¢
has a model iff 9T halts on i, and that, we know, is not decidable. So the set of
valid expressions of First-Order-Logic is not decidable either.

7.4 Trakhtenbrot’s theorem

THEOREM 21 (Trakhtenbrot)
The set of sentences true in all finite structures is not semidecidable.

Proof: We show that if it were semidecidable we would be able to solve the
halting problem. To this end what we want is a standard uniform method
which, on being presented with an instance (9, n) of the halting problem, emits
a formula ¢ of first-order logic with the property that:

¢ is true in all finite structures iff M(n)f. (A)

What would ¢ be? The idea is that any finite model of ¢ will be a course-of-
computation-of-9t-applied-to-n (as in Kleene’s T' function) with the property
that the state in the last snapshot in the list is not HALT. Loosely, a finite model
of ¢ will be a computation-of-90t-applied-to-n that is still running, so that if ¢
has arbitrarily large finite models then 9t applied to n never HALTs. So ¢ must
say the following.

152 CHAPTER 7. INCOMPLETENESS

“There are these things called stages, and there is an order of succes-
sion on them. There is a first stage and every stage except the first
has a unique predecessor. Every stage has at most one successor.
Each stage s is a configuration of 9% (that is to say: an ordered pair
of a state of M and a state of M’s tape) and the stage succeeding
s must be the configuration that arises from s as a result of the
quintuples that represent 91. Finally

if the first stage is (M-in-its-start-state, n-on-the-tape) then no
stage has IMM-in-the-HALT-state as its first component.”

This second clause is a conditional not a conjunction because the require-
ment on ¢ is that it should be true-in-all-finite-structures-(of the appropriate
signature) iff {m}(n)f. So it must be true in any finite structure (of the appro-
priate signature) and typically such a finite structure is a description of a course
of computation for a different machine or of the same machine on a different
input.

We now have to check that ¢ obeys (A), that is: M(n)T iff ¢ is true in
every finite structure of the appropriate signature. What is the appropriate
signature? It has apparatus for describing stages, and states of a machine and
configuration of a tape. A structure X for £(¢) has stages ordered like an initial
segment of a model of arithmetic (so it is finite or is an w-sequence followed by
some number of w* + w sequences). It also contains a description of a Turing
machine. There is nothing in being-a-structure-for-£(¢) to say that the stages
of X obey the transition rules for the machine, nor that the machine in question
is 91 for that X has to be a model of ¢.

L—-R

Suppose X is a finite structure of the appropriate signature. If it
doesn’t encode a course of computation of 91 then it trivially satisfies
¢ by falsifying the antecedent. On the other hand, if it satisfies the
antecedent then it really is a course of computation for M(n) and
therefore—since 9 (n)—it will satisfy the conclusion.

R—L

Suppose every finite X of the appropriate signature satisfies ¢. Then
M(n) cannot halt. For if it did there would be a course of computa-
tion of 9 applied to n whose final snapshot showed 9t in the HALT
state, and such a course of computation would be a finite structure
X | —¢, contradicting assumption.

Note: I have been a little bit hand-wavy in the specification of ¢. In order
for an expression like ¢ to be finitary first-order we probably have to specify an
upper bound for the number of states of 1. However this does not cause us any
difficulties: after all, we are cooking up ¢ on being given 9, so we just take the
bound to be |9].

Something to think about:

7.5. REFINEMENTS OF THEOREM 7?7 153

EXERCISE 101 (%)

Will the same argument show that the set A of formule with arbitrarily
large finite models is not semidecidable? Or the set B of sentences true in all
sufficiently large finite models?

What about the set of sentences true in all infinite models?
What about the set of sentences true both in all finite structures that have even
cardinality and in all infinite structures?

Observe that, despite exercise the set of sentences true in all infinite
structures is axiomatisable, for it is the set of deductive consequences of the set
“there are at least n things” for all n.

7.5 Refinements of theorem [19]

Try doing all the constructions of this section using instead of “T" - {n} is total”
something along the lines of “T' {n} converges rapidly”.

154 CHAPTER 7. INCOMPLETENESS

Chapter 8

Notes and Appendices

8.1 Chapter

8.1.1 Horn clauses in rectype declarations

This illustration comes from Ben Millwood.
... we can declare a datatype C equipped with a constructor con: (C — () — C.
Now, by recursion, declare a function f defined on this datatype by:

f(con(g)) = g(con(g))

This is a legitimate (if degenerate) declaration of f by recursion.

Do some type-checking. .. g must be of type C — (since it is an argument
to com; so con(g) is of type C, and f(con(g)) is of type @ which is impossible,
so f must be the empty function.

So C' must be empty if we are allowed to define f.

Ben says:

“TIt’s worse than that: f is a legitimate function C' — 0, so then con(f) is a
legitimate element of C. So C' can’t be empty.
You can look at the declaration con : (C' — 0) — C' as saying:

e if C is uninhabited, then there is a function h : C' — 0, but then con(h) : C,
so C' is inhabited,

e if C is inhabited, say by « : C, then C only has one constructor, so
2 =con(h) for some h : C' — 0. But the existence of such an h proves that
C is uninhabited.

So C has elements if and only if it doesn’t—Dbeing empty doesn’t resolve the
paradox. Here’s another example: let D be a datatype with one constructor,
don : P(D) — D, where P is the powerset. Then clearly D is inhabited,
since don()) is an element of it. But don itself is (by definition) an injection
from the power set of D to D, which Cantor says is impossible. This is a less

155

156 CHAPTER 8. NOTES AND APPENDICES

striking example than the previous one to my eye, but maybe a more familiar
one. (Perhaps the resolution is simply that this signature gives a rectype that
is a proper class, but that’s quite an awkward conclusion.)

The lesson that I take from this, at least, is that some constructor types are
permissible and some are not. In particular, the rectype C above isn’t merely
empty, it cannot exist at all.”

He’s right, but it’s easy to see where the problem lies: it’s the “negative
occurrence” of the datatype in the declaration. It prevents the datatype decla-
ration being Horn.

8.1.2 Infinitary Languages
While we are on the subject of infinitary languages let’s have the following
morsel:

THEOREM 22 Scott’s Isomorphism theorem

FEvery countable structure can be characterised up to isomorphism by a single
sentence of Ly, -

Proof:

We can obviously do this by cheating: if we want to characterise 2 up to
isomorphism by providing a name a for every element of A, the carrier set of 2.
However we want to do it without cheating!

(lifted from [33] who lifted it from [12]).

Let 2 be a countable structure for a language £. We will show that there is
a sentence ¢ of L, such that, for all countable structures 9B for £, B = ¢ iff
B~ A

It will be easier to understand the construction of ¢ if we bear in mind that
it is intended to power a back-and-forth construction of an ismorphism B ~ 2.

For each tuple a;...a, from A, and every § < wi, we define a formula
@5 o, (z1...2y) by recursion on j as follows:

BZO:

21“'% (x1...25) 18

N0z 2n) A= bar .. an)}
where 6 is atomic or negatomic.
B#at:

Naturally (bgl-..an (x1...25) 18 /\ 0, (T 2p)
v<B

8.1. CHAPTER 7? 157

f=a

This is where the work gets done. ¢gj_,1,an (21 ...x,) is the conjunction

oy, (T) A
N Ceas)(@8, o, (@1 20g1)) A
an+1€A
Vzni1) \/ (0 anis (@1 2ng).
an+1€A

(Both these clauses look like infinitary V3)

Reality check:
for all tuples a; ...a, and all 8 < wy,

1. the formula qbglman has at most the free variables ‘z{’ ... ‘x,’; and

2. AE ¢>£1___an [a1...an];
3. Ak (Voy...an) (68, . — &1 ..) whenever v < f3.

We prove (2) by induction on ordinals. The hard stage is the successor.
By the induction hypothesis we know that the first conjunct is satisfied. The
second conjunct /\ (Fzn+1) (B, apsr (T1 -+ Tnt1))A is satistied by instanti-

ant1€A
ating ‘z, 11’ to ‘an41’. The third conjunct is satified similarly because we can

take a,41 to be 2,11
We are now in a position to prove theorem

Observe that—by (3)—for each tuple a;...a, from A and for every tu-
ple 1 ...z, the truth-value of gbglman (1 ...2,) decreases monotonically as 3
increases. (If it ever becomes false it remains false). So the truth value is
eventually constant. So to each 2n-tuple a; ...a, with tuple z; ...z, we can
associate the ordinal at which the truth-value of ¢, (21...x,) settles down.
Fix a; ...a,. There are only countably many tuples x; ...z, so there are only
countably many such ordinals. w; is regular, so, for each tuple a ...a,, there
will come a stage by which the truth-values of ¢§1man (21 ...2,) have settled
down for all x; ...x,. Again, there are only countably many tuples a; ...an,,
so (by regularity of wy again) there is a countable sup of all the settling-down
ordinals; call it a

The ¢ we want is now:

g5 A N (@ @rz) = 0t (2 w)

n<w

ay...an€A

Now suppose B = ¢ and that B is countable. We use a back-and-forth
construction to show that B ~ 2. To do this it will suffice to establish.

158 CHAPTER 8. NOTES AND APPENDICES

(Vans1 € A)TFons1 € BB =62, 0 (b1 bui1)) (1)
and
(Vbpt1 € B)(Jant1 € A)(B = 65, a,p, (01 bny1)) (2)

(1) holds because B = ¢, 50 B = (3xn11)0g, . a0, (01 by Tnt1).
To show (2) we use again the fact that B = ¢2F1 (b1...b,). This gives

al...Qn

B = (VTni1) Vo, ea 96, ang, (01 - bn, Tny1) whence, for some ani1 € A,
%): ¢31,..an+1 (bl ttt bn+1)‘

8.2 Chapter

8.2.1 A bit of pedantry

If f(x,y) is a primitive recursive function of two arguments, f(z,x) is a primitive
recursive function of one argument. Cutland [I6] calls this construction identi-
fication and writes as tho’ it is not a special case of substitution. I'm wondering
if it is actually a derived rule after all, as a special case of substitution. ..

Why isn’t f(z,z) a straightforward instance of substitution? Substitute ‘z’
for ‘y’ in ‘f(x,y)’. One obvious problem is that the rule of substitution enables
us to replace a variable by a function term. Is a variable a function term in this
sense? Perhaps it is. But even if it isn’t we can perhaps do the following.

proj?(z,y) is a primitive recursive function that takes two arguments and
returns the first one as its answer. So, if f(z,y) is a primitive recursive function
of two arguments as above, the desired unary function is presumably

x> f(x, proji(z,0)).

Is this OK? Can we substitute constants for variables under this rubric?
Constants are nullary functions after all. But then the nullary function (aka the
constant) 0 has to be primitive recursive. (Wikipzedia, for one, doesn’t give this
nullary function as a primitive recursive function.) Or should it be

z v f(z,proji(z, 2(z)))

where z is the identically zero function? That seems to work. Is that what is
meant?

Any apprentice pedants out there like to sort this out for us? Usual
inducements .

A message from Ben Millwood

The unfortunate thing about composition of primitive recursive functions is that
there’s more than one obvious thing, and though they’re all equivalent or easily
made so, it’s hard to make sense of the basic proofs unless we’re all talking the
same language.

8.2. CHAPTER 7? 159

One way, and what seems to me to be the easiest, is to define the composite of
the m-ary function f with m n-ary functions g1, ... g, to be the n-ary function
which takes arguments (z1,...2,) and returns

flar(zr, . xn), - gm(x1, ... 2p))

i.e. passes the same n arguments to every g; and then passes the result of g; as
the i*" argument of f.

For example, composing a binary f with g; and go both identity functions
gives — f(x,x), an instance of what Cutland called identification. In fact,
Cutland refers to identification only as something you might want to do, and
then immediately proves that it is achievable by composition with appropriate
projections, so is in fact a special case of composition (substitution).

An alternative composition method is similar, but you give different argu-
ments to each g;. This has the advantage that the g; need not be the same
arity, but suffers the disadvantage that the arity of your functions can then only
increase, which is problematic.

With a bit of thought, it’s clear that the first composition can be used to
implement the second: if you have, say, g1 with arity 3 and go with arity 1 and
you want to compose with f of arity 2, just compose g; with proji, projs, and
projs and go with projj. This gives two four-argument functions which can
then be composed with f in the usual way, to give a four-argument function
that passes its first three to g;, its last one to go, and then the result of both to
f, i.e. the function you get with the second notion of composition.

Since the second composition can only increase arity, it clearly can’t be used
to implement the first: we’ll need some way of taking one argument and plugging
it into two places. But equally clearly, that’s all we’ll need.

Once you’ve done the above thinking, you might as well compose and du-
plicate things however you want, leaving all the projections implicit. But when
you’re doing your structural-induction proofs, you'll probably want to stick to
just one idea, and the first is probably the easiest to formalise.

8.2.2 The Ackermann function

One of you pointed out to me that to perform this wellfounded induction we
do not need the relation on which we do the induction to be the whole of the
lexicographic order on IN x IN. This is true. One can do it on the weaker relation
(relation with fewer ordered pairs) given by the transitive closure of

(n,m) < (n,m+ 1);
(m,Alm+1,n)) <{m+1,n+1)
The point being that to get the induction to work we need
(m, Alm+ 1,n)) < {(m+1,n+1)
but we don’t need

(m,Alm+1,n)+ 1)< (m+1,n+1)

160 CHAPTER 8. NOTES AND APPENDICES

(my, A(m + 1,n)) < (m + 1,n).

But one needs to know that this relation < is wellfounded and well-defined
and presumably one can’t do that without first proving that Ackermann is
total. There may nevertheless be something enlightening one can say about this
situation.

A message from Auke Booij

about the footnote on p

From: Auke Booij <abb40@cam.ac.uk>
To: tf@maths.cam.ac.uk

Date:Tue, 3 Jun 2014 23:15:11 40100
Subject:Re: the status of n

n is a metatheoretical symbol: inside the theory, it represents one specific
symbol S(...S(0)...), but it is “meta-generated” by a variable of the theory in
which we phrased our theory (aka the metatheory). So in the metatheory, n is
a function of the meta-variable n, which generates some symbol (e.g. a Church
numeral) which can be interpreted inside the theory (e.g. lambda calculus).

Similarly, in the metatheory, we generate [logical formulas for the theory]
such as the ones you give—the theory itself has no way to do that (since there
is no internal concept of quoting of logical formulas). Hence, in the metatheory,
we generate [logical formulas for the theory] as a function of the metavariable
n (ie. as a function of n, which is a variable in the language of the metatheory
rather than in the theory).

I think that should answer your suspicion in the footnote on page 30 of the
Part III computability notes.

So on page[125] you are defining a miaow function for every possible metathe-
oretical choice of n. I don’t think this is what you mean (I'd like to give a
counterargument using nonstandard natural number objects, but that doesn’t
seem to work). What you instead want to say is that “we can test for equality of
Church numerals within lambda calculus”. Indeed, if you are writing “snd(hd
x) =n”, you are expressing that in the theory of lambda calculus, we (somehow)
test for equality of the lambda term “snd (hd x)” with the constant symbol “n”.
But there is no need to involve any kind of metavariables or quoting for that:

and := \bb'.bb’ false
equal := Anm. and (iszero(mpred(nsucc0)))(iszero(npred(msucc0)))

The implementation of pred (predecessor) is a bit contrived but possible (see e.g.
http://en.wikipedia.org/wiki/Church_encoding#Derivation_of_predecessor_
function).

Indeed, the later use in that definition of miaow of non-underlined n therefore
becomes ill-typed (what does the metavariable n mean to the theory?).

http://en.wikipedia.org/wiki/Church_encoding#Derivation_of_predecessor_function
http://en.wikipedia.org/wiki/Church_encoding#Derivation_of_predecessor_function

8.3. CHAPTER 7? 161

In my humble opinion, the interpretation of relative computation for models
versus theories I told you about a few weeks ago is a good way to understand
these things.

8.3 Chapter
8.4 Chapter
8.5 Chapter [6]
8.6 Chapter 77
8.7 Chapter 7?7

162 CHAPTER 8. NOTES AND APPENDICES

Bibliography

[1] J-P Allouche and J Shallit. “Automatic Sequences: Theory, Applications
Generalisations”. CUP 2003.

[2] Peter Aczel and Michael Rathjen, draught of book on constructive set theory.
http://wwwl.maths.leeds.ac.uk/~rathjen/book.pdf

[3] Bachmann: Transfinite Zahlen Springer, 1967.

[4] T.P. Baker, J. Gill, R. Solovay. “Relativizations of the P =7 NP? Question”.
SIAM Journal on Computing, 4(4): 431-442 (1975)

[5] Baumslag. Review of [2I] Bull Am Maths Soc 31 1994 pp 86-91

[6] J. L. Bell “A Primer of Infinitesimal Analysis”. Cambridge University Press,
1998. Second Edition, 2008.

[7] George S Boolos and Richard C Jeffrey “Computability and Logic”, various
editions. CUP

[8] W Buchholz and Stan Wainer. “Provably Computable functions and the
fast-growing hierarchy”. Logic and Combinatorics, Proceedings of a Summer
Research Conference held August 4-10, 1985, Contemporary Mathematics 65
American Mathematical Society 1987. pp. 179-198.

[9] Douglas. S. Bridges. “Computability, a Mathematical Sketchbook” Springer
Graduate texts in Mathematics 146 1994.

[10] Bunder, M. “The Logic of Inconsistency”. Journal of Non-Classical Logic
6 1989 pp 57—62

[11] Martin Gardner The Annotated Alice. lib.rmvoz.ru/sites/default/
files/fail/carroll_lewis_-_the_annotated_alice.pdf

[12] C.C. Chang “Some remarks on the model theory of infinitary Languages”
in LNM 72

[13] W. Craig. “On Axiomatizability within a System”, JSL 18 No. 1, pp. 30-32
(1953).

163

http://www1.maths.leeds.ac.uk/~rathjen/book.pdf
lib.rmvoz.ru/sites/default/files/fail/carroll_lewis_-_the_annotated_alice.pdf
lib.rmvoz.ru/sites/default/files/fail/carroll_lewis_-_the_annotated_alice.pdf

164 BIBLIOGRAPHY

[14] Craig and Vaught, “Finite axiomatizability using additional predicates”,
JSL, 23 (1958), pp. 289-308.

[15] James Cummings “Notes on Singular Cardinal Combinatorics”, Notre
Dame J. Formal Logic 46, Number 3 (2005), pp 251-282. http://www.math.
cmu. edu/users/jcumming/papers/1911_001.pdf

[16] N.J. Cutland “Computability, an Introduction to Recursive Function The-
ory”, CUP

[17] Christian Delhommé, “Automaticité des ordinaux et des graphes ho-
mogenes.” C. R. Acad. Sci. Paris Ser I 339 pp 5-10 (2004). available from
http://personnel.univ-reunion.fr/delhomme/filename.dvi

[18] Radu Diaconescu, “Axiom of Choice and Complementation”. Proc. AMS
51 (1975) 176-178.

[19] John Doner and Alfred Tarski. “An Extended Arithmetic of ordinal num-
bers”. Fundamenta Mathematicee LXV(1969) pp. 95-127. Also on http:
//www.math.ucsb.edu/~doner/articles/.

[20] Ehrenfeucht, A. “Polynomial functions with exponentiation are
wellordered” Algebra universalis 3 December 1973, Issue 1, pp 261-262

avl . A. Epstein, J. W. Cannon, D. F. Holt, 5. V. F. Levy, M. 5. Pater-

21] David B. A. E in, J. W.C D.F.Holt,S. V.F. L M.S. P
son and W. P. Thurston. “Word Processing in Groups”. Jones and Bartlett
1992

[22] Benson Farb “Automatic Groups a guided Tour”. Enseignement mathema-
tique 38 (1992) pp 291-313. Also at http://retro.seals.ch/digbib/view?
rid=ensmat-001:1992:38::528&id=&1d2=&41d3=

[23] Forster, T. E. Talk to the TMS www.dpmms . cam.ac.uk/~tf/TMStalk2012.
pdf

[24] Forster, T. E. Tutorial on countable Ordinals. www . dpmms . cam. ac.uk/~tf/
fundamentalsequence.pdf

[25] Martin Gardner “Logic Machines and Diagrams” University of Chicago
Press and Harvester Press second edition 1982 ISBN 0-226-28243-0

[26] R. Gilman, “Groups with a rational cross-section”, in: Combinatorial
Group Theory and Topology, Annals of Math. study 111, ed. by S. Gersten
and J. Stallings,

[27] Girard Lafont and Taylor “Proofs and Types” CUP

[28] M. Goldberg: On the Recursive Enumerability of Fixed-Point Combinators
BRICS RS-05-1. 2005 University of Aarhus

http://www.math.cmu.edu/users/jcumming/papers/1911_001.pdf
http://www.math.cmu.edu/users/jcumming/papers/1911_001.pdf
http://personnel.univ-reunion.fr/delhomme/filename.dvi
http://www.math.ucsb.edu/~doner/articles/
http://www.math.ucsb.edu/~doner/articles/
http://retro.seals.ch/digbib/view?rid=ensmat-001:1992:38::528&id=&id2=&id3=
http://retro.seals.ch/digbib/view?rid=ensmat-001:1992:38::528&id=&id2=&id3=
www.dpmms.cam.ac.uk/~tf/TMStalk2012.pdf
www.dpmms.cam.ac.uk/~tf/TMStalk2012.pdf
www.dpmms.cam.ac.uk/~tf/fundamentalsequence.pdf
www.dpmms.cam.ac.uk/~tf/fundamentalsequence.pdf

BIBLIOGRAPHY 165

[29] Andrzej Grzegorczyk “Some classes of Recursive functions”, Rozprawy
Matematyczne IV 1953

[30] Hardy, G. H. “A theorem concerning the infinite cardinal numbers”. Quar-
terly J. of Pure and Applied Mathematics. 35 (1903) 87-94.

[31] Wilfrid Hodges: Model theory
[32] Douglas Hofstader “Godel, Escher, Bach”.

[33] H.J. Keisler “Model Theory for Infinitary Logic” North Holland Studies in
Logic and the foundations of mathematics 62, 1971

[34] Hummel, T. L. “Effective versions of Ramsey’s theorem: avoiding the cone
above 0"”. Journal of Symbolic Logic 59 (1994) pp. 1301-1325.

35] R.W. Kaye. “Tennenbaum’s theorem for models of arithmetic”. http://
p
web.mat.bham.ac.uk/R.W.Kaye/papers/tennenbaum/tennenbaum. pdf

[36] Bakhadyr Khoussainov and Sasha Rubin “Some Thoughts On Automatic
Structures”, Auckland 2002, linked from Wikipsedia page on Automatic
Groups.

[37] S.C. Kleene, Introduction to Metamathematics.

[38] S.C. Kleene, “Finite Axiomatizability of theories in the predicate calculus
using additional predicate symbols” Memoirs of the AMS, 10.

[39] Lerman, Manuel. “Degrees of Unsolvability, local and Global theory”. Per-
spectives in Mathematical Logic, Springer Verlag 1983.

[40] Hilbert Levitz “An ordinal bound for the set of polynomial functions with
exponentiation”. Algebra universalis 8 (1978) 233-243

[41] M. Makkai. Review of [38] JSL 36 (1971), pp. 334-335.
[42] D. Marker “Model Theory”

[43] A.R.D. Mathias “Weak systems of Gandy, Jensen and Devlin” Trends in
Mathematics Springer 2006, pp 149-22

[44] Mendelson, E. “Introduction to Mathematical Logic”. various editions Van
Nostrand. We want the first edition.

[45] Piergiorgio Odifreddi, “Classical Recursion Theory: The Theory of Func-
tions and Sets of Natural Numbers” (Studies in Logic and the Foundations
of Mathematics 125) 1992

[46] Larry Paulson’s Computer Science 1b functional programming notes:
http://www.cl.cam.ac.uk/~1p15/papers/Notes/Founds-FP.pdf

http://web.mat.bham.ac.uk/R.W.Kaye/papers/tennenbaum/tennenbaum.pdf
http://web.mat.bham.ac.uk/R.W.Kaye/papers/tennenbaum/tennenbaum.pdf
http://www.cl.cam.ac.uk/~lp15/papers/Notes/Founds-FP.pdf

166 BIBLIOGRAPHY

[47] Valery Plisko “A Survey of Propositional Realizability Logic” Bull. S. Log
15 (2009) pp 1-42.

[48] by D. Richardson “Solution of the identity problem for integral exponential
functions” Zeilschr. f. math. Logik und Grundlagen d. Math. 15, S. 333-340
(1969)

[49] Hartley Rogers

[50] Rozsa Péter. “Recursive functions” Third (English) edition Academic Press
1967.

[61] Andrew Pitts Lecture Notes for 1a RLFA:
http://www.cl.cam.ac.uk/teaching/1112/RLFA/materials.html

[52] W. v O. Quine “Set theory and its Logic”. Harvard Belknap Press 1969

[63] H. E. Rose, “Subrecursion: functions and hierarchies”. Oxford Logic Guides
9 OUP 1984.

[54] Schiitte, K. “Beweistheoretische Erfassung der unendlichen Induktion in
der Zahlentheorie”. Math Ann 122 pp 369-389.

[65] Diana Schmidt. “Built-up Systems of Fundamental Sequences and Hier-
archies of Number-Theoretic Functions”. Arch. Math. Logik. 18 pp 47-53
1976.

[56] Schwichtenberg and Wainer. “Proofs and Computations”. CUP 2012

[57] Scott, D. “Logic with denumerably long formulae and finite strings of quan-
tifiers” in Addison Henkin Suppes (eds) “The theory of models” Studies in
Logic and the Foundations of Mathematics NH 1965.

[58] Scott D.S. Semantical Archaeology, a parable. In: Harman and Davidson
eds, Semantics of Natural Languages. Reidel 1972 pp 666—674.

[59] Dana Scott, “Axiomatizing set theory” in Jech, Thomas, J., ed., Axiomatic
Set Theory II, Proceedings of Symposia in Pure Mathematics 13. American
Mathematical Society Volume XIII Part IT, 1974

[60] Harold Simmons “The Ackermann functions are not optimal, but by how
much?” JSL 75 1 (march 2010) pp 289-313.

[61] Peter Smith “An Introduction to Gédel’s Theorems” 2nd Edition, Cam-
bridge University Press 2013 ISBN 9781107606753.

http://www.cambridge.org/gb/knowledge/isbn/item7137024/

[62] http://www.logicmatters.net/resources/pdfs/tennenbaum_new.pdf

http://www.cl.cam.ac.uk/teaching/1112/RLFA/materials.html
http://www.cambridge.org/gb/knowledge/isbn/item7137024/
http://www.logicmatters.net/resources/pdfs/tennenbaum_new.pdf

BIBLIOGRAPHY 167

[63] Stearns, R. E., Hartmanis, J., Lewis, P. M. “Hierarchies of memory limited
computations”. Sixth Annual Symposium on Switching Circuit Theory and
Logical Design, 1965. SWCT 1965. Date of Conference: 6-8 Oct. 1965 pp
179-190

[64] Frank Stephan. Recursion theory preprint 125pp.

[65] Patrick Suppes “Introduction to Logic”. Dover

[66] Jaap van Osten “Realizability - An Introduction to its Categorical Side”
[67] Vaandnen, Jouko. Models and Games CUP (ISBN-13: 9780521518123)

168 BIBLIOGRAPHY

Chapter 9

Answers to selected
questions

Chapter [2: Recursive Datatypes

Exercise [4]
Discussion

This is a beautiful question, co’s it touches several important points. It tests
your understanding of structural induction; it tests your ability to do the fiddly
manipulation necessary to perform the inductive step; it underlines the impor-
tance of having a sufficiently strong induction hypothesis, and finally it makes
a point about dereferencing.

So: we have a propositional language—a recursive datatype of formulee—
which starts off with three propositional letters (“literals”) ‘a’, ‘T’ and ‘L’. We
then build up compound formulse by means of the constructors ‘A’, ‘v’ and ‘—’.
We have a length function defined on objects in the datatype of formulee, written
with two vertical bars as in the question, which is roughly what you think it
is—so that the length of a literal is 1, and the length of a conjunction (or a
disjunction) of two formule is one plus the sum of their lengths, and the length
of the negation of a formula is one plus the length of the formula. Evidently the
question-designer thought that the length of a ‘(’ or a ‘)’ is zero!

One tends naturally to write the second half of the preceding paragraph with
expressions like

|ANB| = |A]+|B| +1.

This looks fair enough, and in some sense it is, but we need to be clear about
the conventions we are using. The letter ‘A’ by itself is a single symbol, so a
pedant might insist that |A| = 1. This is wrong of course: the letter ‘A’ is not a
formula, but a variable ranging over formule. .. when looking for the length |A|

169

170 CHAPTER 9. ANSWERS TO SELECTED QUESTIONS

of A we have to see throug]ﬂ the variable all the way to the value it takes—and
that value is a formula. All this is well and good, but it can cause some confusion
when we start thinking about expressions like: |A V B|. The constructor ‘V’ is
something we put between two formulee to make a new formula; we don’t put
it between two names of formulae or between two pointers to formulae! Until
we have a convention to make our practice OK, writing things like ‘|A V BJ’
should generate a syntax error warning. If you look back to page where
this exercise first appears you will find that i wrote

“...length of a literal is 1, and the length of a conjunction (or a
disjunction) of two formule is one plus the sum of their lengths. . .”

... and this is syntactically correct. When we wrote ‘|AA B|” we should really
have written ‘| the conjunction of A and B|’.

There are two ways of dealing with this. One is to have explicit names for the
constructors, as it might be ‘conjunction of ...’ and ‘disjunction of ...’ and
‘negation of ...’ This makes huge demands on our supply of alphanumerics.
The other solution is to have a kind of environment command that creates an
environment within which [deep breath]

Contructors applied to pointers to objects
construct
pointers to the objects thereby constructed.

Inside such a context things like ‘| AV B|” have the meaning we intend here. There
is a culture within which this environment is created by the ‘™’ symbol (IATEX:
\ulcorner) and closed by the ‘7 symbol (I¥TEX: \urcorner). In practice
people tend to leave these things out. The fact that this is—apparently—a safe
strategy tells us quite a lot about the skills of our language module: it’s very
good at dereferencing (among other things)

Thus we should /should-have posed the question as:

“Define the length of a Boolean proposition by structural induction as fol-
lows:

la| =1,
Tl =1,
L] =1,

"TAAB|=|A|+|B|"+1,
"Av B| =|A|+|B|"+1,
F~Al = A+ 1.7
[or something like that, with the corners placed correctly!]

“Define a translation which eliminates disjunction from Boolean expressions
by the following recursion:

T have italicised this word because the metaphor is a good one: google referential trans-
parency.

171

tr(a) =a,tr(T)=T, tr(L) = 1,
Ttr(AA B) =tr(A) Atr(B),
tr(AV B) = —(—tr(A) A —tr(B)),
tr(—A) = —tr(A)"

Prove by structural induction on Boolean propositions that
"tr(A)] < 3[A] =17,

for all Boolean propositions A.”

The above use of corner quotes illustrates how there is no restriction that
says that the scope of the corner quotes has to live entirely inside a single
formula. I use corner quotes in what follows, but (although—i think—i have
put them in correctly) they can be inserted correctly in more than one way.

The Proof by Structural Induction

We aspire to prove by structural induction on the recursive datatype of formulae
that

(VA)([tr(A)] < 3-|A[-1)
The base case we verify easily. The induction step has three cases
- If [tr(A)| < 3-|A| what is ["tr(=A)7|? Ttr(=A) = —tr(A) " so tr(-A)| =
[=tr(A)|7, and |"—tr(A)7 is [tr(A)] + 1 which is certainly < 3-|7=A7|.
AN If |tr(A)] < 3-]A| and |tr(B)| < 3-|B| what is ["tr(AA B)7|?
Ttr(AAB)is Ttr(A)Atr(B) ™. By induction hypothesis |tr(A4)] < 3-]A|—1

and [tr(B)| < 3:|B|-1so"|tr(A)Atr(B)|? < (3-]4]-1)+(3-|B|—1)+1.
The final ‘+1’ is for the ‘A’. This rearranges to

"tr(A) Atr(B)7| < 3-(JA[+|B]) -1

but |A| +|B|] < |"AA B7| whence

Tltr(A) Atr(B)] < 3-(JAAB|)— 1" and finally
Tltr(AAB)| < 3-(|JAAB|)—1"

If |tr(A)| < 3-|A] and [tr(B)| < 3-|B| what is |tr(AV B)|? "tr(AvV B)~
is T=(=tr(A) A =(tr(B)))". What is the length of this last expression?
Clearly it’s going to be [tr(A)| + |tr(B)| + one for the outermost ‘= +
one for the ‘= attached to tr(A) + one for the ‘=’ attached to tr(B) +
one for the ‘A’ ...giving |tr(A4)| + |tr(B)| + 4. By induction hypothesis
[tr(A)] < 3-]A|—1and [tr(B)|] < 3-|B|—1 so we have

Tltr(AvB)| < (3-]4|—1)+(3-|B|—1)+4". We can rearrange this to
Tltr(Av B)| < 3-(|A|+|B|) —1—1) + 47 and further to
“ltr(AV B)| < 3-(|A]+|B|) +2".

172 CHAPTER 9. ANSWERS TO SELECTED QUESTIONS

Now |A| +|B| ="|AV B|" — 1 so we can substitute getting

Tltr(Av B)] < 3-(|JAV B| —1)) 4+ 27 and rearrange again to get
Tltr(AV B)] < 3-|AV B| — 17 as desired.

A final thought ...I wouldn’t mind betting that quite a lot of thought went
into this question. We've proved [tr(A)] < 3-|A| —1 so we've certainly also
proved the weaker claim [tr(A4)| < 3-|A|. However wouldn’t stake my life on
our ability to prove the weaker claim by induction. You might like to try ...i'm
not going to!

Exercise [14]

A D-finite set is a set without a countably infinite subset.

(i) Prove that every hereditarily D-finite set is inductively finite.

The set of all hereditarily finite sets is countably infinite, so every set of
hereditarily finite sets is countable finite or countably infinite. Consider a D-
finite set x of hereditarily D-finite sets. By induction hypothesis all its members
are hereditarily finite, so x is either inductively finite or countably infinite. It
is not countably infinite (being D-finite) so it must be inductively finite.

There is a slightly easier proof. The collection V,, aka Hy, of hereditarily
inductively-finite sets contains all its D-finite subsets. This is because it is
countable and any D-finite subset of a countable set is inductively finite.

(ii) Provide a constructive proof that every hereditarily Kfinite set is Nfinite.
A proof from Andreas Blass:

“First, I claim that equality between hereditarily K-finite sets is decidable,
i.e., either x = y or not x = y. This is proved by induction on hereditarily K-
finite sets x (for all y simultaneously) as follows. Given (hereditarily K-finite)
z and y, we have, for all members z’ of z and 3’ of y, that 2’ = ¢ is decidable,
by induction hypothesis. But decidability is preserved by quantification over
K-finite sets and by conjunction, so we also have decidability of

(Vo' e)Ty e y)a’ =9

and
(Vy' € y)(Fa' € x)2’ = /.

That is, we have decidability of z = y.”

“To finish the proof, I claim that K-finiteness of a set z plus decidability
of equality between its members implies Nfiniteness of z. (This is undoubtedly
well-known, but I'll give the proof anyway for completeness.) Proceed by in-
duction on K-finite sets, the case of the empty set being trivial. So suppose
a U {z} has decidable equality between all its members (where @ is a K-finite
set for which the result is known to hold). In particular, each member of a
is either equal to x or not. Using again that quantification over K-finite sets

173

preserves decidability, we find that x is either in a or not. So a U {z} is either
just a (which is Nfinite by induction hypothesis, because equality between its
members is decidable) or the disjoint union of a and {z}, which is Nfinite by
definition of Nfiniteness. That completes the proof.”

Exercise 15|

Suppose [is monotone and injective: (Vxy)(z Cy+— f(z) C f(y)).
Let A=z :P(f(x)) C z}.

Then A is not a set.

Proof:

Suppose there is such a set A; we will show that f(A) both is and is not a
member of A.

First we prove that f(A) & A.

The idea is that if f(A) € A then A\ {f(A)} is also a fixpoint, contradicting
minimality of A.

We want

P(FANAS(A)}) € AN{f(A)}

which is to say

X CFAN{f(A)}) = X € A\{f(A)}

which is

X CFAN{f(A)}) = X € ANX # f(4)

Now f is monotone and injective, so f(A \ {f(A)}) is a proper subset of
f(A) and no subset of f(A\{f(A)}) can possibly be a subset of f(A), let alone
equal to it, so we have only the first conjunct to worry about:

X CfAN{f(A)}) - XeA

FAN{f(A)}) C f(A) by monotonicity of f; f(A) € A by assumption, so
FA\{f(A)}) is in A and so too is any subset of f(A\ {f(A)}), since A is a
power set, so is closed under C.

For the other horn, we use the fact that A is a fixpoint for P o f: (Vz)(x C
f(A) — z € A). Now specialise ‘z’ to ‘f(A)’ to obtain f(A) C f(A) = f(A) €
A), which tells us that f(A) € A after all.]

Note that the only set-theoretic axiom we have used is subscission.

174 CHAPTER 9. ANSWERS TO SELECTED QUESTIONS

Exercise [16]

Let IN* be {n : g(n)}; we claim IN* = IN.

Clearly IN* contains 0 and is closed under S and so IN C IN*. (i.e., we can
prove m € IN* for all m € IN by induction).

For the other direction we will justify induction over IN*: this will enable
us to prove that everything in IN* is in IN. Suppose (i) that F'(0) and (ii) that
(Vn)(F(n) — F(n + 1)), and take a € IN*. Suppose, per impossibile, that
—F(a). Then {m : m < aA-F(m)} contains a and is closed under P (by (ii)),
and so must contain 0, contradicting (i). |

Here is another proof that IN* C IN.

Let m € N*\IN. Set M = ({Y : m € Y A P“Y C Y}. (Notice that the
intersection remains the same if we take it not over all Y with that property, but
only over those Y satisfying additionally Y C {k : kK < m}, all of which are finite.
This is because if m € Y A P“Y C Y then the same goes for Y N{k: kK <m}).
M is finite. Notice that M \ IN contains m and is closed under P and so is a
superset of M, whence M and IN are disjoint. But 0 € M by hypothesis.

Exercise [1]

An answer from Maria Gorinova.

Provide a sequent calculus or natural deduction proof that

Va(Vy(R(y, z) = ¢(y)) = ¢(x)) = Vz(4(2)) and Yay(R'(z,y) — R(z,y))
together imply Va(Vy(R'(y,z) = ¢(y)) = ¢(x)) = Vz(d(2)).

SEQUENT PROOF:

Let XY =Vay(R'(z,y) — R(x,y)),
Y =Vy(R(y,) = ¢(y)),
Y’ =Vy(R (y,z) = 6(y)) and
Y] =Vy(R'(y,2) = é(y)).

We want to prove

(Va(Y = ¢(2)) = V2(6(2))) A XY = (Va(Y' = ¢(2)) = Vz(4(2)))

R (5,2), B (0, 2) F 6@),0(0), () R o) R wa)) Rlg.a) B (o), B (g 2) - 6@),o(9), (=), R, 2)
R (y2) = Ry R (o) R 002) - o), 60,0 Rd)
Ve (o) = R,), B G20, B 2) F o), o o)) "

XY, R (y,z), R'(y, 2) - ¢(x), 6(y), #(2), R(y, =)

(3 *)

(b)

(—

)

175

(5 k)
XY, R'(y,z), R (y, 2) - ¢(2), 6(y), #(2), R(y, z) XY, ¢(y), R (y, 2), R'(y, 2) F ¢(z), d(y), ¢(2)
XY, R(y,x) = ¢(y), R'(y,2), R'(y, 2) F ¢(2), d(y), ¢(2)
XY, Vy(R(y,z) = ¢(y)), R'(y,z), R (y, 2) F ¢(2), 6(y), ¢(2)
XY,Y, R (y,2), R (y,2) F ¢(x), d(y), $(2)
XY, Y,F ¢(x), $(2), R (y,z) — (y), R (y,2) = é(y)
XY, Y, F é(x), d(2), Vy(R (y,z) — #(y)), Yy(R' (y, 2) = ¢(y))
XY, Y,k ¢(z), d(2),Y",Y!
(o %)

(b)
(=D

()

(expand)

(2x = r)

(2 x Vr)

(expand)

(s * %)
XY, Y& ¢(x), ¢(2), Y, Y] XYY, ¢(x),d(2) - ¢(x), (2)
XYYV, Y] = ¢(2) - ¢(2), ¢(2), Y’
()

(®)
(=0

()
XYY, Y] = ¢(2) F o(x),6(2), Y XYY, (x),Y] = ¢(2) b ¢(x), $(2)
XYY, Y = ¢(x), Y] = ¢(2) F ¢(x), ¢(2)
XY, Y, V(Y = ¢(x)) b ¢(x), 6(2)
XY, Ve (Y — o)) F ¢(2), Y — é(x)
XY Va(Y' = ¢(x)) F ¢(2), V(Y — ¢(x))
(%)

(=0

(2 x V1)

(=)

(vr)

(%) ¢(2), XY, Va(Y' = ¢(z)) - 4(2)
XY Va(Y' = ¢(x)) F ¢(2),Va(Y = ¢(z)) Vz(9(2)), XY, Va(Y' = ¢(z)) -
Vo (Y = ¢(x)) = V2(¢(2)), XY, Va (Y = ¢(z)) F ¢(2)

Va(Y = ¢(x)) = Vz(4(2)), XY, Va (Y — ¢(z)) F Vz(¢(2))

V(Y — ¢(x)) = Vz(9(2)), XY EVz(Y' — ¢(x)) — Vz(d(2))

V(Y = ¢(z)) = Vz(9(2)) A XY E V(Y — ¢(z)) — Vz(¢(2))

F((Va(Y = ¢(z)) = Vz(8(2))) A XY) = (Va(Y' — ¢(z)) = Vz((2)))

(vr)
(=)
(AD)

(=)
(]

Exercise

(i) Every X C IN such that 0 € X has a <-least member, namely 0 itself.
Suppose every X that n belongs to has a least element. Consider S(n). Let
X be an arbitrary set containing S(n). If it contains n then by induction
hypothesis it has a minimal element (tho’ not necessarily n itself!) If not, take
the set {k—1: %k € X}. This contains n, since X contained S(n), and so it has
a minimal element a. But then S(a) is the minimal element of X.]

176 CHAPTER 9. ANSWERS TO SELECTED QUESTIONS

(ii) True for n = 0; suppose true for n, and suppose S(n) € X. Consider X \
{S(n)}. Does it contain anything < n? If not, then S(n) is the desired minimal
element. If it does, then it has a minimal element by induction hypothesis. B

Those of you with refined palates will probably notice that these proofs
are not constructive. The only constructive account of induction is structural
induction.

Exercise

The wellfounded part of a binary structure (X, R) is the C-least set Y s.t. x € Y
whenever {y: R(y,z)} €Y.

177

Chapter [3] Functions

Exercise 19

The lexicographic product of two wellfounded strict partial orders is wellfounded.

The pointwise product of two wellfounded strict posets is wellfounded by
horn-ness, and every subset of a wellfounded relation is wellfounded because
‘wellfounded’ is V in L, 4, -

Exercise 22|

Primitive recursion on lists. We need composition and projection. We also need
gadgets corresponding to the basic functions. The function that always returns
the null list is an obvious candidate. We will need cons here just as we need
successor in IN. The recursion gadget is presumably

) = h(@);
fla::,2) = g(a, f(1,2),1,2).

where the Zs can be anything, so certainly either as or a-lists. More work to do here
Show how to define tail like predecessor.

=
[
e
|_l
“I—'
8]

tail(null) = null;
tail(a::l) =1.

Comment on the rectype of hereditarily finite sets. (Set Theory and Logic
2012/3 sheet 3 q 6); if and y are hereditarily finite so is 2 U {y}. This is not
free, so the recursions are not safe.

One wants to say

f(0,%) = g(2);

f(a U {b}v f) = h(f(a)v b, f)

but we cannot be confident of a unique answer, since a U {b} might be the
same as ¢ U {d}.

Exercise 24|

Elementary, just a quick reality check. You do it by induction on ‘.
fo(m, k) :=m+ k;

frt1(m,0) := mﬂ

fTL-‘rl(m +1,k+ 1) = fn(m, fn-‘rl(m +1, k))

2This is surely correct. fn+1(m,0) must be the result of doing f,, zero times to m and this
must be m. The consideration that causes me slight unease is that according to this line of
thought m - 0 should be m not 0. So the function we call multiplication—m - j—is actually
not f1 but rather fi(m,j — 1). Not that it matters. But one would have expected to see
something about it in the literature. Ben Millwood says not to worry. Perhaps he’s right.

178 CHAPTER 9. ANSWERS TO SELECTED QUESTIONS

falm+ 1,k +1) = fi(m, f2(m + 1,k))
fom+1L,k+1)=m-(fo(m+1,k) +1).

Define an operation D7 : (IN? — IN) — (IN? — IN) by

(DT f)(m,0) :=m;
(DT)(0,m) := (DT f)(m + 1,0);
(DT f)(m + 1,k +1) := f(m, (DT f)(m + 1,k)).

Observe that if f is primitive recursive so is DT (f). That powers the induc-
tion.

Some tho’rts to sort out

What is the next operation (in the DT sequence) after exponentiation? People
tend to think that it’s “towers”, so that a 11 (8 + 1) = a®™# but it’s easy to
see that this cannot be right. For what is w 11 w? Clearly it must be ¢y. But
then w 11 (w + 1w = ¢y and 11 is not strictly increasing. So we must have
att (B+1)=(at B)™ So what, one might say? The point is that the tower
function appears very early on in the Ackermann function—which behaves like
a fixed point for DT. Surely there is something illuminating one can say about
this..? see minutes.tex.

Observe that DT : (IN* — IN) — (IN* — IN) is monotone wrt dominance.
[The proof will go as follows: suppose f is dominated by g; unpack DT (f)(x,y)
to get some horrendous word W(f,z,y) in ‘f’, ‘’ and ‘y’. Replace ‘f’ by
‘g in W to get an expression which, by assumption on f and g, must point
to a number bigger than the number pointed to by W(f,z,y). But this new
expression is the result of evaluating DT (g)(z,y).]

Observe further that DT is just the Doner-Tarski operation minus the clause
for limit ordinals. Isn’t it...? Let’s check...

The Doner-Tarski recursion for finite subscripts is:

fn,+1(m+17k 1 :fn(m7fn+1(m+1vk))'

If fr41 = DT (fn) then we must have

frt1(m,0) :=m;
fn+1(0>m) = fn-‘rl(m +1, 0);
Foir(m+1,k4+1) := fu(m, far1(m+ 1, k).

...and this last thing would look sort-of OK but for the fact that the first
clause is missing and we have ‘n + 1’ instead of ‘n’ in the third. We saw this
worry earlier.

179

Observe further that the Ackermann function is a fixed point for DT, and is
presumably the least fixed point above A(n,m).1. T now find myself wondering
if there might not be a simpler proof that Ackermann is not primitive recur-
sive. . .one that procedes by showing that, for every primrec f, there is an n s.t.
DT"(plus) dominates f.

How does it differ from the wth Doner-Tarski function? Presumably the wth
Doner-Tarski function sends some pairs of naturals to infinite ordinals. ...

So I think we can characterise the Doner-Tarski hierarchy by saying: Do DT

at successor stages and at limit stages take pointwise sups and then do D7 again.

Exercise 25|

It isn’t what you think!
The next Doner-Tarski operation beyond exponentiation is declared by

6110 =5
Bt (a+1)= (511 a)

taking sups at limits.

Thus ¢ 11 1= 2% z 112 = ()" =2"; ¢ 113 = (@)” = 2”; and
presumably = 11 n = z*" for n € IN.
And, when § = w.

w10 =w;
w T (a+1) = @ 11)

taking sups at limits.

It’s worth noting that if you get it the other way round, so that the successor
step is
wtM(a+1)= w@tte)

—which looks more natural—you find that w 1t w =€y and w ™M (w+ 1) =
Wt = % = ¢y so B +— w 11 B grinds to a shuddering halt, and is not strictly
increasing, let alone normal.

Exercise [26]
Show that, if f is primitive recursive, so are
1. the function) ,(n) = Z f(z) that returns the sum of the first n values

0<z<n
of f;

224(0):=0; 32,(S(n) =3 25(n) + f(n).
>_¢(0) must be zero because it is the sum of the empty set of numbers!

and

might need to check the indices

180 CHAPTER 9. ANSWERS TO SELECTED QUESTIONS

2. the function [],(n) = H f(z) that returns the product of the first n
0<z<n
values of f.

[1;(0) :=1; TI;(S(n)) = [Ts(n) - f(n).

Exercise

I don’t know what proof you were given, but here is a sketch of how to show
that there are primitive recursive upper bounds.

(Notation: a — (8)))

We will start off by proving w — w3. (There are many proofs: I think this
one is due to Rado.)

We are given a two-colouring (red and blue) of all the edges in the com-
plete undirected graph on Ny vertices. We are going to form an infinite finite-
branching tree whose nodes are labelled with natural numbers. Below 0, to the
left and to the right, respectively, we place the first natural number z such that
there are infinitely many numbers greater than z to which z is connected by a
blue edge (red edge respectively) and—strictly temporarily—we associate to it
that same set of greater numbers. We now build the tree recursively. Below
each growing bud (which is a number with a set of greater numbers temporarily
associated with it) we place—to the left (and to the right)—the smallest mem-
ber x of the set-temporarily-associated-to-the-bud such that there are infinitely
many larger members of that set to which z is connected by a blue (resp. red)
edge.

As we deal with each node we throw away the set that has been temporarily
associated with it. When we have finished we have a tree in which every node
has either one or two children. It cannot have no children at all since whenever
you split an infinite set into two bits, one of the two is infinite. This is a finite-
branching infinite tree and must have an infinite branchEI This infinite branch
either has infinitely many left turns in it, or infinitely many right turns.

Clearly the choice of a two-colouring was unneccessary: the same construc-
tion would have worked for any finite number of colours n. So we have proved
w— (w)2.

Observe that had we started with a set that was merely finite, and we wanted
a monochromatic set of size n we would find (working backwards) that the path
through the tree would have to be of length 2n, so the binary tree would have
to be of height 2n so we would have had to have started with 227 elements. And
n +— 22" ig clearly primitive recursive.

This proves 22" — (n)3, or, if ¢ is the number of colours, ¢ — (n)2. (As it
happens this is not best possible: e.g., we know 6 — (3)3.)

For higher exponents we reason by induction: assume (Vn)(w — (w)) and
try to prove w — (w)™ 1. The idea (I'm leaving the execution to you!) is to cre-
ate a tree somewhat in the style we saw above such that, on any branch through

3Konig’s lemma not needed because the graph is countable and therefore wellordered

181

it, whenever s is subsequence of that path of length m, then all extensions-of-s-
by-one-element receive the same colour. You then use Ramsey for exponent m
to obtain a monochromatic subset of that branch.

The challenge for the student is to recover a finite version and the computable
upper bound, and show that the upper bound is described by a p.r. function.

Indeed this proof will give us a primitive recursive function f(z,y,2) such
that f(z,y,2) = (z)¥.

I think it’s probably best to write f,(z,2) — (z)¥ and prove by induction
on ‘y’ that A\zz.f,(x, z) is primitive recursive. I haven’t done it myself.

Exercise 29]

(i) is order-preserving, but its only fixed point is the empty function. (iii) is not
order-preserving, but has a unique (and obvious) fixed point. Values of the last
two operations are always total so the operations can’t be continuous!

Exercise

(i) For partial functions f,¢g : IN — IN, define d(f,g) = 27" if n is the least
number such that f(n) # g(n), and d(f,g) = 0 if f = g. [The inequality
f(n) # g(n) is understood to include the case where one side is defined and the
other is not.] Show that d is a metric, and that it makes [IN—IN] into acomplete
metric space.

(ii) Show that the function ® (IN — IN) — (IN — IN) which corresponds to
the recursive definition of the factorial function is a contraction mapping for the
metric d, and hence obtain another proof that it has a unique fixed point.

(iii) Which (if any) of the functions defined in Exercise [29| are contraction
mappings?

PTJ says: ‘30(iii) is a contraction mapping, the other two are not. It’s worth
emphasizing to students who do this question that the contraction-mapping
approach to fixed points is special to the case of partial maps defined on IN
(note how the well-orderedness of IN is used in the definition of d), but the
order-theoretic approach is applicable to an arbitrary [A — B]. Perhaps also
worth pointing out—to brighter students, at least—that contraction mappings
don’t form a category (identity maps are missing, for the obvious reason that
they don’t have unique fixed points).”

Exercise 311

Clearly bounded subtraction will be useful here. Does n = m represent n < m?
Almost but not quite, because it isn’t two-valued. We need an auxilliary function
to zap all non-true (nonzero) truth values to 1.

iszero(0) :=0; iszero(S(n)):= S(0).

iszero returns the truth-value of the assertion that its input is 0.

182 CHAPTER 9. ANSWERS TO SELECTED QUESTIONS

Then iszero(n — m) represents m < n so of course iszero(S(n) — m)
represents m < n so of course iszero(S(n) —m) + iszero(n - m) represents
m = n.

Exercise [32]

It has to be admitted that division by 2 looks a bit dodgy, but if one treats that
rational expression as something that denoted the (x + y)th triangular number
it becomes much more sensible. T(0) = 0; T(S(n)) = T(n) + S(n) defines
triangular numbers. Then pair(n,m) = T (n 4+ m) + m does the trick.

As for computing the unpairing functions ...

According to the definition, pair(z,y) is the sum of a triangular number
(in fact the z + yth triangular number) and a remainder—z—that is less than
the difference—zx + y + 1—to the next triangular number. Thus the z + yth
triangular number is the largest triangular number < pair(z,y). Thus pair
is injective. To decode a number z as pair(z,y), first ascertain the largest
triangular number < z; this gives you the x + y; the remainder after subtracting
the triangular number is x; subtract the first component from the remainder to
recover y. Thus pair is surjective.

fst(z) is Z(if (3z < z)(pair(i,z) = =) then i else 0);
i<z
snd(x) is Z(if (3z < z)(pair(z,i) = =) then i else 0).
i<
I imagine that this kind of counting construction will help us show that
Euler’s totient function is primitive recursive.

Exercise [33

“Prove that ¢ is primitive recursive.”

We will need some auxilliary functions/relations. The relation “n divides

b2

m” is primitive recursive, since it is (3k < n)(k-m = n). So “n is prime” is a
primitive recursive predicate. “m and n are coprime” is a primitive recursive
predicate, being the negation of “(3k < m)(k|m A kln A S(0) < k)”. We can
now obtain ¢(n) by bounded summation thus

Z if m and n are coprime then 1 else 0.

m<n

Exercise [35]
[35] part [1]

“Find a primitive recursive declaration for the function commonly declared by

[0 :=f1):=1 fln+1):=f(n)+fln-1)"7

183

Declare F'(0) := (1,1); F(n+ 1) = (snd(F(n)),£st(F(n)) + snd(F(n))).
Then Fib(n) = fst(F(n)).

If you program Fibonacci in the obvious way you get exponential blowup:
by making two calls at each stage you end up with 2" calls to Fib(0) when
computing Fib(n). If you program it in the primitive recursive way you end up
with only one call to Fib(0).

This technique is commonly called pipelining.

[35] part 2]

We want to represent H as something obtained by iteration. The function we
are going to define by iteration will be An.(H (n),n) (though of course that is
not how it is explicitly defined!), and then we get H from it by composition
with fst. Abbreviate An.(H(n),n) to F. Then we have

F(S(y)) = (H(S5(y)), S(y))
= (G(H(y),), S(y))

(we know this by the recursion). Now H(y) = fst(F(y)) and y = snd(F(y)),
so this is

(G(£st(F(y)), snd(F(y))), S(snd(F(y)))),

and we notice that all occurrences of ‘y’ are wrapped up in F’s, so this is

f(E (),

where f is
Az.(G(fst(z),sndz), S(snd(z))),

so H(y) = fst(Fy) = £st(fY(F0)) = £st(f¥(b)), where b = {(a,0).

184 CHAPTER 9. ANSWERS TO SELECTED QUESTIONS

Chapter 4 Machines

Exercise 38

If we have a mutually recursive definition of two functions f and g we can turn
this into a single primitive recursive declaration of the function An.(f(n), g(n)),
from which we can then recover f and g by composition with the unpairing
functions.

Exercise 41]

1. The clause that says A(m +1,0) = A(m, 1) takes care of the cases where
n = 0. For the remaining cases we use transfinite induction on the lexico-
graphic product. A(m+1,n+1) = A(m, A(m+1,n)). (m, A(m + 1,n) <jex
(m+1,n+1) so A(m, A(m + 1,n)) > A(m + 1,n) by induction hypoth-
esis. Also (m +1,n) <jex (m+ 1,0+ 1) so A(m + 1,n) > n by induction
hypothesis. This gives us A(m + 1,n+1) > A(m+ 1,n) > n so certainly
A(m+1,n+1) > n+ 1, which was what we wanted.

2. We prove by induction on a that (Vn,m)(n < m — .A(a,n) < A(a,m))
When a =0, A(0,n) := n+ 1 whence n < m — A(0,n) < A(0, m).

For a > 0 we reason as follows. Assume true for a, prove it for a + 1.
A(a+1,n) := A(a, A(a,n—1)) and A(a+1,m) := A(a, A(a,m—1)). If n <
m then the induction hypothesis tells us that A(a,n—1) < A(a, m—1), and
another application of the induction hypothesis tells us that A(a, A(a,n—
1)) < A(a, A(a,m — 1))—which is to say A(a + 1,n) < A(a+ 1,m) as
desired.

3. We prove by induction on n that (Ym)(A(m + 1,n) > A(m,n + 1))
When n = 0, we have that A(m +1,n) = A(m + 1,0) = A(m, 1).

Now suppose the result holds for n and consider n+ 1. Let m be arbitrary.
We want A(m + 1,n+1) > A(m,n + 2)

The recursion tells us that A(m + 1,n + 1) = A(m,A(m + 1,n)). The
induction hypothesis gives us that A(m + 1,n) > A(m,n + 1). whence
A(m, A(m + 1,n)) > A(m, A(m,n + 1)) by clause (2).

Clause 1 gives us that A(m,n 4+ 1) > n+ 1 and consequently A(m,n +
1) > n+ 2. But A is monotone in its second argument by clause 2, so
A(m, A(m+1,n)) > A(m,n+2). Now A(m, A(m+1,n)) = A(m+1,n+1),
whence A(m+ 1,n+ 1) > A(m,n + 2) as desired.

4. A(m+1,n) > A(m,n + 1) by clause 3; A(m,n+ 1) > A(m,n) by clause
2.

185

5. We will show that

A0,n)=n+1
A(l,n)=n+2
A(2,n) =2n+3 > 2n

The result for m = 0 follows by definition. For m = 1, we have A(1,0) =
A(0,1) = 0+ 2 as required. By induction,

A(l,n+1)=A(0,A(1,n)) = A0,n+2)=n+2+1=(n+1)+2,
as required. Similarly,
A2,n+1)=A(1,A(2,n)) =A(1,2n+3) =2n+3+2=2(n+1) + 3.

Using this result and those previously obtained we have

(2 2)* (4)
A(m+2, S(n)) = A(m+1, A(m +2,n)) > A(m+1, A2,n)) = A(m+1,2n0) > A(m, 2n)
———— ——
>A(m,n) (4) >2n

as required, provided we prove (2)*: strictly monotone increasing. True
for m = 0. By (1)

Am+1,n+1)=A(m,A(m+1,n)) > A(m+1,n)

as required, and n = 0 is trivial.

Exercise 43|

Define the terms primitive recursive function; partial recursive function; total
computable function. Ackermann’s function is defined as follows:

A(0,y) :=y+1; A(x+1,0) := A(x,1); A(x+1,y+1):= Az, A(z + 1,y)).

For each n define f,(y) := A(n,y).

Show that, for all n > 0, f,41(y) = fYT1(1), and deduce that each f, is
primitive recursive. Why does this mean that the Ackermann function is total
computable?

You have to prove by induction on ‘y’ that this holds for all n.

Base case: y = 0. We want (Vn)(fn11(0) = f}(1)). Let n be arbitrary.
Want f,,+1(0) = fL(1). Expand using definition of f:
LHS: f,+1(0) = A(n+1,0) = A(n,1). RHS: f}(1) = A(n, 1), as desired.

Now for the induction step.

186 CHAPTER 9. ANSWERS TO SELECTED QUESTIONS

Assume (¥0)(fus1(y) = F27(1). We want (9n)(fuss(y + 1) = F2F2(1)).
Let n be arbitrary as before and expand f,1(y + 1) as before to get A(n +
1,y + 1), which is A(n, A(n + 1,y)), which is f,(fn+1(y)). But by induction
hypothesis on ‘y’, fui1(y) = fET (1), 50 fu(fat1(y)) = fu(fT(1)), which of
course is fY+2(1).

(This is a useful example of a general problem. There are two universally
quantified variables in ‘(Vn)(Vy)(n > 0 — f,41(y) = fY*1(1)), and both of
them range over a rectype. On the face of it, each quantifier can be dealt with
by either a UG or an induction. In many cases, such as the one in hand, there
is only one strategy that will work. You have to treat ‘n’ by UG and ‘y’ by
induction.)

Finally, we show that f,, is primitive recursive for each n. We will use the
fact we have proved, namely, that f,1(y) = fY*1(1). Consider the declaration:

9(0) :== h(1); g(n+1) = h(g(n)).

This is clearly primitive recursive: g will be primitive recursive if h is. But
fn+1 is obtained by primitive recursion over f,, in precisely the way ¢ is declared
over h, so, as long as fy is primitive recursive, we can prove all the f, to be
primitive recursive by induction on n.

Exercise [44]

1. Stan Wainer writes:

Nested n-recursion is any definition f(z1,...xn,a) = T(f,x1, ...y, a) where
T is any term built up from given functions and applications of f(t1,...t,,a’)
where the vector t1, ...t,, is always lexicographically less than 1, ...x,. See
50].

2. The appropriate generalisations of the Ackermann function can be found
in (e.g.) [B3] p 28 exercise 19. (He calls them Péter functions.) When
n>1

¢n(03y17 o yn) = d)n—l(ylv e yn)

¢n(y0 +1,0,y2-- 'yn) = ¢n(y0> 1,-- yn)

¢n(y0 + 17 o Yn—1 + 1,0) = an(yo + 17 1a o Yn—2 + 17yn—17 1)

¢n(y0+1a e yn+1) = ¢n(y0+17 e yn—2+1a Yn—1, ¢n(y0+1a e yn—2+17 Yn—1,""" ¢n(y0+17 e yn—l+

187

I can’t parse this last one. I think one of those ‘yg+ 1’ ought to be a mere
10 My guess is that when n = 2 the last clause should be:

d2(yo+ 1,y1 + 1,92 + 1) = d2(y0, y1 + 1, d2(yo, Y1, d2(Y0, Y1, ¥2)))

If it were ¢3 in play we would have

¢3(y0 + layl + 152/2 + lay3 + 1)
- ¢3(3/0»y1+1792+1, ¢3(y0; y17y2+17 ¢3(y07?/1»y27 ¢3(y07y13 y27y3))))

Observe that we can prove the totality of ¢,, by wellfounded induction on
the lexicographic product ordering on IN". Or, in PA, by mathematical
induction using n nested inductions.

Exercisd46]

An interleaving of two words w; and ws is a word obtained by inserting the
characters from w; into ws in the order in which they appear in w;. Thus, for
example, both the strings b0alc and baOlc are interleavings of the two strings
bac and 01.

Now let L; and Lo be regular languages over alphabets »; and X5 respec-
tively. Let the interleaving L1 ® Lo of two languages L; and Lo be the set of
words that can be obtained by interleaving words from L; with words from L.

(i) If Ly and Lo are both regular must Ly @& Lo be regular?

(i)

Suppose X1 and Yo are two alphabets with || and 23| both even natural
numbers (so that both alphabets can be tho’rt of as a set of generators with
their inverses). Let Ly and Lo be regular languages over ¥; and 5 respectively
and let G; be the group consisting of elements pointed to by words in L; and
let G5 be the group analogously indicated by words in Ly. (We say that the
machines corresponding to L; and Ly are word acceptors for G; and Gs.)
What group corresponds to the interleaving of Ly & Lo?

Answer: (i) Yes. Suppose L and Lo are recognised by deterministic finite
state machines M7 and M,. We will describe a nondeterministic machine that
recognises L1 ® Lo.

The new nondeterministic machine My & My will have |M;| - |Mas| states.
Each state of M; & M; represents a guess about how the string-seen-so-far is
to be represented as an interleaving of a string from X7 and a string from ¥3.
Thus a state of M; @ My will be an ordered pair (mq,ms) of states of M; and
Ms,. When it receives a character a from ¥ \ Xo it goes to the state (m],ma)
where m)] is the state whither M; would go were it to receive ¢ when in state
m1. Mutatis mutandis when it receives a character b from 35\ X; it goes to the

188 CHAPTER 9. ANSWERS TO SELECTED QUESTIONS

state (mj,mb) where m/, is the state whither My would go were it to receive b
when in state mo. When it receives a character a from Y1 N X5 it goes to one
of the two states (m}, ms) and (my, mj).

The start state of M7 @ M, is the ordered pair of the two start states, and
the accepting states are ordered pairs of accepting states of M; and Ms.

Answer (ii)

Naturally one’s first thought is the free product G * Gg, but of course what
one actually obtains is a quotient. Say v and u in (X U X9)* are equivalent
if there are wy, € Ly and we € Lo such that both u and v are interleavings of
wy with we. Then uv~! belongs to L @ Lg, and thus the homomorphism onto
the quotient identifies any two equivalent words. But two words are equivalent
precisely if they arise as interleavings from the same pair of elements of G; and
G4. So the quotient is precisely the ordinary (direct, cartesian) product G1 x Gs.

Exercise [51]

(1) Let A be semidecidable (and nonempty), so that it is g“IN for some com-
putable g, and let f be the (gnumber of the) u-recursive function that
sends n to the nth output of ¢g’s volcano. Pick some arbitrary a € A.
Then define h by:

h(n,k) = if T(f,n,k) has final state HALT
then final register-contents of T'(f,n, k)
else a.

[My Doktorvater Adrian Mathias calls this an “impatient” function: if it
doesn’t immediately get what it wants then it emits a default value.]

h is seen by inspection to be primitive recursive.

If f(n) = y, say, then f(n) halts, so h(n,k) = y for some k and y €
h¢(IN?). Hence A C h“(IN?). Conversely, we always have h(n, k) € A. So
h“(IN?) = A, with h primitive recursive.

(2) TIt’s immediate that if X is the range of a p-recursive function then X =
f“Y for some computable f and semidecidable Y C IN (on taking Y = IN).
Suppose X = f“Y for some semidecidable Y C IN. If X is empty then
we're done. Otherwise, let g be the primitive recursive function defined
above with range Y, and set:

h(na k) = f(g(n’ k))

Then h is p-recursive and has range f“Y.

189

Exercise 53l

Check that, for all A,B C IN, the set {2n : n € A}U{2n+1:n € B} is
semidecidable iff both A and B are semidecidable.

(Jane Aston’s answer)

Suppose A and B are semidecidable, with A = {n : f(n)|} and B = {n :
g(n)\}.

Define h(n) as:

if (niseven) then f((uk <n)(n =2k =0)) else g((uk <n)(n = (2k+
1) =0)).

This h is certainly p-recursive, and h(2n) = f(n) and h(2n + 1) = g(n). So
{n:hn)} ={n:neven and f(n/2){} U{n : n odd and g((n —1)/2)}}, and
this is the set we wanted.

For the other direction suppose the set {2n:n € A} U{2n+1:n € B} is
semidecidable. Soitis {n : h(n)l} for some u-recursive h. Define hi(n) =: h(2n)
and ha(n) =: h(2n 4+ 1). (This is OK by composition). Then

{2n:ne A}Uu{2n+1:n € B}
{2n : hi(2n)]}U{2n+1: ho(2n+ 1)} }.

Thus A = {n : hi(n)l} and B = {n : ha(n)l}, so A and B are both
semidecidable.

Exercise [55]

“Prove that there is a semidecidable set X C IN with IN\ X infinite
such that X meets every infinite semidecidable set. What is the
asymptotic density of your X ?”

This is much easier than I thought when I set it!

For each i run the volcano for {i} until it produces a number > 24, then put
the result into X. This construction ensures that, for every n € IN, | X N[0, 2n]| <
n. By spicing up the construction we can make X as thin as we like.

Another thing you can do is observe that D = {i € IN : {i}(¢) |} is semide-
cidable. Might it be the set we want ...7 Let A be any infinite semidecidable
set. Then A = {i}“IN for some {i}. Then {i}(¢) is defined and is in both A and
D. But how then do we know that |IN \ D| = g7 But this is easy: we know
that there are infinitely many 4 such that {i} is everywhere undefined—we can
exhibit them by hand whatever the gnumbering system is.

190 CHAPTER 9. ANSWERS TO SELECTED QUESTIONS

Exercise [56

Suppose the graph of f is a 3V set. That is to say, there is a decidable set 4 C IN*
s.t. (Vuv)((u,v) € f«— (Fx)(Vy)((u, v, z,y) € A)). If there is to be a g of the
kind desired we must have (Vuv)({(u,v) € f +— (Fz)(Vy > 2)(g(u,y) = v)))
whence (Vuv)[(3z)(Vy)((u,v,z,y) € A) +— 3Bz)(Vy > z)(g(u,y) = v)].

What is g(u,w)? We seek z and v such that (Vy)({u,v,z,y) € A). The
idea is that when we find them, v will be the value of g. Of course we can’t
reliably identify such x and v in finite time, but we have some wiggle room
because finitely many ws don’t matter. Fix w; we enumerate the pairs (z,v)
and examine them one-by-one until we find z and v s.t. (u,v,2,0) € A. Then
we return v as the value of g(u,0). What is g(u,1)? We ask whether or not
(u,v,2,1y € A. If it is, we return v as the value of g(u, 1) and we ask whether
or not (u,v,xz,2) € A. If it is, we return v as the value of g(u, 2), and so on. If
(u,v,2,1) ¢ A we look for the next pair 2’ and v’ s.t. (u,v’,2’,0) € A and we
return v’ as the value of g(u, 1). At some point in the enumeration of the pairs
(the nth, say) we will encounter ' and v’ such that (Vy)({u,v’,2’,y) € A). This
encounter will happen because f is total, and the pair z’, v/ is unique because
f is a function. Then g(u,w) = v’ for all w > n. It is true, of course, that when
(at stage n) we encounter such a pair z’, v', we have no way of telling that it
is the last pair we will ever examine (n cannot be computed from u)—but that
doesn’t matter. Had we been able to compute n from u then f would have been
computable.

Exercise (7]

(i) A union of a semidecidable set of semidecidable sets is semidecidable;
(ii) A union of a semidecidable set of decidable sets is decidable;
(iii) A union of a semidecidable set of semidecidable sets is decidable;
(iv) A union of a decidable set of decidable sets is decidable.
In each case prove or provide a counterexample.

For (i) We have a volcano that emits gnumbers of volcanoes. Every time it
emits such a number we power up the corresponding volcano, so that at each
finite stage we have finitely many volcanoes on the go. By the end of time the
chorus of volcanoes has emitted every number in the union.

For (ii), let A be a semidecidable set that is not decidable. Then {A} is
decidable, but its sumset is not.

For (iii), let A be a semidecidable set that is not decidable. Then all the
singletons {1}, {2}, ... of members of A are decidable, but (J,c 4{i} = A is not.

This might remind you of Conway on Countable choice (“A counted union of
counted sets is counted; a countable union of counted sets is countable ...” but a
countable union of pairs can be uncountable.) but there are extra subtleties in this
that are worth spelling out. By thinking of a countable family F of semidecidable sets
as itself a semidecidable set we are perforce thinking of F as a set of indices of functions.

191

That is to say, we have—Dby equipping each set in F with a function (volcano) that
emits it—done all that we would have wanted AC (the choice of a counting) to do.
The countable/counted contrast is not at all like the decidable/semidecidable contrast.

For (iv), consider (thanks to Shoham LetzteIED the set A:

A= {2537} {t}n ()}
(Beware annoying double use of ‘{}’ notation for both functions-in-intension
and sets!)
A is a decidable set of decidable sets. But |J A is

A={3":ne NYU{2t: {t}()}}

which is clearly not decidable.

Exercise (8

The first step towards discovering one is to observe that we can obtain the effect
of the last paragraph by adopting a rule of inference

(Vo) (0(z) <— (Fy)(8(z,9))), (Va)(B(z) <— (Vy)(¥(z,y)))
(Fy) (Vo) (z € y «— 0(x)
where ¢ and 1 are AY.

So we now have a decidable set of axioms, but the price we have paid for it
is to have a new—awkward—rule of inference. Fortunately we can “internalise”
this rule of inference by adopting, for each 6, a scheme

(V2)(0(z) +— (Fy)(d(z,9))) A (Vo) (0(x) +— (Vy)(P(z,9)))) —
(3y) (Vo) (x € y «— 0(x))

where ¢ and 1 are A as before.

or

0(x) «— (y)(o(z,y))
(Vm)/\ (0(z) «— (Vy)(0(z, 1))) = (Fy)(Vz)(z € y +— 0(x)) (9.1)

Exercise [61]

Given a machine 9t and an input &, form a machine 9t* so that:

M (k) = M(k);

M*(n) =0 for all n > k;

IMF (n)t for all n < k
Let f(k,n) be the p-recursive function which is zero if 9t%(n) halts and unde-
fined otherwise. Then the least n such that f(k,n) halts is k if (k) halts and
k + 1 otherwise, so the function g defined in the question is total and solves the
halting problem.

4This proves—in case you ever doubted it—that a vegan diet is good for your brain!

192 CHAPTER 9. ANSWERS TO SELECTED QUESTIONS

Exercise [64]

The relational product of two primitive recursive relations might not be a prim-
itive recursive relation.

Try R(z,y) iff x = (m,i) and y = (¢,0) and (T’ < ¢)({m}y(i}{= 0). Then
consider the composite (3z)(R(z,z) A R(y,z)). This is surely not a primitive
recursive relation. It’s not even decidable, by Rice’s theorem.

There’s probably a simpler demonstration.

Exercise [65

When setting the question I envisaged the following answer:

We build a transversal 1" in stages, 1;,.

Put 0 into Ty. Compute [[n ~ 0]] (the truth-value of n ~ 0) for all n in
parallel. As soon as we discover a k such that —(k ~ 0) we put k into 7;.

Subsequently at the nth stage we compute [[k ~ m]] for all m € T,, and all
k & T,. As soon as this process reveals a k such that (Ym € T,)(=(k ~ m)) we
set Ty41 := T, U{k}. Since ~ is of infinite index, there is such an m and—since
the graph of ~ is the complement of a semidecidable set—we will find it. The
idea is that T, = U T; is a transversal.
ieN

However, I'm no longer happy with this approach. How can we be sure
that T,, meets every equivalence class? It might be a useful exercise to think
about how one might modify the construction to get it to work but i’'m not
staking my life on it ...and Henk-Jaap Wagenaar tells me it can’t be repaired.
Anyway, a solution is easily found by observing that {n : (Vm < n)(=(m ~n))}
is semidecidable. It’s also evidently a transversal.

Too easy for a tripos question, really.

Exercise

Suppose f : IN¥ — IN is total computable and increasing: f(#) > max(Z). Show
that there is a decidable A C IN satisfying f“A* = IN \ A.

(For the moment i’ll just prove the special case where k = 1.)

Put 0 into A. Put f(0) into IN\ A. Put into A any n s.t. f(n) = f(0). So
far so good. Now look at the least k that we haven’t considered. It’s not f of
anything known already to be in A so we can safely put it into A. Put f(k)
into IN' \ A and of course also put into IN \ A any k' s.t. f(k') = f(k). Keep
chugging on.

193

Exercise [67]

see http://vxheavens.com/1lib/awd00.html

Exercise

The answers are ‘yes’, ‘yes’ (i.e., it changes).
b) b)

Exercise [T0l

The second function is a step function and is therefore computable: all step
functions are, being finite objects. The fact that we do not know which step
function it is merely means that we do not know how to compute it.

The first function might be computable. Nobody has a clue. My guess is
that it is the computable function An.true.

The third function is in fact computable, in the sense that there is a com-
putable function with the same graph, but you would not guess it from the
declaration. Remember that computability is in the first instance a property of
function declarations (functions-in-intension), not of functions-in-extension.

This is another opportunity to wheel out the expression ‘self-validating’
sometimes used by CompScis to describe functions that tell you what they
are doing. If the function An.true computes the second function in the exercise
then we can’t tell that just by looking at the code.

Exercise [73|

If the set of gnumbers of boxes that cannot tile the plane is to be semidecidable
then, whenever a box-of-tiles does not tile the plane then we will have to be
able to detect this fact in finitely many steps. We rummage around in the box
b and add tiles, one at a time, to a growing finite assembly of tiles on the plane.
Every now and then we get stuck, so we backtrack and try something different.
How do we know that we can’t go on making ever bigger and bigger assemblies,
but always getting stuck and having to backtrack?

Fix a box b of tiles and consider the set of finite (legal) assemblies of tiles:
they form an obvious partial order. However what we want is a tree, so we
consider instead the set of finite sequences of applications of tiles—the partial
order is an obvious quotient of this set. There are only finitely many flavours of
tiles in the box b, and only finitely many buds in any assembly where we can put
a new tile, so this tree is finitely branching. If b cannot be used to tile the plane
then this tree has no infinite paths. Now, by Konig’s lemma, the tree must be
actually finite, and that means that if we try adding new tiles in a particular
order we will know when we have run out of possibilities.

The point is this: Konig’s lemma tells us that if b will not tile the plane
there will be what one might call a cut: a finite set of legal assemblies none of
which can be legally enlarged, and such that every legal assembly is a subset of
one of them. As long as we search systematically then if there is such a cut we
will find it.

http://vxheavens.com/lib/awd00.html

194 CHAPTER 9. ANSWERS TO SELECTED QUESTIONS

However (thank you Zhen Low and Lovkush Agarwal!) one has to be careful
how one states this. You could consume an infinite amount of time putting tiles
in a Z-line without attempting to fill the space and thus fail to discover in finite
time that your enterprise was doomed. (One thinks of space-filling curves in
this connection) What you have to do is spiral out from the origin.

Mind you, this probably needs more discussion still. Spiral out from the
origin so that the (22 + y?)th day (or thereabouts) finds you attempting to put
a tile on (z,y). It’s a weee bit more complicated than that, because remember
there is backtracking. So one doesn’t count for this purpose time spent in blind
alleys.

Exercise [T9]

Part (1) Show that the range of an increasing total function f : IN — IN is a
decidable set.

Either the function f is eventually constant, in which case its range is finite
and is therefore decidable, or it is unbounded. If it is unbounded, the way to
test whether or not the candidate number is a value of f is to compute f of 0,
1, 2, 3 ... until the candidate number is either hit or overtaken.

Of course, if you do not know which of these two situations is the one you
are in, you have no way of discovering the decision method in virtue of which
this set is decidable, but that is your problem, not God’s. This rams home the
point that, for a problem to be solvable, what is necessary is that there should
be a decision method for it—not for there to be a decision method for it known
to us.

You might think this is an elementary point—and it is—but it is one that
can be easily overlooked.

Another point worth taking away from this is that we have here a noncon-
structive proof that something is recursive. Ironical, what?!

Worth emphasising to beginners that the way in which we (or at least many
of us) think of the natural numbers, as a snake wandering through space ... has
the potential to seriously mislead. The temptation is to think of a subset X C
IN as the snake with some of its nodes lit up. This is OK if X is decidable
but not otherwise. The snake makes you think that IN and all its subsets are
random access devices, or at least (if you don’t like that—and you mightn’t)
that it’s a sequential access device. You can access members of a decidable
subset X C IN by using the enumeration in increasing order. However, if X is
merely semidecidable then it’s still a sequential access device all right, but the
order in which you get access to the elements is not in order of magnitude but
the order in which the volcano emits them. You must not attempt to visualise
X in the way you visualise IN!

Part (2) Show that every decidable subset of IN is the range of an increasing
total computable function IN — IN.

195

If A is decidable then A = f“IN and IN\ A = g“IN for two total computable
functions f and g. Run the volcanos for f and for g (and we use the non-
repeating style of volcano) until one of them emits 0 (they may emit other
things, do not record them); then restart them and run them until one of them
emits 1; and so on. We define the strictly increasing total computable function
a by a(n) is the nth member of A recorded as being emitted by this duet of the
volcanos.

Part (3) What if f is merely nondecreasing (but still total)?
The technique of Part (2) works here too.

Part (4) What if f is increasing but perhaps not everywhere defined? (i.e.,
(vr)(Ym)(((n <m) A f(n)l Af(m)) — f(n) < f(m))?)

Strictly-increasing and nondecreasing are equally good here, but if f is not
total we are stymied. If f is undefined at only finitely many inputs then we
can tweak it into a total computable function function with the same range.
(“Hard-code” the missing bits).

Part (5) What is the notion of “increasing function IN — IN"” that one
would need were one to prove that every decidable subset of IN" is the range of
an increasing computable function IN — IN"?

You have to order IN* in order-type w.

Exercise

Suppose X is a semidecidable set. Then there is a volcano that emits members of
X, possibly with repetitions and not in increasing order. We define an increasing
function s : IN — IN by s(0) := the first number emitted by the volcano, and
thereafter s(n+ 1) is the first number > s(n) that the volcano emits. Evidently
s“IN C X, s is an increasing computable function and—because X is infinite—s
is total, so, by exercise [79] its range is a decidable subset of IN.

Exercise 1]

The best way to answer this question is to draw lots of pictures.

Clearly we are going to have to execute a back-and-forth construction.

Think of the naturals in (IN, <4) as 04,14,24 ... and think of the naturals
in (IN, <pg) similarly as 0p,15,25....

Clearly we wish to pair 04 with 0. What do we do thereafter? In the
routine back-and-forth construction we seek, at stage n, a mate in (IN, <) for
the first n4 we have not already found a mate for. We examine Op,1p ... and
so on until we find one that lives in the open interval that qualifies it to be a
mate for n 4. This process of checking involves asking questions like “z <pg y?”
all of which are ex hypothesi answerable, since the graphs of <4 and <p are
decidable sets of ordered pairs. Then we come back the other way. At the end
of time we have a bijection as usual.

Duplication with p

196 CHAPTER 9. ANSWERS TO SELECTED QUESTIONS

Exercise [82]

I can’t do the first two parts!

By considering enumerations of the partial computable functions, find a
computable partial function that cannot be extended to a computable total
function.

Let {{n} : n € IN} be an enumeration of the partial computable functions
of arity 1, that is, {n} : IN — IN.

Now take f : IN — IN to be f(m) = {m}(m) + 1. Note that f is certainly
not total, and it certainly is recursive. Suppose now that h is total computable
and extends f to all of IN. Then we must have h = {ng} for some ng, because
h is total computable.

Then h(ng) = {no}(no), and as h total, the latter is defined. Therefore
f(ng) is defined, and

{no}(no) = h(no) = f(no) = {no}(no) + 1.

Exercise 83
Given f as in (i), define g by picking a; € A; for each i (such that A; is

nonempty!) and then computing g(z) = Zl(l — f(a;,x)). Incidentally, it is
i=0

(as far as I know [says PTJ]) an open problem whether the equivalence of (i)

and (ii) still holds for (countably) infinite families of sets—if anyone has any

ideas about this, let us know! For the last part, take

Ao ={n: fn(n) is (defined and) odd}
and

Ay ={n: fn(n) is (defined and) even}

If we had a total function taking the value 0 on Ag and 1 on Aj, it couldn’t
equal f, for any n.

Exercise

[marked by PTJ as HARD]

A set A C INis called Diophantine if there exists a polynomial p(z,y1, ..., Yn)
with integer coefficients such that « € A if and only if there exist y, ..., y, such
that p(x,y1,...,yn) = 0. Show that any Diophantine set is semi-recursive. [A
famous result due to Yu. Matiyasevich asserts that the converse is true.] Show
also that a set is Diophantine if and only if it is the set of non-negative values
taken by some polynomial with integer coefficients.

[The first part follows easily from question 2%, and the (obvious) fact that
the set of zeros of a polynomial is decidable. For the last part, given a polyno-
mial p(z,y) witnessing the fact that A is Diophantine, consider the polynomial

197

q(z,7) =z — (x + 1)((z,7))?. Note that, given Matiyasevich’s result, this im-
plies that there is a polynomial p(xy,...,2,) such that the non-negative values
taken by p are exactly the primes. Incidentally, if students worry about whether
Diophantine equations should be solved in integers or in natural numbers, point
out to them that p(z) = 0 has a solution in IN iff p(s> + 2 + u% +v?) = 0 has a
solution in Z* (since every natural number is a sum of four squares), and that
p(y) =0 has a solution in Z iff p(y).p(—y) = 0 has a solution in IN.]

Exercise 85

“Explain what a model of a sentence is. If ® is a sentence the
spectrum of @ is the set of n € IN such that ® has a model of size
n. Is every spectrum decidable? Use a diagonal argument to find a
decidable set that is not a spectrum.”

It’s coming back to me, slowly. I think the answer must be that any spectrum
(of a single sentence that is, not a theory) must be decidable. After all, for any
formula ¢ and any n there are only finitely many structures of size n that are
suitable for £(¢) and it suffices to examine them exhaustively.

Another fact that swims into my mind as being vaguely relevant is that
one can write down an expression in predicate calculus that says that there
are precisely n things in the universe. This is useful if one is thinking about
spectra of theories . ..every subset of IN is a spectrum of a theory, even if not a
recursively axiomatisable one. It does at least show that every decidable subset
of IN is the spectrum of a recursively axiomatisable theory.

I have no idea about the last part. Most vexing.

198 CHAPTER 9. ANSWERS TO SELECTED QUESTIONS

Chapter [5; Lambda Calculus
Exercise

By using Curry-Howard on a two-membered set B with a five membered super-
set A of it, or otherwise, show that Peirce’s Law: ((A — B) — A) — A is not
a constructive thesis.

Suppose per impossibile that there were a uniformly definable (and, accord-
ingly, invariant) function P for Peirce’s law. Let B be a two-membered set, and
let A be obtained from B by adding three new elements.

A

A has five members and B has two, so any function A — B identifies a
distinguished member of B, namely the one with larger preimage. This defines
a function from A — B to B, which is to say (since B C A) a function from
A — B to A. So what we have, in this rather special case, is a distinguished
function (A — B) — A. Let us call this function F. F exists only because of
the special circumstances we have here contrived, and it’s not the sort of thing
that P would normally expect to have to deal with, so we should expect P to
experience difficulty with it ...which of course is what we want! But, if we
have a term P, we can apply it to F' to obtain a distinguished member of A.
But clearly there is no way of picking an A in this way. The alleged existence
of a uniformly definable P is trying to tell us that whenever we have a set of
five things divided into two parts, one with two things in it and the other with
three, then one of the five things is distinguished. And that’s clearly not true.

On what features of A and B does this counterexample rely? A function
A — B has to give us (via the pigeonhole principle) a distinguished element of
B, so we need B to have two elements, and A (and therefore A\ B) to have an
odd number. |A\ B| =1 is no good, beco’s then A has a distinguished element,
which we don’t want. |A\ B| = 3 is the smallest number that will do, and that
is what Dana Scott gives us.

Exercise 87

One starts by noticing that A — (A — A) and (A x A) — A are naturally
isomorphic, by currying and un-currying. So let’s show that (4 x A) — A has
only two definable inhabitants: left and right projection.

199

Any definable inhabitant of that type must commute with any permutation
of A ...but what exactly do we mean by this? We need to get straight what it
is in general for a permutation of A to act on some complex construct involving
A and other things. We do this by recursion on the structure of the complex
construct. For m € Symm(A), 7 acts on A as itself, and on any other atom as
the identity. How does m act on X — Y7 Clearly it must send f € X - Y
to f7, by which we mean {(n(x),7(y)) : (z,y) € f} where m(x) is what the
induced action of 7 does to x, told us by the recursion.

We want to show that if f: (A x A) — A commutes with all permutations
of A then it is one of the two projections.

We start by showing that f({a,a’)) must be a or a’. Suppose it weren’t, and
that a; and as gave us a counterexample. Let 7 be a permutation that fixes
ay and ag and moves f(ay,as). Then f doesn’t commute with 7. (We have
assumed that A has enuff inhabitants but I think that’s allowed ...?)

Now we have to show that a definable f must always “jump the same way”.
With a view to obtaining a contradiction let us suppose that there are aj, by,
as, by all distinct s.t f(ai,az) = a3 but f(by,bs) = be. Let m be the dou-
ble transposition (ai,bi)(ag,b2). We have f(ai,a2) = a1 so we must have
f(m(a1),m(az)) = w(a1). But this is f(by,be) = by, contradicting f(by,bs) = bs.

Further thoughts to be worked up. ..show by the same means that the only
definable inhabitants of (A — A) — (A — A) are I, KI and the Church

numerals.

Fixed under all permutations of A. Permutations of A act on A by moving
members of A around? How do they act on things obtained from A? If 7 is a
permutation of A, it will, when acting on A x A, send (a1, as) to (m(a1),m(az)).
It acts on subsets of A by translation: = sends X C A to {n(a) : a € A} also
written m“A. What does m do to a function f : A — A? f is a set of ordered
pairs of members of A, so we send it to {m({a1,az2)) : (a1,a2) € f} which is
{{r(a1),n(az2))) : {(ai,as) € f} which is 7 - f - 7=1, which we can write f™.
What is 7(g) when g : A — (A — A)? Well, g is a set of ordered pairs whose
first components are members of a and whose second components are functions
A — A. Soit’s Aa.(r"ta)".

Exercise

pair:= Axyf.fzy
fst:= A\p.p true
snd:= Ap.p false
nil:= Az.true

What are the types of these expressions?

pair is clearly of type A —» (B — (A — (B — C)) — C) so (assuming
naturally that a is of type A and b is of type B), pair a b is of type (A — (B —
) —C.

Now we compute some unpairing:

200 CHAPTER 9. ANSWERS TO SELECTED QUESTIONS

Consider what happens if one applies an object of type (A — (B — C)) — C
to an object of type X — (not sure what i meant here)

Godel’s f-function trick: capturing recursion in the ring language
(without exponentiation)

The ring language is not quite the same as the language for primitive recursive
arithmetic, in that it has not only ‘0’ and ‘=", but also ‘1’, and the two operations
‘+7 and ‘x’ (or -). It does not have ‘<’ or ‘<’ but they can be defined. (I think
the official answer is < z if (3y)((z +y-y) = 2).) It doesn’t have ‘S’ either
but it is clear that that, too, can be defined.

To capture recursion you need somehow to capture certificates, and this—
on the face of it at least—means capturing sequences, since when 6 is defined
by recursion a certificate that y = 6(x) is prima facie a sequence of ordered
pairs from an initial segment of the graph of . We can of course use the prime
powers trick, but the prime powers trick uses exponentiation, and we do not have
exponentiation in the ring language. It is a nontrivial fact that nevertheless for
any primitive recursive function there is a formula in the ring language that
captures it. To do it we need a trick, due to Godel.

Godel’s idea is to represent a sequence by taking a fixed number modulo
different numbers. For example, take the sequence 3, 5, 9, 6, 3, 0. We can
generate this sequence by taking the number 19 modulo the bases 4, 7, 10, 13
and 16.

So, given a sequence (ag...ax—1), how do we find a number, n, and an
easily generatable set of k numbers—call them g ... gr_1—to use as moduli? If
the g; are pairwise coprime then we can easily find n: The Chinese Remainder
Theorem!

So the challenge is to find an easily generatable sequence. How much easier
can we get than a linear progression? So if we decide that the moduli are in
the form g; = a + bi then the work is cut down. We wish to apply the Chinese
Remainder Theorem to it, so we need all the k terms to be pairwise coprime.
The key observation is that N! 4+ 1 is prime to every number < V.

We leave it to the reader to check that the numbers

N'+1, 2-N'+1, 3-N'+1, 4-N'+1,...(k—1)-N'+1

are pairwise coprime, as long as N > k. The Chinese Remainder Theorem now
tells us there is a solution n to the congruences:

n = ag (mod N!+1)
n=a; (mod 2- N!+1)
n=ak—1 (mod (k—1)-N!l+1)

So now we have a number, n, such that modulo certain numbers in an
arithmetic progression, we have the original numbers from the sequence. This

201

isn’t quite what we want, since we want the actual numbers themselves, not
things congruent to them.

The solution is as follows: If IV is also greater than each a;, then we would
definitely have a; < N!+ 1 for each 7. Now not only is n congruent to a;
modulo N!+ 1, for each 7, but furthermore a; is the Ieast positive number that
is congruent to n modulo N!—+ 1.

We now define [n], to be the least positive number that is congruent to n
mod p. Observe that the relation [n], = ¢ can be captured in the ring language
by

@m)(n=m - p+q) A (0<q<p)

(and indeed it is a primitive recursive relation). So, to summarise:

LEMMA 1 Given a sequence ai ---ay of naturals, there are natural numbers
n and N such that:

For each i with 0 <i <k, [n]int1 = a;

(The ‘N’ here is the earlier ‘N!’)

Not only can we code up finite sequences as naturals but the function that
does it is primitive recursive.

So now there is no need to quantify over sequences. If we have defined
O(n,) by recursion so that 6(0,%) = ¥(Z), and 0(n + 1,%) = p(n,0(n,x),),
then instead of saying that there is a sequence s.t. ..., we can now say:

[aly+1 = (Z) A
@)3N) | [dansi=y A 0
(Vk <n)([alkr1yn 1 = plk, [alen+1, T))

which says that y = 0(n, T).
And so we have represented recursion in the ring language!
So, for example, n = 2™ can be represented as

(3a, A)([a]a+1 = LA [a]mats = n A (VE <m)(la]agt1)+1 = 2 - [n]ka+1))

...and z = y* similarly. Of course once we have exponentiation we can,
if we prefer, encode sequences by use of the prime powers trick and forget all
about Godel’s trick.

“Beta function”? The upshot of all this is that there is a three-place function
B such that whenever (a,---a,) is a finite sequence of natural numbers, then
there are b, ¢ € IN such that §(c,d,i) = a; for each 0 <1i < n.

I am greatly endebted to Jack Webster and Imre Leader for explaining this
material to me.

Things to check:

(i) I can’t see offhand how to define factorials in the ring language, but that
might not matter.

(ii) Presumably any multiple of big N will do. Have to think a bit about
what happens if you think of a witness that is absurdly large. It presumably
doesn’t matter. (You have lots of numbers sitting around with nothing to do.)

202 CHAPTER 9. ANSWERS TO SELECTED QUESTIONS

(iii) There is something funny about the definability of exponentiation, as
in exponential-diophantine as in Davis-Robinson-Matijasievich. What’s the con-
nection/difference? I think the answer is that in the Davis-Robinson-Matijasevich
case what is at issue is whether or not y = 2 is definable in a much more im-
poverished equational language. (That is to say, the question is whether or not
the relation is diophantine.) And that question is not answered by the device
of Godel used here.

Observe that the S function can be given a primitive recursive definition.
(It wouldn’t be much use to us if it didn’t!)

FE is the set of elementary functions: =, zero, +, X, bounded sum and
product closed under composition but not primitive recursion. For every f € FE
there is k € IN s.t. f(z) is dominated by = — Jiz. (That’s a tower of 2s of
height x.)

We can do this relative to f—giving us E(f) the set of functions elementary
in f. Sensible if f is superexponential. Then every function g in his new class
is dominated by: x > fF(z).

Inductive definition of Kleene’s O, a set of notations for ordinals. It really
is a set of ordinal notations. (1 + w not the same as w). If a € O then |a] is the
ordinal denoted by a. Think of it as a set of strings or numbers, as you will.

DEFINITION 24 Put 0 in. (That’s the numeral, which happens to be the
number)

If string s is in O add the string succ:s. (This is often written (1, s)

If (Vn)({e}(n) € O) (so we are thinking of O as a subset of IN) then put
(1,e) into O. (1,e) is a notation for the sup of (the denotations of) the notations
(denoted by) values of the function {e}.

[HOLE Aren’t there more operations than this? Stan said that 1 4+ w is not
the same string as w + 1 so presumably both these strings are in O .. .]

We think of O as a set of natural numbers. Membership of O is emphatically
not decidable because of the universal quantifier. O is equipped with a kind of
valuation function: | —|. |s| is the ordinal denoted by the string s.

It turns out that O is II} complete: every I} set is many-one reducible
to Kleene’s O. That is to say: For all II} sets S there is a recursive g s.t.
(Vz)(x € S +— g(z) € O).

The point about II} sets is that II} means “inductively defined”: an induc-
tively defined is an intersection of all sets satisfying a conditon we can express
using merely restricted quantifiers—namely, being closed under some operations.

We need the concept of a path through Kleene’s O (which Stan doesn’t
define). I think P is a path if it is a function IN — O whose range is unbounded.

If P is a I path through O you can’t get all the recursive functions:

REMARK 17
If P is a T} path through O then U E(F,) is not the set of all recursive

acP
functions

203

Do we mean recursive or total recursive? The latter, surely ...
Proof: Suppose P were such a path. Then

(Ve)(c € O «— (T recursive F)(Va)(f € E(F,)Na € P — |a|] > |]))

But this would make O into a ¥ set. (The occurrence of ‘a € P’ is negative;
‘la] > ||’ is decidable—once you know that a and ¢ are in O. Not entirely sure
why.). |

So what kind of classes can be characterised as E(F,) for a II{ path
P through O?

Answer: If T is a recursively axiomatisable arithmetic theory then the class
of functions provably total in 7" may well be of this form.

a€P

For example:

e The functions provably total in the fragment of PA with 3; induction are
precisely the primitive recursive functions, and these are the functions in

O(F,).

e A much more far-reaching result is Buchholz-Wainer:

Every computable function that is provable total in PA is dominated by

feo 81

From: pax0Q@seznam.cz

To: fom@cs.nyu.edu

Sent: Fri, Apr 8, 2011 11:03 am

Subject: [FOM] Chaitin’s Omega/P vs. NP

Please does someone know if we knew the well-known Chaitin’s Omega(the
probability of halting a chosen universal Turing machine on a random input) to
enough bits, then we could settle the P vs. NP problem?Thank you, Jan Pax

Joe Shipman says:

Not necessarily. With an oracle for the halting problem we would know
whether there was a proof in ZFC or P = NP, a proof in ZFC of P not= NP,
or neither, or both (in which case there would be bigger issues than P-NP to
worry about). But “neither” would mean the P-NP problem was still unsettled.

We can ALMOST settle it though. There is a universal algorithm X to solve
SAT which has the property that, if P=NP, X runs in polynomial time. We
create a “clocked” version X’ which runs X for (input length+1)9009!ePlex gteps
and then halts if X failed to halt, and another program X” which sequentially
runs X’ on all instances of SAT, and ask the oracle for the halting problem if
X" ever halts. If the answer is “no”, then P=NP, and if the answer is “yes”,
then any polynomial-time algorithm for SAT is ridiculously infeasible. — JS

204 CHAPTER 9. ANSWERS TO SELECTED QUESTIONS

Exercise

Let J be Jockusch’s partition of [IN]? from exercise [95] and fix a colour, x. The
elements of the tree will be [some] finite strictly ascending sequences of natural
numbers, and the tree ordering will be end-extension. We use an ascending
sequences s for the tree iff every increasing [?] triple from s is coloured x. All
sequences of length 1 or 2 are allowed in free. (In the case of length 2, one
demands that the sequence be strictly ascending).

This condition on the sequences is decidable. If s is of length n one performs
(g) calculations (at most). If p is an infinite path through the tree, let P be
the set of integers along it. Then P is monochromatic for J. Hence P is not

decidable, and therefore p is not either.

Another answer supplied by Zachiri McKenzie, doctored by me.

I write ‘2<%’ for the set of all finite sequences from {0, 1} (we think of finite
sequences as functions with domain an initial segment of IN) and ‘2*’ for the
set of all functions with domain IN and range a subset of {0,1}. Define

0 if on(n) 1# 0
an) =4 1 if o (n) 1= 0
undefined if p,(n) 1

It is clear that d is a partial computable function with domain {0, 1}. Moreover,
if . is total then d(e) J# e.
For all £ € IN, define

d® (n) = { d(n) if d(n) Lk

* otherwise

The binary function d()(-) is total computable. Define
T={oec2%|forall 0<i<|o|,(d!VGE)=x)V(a(i) = d"D@))}.

Now, (T, C) is a computable tree. Since T'C 2<% T is finitely branching.

Let f : IN — IN be such that for all n € IN, if d(n) | then f(n) = d(n). Now,
forall k € IN, f | k € T (f restricted to k is in the tree). So, T is indeed infinite
(and has a path f). Now, suppose f = p.. Then d(e) | and f(e) = @.(e) = d(e),
which is a contradiction. Therefore f is not computable.

Exercise

Jason Long said to me the other day that the complement of the Halting set is
productive. Which version of the Halting set did he mean? And what did he
mean by ‘complement’?

Answer:

He meant that {n : {n}(n) 1} is productive. Let {n} be a function whose
domain of definition is a subset of this set. Is n a member of {n : {n}(n) 1}?
Can’t be! so {n}(n) 1.

205

Exercise 7?

B is many-one reducible to A (written B <,,, A) if there is a total computable
fst (Vn)(ne B<+— f(n) € A).

Turing-reducibility is slightly more subtle.

We spice up our machines so that as well as doing whatever it was they
were doing already they can now ask an oracle “Is n in A?” and branch on the
answer, and they can do this as often as they like. We then say A < B if the
characteristic function x4 (total version) for A can be computed by a machine
of the new style that has access to an oracle for B.

We can also do it as follows: the program for f is allowed to ask for g(n),
and it will be given a value or news that g(n).

Then we can say that A is recursive in B if x 4 is recursive in xp. Observe
that if we do this it won’t matter whether we take the characteristic function for
A to be An.(if n € A then 1 else fail) or An.(if n € A then 1 else 0).)

Let us start by enumerating the set {0,1}<% of all finite strings from {0, 1}
as (n, : n € IN). Each string is thought of as a function from an initial segment
of IN to {0,1}. In this setting, where we are considering recursion relative to an
oracle, we let {e} be the eth member of the set of functions-in-intension—that—
call-oracles. Think of {e} as code written in a language that allows invocations
of oracles. Then {e}“ is the function computed by {e} when given access to
the oracle C. The notation ‘{e}“’ doesn’t mean “the eth program that calls the
oracle C”.

When the superscript is an 7,—which of course is finite—it might happen
that {e} calls for the oracle to rule on an input at which 7, is not defined. In
these circumstances {e}"= (z)t.

Observe that

o if {e}"(z)] then {e}“(z)] for every C extending 7n,. (We are thinking
here of C' as an infinite sequence of Os and 1s—as a characteristic function,
in fact.)

e If {¢}Z(z)| then there is a € IN such that {e}"(z)|

We will construct two sets A and B such that A £ B L7 A. There will
be two sequences of binary strings (a, : n € IN) such that ;1 extends «; and
Uiew @ = x4; and (B, : n € IN) such that ;1 extends f; and U, Bi = X B-

We initialise ag = B9 = 0. Thereafter. ..

e Stage 2s+1. Let z be the first number not in the domain of aa4. [That is to
say, it’s length(cas) co’s we start counting at 0.] If there are any 7, that are
end-extensions of fas such that {s}"= ()| then use the least such a and set
Q2541 10 be aggtiy, where y is the least element of {0, 1}\ {{s}"=(x)}. And
Bas+1 is set to be [og41::0. If there is no such 7, then set agsy1 := ags::0
and fBast1 1= Pas::0.

206 CHAPTER 9. ANSWERS TO SELECTED QUESTIONS

e Stage 2s + 2. Let x be the first number not in the domain of Bosy1.
[That is to say, it’s length(Bas41) co’s we start counting at 0.] If there are
any 7 that are end-extensions of asggy1 such that {s}"(x)| then use the
least such b and set Ba542 to be Basy1::y, where y is the least element of
{0, 13\ {{s}™(2)}. And ags12 is set to be ags41::0. If there is no such 7,
then set Qo542 1= Ck23+1220 and 525+2 = ﬁ25+1220.

9.1 Questions for Tripos 2013

OQUESTION 1 What is a regular expression?
State and prove Kleene’s theorem that the set of strings accepted by a deter-
ministic finite state machine is captured by a reqular expression.

OQUESTION 2 Let MM be a machine (architecture unspecified) that halts on all
inputs. Is there a computable function f such that f(n) bounds the time taken
by M to halt on input n? Suppose the function computed by M is not total
... what then? What happens if I is the function that enumerates the output
of a volcano for the halting set? Let G(n) be the time taken by the volcano for
the halting set to emit n numbers. Is G(n) computable? [obviously!!]

OQUESTION 3 What is a typed \-term? FExplain the connection with con-
structive propositional logic. What is a Church numeral? Supply A-terms for
successor, addition, multiplication and exponentiation on Church numerals. What
is the Y combinator? Sketch how it can be used to find a A term for every com-
putable function.

Need some questions on automatic structures.

OQUESTION 4 State and prove Kruskal’s theorem on wellquasiordering finite
trees.

OQUESTION 5 State and prove the extended omitting types theorem for propo-
sitional logic

9.2 Questions for Tripos 2014

OQUESTION 6 Prove Tennenbaum’s theorem that there is no recursive non-
standard model of Peano Arithmetic.

OQUESTION 7 What is an automatic group? Prove that a product of finitely
many automatic groups s automatic.

OQUESTION 8 Prove Scott’s Isomorphism theorem for L., .,

Perhaps a question on Quine’s trick

9.3. QUESTIONS FOR TRIPOS 2015 207

OQUESTION 9 Let <1 and <o be recursive (decidable sets of ordered pairs)
dense linear orderings of IN without endpoints. There are isomorphisms between
(N, <1) and (IN, <s). Are any of them recursive?

OQUESTION 10 Prove cut elimination for first-order logic

OQUESTION 11 What is a primitive recursive function IN® — IN? Under
what operations in this class of functions closed? Is every total computable
function N¥ — IN primitive recursive?

OQUESTION 12 State and prove the Myhill-Nerode theorem.

OQUESTION 13 Find a proof for ((((A — B) — A) — A) — B) — B using
only the rules for — and the “identity rule”

A B
A

Then decorate your proof appropriately with \-terms.

9.2.1 Answers

Question [11] Bookwork, but if it is done properly it will take a while, and it will
be strictly marked. They will need to define primitive recursive relations, and
if-the-else, show that bounded quantification and bounded sum and product
preserve primitive recursiveness.

My guess is that most of them will do this question, and that as a result we
might be a decent spread of marks.

9.3 Questions for Tripos 2015

State and prove Friedberg-Muchnik

State and prove Myhill-Nerode

State and prove Tennenbaum’s theorem

question about immune sets

State and prove Kruskal’s theorem on the wellquasiordering of trees. Deduce
Friedman’s Finite form and explain its significance.

208 CHAPTER 9. ANSWERS TO SELECTED QUESTIONS

Chapter 10

Dear Thomas,

The packing is going well so I have stolen a few more moments for mathe-
matics. The ***file at the end of this email*** is from

www.geom.uiuc.edu/docs/forum/automaticgroups

It says (I think) that all discrete (finitely generated?) FEuclidean groups
(hence frieze and wallpaper groups) are automatic groups.

Please keep me informed if you find anything interesting. best wishes, Alan

On Jun 13 2012, Thomas Forster wrote:

Dear Alan,

Thanks for prompt and detailed reply!

Benson Farb sent me this link:

http://retro.seals.ch/digbib/view?rid=ensmat-001:1992:38: :5284%1d=41d2=&1d3=

On Wed, 13 Jun 2012, A.F.Beardon@dpmms.cam.ac.uk wrote:

Dear Thomas,

I am just ‘clearing’ some emails before leaving (in a few hours time) for
South Africa - hence the (for me) unusually prompt reply!

I do not know much about automatic groups, and have just looked them
up on the web. Clearly I do not have time to absorb the material before my
flight today, but I will return to it later (I will be ‘doing maths’ for five weeks in
South Africa). Can you give me a brief account of automatic groups by email
in return for my thoughts about their relation with frieze groups?

I will send you a summary of everything I know (I am writing this stuff up
for Part III) plus all the links I have.

Presumably you have internet etc in S.A.?

More later..

Thanks *very* much!!!

Thomas

Frieze groups are interesting: here are two things which do not seem to be
(well) known; I am trying to get the second one published.

(1) The best way to show there are only seven frieze groups is to consider a
frieze group G and form the quotient group G/T, where T is the subgroup of
translations. This is a finite Euclidean isometry group of a cylinder (imagine

209

210 CHAPTER 10.

wrapping a paper frieze around a cylinder whose circumference is the minimal
translation length in the group). This leads to an almost trivial - and certainly
efficient - division into seven classes. The problem is that most people want to
study frieze groups before they study quotient groups!

(2) The problem of classification generalises. Let T be a non-trivial group of
real translations of the complex plane. We do NOT assume that T is discrete
(for example, T could be the group of all rational translations); if T is discrete
(and therefore cyclic) the discussion below simply repeats the theory for frieze
groups.

Now consider any group G of isometries of the complex plane which (i)
leaves the real axis invariant, and (ii) has T as its subgroup of translations.
QUESTION: how many conjugacy classes for G are there (the answer will, of
course, depend on T; if T is cyclic, the well known answer is seven).

I have answered this; if, for example, T is the group of all rational real
translations then there are exactly five conjugacy classes.

The point is that the discreteness (as in the frieze groups)is ONLY necessary
to draw pictures; if one abandons the urge to draw pictures then the algebra
takes over (although the work is a little harder).

I can send you accounts of either, or both, of these if you wish. Clearly the
problem about automatic groups and frieze groups could be asked about what
I call generalised frieze groups as in (2) above.

best wishes, Alan

On Jun 13 2012, Thomas Forster wrote:

Alan, T have just discovered automatic groups and i am trying to learn about
them double-quick so i can say something illuminating about them in my Part
III computability course next year. You know about frieze groups, i remember..
What is the connection (if any) between frieze groups and automatic groups?
Presumably every frieze group is automatic but not vice versa..? Presumably
every Cayley graph of a frieze group is a frieze but not vice versa..?

I apologise for peppering you with these questions, doubly so if you had been
counting on a peaceful retirement!

Thomas

10.0.1 Friedberg-Muchnik

When we introduced volcanos we left it open whether the volcanos store the
partial computations, their work-in-progress, so that when a volcano looks again
at the computation with input k it has ready to hand the earlier stages of the
computation for this input. For the Friedberg-Muchnik theorem it is important
that our volcanos do not do this, but instead start again from the beginning
each time. It is worth noting (thank-you, Adrian Mathias!) that our volcanoes
repeat themselves. If {i}(3)] we keep on computing it infinitely often.

We have to construct two semidecidable sets A and B with the property that
XA is not recursive in B and xp is not recursive in A. Another way of putting
it: neither of x4 and xp can be computed from the other.

211

This means that we have to ensure that, for each i, x4 is not the ith total
function recursive in B, and that for each i, xp is not the ith total function
recursive in A.

We try to build two sets A and B by starting with two empty bins, and
surrounding each with volcanoes for the functions-that-consult-an-oracle, one
collection of volcanoes for functions that will be told to consult A and the other
for functions that will be told to consult B. If a volcano finds that it needs to
know whether or not 15 € A and A doesn’t yet know, then it goes to the next
calculation.

Initially the two bins are empty. However at least some two-valued {:} can
produce some output even without consulting an oracle and as soon as one of
them (consulting the B bin) announces (say) “{i}®(17) = No!” we put 17 into
the A bin in order to ensure that A # {i}” “IN. Volcanoes consulting the A bin
analogously put numbers into the B bin—or insist that they be left out. How
do we interpret the utterances of a volcano? When a volcano emits a number,
it always says what the corresponding input was. We interpret ‘0’ as “Input is
not in my set” and 1 “Input is in my set”; any other output is a warning that
the function being computed by the volcano is not a characteristic function, so
we ignore it. In fact, we dowse the volcano altogether.

What happens—in our illustration above—if, for some j # i, the volcano for
{j}B(17) at some later time says “Yes”...thereby apparently committing us to
not putting 17 into A after all? What we do depends on whether j > i or j < i.
If j > i we simply ignore it for the moment, with a view to giving that volcano
another chance. [we will explain later why this is OK, he says optimistically].
However if j < i we allow the volcano for {j}¥(17) to win the argument, and
decide to not put 17 into A after all. This of course also means that we have to
discard all inferences about membership in B made on the basis that 17 € A.
Since there are only finitely many j < i then we can change our minds about
whether or not 17 € A only finitely often.

Two things to sort out. (i) the postponement alluded to in the square
bracketed passage above and (ii) the question of what happens if no {i}? ever
expresses a view about whether or not 17 should be in A.

(i) is not a problem for the following reason. If {j}? is a volcano for a
characteristic function it will emit opinions about whether or not n € A for all
n, not just 17, whereas it can be overruled or anticipated only finitely often. On
the other hand, if it is not a volcano of that kind then we don’t care about it.

(ii) appears to be more serious. It appears to be entirely possible that none
of the {i}? ever express a view on whether or not 0 should be in A, and this is
because, for every one of these {i}?, the computation of {i}?(0) asks whether
or not (say) 17 € B; and none of the {i}# ever express a view on whether or
not 17 should be in B, and this is because, for every one of these {i}A, the
computation of {i}4(17) asks whether or not 0 € B!

However it’s easy to see that this deadlock cannot occur. At least some of
the {i}? do not consult B when trying to decide what to do to 0. If any reader
disputes this, I can write such a programme in front of their eyes.

We also need to check, for A and for B, that—for any i— A # ({i}?)~1“B.

212 CHAPTER 10.

How can we ensure that every i gets avoided? Well, we only need to avoid those
1 that are characteristic functions. Every volcano that corresponds to a total
function IN— {0, 1} gets attended to.

The only trouble with this construction is that the sets that it constructs
are not semidecidable! This is easy to see. IN\ A has the same status as A, so
if A were semidecidable so too would IN\A. A and B are in fact both A,. How
s0? We know that, for every n € IN there is either a stage s s.t. for all 8’ > s n
is in A at stage s’ or there is a stage s s.t. for all s’ > s n is not in A at stage
s'. Son € Aiff it is in A for all sufficiently late stages s or (equivalently) for
arbitrarily late stages s.

All of which reminds me that we should have a proof that every IT; N ¥,
expression is equivalent to a quantifier-free expression.

A reply from Richard K

This is the story from the point of view of PA(L) i.e. PA with the full induction
scheme for all of LL in a language L containing + S and times and a few basic
properties of these (I usually take the axioms of a discretely ordered semiring).
Obviously we will be looking at subtheories of PA(L).

A formula is Ay if all its quantifiers are restricted in your sense. It is %, if
it is Jz1Vra...Qxy)¢ where ¢ is Ag. The z1, ... x, may be tuples of variables
or omitted. Restricted and unrestricted quantifiers cannot be mixed unless
you count the restricted ones that are outside unrestricted ones as if they are
unrestricted.

Dually II,,

1Ay, I%,, IT1,, etc are the theories consisting of the base theory plus in-
duction on formulas with parameters from the formula class.

For n > 1, BY,, is usually taken to be the base theory “discretely ordered
semiring plus IAy” plus your collection scheme for formulas with parameters
that are X,

V(parameters)[(Vx < y)(3z)d(z, z, y)implies(Fw) (Ve < y)(Fz < w)d(x, y, 2)]

the other direction follows from the axioms of an ordered semiring.

Let’s write Coll(X,,) for the same, except that IAg is NOT included in the
base theory.

Then the old results (not too difficult) are, for n > 1

(*) BX,41 — IX, — BY,

In other words, you need induction to prove the collection scheme, and (mod-
ulo a very weak system, IAg) the collection scheme implies some induction as
well. In fact (modulo IAy) the full collection scheme implies full PA. Now that
you know what you need to prove it, the first implication should be easy.

Slightly harder, the implications in (*) cannot be reversed.

If you are worried about II,, the results are

1%, «— III,

BY, «— BII,,_4

213

The first of these sometimes causes problems, but remember parameters are
allowed in the induction scheme. (Proof theory people often have parameter-free
versions for which IY,, <— ITI, is false.) The second is easy—treat a whole
block of quantifiers like a single quantifier with a pairing function.

The Coll() scheme, i.e. without the IAq part of the base theory for BY,, is
quite interesting. In fact it is proof theoretically very weak on its own (without
any induction added to it) but it is still nontrivial. I certainly don’t claim to
know all about it, nor do I think anyone does.

Take a countable model 90t of the base theory “discretely ordered semiring”.
Any model-it could satisfy something very bad such as having an irreducible
element that isn’t prime (this is a X1 sentence). Then by easy algebraic means
there is an end extension that is also a “discretely ordered semiring”. (Take the
ring of polynomials over this and order it suitably.) And we repeat the process
taking unions at limits. After w; times we get a model of size Wy for which all
proper initial segments are countable. (It is an “w;-like model”.) Then this
w1-like model obviously satisfies the full collection scheme, but not the IAg
(because IA(says an irreducible is prime). And it is still very weak—it still
has an irreducible that is not prime.

Conversely, there is a straightforward model theoretic result that any *count-
able™ model of the full collection scheme, whether or not it satisfies induction,
has an elementary end-extension. (This is not the MacDowell Specker theorem
which says that any (possibly un)countable model of PA has an elementary
end-extension. It’s a lot easier than MD-S and just needs the omitting types
theorem.) Repeating this wy times we get the same thing: Collection is precisely
the theory of w; models, and such things can be very very weak, but if they
satisfy a little bit of induction (IA¢ is enough, actually much less is needed)
then they satisfy full induction.

All the above is in my models of PA book.

An old result of mine says a x-like model of IA(need not satisfy full induc-
tion if k is not regular.

How much induction is needed to add to collection to PA is an interesting
research problem. Induction on formulas that are "restricted existential” would
do. (That’s not so much...)

There’s a dual to the collection scheme, called ”Keisler’s Axiom 4” (or is it
Axiom 57 T forget) which you might find out about too. But it’s the same.

I am not 100% sure what happens without multiplication. It might be
similar, but there could be some basic trick to do with QE for presburger that
makes things look rather different for very special reasons that are specific to
presburger and usually unreproducible and unhelpful elsewhere (i.e. for any
other base theory/language). If you really want this for presburger let me know.

Finally

If T is a theory of arithmetic (e.g. a sub theory of PA) and we have a
formula 6(Z) which is T-equivalent both to a II; formula (Vz)¢(z,Z) and to
a ¥ formula (Jy)y(y, Z) we say for obvious reasons that the formula 6(Z) is
“provably recursive in 7.

214 CHAPTER 10.

Lots of people have done lots of work trying to identify what “provably
recursive in 17 is for various T.

In the particular case T' = ¥, “provably recursive in T” is precisely “prim-
itive recursive” i.e. all PR predicates can be so-represented in I3;, and con-
versely.

In the case T=PA, “provably recursive in T” is precisely “primitive recur-
sive” except you are allowed to do primitive recursions along the canonical
well-orderings of length «a, for any fixed a < €. You are not allowed to do
primitive recursions along €.

And so on for other theories. But the details might be messy.

As it happens, “provably recursive in 13,,” is the same as “provably recursive
in BY,,4+1” for each n. I don’t know if it helps you here, but it might. So
sometimes working in I'Y,, you can WLOG assume the B3, 11 scheme.

Richard

From: T.Forster@dpmms.cam.ac.uk [T.Forster@dpmms.cam.ac.uk]

Sent: 08 November 2012 10:04

To: ps218@cam.ac.uk

Cc: Richard Kaye

Subject: don’t dob me in

Gentlemen,

It occurs to me that you two (a) might know the answer to this and (b)
won’t expose my ignorance to the world.

OK, the question concerns expressions in arithmetic with S, + and perhaps
x. (Probably doesn’t matter) And restricted quantifiers. The question that’s
bothering me is:

Can we push restricted quantifiers in past unrestricted quantifiers.

That is:

is

(Ve < y)(3)e(x,2,y)

equivalent to

(Fw) (Ve < y)(3z <w)o(z,y, 2)

o

How do we prove it, and in what system of arithmetic can this be proved?
Primitive recursive arithmetic..?

Also: if we have a formula which is T-equivalent both to

(v2)d(x, 7)

and to

(Fy)Y(y, 2)

where psi and phi both altogether lack unrestricted quantifiers, then is it
also equivalent to

0(Z,a)

for some @, (the @ are constants, which I suspect we must need)

Kk KRR R R SR KK SRR SRR KR K SRR SRR Sk KK SRR SRR Kk KSRk SRR Kk Rk oo

I know I should know this. It prompts yet again the reflection that an-
nouncing a course of lectures on a topic of which one’s mastery is incomplete

215

concentrates the mind like nothing else. (I am lecturing part III computability
next term!)

All enlightenment received with suitable displays of snivelling gratitude.

R D R I T LT

I am very happy to announce the official opening of the Patterns of Resem-
blance Ordinal Calculator.

http://www.xamuel.com/patterns/

The POR Ordinal Calculator does arithmetic on ordinals below the ordinal of
13-CAg, notated using first-order additive Patterns of Resemblance, a beautiful
combinatorial notation system discovered by Timothy J. Carlson.

Currently implemented operations are addition, comparison, multiplication,
and base-omega exponentiation and logarithm. Future operations (epsilon, Ve-
blen, etc.) are planned.

The calculator requires no download or installation. It works on any com-
puter with an internet connection and a modern browser (including smartphones
and tablets). Notations generated by the calculator come with unique, perma-
nent, public IDs which can be used to easily share patterns with other re-
searchers or simply return to your own calculations at a later time.

A few samples:

The ordinal €p: http://www.xamuel.com/patterns/du/

The ordinal I'y: http://www.xamuel . com/patterns/dy/

The Howard-Bachmann ordinal: http://www.xamuel.com/patterns/jz/

Suppose you want to calculate the product I'g * €g. Simply enter the com-
mand: mult dy du

The calculator has an interactive tutorial which can be started by entering
the command, ”tutorial”.

I hope you will find the calculator fun and useful.

-Samuel Alexander

LEMMA 2 If F is Schmidt-coherent, X is limit and n € IN then F5™, defined
by

FA Am=F X (m+n); F¥ Bm=F B m for other
... 18 also Schmidt-coherent.

Proof: It will suffice to show that F A 0 <zs» A. But—since F is Schmidt-
coherent we have F A 0 <7 . Hence—by the definition of F?"—we have
FBm N0 <zsn FP™ X\ n. But this last ordinal is the < zsn-predecessor of A,
whence F A 0 <z F An <rsn A

LEMMA 3 Let F be a Schmidt-coherent system of fundamental sequences for
A an initial segment of the second number class, and suppose o < 3 € A. Then
there is a system F(P) of fundamental sequence for A such that

IThis is my notation not hers, and i’ve put in the brackets to make it less likely that readers
will confuse it with the “Fo87»

http://www.xamuel.com/patterns/
http://www.xamuel.com/patterns/du/
http://www.xamuel.com/patterns/dy/
http://www.xamuel.com/patterns/jz/

216 CHAPTER 10.

1. FlB) s Schmidt-coherent;
2. a <rw@s B and

3. for all 6 < a we have F(P)§ = F§.

Proof:
(lifted brazenly from [55])
We define a sequence (7, F,) as follows.
Yo =: B, Fo =: F;
Thereafter

o if v, = a then 7,11 =: a too, and Fj, 41 =: Fp;
o if v, =04+ 1> «then v,41 =:§ and F, 11 =: Fy;

e if v, > a and is a limit, and m is minimal such that Fy,m > «a then
Yn+1 =: Fynm and

o — if B # 1, then F,117¢ =: Fnq, and
— if 8 =, then F,117¢ =: Foy(g+m).

Using lemma [2] it is easy to show that

e F, is Schmidt-coherent,

® v <F, Borv, =27,

o F,0=F0 forall § < a,

® v, > .

Now (v, : n < w) is a nonincreasing sequence, so is eventually constant, so
there is ny € IN such that ~,, = o. Set FleB) —. Fg - []
LEMMA 4

Let F be a Schmidt-coherent system of fundamental sequences for A an initial
segment of the second number class, and let \ be the smallest limit ordinal not
in A. Then there is a Schmidt-coherent system F' of fundamental sequences for

AU{A}

Proof: Let (A, :n € IN) be a fundamental sequence for \. We define a se-
quence (F,, : n € IN) by recursion as follows. Fy =: F and thereafter F,, 11 =:
(Fp)AmAnt1) asin lemma Now—by that lemma (itemwise!)—for each n € IN
we have

1. F, is Schmidt-coherent;
2.)\n <.7:n+1)\n—&-l;

3. Fnd = Frnimo for all § < A, and m € IN.

217

We can now set F'f3 to be

e (A\p:nelN)if g=X

o FBIif B < Ao;

o FropifBif Ay < B < Ay1-

F' obviously assigns fundamental sequences to everything in A U {\}.

THEOREM 23 ([35] theorem 2)
Every proper initial segment of the second number class admits a Schmidt-
coherent family of fundamental sequences.

Proof:
We prove by induction on ‘e’ that the countable ordinals strictly below «
admit a Schmidt-coherent family.

The successor case is easy: if a is a successor of a successor, the assertion
follows from the induction hypothesis; if « is the successor of a limit it follows
from lemma [and the induction hypothesis.

So consider the case where « is limit.

Let (ay, : n € IN) be a fundamental sequence for «, and for each n € IN set
On =t Lm<nQm. Clearly a < Sup({o,, : n € IN}).

By the induction hypothesis for each n € IN there is a Schmidt-coherent
family F,, for the ordinals below «,, + 1. We now define a family F as follows:

Fym =:
e (if 7 is zero or a successor;
e 0, + (F(y — 0,)m) otherwise, where n is maximal so that o, < 7.

Now for all p and v such that 0, < p < 041 and 0, < v < 0p41 We
have u <r p <— (0 —op) <F, (v —op). Hence if v is a limit ordinal and
on < v < opy1 then v — oy, is also a limit, and since F,, is Schmidt-coherent
we have F(y — op)m <z, F(y — 0pn)(m + 1) for each m € IN. Thus Fym =
On + (Fly —on)m) < op + (F(y —on)(m + 1)) = Fy(m +1). So F is
Schmidt-coherent.

|

Can we omit ‘proper’ from the statement of theorem We proved it
without any use of AC.

First I tell ’em what i’'m going to tell 'em ...

The plot runs as follows. Clearly any finite set X C IN can be encoded as a
natural number. We show how, in any nonstandard model, the the standard part
of any decidable X C IN can be similarly encoded by a (nonstandard) natural.
Then, using the existence of a pair of recursively inseparable semidecidable

state this properly

218 CHAPTER 10.

sets, we find an undecidable X C IN whose standard part can be coded by a
[nonstandard] natural. Then we show that if the addition relation of the model
were decidable then this X would be decidable too. And it ain’t.

..then I tells ‘em:

Clearly any finite set X C IN can be encoded by a single natural number
using a prearranged scheme, as it might be X, c x2". [You saw this in a question
on the third example sheet from last year’s Part II Set theory and Logic: define
E so that (IN, E) ~ (V,,,€)...]. Let Ey be the relation “the ath bit of the
binary expansion of y is 17. Clearly the graph of F is a decidable set.

So what we can do is the following.

Next we show that there is an undecidable X that is coded ...
Suppose A C IN and B C IN are semidecidable and recursively inseparable.
(There are such sets, by remark [10] on page [112])
By remark |§| on page m (that says that every semidecidable subset of
]Nk is a projection of a decidable subset of]Nkﬂ) we can safely assume that
={n:(3z)A(n,z)} and B = {n : (3z)B(n,x)} where the predicates A and
B are decidable.
Since 2 and B are recursively inseparable they are at least disjoint, so
(Vn)=((3z)A(n, z) A (3z)B(n, z))
(Vn)(=(3z)A(n, x) V =(3z) B(n, z))
(vn) (v2)=A(n, z) V (Vo) ~B(n, 2))
(vn) (¥2)(Va') (= A(n, z) V ~B(n, 2'))
(vn) (v2)(Fa') (~(A(n,) A B(n, "))
So, in particular, for any standard m

(v
(v

(Vn < m)(Vx < m)(Vz' < m)(=(A(n,z) A B(n,z"))) (0)

Here we next have to use an overspill argument. Expression O is a formula
with one free variable, and its extension cannot be precisely the standard natu-
rals, co’s o/w we could prove by induction that every natural was standard. So
there must be a nonstandard natural—e, say—of which it holds.

(Vn < e)(Vo < e)(Vz' < e)(=(A(n,z) A B(n,z"))) (0”)

‘)

.where we can take the variables
naturals.

Now let X be the standard part of {n : (Im < e)A(m,n)}. The stuff after

the colon is decidable, so there will be ¢ such that (vm < e)(y Er. +— .y € X)

, ‘r’ and ‘z”’ to range over standard

An old exam
Answer FOUR questions

OQUESTION 14 What is a regular expression? State and prove Kleene’s the-
orem that the set of strings accepted by a deterministic finite state machine is
captured by a reqular expression.

219

What is it for a nondeterministic machine to accept a string? Is there a
version of Kleene’s theorem for nondeterministic finite state machines?

This is a standard bookwork question, the meat of which is a complex in-
duction. The second part of the question invites the candidate to explain why
(by the power set construction) for any nondeterministic finite state machine
there is a deterministic machine that recognises the same language.

OQUESTION 15 (i) Let M be a machine that halts on all inputs. Is there a
computable function f such that f(n) bounds the time taken by M to halt on
input n? Suppose the function computed by M is not total ... what then?

(ii) State and prove the Extended Omitting Types theorem for Propositional
Logic

Clearly the answer to the first part is ‘yes’: attach a counter to 9. If such a
function could reliably be found even when the function computed by 99t is not
total then we would be able to solve the halting problem. To ascertain whether
or not 91 halts on an input i, compute the bound b for the time it would take to
halt on input 7. Then fire it up; if it hasn’t halted within b steps it never will.

The second part is bookwork. Here is the relevant extract from the notes
that were made available to the students.

A type in a propositional language £ is a set of formulee (a countably infinite
set unless otherwise specified).

For T an L-theory a T-valuation is an L-valuation that satisfies T. A valu-
ation v realises a type X if v(o) = true for every o € X. Otherwise v omits X.
We say a theory T locally omits a type X if, whenever ¢ is a formula such that
T proves ¢ — o for every o € 3, then T —¢.

The Omitting Types Theorem for Propositional Logic

Let T be a propositional theory, and ¥ C £(T') a type. If T locally omits
then there is a T-valuation omitting .

Proof:

By contraposition. Suppose there is no T-valuation omitting 3. Then every
formula in ¥ is a theorem of T" so there is an expression ¢ (namely ‘T’) such that
ThF ¢ — o for every o € ¥ but T I/ =¢. But of course T+ T. Contraposing,
we infer that if T F —¢ for every ¢ such that T+ ¢ — o for every o € ¥ then
there is a T-valuation omitting .]

However, we can prove something stronger.
The Extended Omitting Types Theorem for Propositional Logic

Let T be a propositional theory and, for each i € IN, let ; C L(T) be a
type. If T locally omits every ¥; then there is a T-valuation omitting all of the
DT

Proof:

220 CHAPTER 10.

We will show that whenever TU{—A;,...—A4;} is consistent, where A,, € &,
for each n < i, then we can find 4,11 € ;1 such that TU{—A4;,...2A4;,~A;11}
is consistent.

Suppose not, then T (/\ —A;) = Ay for every A; 1 € ¥;44. But, by

1<5<i
assumption, 7" locally omits ¥;,1, so we would have T = /\ —A; contra-
1<j<qe
dicting the assumption that T'U {—A;,...—A;} is consistent.

Now, as long as there is an enumeration of the formulee in £(T), we can
run an iterative process where at each stage we pick for A;,; the first formula
in ¥;11 such that T'U {—A4;,...—4;,7A;11} is consistent. This gives us a
theory T'U {—A; : i € IN} which is consistent by compactness. Any model of
T U{-A; : i€ N} is a model of T that omits each X;.

|

OQUESTION 16 Give a direct definition of the factorial function IN—INin the
language of ordered rings. How long is your formula?

Suppose we have defined f by primitive recursion: f(0,3) := ¢(5); f(S(n),$s) :
h(f(n),n,3). When we assert that y = f(z, 5) we are committing ourselves to
being able to produce a chain of equations, which we can think of as a list of
ordered pairs.

If f is a function IN* — IN declared by primitive recursion then there is
a formula ¢(y,z1 ...xk, 2) in the language with 0, 1, 4+, x and = (“the ring
language”) containing no unrestricted quantifiers such that y = f(x1...zy) iff
(F2)p(x, 3, 2)

Proof:

We will be using base-p representations of arbitrary numbers, and we will
need to know that there are arbitrarily large primes. Well, there just are arbi-
trarily large primes, and we appeal to their existence when we want to establish
the correctness of the recursive definition. The theorem we are trying to prove—
that a function defined by primitive recursion can be captured by an 3; formula
in the language of ring theory—is a metatheorem about the language of ring
theory, not a theorem of ring theory. So we don’t need to worry about whether
or not we can prove the infinitude of primes in ring theory.

Anyway, fix values for ‘z’, the s variables and ‘y’. Recall that a certificate
that y = f(z,8) is a list of tuples Clearly y = f(x,§) holds iff there is a
certificate to that effect. So we need to be able to say that C is a certificate
that y = f(x,8). To do that we need to be able to code up lists of ordered
pairs as natural numbers. This is straightforward if we have exponentiation
in the language (we can use the prime powers trick, as noted above) but less
straightforward if we don’t, and we will need a new idea. However it is clear
that the ring language can express “p is a prime” and “z is a power of p” and
these will give us all the freedom in manipulating base-p representations that
we need.

221

There is going to be a large number I and another large number O (“inputs”
and “outputs”), encoding somehow the inputs (the list of naturals less than x)
and a list of outputs (the corresponding values of f), and we are going to think
of these two numbers as being written in base p where p is going to be a prime
larger than any number that appears anywhere in the certificate. Thus our
formula will begin with three existential quantifiers: ‘(3I)(30)(3p)(...)’. The
prime p will be chosen big enough so that the following picture makes sense.

>t P

2 1 0 I
f2) 1 f0) o

We have to be very careful in talking about base-p representations of num-
bers in this context where we have neither exponentiation nor order information.
(The display above is potentially very misleading!) One way of describing our
predicament is that we normally think of the addresses in the base-p represen-
tation of a number as indexed by an ordered set that is a proper initial segment
of (IN, <)—but we cannot use that index set here. Our places are indexed by a
set X of numbers about which we know only that all its members are powers of
p and that X contains all factors of its members. It is true that we can define
an order relation on X and we do have an adjacency relation on X, since we
can divide by p or multiply by p. However we do not have access to any bijec-
tion between X and any initial segment of IN. In particular, although we can
identify a column in the above display by reference to a z-that-is-a-power-of-p,
we cannot recover the exponent and thereby enumerate the columns.

Some Local Definitions
“r divides into y” is x =y V (Jw < y)(z - w = y). Let’s write this as x|y.

We can say “p is a prime” since that is (Vo < p)(Vy < p)(z -y # p).

We can capture “z is a power of p” by (Vw < z)(w|z — p|w)—at least when
p is prime. (And the task in hand does not require us to capture “z is a power
of p” when p is not prime.)

We can express in the ring language what it is for a natural number O to
have the entry o, at the place in its base-p representation corresponding to z
(where z is a power-of-p). We say:

“If we divide O by z and look at the remaindeIEI then divide that
remainder by (z/p), we find that the quotient is 0,.”

In symbols:

(O rem z) DIV ((z/p)) = o.. (R)

2which of course is just the truncation of O, the places remaining to the right of the place
corresponding to z.

222 CHAPTER 10.

(z DIV y is the largest integer z s.t. y-2z < x and x rem y is the remainder when
x is divided by y.)

Let us abbreviate (R) to ‘R(O, z,0,)’, and let us write ‘¢, for the I-entry
at the place corresponding to z (i.e., the unique ¢ such that R(I,z,4)) and ‘o,’
for the O-entry at the place corresponding to z (i.e., the unique o such that

R(O, z,0)).

How do we tie together I and O?7 We have to say several things:
(1) For any z < I that is a power-of-p, (i.,0,) is related-by-the-recursion-for-
J 10 (i(z/p); 0(z/p))- We declared f by f(n 4+ 1,5) = g(f(n),n,5) so this is
02 = g(0(z/p)> i(2/p)> 5);
(2) Initialising: we have to say iy = 0 and o; = f(0, §);
(3) The nth place of I is n, thus: i, =i /) + 1;
(4) And of course we have to say (3z)(z =i, Ay = 0,).

So our first order formula will be

p is prime
(Fz<I)((zisapowerof p A y=o0. Az =1)
@EDEO)E) A | i1 =0 Ao1 = £(0,5) (4)

(Vz < I)(z is a power of p = i, = i(,/p) + 1)
(Vz < I)(z is a power of p = 0. = g(0(z/p)s(z/p)s 5)))

OQUESTION 17 What is a typed A\-term? Explain the connection with con-
structive propositional logic. What is a Church numeral? Supply A-terms for
successor, addition, multiplication and exponentiation on Church numerals. What
is the Y combinator? Sketch how it can be used to find a A term for every com-
putable function.

This is pure bookwork

OQUESTION 18 A transversal for a family X of pairwise disjoint subsets of
a set X is a subset X' of X s.t. | X' Nax| =1 forallz e X.

Let ~ be an equivalence relation on IN, with infinitely many equivalence
classes, whose complement is semidecidable (considered as a subset of INX
IN). Show that there is a semidecidable transversal on the set of ~-equivalence
classes.

We build a transversal T in stages, T,.

Put 0 into Ty. Compute n ~ 0 for all n in parallel. As soon as we discover
a k such that =(k ~ 0) we put k into T;.

Subsequently at the nth stage we compute [[k ~ m]] (the truth-value of
k ~ m) for all m € T,, and all k ¢ T,,. As soon as this process reveals a k
such that (Vm € T,,)(—=(k ~ m)) we set Ty, 11 := T, U {k}. Since ~ is of infinite
index, there is such an m and—since the graph of ~ is the complement of a
semidecidable set—we will find it.

223

OQUESTION 19 State and prove Kruskal’s theorem on wellquasiordering fi-
nite trees.

Suppose we quasiorder finite trees as follows: T < T’ if there is an injection
from the vertex set of T to the vertex set of T' that preserves adjacency. Is this
a WQO?

The first part is bookwork. The answer to the second part is ‘no’: let T; be
a chain of length ¢ with two endpoints—a forked tongue of length <.

\/

Then the T; : i € IN constitute an infinite antichain.
HIATUS

One has to distinguish between the two situations:

1. We have a method which, when we are presented with a widget, enables
us to construct an algorithm which recognises gagdets in polynomial time.

2. We have an algorithm which recognises gadgets in time which—if there is
a widget—is only polynomial.

An example of the first is a result of Seymour-Robertson to the effect that
there is a polynomial-time algorithm for recognising graphs not embeddable in
surfaces of genus k. Richard Pinch has supplied me with the following example
of something rather like the second

Thomas,

The precise result is that it is possible to prove that a number N is
composite, using the well-known Miller-Rabin (’strong’) test, if one
can find a primitive root g of one of its prime factors p. The ERH
implies that the least such g is < (log(p))?, otherwise the best one
can say at present is that g < p'/3. So without the ERH one cannot
prove that MR proves compositeness in polynomial time. (It might
be that it does so even if ERH is false, of course.)

Richard

224 CHAPTER 10.

A message from Ian Grant

Dear Thomas

I’'m enjoying this. I needed some new input. I haven’t read much yet, but
there are a couple of typos on page 51. You mean n-reduces, not beta reduces
in the times and exp lambda definitions.

Regarding the sentence that follows them: if \n.\m.n m is the identity func-
tion, then why is it extensionally equal to EXP m n? The identity function
certainly isn’t. It’s true that \m.\n.m n 7-reduces to the identity function,
but Church numerals are not inert data, they are better thought of as iterated
abstract operations. I.e. \f.\x.f x should be called “once”, \f.\x.f (£ x)
“twice” etc.

The problem with LC is that it works too easily and we “read in” the se-
mantics to Church numerals, pairs etc. In combinatory logic one is less inclined
to do this because many different weak normal forms correspond to the same
Church numeral. There it is very clear that you only have a representation of
the naturals by extensional equality. So you have to apply each numerical result
to the successor function, and apply the result of that to zero, before you can
see the answer. Often it takes more reductions to reduce a weak normal form
to a constant than it takes to reach the weak normal form, so it is much more
clear that the Church numerals are processes, not data.

Of course extensional equality is not decidable in general, but if you know
the types of the terms in question it is. However not all numerical functions
have simple types. The A\ term you give for the Ackermann function doesn’t
have a simple type. The usual subtraction function \m.\n.n PRED m. doesn’t
have one either. This is because the predecessor function does not return a value
of the same type as the one it is given, it returns one one or two levels up, so
one cannot iterate it arbitrarily many times as one does when one applies n to
it. The Ackermann function using an iterator has no simple type for the same
reason. Godel’s system T is the simplest type system I know of that can type
higher order functions like ACK and SUB. At the end of this mail there is an
implementation of system-T in a few dozen lines of standard ML.

Another way to see what I mean is to look at the fully parenthesised expres-
sions:

((ANfAz.f2)S)O — (A\z.Sx) — SO

So the term A f.Azx.fz is actually doing something: namely applying S to O
which isn’t happening in the original expression.

To get a denotation for lambda calculus we need to fix some constants in
the domain: S and O for the successor and zero, say. Then what we mean by
the ‘object’ two is the term (Af.A\x.f(fx))SO which reduces to S(SO). The
Church numeral Af Az.f(fz) is something distinct from the number two. It
works much better in combinatory logic because there you *have* to evaluate
values: for example if using Church numerals in SKI combinatory logic, when

225

you compute 22 using 22 you get the weak normal form
S(E(S(S(KS)(S(KK)))(S(S(KS)(S(KK)))(KI))))(S(K(S(S(KS)(S(KK)I))(S(S(KS)(S(KK)I))(KI))))I)
and to see extensional equality with the Church numeral 4:
S(S(KS)(S(KK)))(S(S(KS)(S(KK)D))(S(S(KS)(S(KK)))(S(S(KS)(S(KK)I))(KI))))

takes some more reductions: applying each to s and z, say, gives s(s(s(sz))) in
both cases.

And I think that’s all there is to computation: it’s just constructing left-
folded forms (by application) so that, as they fold up again under conversion,
they construct the right-folded values that represent the results. There is surely
a connection with Lawvere’s left and right adjoint functors and universality. 1
love reading about category theory, but it must be like taking psychedelic drugs,
afterwards I find it hard to say anything more than “Wow, man, what a trip!”
T’ll feel I understand comma categories and adjuncts etc. when I can apply them
to something concrete like a “Schonfinkel algebra”: the PTJ exam question you
set as an exercise is a lovely one. If you can see any way to go with something
like this then let me know.

LC is full of gotchas. One that caught me was: 8 conversion preserves the
set of free variables in a formula. If there are no free variables in a formula,
then—since 8 conversion won’t change this fact—there is never any need to
do « conversion before substitution because there are no free variables to be
captured. I am embarrassed to say that I actually believed this until only about
a month ago. But it is surprising how far you can get without needing to «
convert before substitution. ADD, PRED, SUB, MUL, ACK, FACT can all be
done with naive substitution. But applying 1 to 1, as you do in EXP m n, needs
an alpha conversion. I imagine one could do exponentiation with Y though and
not need capture-avoiding substitution.

> So you think I might just wave my arms over it?

Larry handwaves it very eloquently in his FoFP lecture notes. Pasting strips
together is quite intuitive, and I believe all the tedious case analysis in the strip
lemma. Here is something I once wrote about the strips. You’ll need to run it
through LaTeX (with the amsmath package loaded) to see what I mean:

An alternative definition of equality is in terms of multi-step reduction: Two
terms M and M’ are equal iff there exists a sequence of forward and backward
reductions from M to M’. This is famously pictured:

M M1 M2 Mk—l Mk =M

Ny Ny " Ni

From this diagram we can read off various properties of equality, such as

(i) M =, Nor N —, M then M = N.
Take k = 1 and put M = Ny or Ny = M;.

Duplication with p

226 CHAPTER 10.

(ii)) If L -« M and L —, N then M = N.
Take k = 2 and put L = M; with Ny = M and N, = My = N.

(iii) f M —, L and N —, L then M = N.
Take k =1 and put Ny = L and M; = N.

Best wishes
Tan

Question

Part (i) is pretty routine. You can’t do it unless you have achieved a certain
level of familiarity with the material, but once you are confident and fluent, you
can answer a question like this (which the student will not have seen during
lectures) merely by doing the obvious and following your nose.

Part (ii) is actually quite hard: altho’ the understanding it requires is basic,
it also requires persistence and a calm head.

My feeling is 10 marks for part (i) and 15 marks for part (ii). In part (ii) I
would say 8 marks for the proof tree and 7 for the decoration.

I have bundled these two questions together because the students will like
part (i) (looks like bookwork) and will prefer not to attempt part (ii) (which
looks as if they might have to be creative). That way they have to do something
demanding.

Part (i)

The best way to answer this question is to draw lots of pictures.

Clearly we are going to have to execute a back-and-forth construction.

Think of the naturals in (IN, <4) as 04,14,24 ... and think of the naturals
in (IN, <pg) similarly as 0p,15,25....

Clearly we wish to pair 04 with 0. What do we do thereafter? In the
routine back-and-forth construction we seek, at stage n, a mate in (IN, <pg) for
the first n4 we have not already found a mate for. We examine Op,1p ... and
so on until we find one that lives in the open interval that qualifies it to be a
mate for n 4. This process of checking involves asking questions like “z <pg y?”
all of which are ex hypothesi answerable, since the graphs of <4 and <p are
decidable sets of ordered pairs. Then we come back the other way. At the end
of time we have a bijection as usual.

227

Part (ii)

Clearly the first step must be to decide to infer B from (((A — B) — A) —
A) — B.

The only way to use the assumption (((A - B) -+ A) - A) — B is to
exploit it as the major premiss of —-elimination, which means that we have
to somehow obtain the minor premiss, namely (((A — B) — A) — A. Now
this last formula is not a constructive thesis (tho’ it is a truth-table tautology)
we will have to derive it from the assumption we already have, namely (((4 —
B) =+ A) — A) — B.

If we are to infer ((A — B) - A) — A from (((A — B) - A) - A) — B,
then clearly it means we have to infer A from (((A - B) - A) — A) — B and
(A— B) — A

If we can deduce A — B from (((A — B) - A) — A) — B we'll be all
right. But this is easy, because A implies ((A — B) — A) — A (use K). Thus
we can obtain the following proof (The decorations are easy once one has the
proof.)

CHAPTER 10.

(1°01)
(1) wpe AT WV @ V) (@Ehgzagnmy) =g
pld — (Vv (v < (g < V) 7] (&) yuree (v < (g < v)) : (zhiy)zay)mmy
wie-4— . v ((zfix)z ax)m
. V(g V) @ g+ v (ahix)zay
() yur-+
wrpo-— g : (zfix)z
. W — (v« (v« (g V) : 7] N Ve (v« (g < V) ohiy
oI A1gue .~ VT
e e v ih v :dl

228

10.1. QUESTIONS FOR TRIPOS 2016 229

OQUESTION 20 What are many-one reducibility and Turing-reducibility ?
State and prove the Friedberg-Muchnik theorem.

OQUESTION 21 (i)

What is an immune set? What are incompressible strings? Show that the
set of incompressible strings is immune.

(ii)

Ezplain how Friedman’s finite form (FFF) of Kruskal’s theorem follows from
Kruskal’s theorem. What is the significance of FFF?

OQUESTION 22 Prove carefully that if f is a function N¥ — IN declared by
primitive recursion then there is a formula ¢(y, T, Z) in the language with 0, 1,
+, X, < and = (“the language of ordered rings”), containing no unrestricted
quantifiers, such that y = f(x1...x) iff (32)o(y, T, 2)

OQUESTION 23 Show that every partial computable function can be repre-
sented by a A-term acting on Church numerals.

OQUESTION 24 What is the Goodstein function? Prove that it is total. Ex-
plain why this gives rise to a decidable wellordering of IN of length €q.

OQUESTION 25 What is a recursively axiomatisable theory? Establish that
any sufficiently strong sound recursively axiomatised arithmetic of the natural
numbers is incomplete. What is a productive set? FEstablish that the set of
arithmetic truths is productive.

10.1 Questions for Tripos 2016

A question from Maurice about automatic groups

[6 marks]

Let G be a group, and (A, L) an automatic structure for G. Show that there
exists a constant NV such that, if w € L and g € G satisfy g = wZ or w = g% for
some = € AU {e}, then:

(i) g has some representative v € L of length |v| < |w| + N; and

(ii) If uw € L is a representative of g with |u| > |w|+ N, then there are infinitely
many representatives of g in L.

Henceforth let G be a group, and (A, L) an automatic structure for G with A
a symmetric set (that is, if a € A, then a=! € A). Assume that all multiplier
automata M, (r € AU {e}) are normalised; they have no inaccessible states,
and all dead states are merged into one.

[8 marks]
Show that, given v € L and x € A, we can algorithmically construct v € L with
v =1uzx in G.

230 CHAPTER 10.

[4 marks]

Using the result of Question show that the algorithm you described to
compute v in part can be carried out in time O(|u|), and moreover that
v can always be constructed such that |v| < |u| + N for some fixed N which
depends only on the automatic structure (A, L).

[2 marks]
Show that, from (A, L), we can construct a word v € L such that ¥ =1 in G.

[3 marks]
Let v be as in Question Given a word w € A*, show that we can construct
a word z € L with Z =w in G, in time O(|w|?), with |2] < |w|N + 7.

[2 marks]
Conclude that there is an algorithm that, on input of any word w € A* decides,
in time O(|w|?), whether or not w =1 in G.

OQUESTION 26 Let A be an infinite set, G a subset of A%, the set of w-
sequences of elements of A. Players I and II alternately pick members from A
(with replacement, so repetitions are allowed) thereby generating a play p € A“.
I wins iff p € G. Give A the discrete topology, A the product topology. By
using a fixed-point theorem or otherwise show that if G C A% is open then one
of the two players must have a winning strategy.

OQUESTION 27 (i) What is a primitive recursive function? Define an w-
sequence of functions IN?> — IN of which the first three members are addition,
multiplication and exponentiation. Prove that every function in your sequence
18 primitive recursive.

(i) Is every semidecidable set X C IN the range of a primitive recursive
f:IN—>IN?

Can one say anything about the fibres of f? I think every fibre has to be a
decidable set.

OQUESTION 28 State and prove Friedberg-Muchnik

OQUESTION 29 What are many-one reducibility and Turing-reducibility ?
State and prove the Friedberg-Muchnik theorem.

Two marks for an explanation of computation relative to an oracle; Two
marks each for the two definitions, leaving 21 marks for F-M.

I will certainly be looking for an appreciation that one only ever adds el-
ements to a set-under-construction, and never deletes any—after all, the final
products have to be semidecidable. An explanation of why this inability to
delete elements doesn’t conflict with the need to correct injuries will reassure
the examiner that the student understands what is going on.

One should keep some marks up one’s sleeve should any students wish to
contrast the situation with Kleene-Post and present a proof of that. (It was in
the handouts but was not lectured).

More specifically

10.1. QUESTIONS FOR TRIPOS 2016 231

Two marks for explaining “requirement”;

Two marks for explaining “witness”;

Two marks for explaining “injury”;

Two marks for explaining “barrier”;

Two marks for explaining “merits attention”;

Two marks for explaining the list of candidates maintained by each requirement
and a comment about why they don’t need to be disjoint.

The lecturer lectured from the following notes. None of the diagrams on the
blackboard are reproduced in the notes.

B is many-one reducible to A (written B <,,, A) if there is a total computable
f st (Vn)(n € B+— f(n) € A).

We need the notion of computation relative to an oracle. Just add an extra
style of command to the language, as it were:

consult-oracle O, branch on the answer.

That is to say: we spice up our machines so that as well as doing whatever it was
they were doing already they can now ask an oracle “Is n in O?” [where O is the
set that the oracle knows about and we don’t] and branch on the answer, and
they can do this as often as they like. We then say A <p B if the characteristic
function x4 (total version) for A can be computed by a machine of the new
style that has access to an oracle for B.

In this setting, where we are considering recursion relative to an oracle, we
let {e} be the eth member of the set of functions-in-intension—-that—call-oracles.
Think of {e} as code written in a language that allows invocations of oracles.
Then {e}“ is the function computed by {e} when given access to the oracle C.
The notation ‘{e}’ doesn’t mean “the eth program that calls the oracle C”.

It looks as if, in the first instance, “recursive-in” is defined between sets and
functions. (A function is recursive in a set). However we can define what it is
for f to be recursive in g. The program for f is allowed to ask for g(n), and it
will be given either a value or the news that g(n).

Then we can say that A is recursive in B if y 4 is recursive in xpg. Observe
that if we do this it won’t matter whether we take the characteristic function for
A to be An.(if n € A then 1 else fail) or An.(if n € A then 1 else 0).)

Observe that the quasiorder <r is prima facie weaker (contains more or-
dered pairs) than the quasiorder <,,, so there can be A <p IK where A is not
semidecidable. In particular IK <7 (IN'\ K) but K £, (N \ K).

Why?

Clearly we have X <p (IN'\ X). So, in particular, (N \ IK) <y K. If per
impossibile A <7 IK were sufficient for A to be semidecidable we would be able
to infer that IN'\ IK were semidecidable, and thence that IK were decidable. But
we know it isn’t. This give us a natural example—IN \ IK—of a set that is <r IK
but is not semidecidable.

232 CHAPTER 10.

Observe that this means that you can have two sets of the same degree of
unsolvability (namely the halting set and its complement) where one is semide-
cidable and the other isn’t. Whether or not you are semidecidable might not be
entirely determined by your Turing degree.

So we might be in with a chance of finding A, B satisfying A £ B £p A
because A and B are not semidecidable.

THEOREM 24 Friedberg-Muchnik
There are <p-incomparable degrees of semidecidable sets.

Proof:

We are trying to build two sets A, B C IN such that neither is recursive in
the other. In particular neither of them can be recursive tout court—decidable.
Both A and B are constructed as a union of finite approximants: (A4; : i < w)
and (B; :i <w) and this will make them semidecidable, which is clearly the
best we can hope for. The fact that neither A nor B are decidable means that
the A; (resp. the B;) cannot be ordered by end-extension, beco’s that would
mean A and B could be enumerated in increasing order and that would make
them decidable. However the A; are totally ordered by C. Do they start off
empty, with Ag = By = (07 A useful thought is that it actually doesn’t matter
a damn what finite sets Ag and By are. (In fact my guess is that we can even
take Ag and By to be decidable moieties, like the odds and the evens.) We have
countably many conditions all of which are incredibly easy to satisfy (= can be
satisfied in infinitely many ways), and we can satisfy any finite bundle of them
with our hands tied behind our back. The only hard part is to satisfy them
all simultaneously. The reader might perhaps be reminded at this point of the
Baire Category Theorem, in the form that a countable family of dense open sets
has nonemepty intersection.

We wish to ensure that for no e is {e}# the characteristic function for B nor
is {e}? the characteristic function for A. The requirements are A # {e}?“IN;
B # {e}*“IN, for each e € IN

Each requirement A # {e}?“IN is looking for a witness, an + € N s.t.
{e}P(x) = 0 (which will say that x is not a member of the eth set computable
from B) or {e}Z(z). When this happens we can put = into A. Thus z will be
the desired witness to the fact that {e}”“IN is not the characteristic function
for A. (Mutatis mutandis swapping A and B.) [You might think that = could
be a witness if {e}?(z) = 1 (which will say that = is a member of the eth set
recursive in B)—so that we then make sure never to put z into A—but we never
put things into IN'\ A, only into A.]

Each requirement has its own list of potential witnesses. The lists are dis-
joint, and written in increasing order. We make them disjoint so that no number
is compelled to discharge more than one requirement. It’s not that no number
can discharge more than one requirement, it’s that we can arrange things so
that no number is called upon to, and it keeps things simple.

10.1. QUESTIONS FOR TRIPOS 2016 233

Earlier requirements have higher priority than later requirements. At any
stage a requirement has a barrier and a list of candidate witnesses.

At stage n you run the first n requirements for n steps, each processing
the current head of its witness list, consulting oracles A, and B,, ...by which
we mean the following. {e} is allowed to ask about membership of {m : m <
sup(A,)} (mutatis mutandis {m : m <sup(B,)}). The point is that if {e} halts
on 17 (say) when consulting this oracle and gives 0 (so that we want to put 17
into B) it might have done so beco’s it asked whether or not 3 € {m : m <
sup(A,)}, and got the answer ‘no’, whereas 3 later got put into A.

Any requirement that asks for information outside that initial segment is
told to crash (for that round). As long as it asks only about membership in
{m :m <sup(A,)} it gets an answer which will be yes or no.

A computation of {e}?(n) “merits attention” when it halts with output 0.
Then we put n into B. (mutatis mutandis for B). Then the requirement is
met. Every time a requirement is met it freezes (“Bank!!”) an initial segment
of A (or B) which means that, for all requirements, it deletes—from the list
of candidate witnesses for all requirements of lower priority—all the candidates
below the barrier.

Clashes happen when a decision of a lower-priority requirement is overruled
by a higher-priority requirement putting up a barrier that voids the computation
it (the lower-priority requirement) has made.

A requirement might decide to put a number into A (or into B). When
it freezes it thereby erases from lists-of-potential-witnesses for requirements of
lower priority all witnesses that lie in the frozen area. This inevitably resets
some computations.

A requirement r might be feeling happy, thinking it has found a witness.
The purported witness is a witness as long as the initial segment frozen by r
is indeed frozen. However a higher-priority requirement might come along and
write something into the frozen area, with result that—as it might be—17 is
now a member of A when r has been acting on the assumption that it wasn’t.
So the witness that had been banking on is no longer a witness, and r has to
try another candidate. However this can happen only finitely often, and r has
infinitely many candidates to play with.

Pin the following to the wall.

Once you put something into A (or into B) you never take it out
again.

You put things into A (or into B) but never into their complements.

You do NOT add members in increasing order: A and B are NOT
decidable.

The nth requirement can be reset at most 2™ — 1 times.

You can prove by induction on the requirements that they are sat-
isfied in the limit.

234 CHAPTER 10.

Here’s another way in. Imagine you are the deemon whose job it is to look
after the B-requirement {17}* # yp. When the bell strikes for the start of
round n you look at the head of your list of potential candidates—z, say—and
compute {17}4(x) for n steps. In the process you might be called upon to
consult A. At this stage you only have access to A,,, but you consult it anyway.

e If you ask your membership-of-A question of something greater than sup(A,,)
you crash. Smackie handy. Sit in the corner until the next round.

e If you halt and get output 1 then that’s no use to you. Discard x and
sit on your hands until the next round (when you will use the next thing
after x in your list of candidate witnesses)

e If you halt and get output 0 you are pleased: we can put x into B,,;1 and
you are satisfied for the moment. The system managers then raise the
barriers for all A-requirements of lower priorityﬂ so that none of them can
write anything into A that undermines your reason for putting z into B.
That is to say, for every A-requirement of lower priority, they erase—from
that requirement’s list of candidates—all the candidates that are smaller
than sup(A4,,).

Once you are satisfied you sit out subsequent rounds—unless something bad
happens. Something bad?! Well, a deemon guarding a requirement of higher
priority than you might put some a into A which is smaller than some of the
things in A,,. This can be a problem beco’s it could be that your decision that
{17}(z){= 0 happened beco’s you asked the oracle if a was in A and it said
no—whereas it now turns out that the correct answer is yes! So you are back
to square one.

It’s important to remember that we don’t now delete x from A. We never
delete anything! We leave it in. It no longer serves its original purpose but it
isn’t actually doing any harm.

This will be a question for 2017

Let X be a finite alphabet, and f : IN — X an infinite string of elements of
Show that f is eventually periodic iff {f[n : n € IN} (thought of as a subset of
Y <% is a regular language over X.

The situation is subtle and complex, and there are rectypes of bounded
character that might not be sets, even if we have replacement, for example the
largest initial segment of the ordinals consisting entirely of ordinals of cofinality
w at most. [This sounds coinductive!] We need (a bit of) AC to show that this
collection is not the paradoxical collection of all ordinals.

EXERCISE 102 (%)
Suppose that ¢ is a computable partial function of two arguments.

3Why stop there? Why not raise the barriers on all requirements? beco’s you might end
up going round in circles!

10.1. QUESTIONS FOR TRIPOS 2016 235

. Show that there is a computable partial function v of one arqument such that,
for each m, if there are x with ¢(x,m) = 0, then ¢(p(m,m) = 0. If there are
no such x, is your y(m) defined?

. Show that it is not always possible to take ¥(m) = px.(¢p(x,m) = 0).

10.1.1 Finite Trees

I’ve sent you this material earlier but it could make sense to collate it here.

It is a standard fact that the class of Dedekind-finite sets is closed under
“finite sequences without repetitions”. (John Truss—f{rom whom i learnt this
fact—tells me that it was, indeed, proved by Tarski. See footnote below.) I
don’t remember ever seeing a proof, tho’ i presumably must’ve, and in any case
it’s not hard to find one. I want to set it in a slightly more general context.

LEMMA 5 (No use of AC!)
Given a repetition-free w-sequence of repetition-free [finite] lists-from-X we
can recover a repetition-free w-sequence of members of X .

Proof:

We are going to describe an algorithm. Given the sequence of lists, look at
the sequence of heads of the lists. If there are infinitely many that are distinct
we obtain an w-sequence of distinct members of X by ordering the elements by
first appearance. If there are only finitely many distinct heads, then at least one
element zy of X turns up as the head of infinitely many lists in the sequence, and
there will be a first such element. Discard any list that does not have z(as its
head. Now look at the second elements of the surviving lists (all but at most one
of the surviving lists have a second element). Do the same, this time obtaining
x1. Iterate. At each step we either have infinitely many distinct elements (in
which case we stop) or we procede to the next stage. If we never stop we end
up with an w-sequence of members of X. And it is without repetitions, because
every initial segment of it is an initial segment of one (well, infinitely many) of
the lists in our collection.

|

It is important that the proof we have just given is effective. It doesn’t claim
to be constructive (it uses excluded middle—infinitely often indeed) but at least
it doesn’t use AC.

COROLLARY 4 (Tarski)
If X is Dedekind-finite then the set of repetition-free finite lists from X is
also Dedekind-finitd

4Dear Thomas,

Nice to hear from you. In my (very old!) paper, [3], this is given as Lemma 6. In the proof I
say it is due to Tarski, and I refer to Levy’s paper [2]. There Levy says that this was conveyed
to him by Tarski ("oral communication’).

I think that’s the best I can do.

All the best, John

236 CHAPTER 10.

Proof: Contrapose lemmalp] Since X is Dedekind-finite the process cannot halt
at a finite stage, and the infinite run constructs the w-sequence for us.
|

Two questions come up here which i am not planning to pursue. (i) Can we
do the same for sets lacking countably infinite partitions? (ii) Observe that even
tho’ this tree construction gives us larger Dedekind-finite sets it’s not going to
give us Dedekind-finite sets with large uncountable wellordered partitions.

10.1.2 A topological angle...?

There is probably something helpful to be said about how the construction of
the w-sequence relies on the fact that the things we are trying to construct form
a closed subset of a product space.

Something analogous to corollary [4] holds for Dedekind-finite trees ...that
are repetition-free (in the appropriate sense). We will need a carefully crafted
definition.

DEFINITION 25 Define D-trees inductively as follows. A D-tree has a root
d € D and the children form a repetition-free finite list of (D \ {d})-trees.

This definition doesn’t prevent a D-tree having multiple occurrences of an
element but it does have the effect that no branch of a D-tree can have two
occurrences of any one element. Indeed it may even be equivalent to that
condition. No repetitions on any branch.

This following remark may be new, i don’t know.

REMARK 18 If D is Dedekind-finite then the class of D-trees is also Dedekind-
finite.

Proof:

Suppose we have an w-sequence of D-trees; we will show that they cannot
all be distinct.

Start by looking at the roots. At least one d in D appears infinitely often
as the root of a tree in our sequence. Put this d on one side and call it dy; it’s
going to be the first member of a repetition-free w-sequence of members of D.

Discard all the trees that have roots other than dy. Look at the sequence of
litters of the roots of the surviving trees. This is an w-sequence of repetition-free
finite lists of (D \ {d})-trees. Now we use the construction of lemma [5| to obtain
an w-sequence of (D\ {dg})-trees. That is to say, from an w-sequence of D-trees
we have obtained both a member dy of D and an w-sequence of (D \ {dy})-trees.

In some sense we are in the situation we started with, or very nearly. We can
repeat what we have just done on the repetition-free w-sequence of (D \ {do})-
trees. When we have done that we will have dy, d; and a repetition-free w-
sequence of (D \ {dy,d; })-trees. By iterating we obtain an infinite (repetition-
free) sequence (d; : i € IN) of elements from D.

|

10.1. QUESTIONS FOR TRIPOS 2016 237

I don’t think i am being fanciful in saying that this proof provides an antic-
ipation of Nash-Williams’ proof of Kruskal’s theorem.

And we should remember that Simpson’s application of topological ideas to
BQO theory was a huge liberation.

10.1.3 Multisets?

Is there anything useful to be said about multisets over a finite set?

238 CHAPTER 10.

Bibliography

[1] Aigner and Ziegler, “Proofs from THE BOOK”, Springer, Berlin 1998, ISBN
3-540-63698-6

[2] Azriel Levy, 'The Fraenkel-Mostowski method for independence proofs in set
theory’, in "The theory of models’ North-Holland 1965, page 225 lines 16—20.

[3] John Truss Classes of Dedekind finite cardinals (Fund Math 84 (1974) 187-
208)

239

	Revision material
	Example Sheets from Part II
	Introduction and some History
	Definitions

	Recursive Dataypes
	Wellfounded Induction
	Inductively Defined Sets
	Horn Clauses and the Uniqueness Problem
	Structural Induction
	Engendering Relations
	Rectypes and Least Fixed Points
	Fixed Point Theorems
	Rectypes as least fixed points

	Finite vs Bounded vs Unbounded Character
	Rectypes of Unbounded Character are Paradoxical
	Natural Numbers and Quine's trick
	Bounded Character

	Ordinals
	Rank functions

	Restricted Quantifiers
	Infinitary Languages
	``Wellfounded'' is Infinitary Horn
	Some Remarks on Infinitary Languages

	Greatest fixed points (``Co-rectypes'')
	Certificates
	Free vs non-free rectypes (ambiguous parses)
	A Last Crazy Thought

	Functions
	Primitive Recursion
	Some quite nasty functions are primitive recursive
	Justifying Circular Definitions

	Exercises
	Primitive Recursive Relations
	Simultaneous Recursion

	-recursion
	The Ackermann function
	The Ackermann function dominates all primitive recursive functions

	Machines
	Finite State Machines
	Kleene's theorem
	The Thought-experiment and Myhill-Nerode
	Nondeterministic Machines

	Stuff to fit in
	Exercises

	Machines with infinitely many states
	-recursive = register machine-computable
	A Universal Register Machine

	Decidable and Semidecidable Sets
	Zigzagging Autoparallelism: Volcanoes
	Decidable and Semidecidable Sets
	A Nice Illustration and a Digression
	``In finite time''—a warning

	Decidable and semidecidable sets of other things
	Applications to Logic

	The Undecidablity of the Halting Problem
	Rice's Theorem

	Recursive Inseparability
	Exercises

	Representability by -terms
	Some -calculus
	Arithmetic with Church Numerals
	Representing the operator in -calculus
	Typed Lambda terms for computable functions
	Combinators??

	Recursive and Automatic Structures
	Automatic Structures
	Automatic ordinals
	Automatic theories

	Recursive structures
	Tennenbaum's Theorem
	Recursive Saturation
	Leftovers

	Incompleteness
	Proofs of Totality
	A Theorem of Gödel's
	The T-bad function

	Undecidablity of Predicate Calculus
	Trakhtenbrot's theorem
	Refinements of theorem ??

	Notes and Appendices
	Chapter 2
	Horn clauses in rectype declarations
	Infinitary Languages

	Chapter 3
	A bit of pedantry
	The Ackermann function

	Chapter ??
	Chapter ??
	Chapter ??
	Chapter ??
	Chapter ??

	Answers to selected questions
	Questions for Tripos 2013
	Questions for Tripos 2014
	Answers

	Questions for Tripos 2015

	
	Friedberg-Muchnik
	Questions for Tripos 2016
	Finite Trees
	A topological angle…?
	Multisets?

