APPENDIX

A CONSISTENCY PROOY FOR FORMAL
NUMBER THEORY

The first consisteney proof for first-order number theory S was given
by Gentzen [1936, 1938b]. Since then, other proofs along similar lines
have been given by Ackermann [1940], Lorenzen [1951], Schiitte [1951,
19601, and Hlodovskii [1959].  As can be expected from Godel’s Second
Theorem (cf. page 148), all these proofs use methods which apparently
are not available in 8. Our exposition will follow Schiitte’s proof
[1951]. :

The congistency proof will apply to a system S, which is much
stronger than 8. 8, is to have the same individual constant 0 and the
same function letters 4+, -, "as S {cf. pp. 102-103), and the same predi-
cateletter =. Thus, Sand 8, havethe same terms and, hence, the same
atomic formulag (i.e., formulas s = ¢, where s and ¢ are terms). How-
ever, the primitive propositional connectives of 8., will be v and ~,
whereas § had > and ~ as its basic connectives. We define a wf of
S, to be an expression built up from the atomic formulas by a finite
number of applications of the connectives v and ~ and of the
quantifiers (x;) i = 1,2,...). We let & = # stand for (~sf) v
then any wl of 8 is an abbreviation of a wf of 8.

A closed atomic wf s = £ (i.e., an atomic wif containing no variables)
is called correct, if, when we evaluate s and ¢ according to the usual
recursion equations for + and -, the same value is obtained for s and ¢;
if different values are obtained, s = ¢ is said to be éncorrect. Clearly,
one can effectively determine whether a given closed atomic wf is
correct or incorrect.

As azioms of 8, we take: (a) all correct closed atomic wifs;
(b) negations of all incorrect closed atomic wifs. Thus, for example,
(0" (0") + 07 = (0™)-(0") and 0’ + 0" # 07-0" are axioms of S,.

4, has the following rules of inference:
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I. Weak Rules

CvAvBYD

Exch :
a) FExehange EVvVEYVSA VD

S o NN G
b) C dation;: _—
{b) Consolidation A
II. Strong Rules
(a) Dilution: _Z _ here &7 i losed wf
TV G (where &7 is any cloged w{)

~ v G ~% v Z

b) DeM :
(b) DeMorgan NP AVE VR

. A v G
Negation: ————
{c) Negation VD
. . o~V D .
(d) Quantification: @) v 2 (where ¢ is a closed term)
. R ViV V) for all natural numbers n
(e) Infinite Induction: Gl v @
G v o ~E D

II1. Cut:

€ v g

In all these rules, the wis above the line are called premisses, and the
wis below the line, conclusions. The wis denoted by % and 2 are called
the side wis of the rule; in every rule either or both side wfs may be
absent—except that % must oceur in a dilution (I1{a)), and at least one
A~ N D

of ¥ and & in a cut (IIT). For example, 7 is a cut, and

~d  ~B

iz VB is an instance of DeMorgan’s Rule, II{(b). In any rule, the

wis which are not side wfs are called the principal wfs; these are the wis
denoted by «f and & in the presentation above of the rules. The
principal wf .7 of a cut is called the cuf wf; the number of propositional
connectives and quantifiers in ~ .o/ is called the degree of the cut.

We still must define the notion of a proof in 8. . Because of the
Rule of Infinite Induction this is much more complicated than the
notion of proof in 8. A G-free is defined to be a graph the points of
which can be decomposed into disjoint “levels” as follows: At level 0,
there is a single point, called the ferminal point; each point at level
i + 1is connected by an edge to exactly one point at level i; each point
P at loveliis connected by edges to either zero, one, two, or denumerably
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many points at level i + 1 (these latter points at level i + 1 are o@ﬁm&
the predecessors of P); each point at level i is connected only to .wuo:a_um
atleveli — lori + 1;a point at level i not connected to any points at
level i + 1 is called an indtial point.

Examples of G-trees.

(1)

Level 4

Level 3

Level 2

Level 1

E Level 0
A, B, ¢, D, are initial points. E is the terminal pomt.

{2) M

E

A, B, C;, Us, Cg,. . .are the initial points. H is the terminal point.

(3)

A is the only initial point.
B is the terminal point.
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By a proof-tree, we mean an assignment of wfs of S, to the points of
a G-tree such that

{1} The wis assigned to the initial points are axioms of 8, ;

{2) The wfs assigned to a non-initial point P and to the predecessors
of P are, respectively, the conclusion and premisses of some rule of
inference;

(3) There is a maximal degree of the cuts appearing in the proof-tree.
This maximal degree is called the degree of the proof-tree. If there are
no cuts, the degree is 0;

(4) There is an assignment of an ordinal number to each wf occurring
in the proof-tree such that (a} the ordinal of the conclusion of a weak
rule is the same ag the ordinal of the premiss; (b) the ordinal of the
conclusion of a strong rule or a cut is greater than the ordinals of
the premisses.

The wf assigned to the terminal point of a proof-tree is called the
terminal wf; the ordinal of the terminal wf is called the ordinal of the
proof-tree. The proof-tree is said to be a proof of the terminal wf, and
the theorems of 8, are defined to be the wis which are terminal wfs of
proof-trees. Notice that, since all axioms of 8, are closed wfs and the
rules of inference take closed premisses into closed consequences, all
theorems of S, are closed wis.

A thread in a proof-tree is a finite or denumerable sequence <7, o7, . .
of wis starting with the terminal wf and such that each wf .o/, is a
predecessor of o7;. Hence, the ordinals ¢, «,, .. . assigned to the wis
in a thread do not increase, and they decrease at each application of a
strong rule or a cut. Since there cannot exist a denumerably decreasing
sequence of ordinals, it follows that only a finite number of applications
of strong rules or cuts can be involved in a thread. Also, to a given wf,
only a finite number of applications of weak rules are necessary.
Hence, we can-assume that there are only a finite number of consecutive
applications of weak rules in any thread of a proof-tree.  (Let us make
this part of the definition of “proof-tree”.) Then every thread of a
proof-tree ig finite.

If we restrict the class of ordinals which may be assigned to the wfs
of a proof-tree, then this restricts the notion of a proof-tree, and,
therefore, we obtain a (possibly) smaller set of theorems. If one uses
various “constructive’” segments of denumerable ordinals, then the
systems so obtained and the methods used in the consistency proof
below may be considered more or less “constructive”.
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BEXHRUISE

tive rules (EY SV VE G v (o v )

Prove that the associative rules G (A B and (¥ v &) v &

are derivable from the exchange rule, assuming association to the left.
Hence, parentheses may be omitted from a disjunction.

Levma A-1.  Lef o be a closed wi having n connectives and quantifiers,
Then there is o proof of ~7 v o of ordinal <2n + 1 (in which no
cul is used).

PROOF. Induction on n. _

(1) n = 0. Then o is a closed atomic wf. Henee, sither =7 or ~ .o/
is an axiom, because o7 is either correct or incorrect. Hence, by one
application of the Dilution Rule, one of the following is a proof-tree.

~
N4 dilution
dilution | or Ay o~
~of v oo exchange
~f Vo

Hence, we can assign ordinals so that the proof of ~.7 v o/ has
ordinal 1.
{2) Assume true for all k < n,

Case (i) &/ is oy v of,. By inductive hypothesis, there are
proofs of ~.wf; v of; and ~o/, v &7, of ordinals <2n — 1) + 1 =
2n — 1. By dilution, we obtain proofs of ~./, v &/, v &, and
~aly Vo VoA, respectively, of order 2n, and, by DeMorgan’s
Rule, a proof of ~ (/) v &7,) v &, v o/, of ordinal 2n + 1.

Case (ii): .o/ is ~#. Then, by inductive hypothesis, there is a
proof of ~# v # of ordinal 2n — 1. By the EKxchange Rule, we
obtain a proof of # v ~4 of ordinal 2n — 1, and then, applying the
Negation Rule, we have a proof of ~ ~%# v ~H,ie., of ~of v o, of
ordinal 2n < 2n + 1.

Cage (iii): o/ is (x)#Z(x). By inductive hypothesis, for every
natural number k, there is a proof of ~#(k) v #(k) of ordinal <2n — 1.
'Then, by the Quantification Rule, for each k there is a proof of

(~(x)#(x)) v #(k) of ordinal <2nand, hence, by the Exchange Rule, a
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proof of (k) v ~ (2)%() of ordinal <2n. Finally, by an application
of the Infinite Induction Rule, we obtain a proof of (z)Z(z)) v ~ (v)%(x)
of ordinal <2n + 1,and, by the Exchange Rule, a proof of (~ ()%#(xz)) v

(z)%B(x) of ordinal <2n + 1.

Lemma A-2. For any closed terms ¢ and s, and ony wi o7(x)
with ® as its only free variable, the wf ¢ # £ v ~./(s) v () is a
theorem of S, and is provable without applying the Cut Rule.

PROOF. In general, if a closed wf #(¢) is provable in §,,, and s has
the same value as ¢, then 2(s) is also provablein 8. (Simply replace
all occurrences of £ which are “deductively connected’ with the f in the
terminal wf #(f) by s.) Now, if s has the same value 1 as £, then, since
~./(n} v .o/ (n) is provable, it follows by the previous remark that
~f(s) v &/ (t)is provable. Hence, by dilution, s # ¢t v ~sZ(s) v (1)
is provable. If s and  have different values, s = ¢ is incorrect: hence,
§ # tis an axiom. 8o, by dilution and exchange, s # ¢ v ~.o(s) v
() Is a theorem,

Lamma A-3, EBvery closed wf which ts a theorem of S is also a theorem
of 8.

PROOF. Let o/ be a closed wf which is a theorem of 8. Clearly,
every proof in S can be represented in the form of a finite proof-tree,
where the initial wfs are axioms of S and the rules of inference are
modus ponens and generalization. Letn be an ordinal assigned to such
a proof-tree for o7,

If n = 0, then & is an axiom of S (cf. page 103).

(1) o is B> (F > B),ie, ~B vV (~F v H. But, ~F v & is
provable in 8, (Lemma A-1). Hence, so is ~Z v ~% v # by a
dilution and an exchange.

2) A B FE>2D)(HF>F) > (B >D), ie, ~(~F v
~E NV D)V ~(~B N E)V (~F v ). By Lemma A-1, we have
B NE) Y ~FB v Cand(~H v ~EVD)V ~(~FBYV ~F v D).
Then, by exchange, a cut (with € as cut formula), and consoclidation,
~(~B N ~E VDYV ~(~FBVE)V ~F v D is provable.

(3) His(~H > ~d) > ((~H > ) > B)),ie., ~(~~B Vv ~F)
V~(~~%F v oy v B Now, by Lemma A-1 we have ~% v %, and
then, by the Negation Rule, ~~ ~% v %, and, by dilution and
exchange,

(@) ~~~B Y ~ (B )V B
Similarly, we obtain ~ ~ ~# v B v ~~of and ~F vV BV ~ ~oA,
and by DeMorgan’s Rule, ~(~~% v /) v # v ~ ~sf; then, by
exchange,
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(b) ~~f v ~(~~F v )y v B.
From (a) and {b), by DeMorgan’s Rule, we have ~{~ ~% v ~xf) v
~(~~F v Ay v B

(4) o is (x)H(x) = H{), Le., (~(x)H(x)) v #(t). Then, by Lemma
A-1, we have ~4(t) v #(f); by the Quantification Rule, (~ (x)%(z))
v #(t).

(5) of is (x)(F o F) 2 (#F > (x)¥F), where x is not free in #, i.e,
~{E~DB v Clx) v ~Z v (x)€(x). Now, by Lemma A-1, for every
natural number n, there is a proof of ~(~% v €(n)) v ~% v (0.
(Note that the ordinals of these proofs are bounded by 2k + 1, where
k is the number of propositional connectives and guantifiers in
~% v €x).)

Hence, by the Quantification Rule, for each n, there is a proof of

~ (N ~B v Gx) v ~F v Fm) (of ordinal <2k + 2)
Hence, by exchange and infinite induction, there is a proof of
~@f~B v E@) v ~B v (@)% () (of ordinal <2k | 3)

(S1) o ity = 8y D (8, =ty D by = 1), 10, by # 1y V & # 5 V Iy =15
Apply Lemma A-2, with ® = {3 as o/ {x), £; ag 5, {5 as L.

(82) & is &, =5 2 (£,) = (ty), de., t; #ty v (£;) = (&), If
and ¢, have the same value, then so do {;)’ and (£,)'. Hence (§;) = (f3)’
is correct and therefore an axiom. By dilution, we obtain £; = §;, v
{t;) = {t;). If ¢, and {; have different values, ¢, # £, is an axiom;
hence, by dilution and exchange, #; # &, v (£;) = (f,)" is provable.

(83) & is 0 # t'. 0 and ¢ have different values; hence, 0 # #' is an
axiom.

(S4) s (ty) = (i) =28 =y, 1e, () £ (&) v § = 1. {Exercise.)

{(85) of st + 0 =t ¢+ 0 and ¢ have the same values. Hence,
t + 0 = tis an axiom.

{86)-(S8) follow similarly from the recursion equations for evaluating
closed terms.

(S9) o is B(0) = ((x)(#B(x) = B(=)) > (x)B(x)), Le.,
~BO) v o~ (@)~ B(x) v B) v (0) B )
(1} Clearly, by Lemma A-1, exchange and dilution,
~B0) v ~(x)(~ZF(x) v ) v #(0)is provable.

{2} For k > ¢, let us prove by induction that the following wf is
provable: :

~BOY YV ~(~BO) v BL) v...v ~(~FBk) v BK)) v B
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(a) Fork = 0; —g_ ~ ~%&(0) v ~%(0) v #(I) by Lemma A-1,
dilution, and exchange; similarly, g ~%(1) v ~%(0) v #(1).
Hence, by DeMorgan’s Rule, g ~(~%(0) v #(1)) v ~F(0) v
(1), and, by exchange,

_ ~B0) v ~(~B(0) v BI) v BT
(b) Assume for k:
. ~B(0) v~ (~BO) v B v
v ~(~%k) v BK)) v #k')

s

Hence, by exchange, negation, and dilution,

~~BE) YV ~BOY YV ~(~BO) v B(I)) V

Tm.B
v ~(~ABk) v BE)) v B
Also, by Lemma A-1 for #(k"), dilution and exchange,
g, ~BE) v ~B0) v ~(~B(0) v B(I)) v .
v ~{(~Bk) v BI) v Bk"),
Hence, by DeMorgan’s Rule,
g, ~(~BE) v BE") v ~BOY vV ~(~BO0) v BT) V...

v o~ (~%k) v BK)) v BE")
and, by exchange, the result follows for k + 1.

Now, applying the exchange and quantification rules k times to the
result of (2), we have, for each k = 0,

s, ~B(0) v ~(@)Bl@) v BE)) V..
Vo~ (@) ~Bla) v Bl)) v BEK)

~ g
and, by consolidation, —g_ ~Z(0) v ~(@)(~H(z) v Bx')) v BK').
Hence, together with (1), we have, for all k > 0,

o, ~B0) v ~{z~B(x) v Bz)) v Hk)

w©

Then, by infinite induction,

re, ~B0) v ~@)(~Blz) v B=)) v (x)B(x)

a

Thus, all the closed axioms of § are provable in 8,. We assume
now that n > 0. Then, (i) &/ may arise by modus ponens from % and
F# > 5f, where # and # > &/ have smaller ordinals in the proof-tree.
We may assume that % contains no free variables, since we can replace
any such free variables by 0 in & and its predecessors in the proof-tree.
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Hence, by inductive hypothesis, g5 & and 5 # > o, ie,
g ~% v of. Hence, by a cut, we obtain g .o/. The other
possibility (ii) is that « is (x)#(x) and comes by generalization from
H#(x). Now, in the proof-tree, working backwards from #(x), replace
the appropriate free oceurrences of by n.  We then obtain a proof of
#(m), of the same ordinal. This holds for all n; by inductive hypothesis,
g, Z(m) for all n. Hence, by infinite induction, —g_ (¥)#(x), i.e.,
s, .

Cororrary A-4. If B, is consistent, 8 is consistent.

PrROOF. IfSisinconsistent, then —g 0 # 0. Hence, by Lemma A-3,
g, 05 0. But, =g 0 = 0, since 0 = 0is correct. For any wf .o/
of 8., we would have, by dilution, g _0 # 0 v »7, and, together
with g 0 = 0, by a cut, —g_ /. Thus, any wf of S, is provable;
80, 9., 1s Incongistent,

By Corollary A-4, to prove the consistency of S it suffices to show the
consgistency of 8.

LEvma A-5.  The rules of DeMorgan, negation, and infinite induction
are wnvertible, v.e., from a proof of @ wf which is a consequence of some
premisses by one of these rules one can obtain a proof of the premisses
(and the ordinal and degree of such a proaf are no higher than the ordinal
and degree of the original proof ).

FPROOF

(1) DeMorgan. o is ~{(# v &) v . Take a proof of =/. Take
all those subformulas ~(# v &) of wis of the proof-tree obtained by
starting with ~(% v &) in & and working back up the proof-tree.
This process continues through all applications of weak rules and
through all strong rules in which ~(# v £)is part of a side wf. It can

F

~(F v & v F
T v T :
Rule: EF&\,.;/MNQ/\\ ) /\Nﬁ Mnn% The set of all oceurrences of ~(# v &)
obtained by this process is called the history of ~(% v &). Let us
replace all ocourrences of ~(# v &) in its history by ~%. Then we
still have a proof-tree (after unnecessary formulas are erased), and the
terminal wfis ~% v 2. Bimilarly, if we replace ~{(# v &) by ~&
we obtain a proof of ~& v &,

(2) Negation, & is ~~# v Z. Define the history of ~ ~Z ag
was done for ~{# v &) in (1); replace all occurrences of ~ ~%# in its
history by #; the resalt is a proof of & v Z.

end only at dilutions or applications of DeMorgan’s
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(8) Infinite Induction. .o is ((x)%(x)) v Z. Define the history of
{(x)%(z) a5 in (1); replace (x)% (x) in its history by #(N) (and if one of the
initial ocourrences in its history appears as the consequence of an infinite
induction, erase the tree above all the premisses except the one involving
); we then obtain a proof of #(n) v &£.

Levna A-6 (Schiitte [1951]: Reduktionssatz). Glhiven a proof of o
in S, of positive degree m and ordinal o, there is a proof of of in 8,
of lower degree and ordinal 2% (cf. page 178},

PROOF. By transfinite induction on the ordinal « of the given proof
of &. o« = 0: this proof can contain no euts and, hence, has degree 0.
Assume the theorem proved for all ordinals <« Starting from the
terminal wf o, find the first application of a non-weak rule, ie., of a
strong rule or a cut. If it is a strong rule, each premiss has ordinal
o; < a. By induetive hypothesis, for these premisses, there are proof-
trees of lower degree and ordinal 2%. Substitute these proof-trees for
the proof-trees above the premisses in the original proof. We thus
obtain a new proof for 7 except that the ordinal of .27 should be taken
to be 2¢, which is greater than every 24 (cf. Proposition 4.36(9)).

The remaining case is that of a cut.

ENvB ~FvD
€ v @

If the ordinals of ¥ v & and ~# v & are ay, oy, then, by induetive
hypothesis, we can replace the proof-trees above them so that the
degrees are reduced and the ordinals are 2%, 2% respectively. We shall
distinguish various cases according to the form of the cut formula #.

(a) % is an atomie wf, TKither # or ~% must be an axiom. Let 2
be the non-axiom of & and ~#. By inductive hypothesis, the proof-
tree above the premiss containing %" can be replaced by a proof-tree
with Iower degree having ordinal 2% (i = 1 or2). Inthisnew proof-tree,
congider the history of 2 (ag defined in the proof of Lemma A-5).
The initial wfs in this history can arise only by dilutions. So, if we
erase all occurrences of 4 in this history, we obtain a proof-trec for %
or for @ of ordinal 2%; then, by a dilution, we obtain ¢ v &, of ordinal
2%, The degree of the new proof-tree is less than m.

Ev ~& ~~&v &
€ v Z

(b) #is ~ &

There is a proof-tree for ~ ~& v @ of degree <m and ordinal 2%,
By Lemma A-5, there is a proof-tree for & v & of degree <m and
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ordinal 2%. There is also, by inductive hypothesis, a proof-tree for
% v ~& of degree <m and ordinal 21. Now, construct

E v G E v ~&

Exchange A Py v Exchange
Cut
DvE
7TV G Exchange

The degree of the indicated cut is the degree of ~ & which is one less
than the degree of ~ ~ &, which, in turn, is <m. The ordinal of
9 v % can he taken to be 2%, Hence, we have a proof of lower degree
and ordinal 2%

v EVvF ~EVFIVD
€ v

There is a proof-tree for ~(& v F) v & of lower degree and ordinal
9%z, Hence, by Lemma A-5, there are proof-trees for ~& v Z and
~F v F of degree <m and ordinal 2%. There is also a proof-tree for
& v & v F of degree <m and ordinal 2%. Construct:

{c) Bis & v F:

vy EVF ~FvG

' Cut
v EVD
Exchange
€vaveE ~& VvV %
Cut
EvIVvY
Consolidation

EC v D
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The cuts indicated have degrees <m; hence, the new proof-tree has
degree <m; the ordinal of € v & Vv & can be taken as 203 @, &) 4, 1,
and then the ordinal of € v Z v Z and % v & as 2%

€ v (2} (~@x)é) v &

(d) # is (x)&: TV D

By inductive hypothesis, the proof-tree above % v ()& can be replaced
by one with smaller degree and ordinal 2°:. By Lemma A-5 and the
remark at the beginning of the proof of Lemma A-2, we can obtain
proofs of ¥ v &(t) of degree <m and ordinal 2%, for any closed term ¢.
Now, the proof-tree above the right-hand formula { ~ (#)&) v 2 can be
replaced, by inductive hypothesis, by one with smaller degree and
ordinal 2%. The history of ~(x)& in this proof terminates above
either at dilutions or as principal wifs in applications of the Quantification
Rule: .

~ &) v ¥

(~(@)&) v 9,
Replace every such application by the cut

% v &) (~EE) v %,

€ v ¥,

Replace all oceurrences in the history of ~ (x)&(z) by #. The result is
still a proof-tree, and the terminal wfis 4 v 2. The proof-tree has
degree <m, since the degree of ~ &{%,) is less than the degree of ~(x)&.
Replace each old ordinal g of the proof-tree by 2% +,8. I 8 was the

- ordinal of the premiss ~ &) v %, of an eliminated Quantification Rule

application above, and if v was the ordinal of the conclusion (~ (z)&) v %,
then, in the new cut introduced, ¥ v &(t) has ordinal 21, ~ &t} v ¥;
has ordinal 241 + , 8, and the conelusion ¥ v %, has ordinal 2% 4,y >
max (2%, 2% +, ). At all other places, the ordinal of the conclusion
is still greater than the ordinal of the premisses, since § <, p implies
2% 4,8 < 2% 4 ou. Finally, the right-hand premiss (~(x)é&) v P
(originally of ordinal ;) goes over into 4 v & with ordinal 2% +,2% <
M_Emﬁa».auv + o MENNQE_ ) meNEp.&uu % o w — Nﬁwﬁau.amv+ou < wn. Mﬁ
this is < 2% the ordinal of ¥ v £ can be raised to 2%
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CororxAry A-7. Huvery proof of o of ordinal o and degreec m can be
22%)

replaced by a proof of <& of ordinal 22 and degree 0 {i.e., a
cut-free proof ).

ProposiTioNn A-8. 8, s consistent,

PrROOF. (longider any wf &/ of the form (0 # 0) v {0 # 0) v ...
v (0 # 0}, If there is a proof of &7, then by Corollary A-7, there is a
cut-free proof of /. By inspection of the rules of inference, &/ can
be derived only from other wis of the same form: (0 # 0) v ... v (0 # 0).
Hence, the axioms of the proof would have to be of this form. But
there are no axtoms of this form; hence, 7 is unprovable. Therefore,
8., is congistent.

EXERCISE

If no restriction-is placed upon the class of ordinals which can be
attached to proofs: (1) S, is w-consistent (Hint: Corollary A-7,
Proposition A-8, and the Rule of Infinite Induction}. (2) Every closed
wf of 8, which is true for the standard model is provable. Hence, S,
would he complete.

To reduce the non-constructive aspect of the consistency proof, one
can restrict the class of ordinals which can be assigned to wis of a
proof-tree. Consider the set of ordinals {w, w®, w®”,.. .} (defined
inductively by: v, = w, y,,; = w’s). Let us denote the least upper
bound of this set by g,. If we use only ordinals <, &, then all the
proofs given above still go through (for, if 8 <, ey, then 2% <, &)
In addition, the ordinals < ; 5 can be written down in a certain standard
“polynomial” notation: (i) the ordinals < ;e® can be written in the form

(wh xgn) +o {0 Xg0g) +o. .. 4o (@ xom)

where ki, ks, ...,k is a decreasing sequence of finite ordinals, and
Ny, Ng, ..., N are finite ordinals; (ii} the ordinals between w® and w®”
can be written in the form (% xgng) +4{w% xong) +¢... 44
(w1 Xy ) where ey, oy, . . ., o isa decreasing sequence of ordinals < jw®
and ny, ng, ..., n, are finite ordinals, etc. (cf. Bachmann [1955], 1i1;
Gentzen [1938b]).

The chiefl non-constructive aspect of the consistency proof was the
use of transfinite induction in the proof of Lemma A-6. The principle
of transfinite induction up to a given ordinal has been formalized and
studied by Gentzen [1943] and Schiitte [1951, 1960]; as was to be
expected, transfinite induction up to &,, is not derivable in 8. Whether
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or not certain conecepts and agsumptions {such as denumerable ordinals
and transfinite induction up to &) should really be considered “con-
structive” seems ultimately to be a subjective matter. For further
details and discussion, in addition to the references already given, of.
Hilbert-Bernays [1939], Rosser [1937], Miller [1961], and Shoenfield
[1959].



