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1988:6:9E (maths tripos)
The Master asked 2n + 1 people and got 2n + 1 different answers. Since the largest
possible answer is 2n and the smallest is 0, there are in fact precisely 2n + 1 possible
answers and that means he has got every possible answer from 0 up to 2n inclusive.

Think about the person who shook 2n hands. This person shook hands with ev-
eryone that they possibly could shake hands with : that is to say everyone except their
spouse. So everybody except their spouse shook at least one hand. So their spouse
shook no hands at all. Thus the person who shook 2n hands and the person who shook
0 hands are married. Henceforth disregard these two people and their handshakes and
run the same argument to show that the person who shook 2n− 1 hands and the person
who shook 1 hands are married. And so on.

Where does this get us? It tells us, after n iterations, that the person who shook n+1
hands and the person who shook n − 1 hands are married. So what about the person
who shook n hands, the odd man out? Well, it must be the odd woman out, because the
only person of whom the Master asks this question who isn’t married to another person
of whom the Master asks this question is his wife.

Let’s name people (other than the Master) with the number of hands they shook.
(This is ok since they all shook different numbers of hands.) 2n didn’t shake hands with
its spouse, or itself, and there are only 2n people left, so it must have shaken hands with
all of them, in particular with the Master. Correspondingly 0 didn’t shake hands with
anyone at all, so it certainly didn’t shake hands with the Master. We continue reasoning
in this way, about 2n − 1 and 1. 2n − 1 didn’t shake hands with itself or its spouse or
with 0, and that leaves only 2n − 1 people for it to shake hands with and since it shook
2n−1 hands it must have shaken all of them, so in particular it must have shaken hands
with the Master. Did 1 shake hands with the Master? No, because 1 shook only one
hand, and that must have been 2n−1’s. And so on. The people who shook the Master’s
hand were 2n, 2n − 1, 2n − 2 . . . n + 1 and the people who didn’t were 1, 2, 3, . . . n − 1.
[or do i mean ‘n’?] And of course, the Master’s wife. So he shook n hands.

See also
https://www.dpmms.cam.ac.uk/˜tf/cam_only/keeping_out_of_mischief.

htm
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1988:6:10E (maths tripos)
Let R be a relation on a set X. Define the reflexive, symmetric and transitive
closures r(R), s(R) and t(R) of R. Let ∆ be the relation {〈x, x〉 : x ∈ X}. Prove that

1. R ◦ ∆ = R

2. (R ∪ ∆)n = ∆ ∪ (
⋃
i≤n

Ri) for n ≥ 1

3. tr(R) = rt(R).

Show also that st(R) ⊆ ts(R).

If X = IN and R = ∆ ∪ {〈x, y〉 : y = px for some prime p} describe st(R) and ts(R).

The reflexive (symmetric, transitive) closure of R is the intersection of all reflexive
(symmetric, transitive) relations of which R is a subset.

1. R∆ is R composed with the identity relation. x is related to y by R-composed-
with-S if there is z such that x is related to z by R, and z is related to y by S . Thus
R∆ = R. (I would normally prefer to write ‘R◦∆’ here, using a standard notation
for composition of relations: ‘◦’)

2. It is probably easiest to do this by induction on n. Clearly this is true for n = 1,
since the two sides are identical in that case. Suppose it is true for n = k.

(R ∪ ∆)k = ∆ ∪ (
⋃

1≤i≤k

Ri)

(R ∪ ∆)k+1 = (R ∪ ∆)k ◦ (R ∪ ∆). By induction hypothesis this is

(∆ ∪ (
⋃

1≤i≤k

Ri)) ◦ (R ∪ ∆)

Now (A∪B)◦ (C∪D) is clearly (A◦C)∪ (A◦D)∪ (B◦C)∪ (B◦D) and applying
this here we get

(∆ ◦ R) ∪ (∆ ◦ ∆) ∪ ((
⋃

1≤i≤k

Ri) ◦ R) ∪ ((
⋃

1≤i≤k

Ri) ◦ ∆)

Now ∆◦R is R; ∆◦∆ is ∆; (
⋃

1≤i≤k

Ri) ◦ ∆ is
⋃

1≤i≤k

Ri and (
⋃

1≤i≤k

Ri) ◦ R is (
⋃

1<i≤k+1

Ri)

so we get

R ∪ ∆ ∪ (
⋃

1<i≤k+1

Ri) ∪ (
⋃
i≤k

Ri)

which is
∆ ∪

⋃
1≤i≤k+1

Ri
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3. The transitive closure of the reflexive closure of R is the transitive closure of
R ∪ ∆ which is

⋃
n∈IN

(R ∪ ∆)n which (as we have—more-or-less—just proved) is

∆ ∪ (
⋃
i∈IN

Ri) which is the reflexive closure of the transitive closure of R.

s is increasing so R ⊆ s(R). t is monotone, so t(R) ⊆ t(s(R)). But the transitive
closure of a symmetrical relation is symmetrical so t(R) ⊆ t(s(R)) implies s(t(R)) ⊆
t(s(R)) as desired.

Finally if X = IN and R = ∆ ∪ {〈x, y〉 : y = px for some prime p} then st(R) is the
relation that holds between two numbers when they are identical or one is a multiple of
the other, and ts(R) is the universal relation IN×IN.

1990:1:9
Peter Dickman’s model answer

We are asked to use generating functions to prove that:

cn =
1
n

(
2n − 2
n − 1

)
where cn is the number of binary trees with n leaves (NB not n vertices) where

no vertex has precisely one descendent. Now the formula given is remarkably similar
to the one for Catalan numbers – which were introduced in the section of the course
concerned with generating functions. So these may well be useful in answering this
question.

Recall that for Catalan numbers:

Cn =
1

n + 1

(
2n
n

)
so it is (hopefully) clear that Cn = cn+1.
To use generating functions it is necessary to find a recurrence relation. . .
Consider trees of the form described in the question. Clearly, any such tree which

has more than one leaf can be viewed as being composed of two trees joined together
by a single (new) root vertex, whose descendents are the two roots of the component
smaller trees. Now the sum total of leaves in these sub-trees will be the same as the
number of leaves in the composite; and each tree will have at least one leaf. So, the
number of trees with some given number of leaves can be determined by considering
all of the ways such a tree can be split into left & right subtrees, and the parts combined
together.

It follows that:

∀n ≥ 1 : cn+1 = c1cn + c2cn−1 + c3cn−2 + . . . + cnc1

Note that we have n ≥ 1 in the above, because the equation is giving us an expres-
sion for n + 1. The recurrence only holds for the trees with two or more leaves (as we
assumed that the root had two descendents).
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Also we know that c1 = 1 by inspection.
Note that I’ve written this out for the case n + 1 not, as I would normally do, the

case n because it makes everything neater later. The result can be achieved from the n
case but is a bit messier. The only hint I can give as to how to tell that this is helpful
in advance is that we already knew that there was an “off by one” effect present in this
question.

Now, let us consider dn = cn+1,∀n ≥ 0. Then we have that:

∀n ≥ 1 : dn = d0dn−1 + d1dn−2 + . . . + dn−1d0

Now, if we define dk = 0,∀k < 0 then we have that

∀n ≥ 1 : dn =

n−1∑
i=0

didn−1−i =

∞∑
i=0

didn−1−i

Now, the generating function for the dn, called D(z) say, has the property that the
coefficient of zn in D(z) is dn. So we have that:

[zn]D(z) =

{
1 if n = 0∑∞

i=0 didn−1−i otherwise

Whence we derive:

D(z) =

∞∑
n=0

dnzn

= 1 +

∞∑
n=1

∞∑
i=0

didn−1−izn

= 1 +

∞∑
n=1

∞∑
i=0

didn−1−izizn−1−iz

= 1 + z
∞∑

n=1

∞∑
i=0

didn−1−izizn−1−i

= 1 + z
∞∑

n=1

∞∑
i=0

dizi · dn−1−izn−1−i

= 1 + z(D(z))2

since the penultimate line is a convolution.
This is a formula we recognise from the Catalan numbers, so we proceed by fol-

lowing the same argument as in the lecture notes. . .
Reorganising this gives us:

z(D(z))2 − D(z) + 1 = 0

Solving this we find that:
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D(z) =
1 ±
√

1 − 4z
2z

Since dn is non-negative ∀n and since
√

1 − 4z has only negative signs after the first
term we can eliminate the form with an addition in and find:

D(z) =
1 −
√

1 − 4z
2z

Which, from a standard binomial identity leads us to:

D(z) =
1 −
√

1 − 4z
2z

=
∑
k≥0

1
k + 1

(
2k
k

)
zk

So we find that:

dn = [zn]D(z) =
1

n + 1

(
2n
n

)
However, dn = cn+1,∀n ≥ 0 therefore we have that:

∀n ≥ 1 : cn =
1
n

(
2n − 2
n − 1

)
as required.
Note that the formula is obviously useless for n = 0 as it would give c0 = ∞ so

we clearly aren’t being expected to worry about that case. However it might be worth
pointing this out.

The second part of the question asks how many trees of the form considered, with
n leaves, have depth n − 1. Again let’s look for a recurrence relation. I’ll skip through
this fairly quickly. . . I suggest that you draw some pictures as you read through this.
Be aware of the assumption that n > 2 in the following.

Consider the trees of this form, that have n leaves and are of depth n−1, for arbitrary
n > 2. Given such a tree, let the number of leaves at depth n− 1 (ie the maximal depth)
be k.

From such a tree we can construct k distinct trees of depth n which have n+1 leaves
by taking one of the leaves at the n − 1 level and replacing it with a vertex with two
descendents, which are themselves leaves.

Now consider a tree of depth n with n+1 leaves, satisfying the condition on numbers
of descendents. Selecting any leaf at the maximal depth, its parent is at depth n − 1
and, by the condition on numbers of descendents, this has another child at depth n.
Replacing these two leaves and their parent vertex with a single leaf at depth n − 1 we
either construct a tree with n leaves of depth n− 1 (if we have removed the only pair of
leaves at the maximal depth) or we have a tree of n leaves of depth n.

However the depth of one of our trees must be strictly less than the number of
leaves. Assume otherwise, ie that for some such tree, the number of leaves is less than
or equal to the depth. Since each ‘plucking’ operation of the form described above
reduces the number of leaves by one and the number of levels by at most one, we
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would be able to construct a tree with 2 leaves and depth of at least 2 – which is clearly
impossible.

So, we have shown that each such tree has precisely 2 leaves at its terminal level,
and that the only possible constructions are the k variants of each of the trees of one
smaller size. But k is the number of leaves at the terminal level i.e. 2, so we have a
doubling of the number of possible trees at each level. Given that there are 1 = 20 trees
with 2 leaves of depth 1, 2 = 21 trees with 3 leaves of depth 2 and so forth we have
that,

(∀n ≥ 2)(∃ 2n−2 trivalent trees with n leaves and depth n − 1)

1990:1:11
Equivalence relations correspond to partitions. A PER 〈X,R〉 that fails to be an equiv-
alence relation features elements x ∈ X such that 〈x, x〉 < R. Such elements are not
related to anything at all, since if x is related to y, then by symmetry y is related to x
and by transitivity x is related to x.

So we put on one side all the x ∈ X such that 〈x, x〉 < R, leaving behind a subset X′ ⊆
X consisting of all those elements related to themselves by R. What is the restriction
of R to this set? Clearly it is reflexive. Actually it is transitive and symmetrical as
well, because X′ × X′ is transitive and symmetrical, and transitivity and symmetry are
intersection-closed properties so R ∩ (X′ × X′) will be transitive and symmetrical. So
R ∩ (X′ × X′) is an equivalence relation on X′.

How many PER’s on a set with 4 elements?
There is one way of throwing away no elements, leaving 4. These can be either

all in one piece 1

one singleton, one triple 4

two pairs 3

two singletons 6

all singletons 1

There are 4 ways of throwing away one element, leaving 3. These can be either

all in one piece 1 × 4 = 4

one singleton, one pair 3 × 4 = 12

three singletons, 1 × 4 = 4

There are 6 ways of throwing away two elements, leaving 2. These can be either

all in one piece 1 × 6 = 6

two singletons 1 × 6 = 6

There are 4 ways of throwing away 3 elements leaving 1.

This can be partitioned in only one way 1 ×4 = 4

52
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Let us prove that T is a PER. We first show that it is transitive. Suppose

(i) 〈 f , g〉 ∈ T and

(ii) 〈g, h〉 ∈ T . We want 〈 f , h〉 ∈ T .

By definition of T we infer

(iii) (∀x1, x2 ∈ X)(〈x1, x2〉 ∈ R→ 〈 f (x1), g(x2)〉 ∈ S ) and

(iv) (∀x2, x3 ∈ X)(〈x2, x3〉 ∈ R → 〈g(x2), h(x3)〉 ∈ S ). (We have relettered
variable to make life easier)

Now let x1 and x3 be two elements of X such that 〈x1, x3〉 ∈ R. We want to in-
fer 〈 f (x1), g(x3)〉 ∈ S . R is symmetrical so 〈x3, x1〉 ∈ R too. So, by transitivity, we
have 〈x1, x1〉 ∈ R. By (iii) we can infer 〈 f (x1), g(x1)〉 ∈ S . We now use (iv) on our
assumption that x1 and x3 are two elements of X such that 〈x1, x3〉 ∈ R to infer that
〈g(x1), h(x3)〉 ∈ S . Finally, by transitivity of S , we infer that 〈 f (x1), h(x3)〉 ∈ S as
desired.

It is much easier to show that T is symmetric. Suppose 〈 f , g〉 ∈ T and let x1 and x2
be two elements of X such that 〈x1, x2〉 ∈ R. We want to infer 〈 f (x1), g(x2)〉 ∈ S . R is
symmetric, so we infer 〈x2, x1〉 ∈ R, whence 〈 f (x1), g(x2)〉 ∈ S as desired.

To show that T is not in general reflexive, even if R and S both are, take R to be the
universal relation on X and S to be the identity relation on Y , where both X and Y have
at least two members.

1993:11:11
〈A,≤〉 is a partially ordered set if

1. (∀x, y, z ∈ A)(x ≤ y→ (y ≤ z→ x ≤ z) (≤ is transitive)

2. (∀x, y ∈ A)(x ≤ y→ (y ≤ x→ x = y)) (≤ is antisymmetrical)

3. (∀x ∈ A)(x ≤ x) (≤ is reflexive)

In what follows we write ‘x < y’ for ‘x ≤ y ∧ y , x’

(a) If 〈A,≤〉 is to form a totally ordered set then in addition ≤ must satisfy
connexity.

(∀x, y ∈ A)(x ≤ y ∨ y ≤ x)

or equivalently < must satisfy trichotomy

(∀x, y ∈ A)(x < y ∨ x = y ∨ y < x)

(b) If 〈A,≤〉 is to be wellfounded then in addition < (which is the strict
version of ≤, namely {〈x, y〉 : x ≤ y∧x , y}) must satisfy wellfoundedness:

(∀A′ ⊆ A)(∃x ∈ A′)(∀y ∈ A′)(y ≮ x)
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(This détour via strict partial orders is necessary because no wellfounded relation
can be reflexive.)

(c) If 〈A,≤〉 is to be a complete partially ordered set then one of the follow-
ing conditions on ≤ must be satisfied, depending on what your definition
of complete poset is:

One definition is that every subset of A must have a least upper bound in
the sense of ≤. This is

(∀A′ ⊆ A)(∃x ∈ A)[(∀y ∈ A′)(y ≤ x)∧(∀z ∈ A)((∀y ∈ A′)(y ≤ z)→ x ≤ z)]

. . . or that every directed subset of A has a least upper bound. A′ is a
directed subset of A if (∀x, y ∈ A′)(∃z ∈ A′)(x ≤ z ∧ y ≤ z). (They
probably don’t mean that tho’.)

To show that the restriction of a partial order of A to some subset B of A is a partial
order of B we have to check that R∩ (B×B) is reflexive transitive and antisymmetrical.
Now B×B is reflexive and transitive, as is R; reflexivity and transitivity are intersection-
closed properties, so R∩ (B× B) is reflexive and transitive. To verify antisymmetry we
have to check that if 〈x, y〉 and 〈y, x〉 are both in R∩ (B×B) then x = y. But if 〈x, y〉 and
〈y, x〉 are both in R∩ (B×B) then they are both in R, and we know R is antisymmetrical,
whence x = y as desired.

(A deeper proof can be obtained by noting only that all the clauses in the definition
of partial order are universal. Any universal sentence true in A is true in any subset
of A. After all, a universal sentence is true as long as there is no counterexample to
it. If A contains no counterexamples, neither can any subset of A. This shows that a
substructure of a total order is a total order and this is useful later on in the question
. . . )

Z (i) ≤ is a partial order of Z. Indeed it is a total order. (ii) It isn’t wellfounded
(e.g.: no bottom element) nor (iii) is it a complete poset (e.g.: no top element).

Divisibility (i) is not a partial order because for any integer n, n and −n divide
each other but are distinct, so it isn’t antisymmetrical. (ii) The relation “n divides
m but not vice versa” is wellfounded on Z however. If X ⊆ Z, then its minimal
elements under “n divides m but not vice versa” are precisely the minimal ele-
ments of {|n| : n ∈ X} under “n divides m but not vice versa”, and this relation,
being a subset of a wellfounded relation (and ≤ is wellfounded on IN) is itself
wellfounded. (iii) Z is not a complete poset under divisibility for the same reason
as before.

IN ≤ is a partial order of IN. Indeed it is a total order. It is also wellfounded but it is
not a complete poset (as before)

Divisibility is a partial order on IN but not a total order, it is wellfounded. This
time we do get a complete poset, because everything divides 0.

IN+ As for IN except that it is not a complete poset (e.g.: no top element)
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1994:10:11
The way to do part 2 is to stop trying to be clever and do it the easy way. Let An, Bn, Cn

be the number of valid strings in {A, B,C}n ending in A, B and C respectively. Clearly

Cn+1 = An + Bn + Cn

and
An+1 = Bn+1 = Bn + Cn

This is because if the last character of a legal string is an A or a B then the penultimate
character cannot be an A. We are not going to try to do anything clever like derive the
equality we have been given, but we can at least confirm it! So let’s try to simplify

2(An+1 + Bn+1 + Cn+1) + An + Bn + Cn

and hope that it simplifies to An+2 + Bn+2 + Cn+2.
Take out Bn+1 + Cn+1 twice to give An+2 + Bn+2, leaving 2An+1 + An + Bn + Cn. The

last three terms add up to Cn+1, and 2An+1 = An+1 + Bn+1 so this is An+1 + Bn+1 + Cn+1
which is Cn+2. Together with the An+2 + Bn+2 this adds up to v(n + 2) as desired.

Part 3 is ‘A’-level maths that you remember from your crèche.

1995:5:4X (maths 1a)
Well, adapted from it!

fun f n = if n = 0 then 0 else g(f(n-1) + 1, 1) -1

and g(n,m) = f(f(n-1)) + m + 1;

What are the ML types of these two functions?
What are the running times of f and g?
By inspection we notice that (∀n ∈ IN)(f(n) = n), but we had better prove it! It’s

true for n = 0. For the induction step the recursive declaration tells us that

f(n + 1) = g(f(n) + 1, 1) − 1 (by substituting n + 1 for n)

But f(n) = n by induction hypothesis so this becomes

f(n + 1) = g(n + 1, 1) − 1

Now, substituting (n + 1) for n and 1 for m in the declaration for g we get

g(n + 1, 1) = (n + 1 − 1) + 1 + 1

which is n + 2, giving f(n + 1) = n + 1 as desired.

(d)

The mutual recursion gives us a pair of mutual recurrence relations:
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A: F(n) = G( f (n − 1) + 1, 1) + F(n − 1)

B: G(n,m) = F(n − 1) + F(f(n − 1)) + k

where F is the cost function for f and G is the cost function for g.
Using f(n) = n we can simplify our recurrence relations as follows.

A′: F(n) = G(n, 1) + F(n − 1)

B′: G(n,m) = F(n − 1) + F(n − 1) + k whence

B′′: G(n,m) = 2 · F(n − 1) + k

This gives

F(n) = F(n − 1) + F(n − 1) + F(n − 1) + k

so F(n) grows like 3n.
G is exponential too. We have assumed that the cost of adding the second agument

(‘m’) is constant, but altho’ this simplification will cause no problems it is a simplifi-
cation nevertheless. Adding two arguments takes time proportional to the logarithm of
the larger of the two. Fortunately the cost functions of these algorithms are so huge
that an extra log or two will make no difference to the order.

1996:1:7
A partial ordering is a relation that is reflexive, antisymmetrical and transitive.

‘Topological sort’ is Compsci jargon for refining a partial ordering, which just
means adding ordered pairs to a partial ordering to get a total ordering. The two partial
orders of IN × IN that you have seen are the pointwise product (〈x, y〉 ≤p 〈x′, y′〉 iff
x ≤ x′ ∧ y ≤ y′) and the lexicographic product (〈x, y〉 ≤lex 〈x′, y′〉 iff x < x′ ∨ (x =

x′ ∧ y ≤ y′)). The second is clearly a refinement of the first. It is also clear that the
lexicographic product IN × IN is not isomorphic to IN in the usual ordering, since it
consists of ω copies of IN. (ω is the length of IN in its usual ordering: the length of
IN × IN in the product ordering is therefore said to be ω2).

To get a refinement of the product ordering of IN× IN that is isomorphic to the usual
ordering on IN we notice that for a wellordering to be isomorphic to the usual ordering
on IN it is sufficient for each point to have only finitely many things below it (given that
is also a wellordering, that is). Try 〈x, y〉 ≤ 〈x′, y′〉 iff (x + y) < (x′ + y′) ∨ (x + y =

x′+y′∧x ≤ x′). It’s a total order, each element has only finitely many things below it (so
it’s isomorphic to the usual order on IN) and it refines the pointwise product ordering.

1996:1:8
The recurrence

R : w(n, k) = w(n − 2k, k) + w(n, k − 1)

can be justified as follows. Every representation of n pfatz as a pile of coins of size
no more than 2k pfatz either contains a 2k pfatz piece or it doesn’t. Clearly there are
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w(n, k − 1) representations of n pfatz as a pile of coins of size no more than 2k−1 pfatz
so that’s where the w(n, k − 1) comes from. The other figure arises from the fact that a
representation of n pfatz as a pile of coins of size no more than 2k pfatz and containing
a 2k pfatz piece arises from a representation of n − 2k pfatz as a pile of coins of size no
more than 2k.

Base case. w(n, 0) = 1. That should be enough.
To derive w(4n, 2) = (n + 1)2, substitute 4n for n, and 2 for k in R, getting

w(4n, 2) = w(4n − 22, 2) + w(4n, 1)

But this rearranges to

w(4n, 2) = w(4(n − 1), 2) + w(4n, 1)

w(4n, 1) is 2n+1, since we can have between 0 and 2n 2-pfatz pieces in a representation
of 4n. This gives

w(4n, 2) = w(4(n − 1), 2) + 2n + 1

This is a bit clearer if we write this as f (n) = f (n−1) + 2n + 1. This recurrence relation
obviously gives f (n) = (n + 1)2 as desired .

We can always get an estimate of w(n, k) by applying equation R recursing on n, and
this works out quite nicely if n is a multiple of 2k because then we hit 0 exactly, after
n/(2k) steps. Each time we call the recursion we add w(n, k−1) (or rather w(n−y, k−1)
for various y) and clearly w(n, k − 1) is the biggest of them. So w(n, k) is no more than
n/(2k) · w(n, k − 1).

Finally, using R with 2k+1 for n again we get w(2k+1, k) = w(2k, k) + w(2k+1, k − 1).
The hint reminds us that every representation of 2k pfatz using the first k coins gives
rise to a representation of 2k+1 pfatz using the first k + 1 coins. Simply double the size
of every coin. It’s also true that every representation of 2k pfatz using the first k coins
gives rise to a representation of 2k+1 pfatz using the first k + 1 coins by just adding a
2k pfatz piece. The moral is: w(2k+1, k + 1) = 2 · w(2k, k). This enables us to prove the
left-hand inequality by induction on k.

To prove the right-hand inequality we note that any manifestation of 2k pfatz using
smaller coins can be tho’rt of as a list of length k where the ith member of the list tells
us how many 2i pfatz coins we are using. How many lists of length k each of whose
entries are at most 2k are there? Answer (2k)k, which is 2k2

.

1997:1:2

1997:1:7
(a) Yes: equality is a partial order, and it is tree-like because the set of strict prede-

cessors is always empty.

(b) Yes. The usual order is a partial (indeed total) order and every total order is
tree-like.
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(c) No. This is a partial order but is not tree-like because (for example) 6 has two
immediate strict predessors.

(d) This is reflexive and antisymmetrical (if x R y and yRx—so that x and y are either
equal or each is the greatest prime factor of the other—then they are equal). The
hard part is to show that it is transitive. Suppose x R y and y R z. If x = y or
z = z we deduce x R z at once, so consider the case where x R y and y R z hold,
but not in virtue of x = y or y = z. But this case cannot arise, because if y R z
and y , z, then y is a prime, and the only x such that x R y is y itself. Finally,
it’s easy to show this relation is tree-like, because no number can have more than
one greatest prime factor.

It seem to me that the number of treelike partial orderings of n elements is precisely
n!. Each treelike partial ordering of n chaps gives rise to n new partial orderings be-
cause the extra chap can be stuck on top of any of the n things already there. No new
partial ordering gets counted twice.

2002:1:8
The last part seems to have caused problems for some. Let’s have a look.

We are contemplating relations that hold between elements of Ω and subsets of Ω.
An example of the sort of thing the examiner has in mind is the relation that a point y
in the plane bears to a (typically non-convex) region X when y is in the convex hull of
X.

y

X

The idea is that y is one of the points you have to “add” to obtain something convex.
(Check that you know what a convex set is, as i’m going to procede on the assumption
that you do, and use it as a—one hopes!—illuminating illustration)

What is R? A is an intersection-closed family of subsets of Ω. (As it might be, the
collection of convex subsets of the plane). We are told that it is the relation that relates
y to X whenever anything in A that extends X also contains y. In our illustration—
where A is the collection of convex subsets of the plane— R is the relation that hold
between X and y whenever y is in the convex hull of X. (If you don’t already know the
meaning of the expression “convex hull” you can probably guess it from the news that,
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in the picture above, y is in the convex hull of X.) Certainly in this case any set that is
R-closed is convex.

Assume C is R-closed. That is to say

∀(X, y) ∈ R.X ⊆ C → y ∈ C (1)

(That’s in their notation: i’d’ve written it (∀〈X, y〉 ∈ R)(X ⊆ C → y ∈ C) which (i
think) makes the scoping clearer.)

But R = {(X, y) ∈ P(Ω) ×Ω : (∀A ∈ A)(X ⊆ A→ y ∈ A)}. Substituting this for ‘R’
in (1) we obtain

∀(X, y) ∈ {(X, y) ∈ P(Ω) ×Ω : (∀A ∈ A)(X ⊆ A→ y ∈ A)}.X ⊆ C → y ∈ C (2)

which reduces to

(∀X, y)[(∀A ∈ A)(X ⊆ A→ y ∈ A) ∧ X ⊆ C.→ y ∈ C] (3)

The examiners suggest you should consider the set {A ∈ A : C ⊆ A}. I think they
want you to look at

⋂
{A ∈ A : C ⊆ A}.

If you’ve followed the action this far you would probably think of this anyway,
since this is a set that you know must be in A and it seems to stand an outside chance
of being equal to C. So let’s look again at (3) to see if it does, in fact, tell us that⋂
{A ∈ A : C ⊆ A} is C.

And—of course—it does. First we instantiate ‘X’ to ‘C’ in (3) to obtain:

∀y[(∀A ∈ A)(C ⊆ A→ y ∈ A)→ y ∈ C] (4)

Now let y be an arbitrary member of
⋂
{A ∈ A : C ⊆ A}. That means that y satisfies

the antecedent of 4. So it satisifes the consequent of 4 as well. So we have proved that⋂
{A ∈ A : C ⊆ A} is a subset of C. It was always a superset of C, so it is equal to C.

So C ∈ A as desired.
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