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EXERCISE 1
Render the following fragments of English into predicate calculus, using a lexicon
of your choice.

In my model answers I have tended to use bits of English text in verbatim
font (as is the habit in certain computer science cultures) for predicate letters,
rather than use the single letters that are more customary in most logical cul-
tures. I have done this merely in order to make the notation more suggestive:
there is no cultural significance to it. And in any case, further down in the list
of model answers I have reverted to the philosophico-logical standard practice of
using single capital Roman letters.

I also write ‘→’ instead of ‘⊃’ and ‘∧’ instead of &. Readers should get used
to the idea that there is more than one standard notation for this stuff

This first bunch involve monadic predicates only and no nested quantifiers.

1. Every good boy deserves favour; George is a good boy. Therefore George
deserves favour.

Lexicon.
Unary predicate letters: good-boy( ); deserves-favour( )
Constant symbol: George

Formalisation

(∀x)(good-boy(x) → deserves-favour(x));
good-boy(George);
therefore deserves-favour(George)

You might prefer to have two unary predicate letters good( ) and boy( ),
in which case you would have

(∀x)((good(x) ∧ boy(x)) → deserves-favour(x));
good(George) ∧ boy(George));
therefore deserves-favour(George).

2. All cows eat grass; Daisy eats grass. Therefore Daisy is a cow.

Lexicon:
Unary predicate letters: eats-grass( ), Cow( );
Constant symbol: Daisy.

Formalisation

(∀x)(Cow(x) → eats-grass(x))
eats-grass(Daisy);
(∀x)(Cow(x) → eats-grass(x));
therefore Cow(Daisy).

3. Socrates is a man; all men are mortal. Therefore Socrates is mortal.

Lexicon:
Unary predicate letters: man( ), mortal( ),
Constant symbol: Socrates.
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Formalisation

man(Socrates);
(∀x)(man(x) → mortal(x));
therefore mortal(Socrates).

4. Daisy is a cow; all cows eat grass. Therefore Daisy eats grass.

Lexicon:
Unary predicate letters: eats-grass( ), cow( );
Constant symbol: Daisy.

Formalisation

cow(Daisy);
(∀x)(cow(x) → eats-grass(x));
therefore eats-grass(Daisy).

5. Daisy is a cow; all cows are mad. Therefore Daisy is mad.

Lexicon:
Unary predicate letters: mad( ), cow( );
Constant symbol: (Daisy).

Formalisation

cow(Daisy);
(∀x)(cow(x) → mad(x));
therefore mad(Daisy).

6. No thieves are honest; some dishonest people are found out. Therefore
some thieves are found out.

Lexicon:
Unary predicate letters: thief( ), honest( ), found-out( ).

Formalisation

(∀x)(thief(x) → ¬(honest(x));
(∃x)(¬honest(x) ∧ found-out(x));
therefore (∃x)(thief(x) ∧ found-out(x)).

7. No muffins are wholesome; all puffy food is unwholesome. Therefore all
muffins are puffy.

Lexicon:
Unary predicate letters: muffin( ), wholesome( ), puffy( ).

Formalisation

¬(∃x)(muffin(x) ∧ wholesome(x));
(∀x)(puffy(x) → ¬(wholesome(x)));
therefore (∀x)(muffin(x) → puffy(x)).
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8. No birds except peacocks are proud of their tails; some birds that are proud
of their tails cannot sing. Therefore some peacocks cannot sing.

Lexicon:
Unary predicate letters: peacock( ), can-sing( ), proud-of-tail( ).

Formalisation

(∀x)(proud-of-tail(x) → peacock(x));
(∃x)(proud-of-tail(x) ∧ ¬(can-sing(x)));
therefore (∃x)(peacock(x) ∧ ¬(can-sing(x))).

9. A wise man walks on his feet; an unwise man on his hands. Therefore no
man walks on both.

Formalisation

(∀x)(wise(x) → walks-on-feet(x));
(∀x)(¬(wise(x)) → walks-on-hands(x));
(∀x)(¬(walks-on-feet(x) ∧ walks-on-hands(x))).

You might want to try to capture the fact that walks-on-feet( ) and
walks-on-hands( ) share some structure, and accordingly have a two-place
relation walks-on( , ). Then i think you will also want binary predicate
letters feet-of( , ) and hands-of( , ) so you would end up with

(∀x)(wise(x) → (∀y)(feet-of(x, y) → walks-on(x, y)))

and of course

(∀x)(¬wise(x) → (∀y)(hands-of(x, y) → walks-on(x, y)))

You might feel that the following are equally good formalisations:

(∀x)(wise(x) → (∃y)(∃z)(feet-of(x, y) ∧ feet-of(x, z) ∧ ¬(y = z) ∧
walks-on(x, y) ∧ walks-on(x, z))) . . . and the same for unwise men and
hands.

However that involves two-place relations and we haven’t got to them yet!

10. No fossil can be crossed in love; an oyster may be crossed in love. There-
fore oysters are not fossils.

Lexicon:
Unary predicate letters: fossil( ). oyster( ), crossed-in-love( ).

Formalisation

(∀x)(fossil(x) → ¬can-be-crossed-in-love(x));
(∀x)(oyster(x) → can-be-crossed-in-love(x));
therefore (∀x)(oyster(x) → ¬fossil(x))

11. All who are anxious to learn work hard; some of these students work hard.
Therefore some of these students are anxious to learn.
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Lexicon:
Unary predicate letters: anxious-to-learn( ), works-hard( ), student( ).

Formalisation

(∀x)(anxious-to-learn(x) → works-hard(x));
(∃x)(student(x) ∧ works-hard(x));
therefore (∃x)(student(x) ∧ anxious-to-learn(x)).

12. His songs never last an hour. A song that lasts an hour is tedious. There-
fore his songs are never tedious.

Lexicon:
Unary predicate letters: last-an-hour( ), song( ), his( ), tedious( ).

Formalisation

(∀y)((song(y) ∧ (his(y)) → last-an-hour(y));
(∀x)((song(x) ∧ last-an-hour(x)) → tedious(x));
therefore (∀z)((song(z) ∧ his(z)) → ¬tedious(z)).

13. Some lessons are difficult; what is difficult needs attention. Therefore some
lessons need attention.

Lexicon.
Unary predicate letters: lesson( ), difficult( ), needs-attention( ).

Formalisation

(∃x)(lesson(x) ∧ difficult(x));
(∀z)(difficult(z) → needs-attention(z)).
therefore (∃x)(lesson(x) ∧ needs-attention(x)).

14. All humans are mammals; all mammals are warm blooded. Therefore all
humans are warm-blooded.

Lexicon.
Unary predicate letters: human( ), mammal( ), warm-blooded( ).

Formalisation

(∀y)(human(y) → mammal(y));
(∀y)(mammal(y) → warmblooded(y));
therefore (∀z)(human(z) → warmblooded(z)).

15. Warmth relieves pain; nothing that does not relieve pain is useful in toothache.
Therefore warmth is useful in toothache.

Lexicon:
Unary predicate letters: relieves-pain( ), useful-in-toothache( );
Constant symbol: warmth,

Formalisation
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relieves-pain(warmth);
(∀x)(useful-in-toothache(x) →relieves-pain(x);
therefore useful-in-toothache(warmth)

You might want to break up relieves-pain by having a binary predicate
letter relieves( , ) and a constant symbol pain, giving

relieves(warmth, pain);
(∀x)(useful-in-toothache(x) → relieves(x, pain);
therefore useful-in-toothache(warmth).

16. Guilty people are reluctant to answer questions;

17. Louis is the King of France; all Kings of France are bald. Therefore Louis
is bald.

Lexicon:
Unary predicate letters: bald( ), King-of-France( ),
Constant symbol: Louis.

Formalisation

king-of-France(Louis);
(∀x)(king-of-France(x) → bald(x));
therefore bald(Louis).

You might feel that King-of-France is not really a unary predicate but a
binary predicate (king-of) with one argument place plugged by a constant
(France).

EXERCISE 2 Render the following into Predicate calculus, using a lexicon of
your choice. These involve nestings of more than one quantifier, polyadic pred-
icate letters, equality and even function letters.

1. Anyone who has forgiven at least one person is a saint.

Lexicon:
Unary predicate letters: saint( )
Binary predicate letters: has-forgiven( , )

Formalisation

(∀x)(∀y)(has-forgiven(x, y) → saint(x))

2. Nobody in the logic class is cleverer than everybody in the history class.

Lexicon:
Unary predicate letters: is-in-the-logic-class( ), is-in-the-history-class( )
Binary predicate letter: is-cleverer-than( , )

Formalisation

(∀x)(is-in-the-logic-class(x) → (∃y)(is-in-the-history-class(y)∧
¬(is-cleverer-than(x, y));
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Here you might prefer to have a two-place relation between people and
subjects, so that you then have two constants, history and logic.

3. Everyone likes Mary—except Mary herself.

Lexicon:
Binary predicate letter: L( , )
Constant symbol: m

Formalisation

¬L(m,m) ∧ (∀x)(x 6= m → L(x,m))

4. Jane saw a bear, and Roger saw one too.

Lexicon:
Unary predicate letter: B( )
Binary predicate letter: S( , )
Constant symbols: j, r

Formalisation

(∃x)(B(x) ∧ S(j, x)) ∧ (∃x)(B(x) ∧ S(r, x));

5. Jane saw a bear and Roger saw it too.

(∃x)(B(x) ∧ S(j, x) ∧ S(r, x))

6. God will destroy the city unless there is a righteous man in it;

7. Some students are not taught by every teacher;

Lexicon:
Unary predicate letters: teacher( ), student( ).
Binary predicate letter: taught-by( , )

Formalisation

(∃x)student(x) ∧ ¬(∀y)(teacher(y) → taught-by(x, y))

Of course you might want to replace ‘teacher(x)’ by ‘(∃y)(taught-by(y, x)’.

8. No student has the same teacher for every subject.

Lexicon:
Ternary predicate letter: R( , , )
Unary predicate letters: student( ), teacher( ), subject( ).

Formalisation

(∀x)(student(x) → ¬(∀y)(teacher(y) → (∀z)(subject(z) →
R(x, y, z))))
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9. Everybody loves my baby, but my baby loves nobody but me.

Lexicon:
Binary predicate letter1: L( , );
Constant symbols: b, m.

Formalisation

(∀x)(L(x, b)) ∧ (∀x)(L(b, x) → x = m);

EXERCISE 3 Match up the formulæ on the left with their English equivalents
on the right.

(i) (∀x)(∃y)(x loves y) (a) Everyone loves someone
(ii) (∀y)(∃x)(x loves y) (b) There is someone everyone loves
(iii) (∃y)(∀x)(x loves y) (c) There is someone that loves everyone
(iv) (∃x)(∀y)(x loves y) (d) Everyone is loved by someone

These involve nested quantifiers and dyadic predicates

EXERCISE 4 Render the following pieces of English into Predicate calculus,
using a lexicon of your choice.

1. Everone who loves is loved;

(∀x)(∀y)(L(y, x) → (∃z)(L(z, y))

2. Everyone loves a lover;

(∀x)(∀y)(L(y, x) → (∀z)(L(z, y))

3. The enemy of an enemy is a friend

4. The friend of an enemy is an enemy

5. Any friend of George’s is a friend of mine

6. Jack and Jill have at least two friends in common

7. Two people who love the same person do not love each other.

8. None but the brave deserve the fair.

(∀x)(∀y)((F (x) ∧D(y, x)) → B(y))

9. If there is anyone in the residences with measles then anyone who has a
friend in the residences will need a measles jab.

1Observe that we do not have to specify that ‘=’ is part of the lexicon. That’s a given,
since it is part of the logical vocabulary.
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This next batch involves nested quantifiers and dyadic predicates and equal-
ity

EXERCISE 5 Render the following pieces of English into Predicate calculus,
using a lexicon of your choice.

1. There are two islands in New Zealand;

2. There are three2 islands in New Zealand;

3. tf knows (at least) two pop stars;

(You must resist the temptation to express this as a relation between tf and
a plural object consisting of two pop stars coalesced into a kind of plural
object like Jeff Goldblum and the Fly. You will need to use ‘=’, the symbol
for equality.)

(∃xy)(x 6= y ∧K(x) ∧K(y))

‘K(x)’ of course means that x is a pop star known to me.

4. You are loved only if you yourself love someone [other than yourself !];

(∀x)(∀y)(L(y, x) → (∃z)(z 6= x ∧ L(x, z))

5. The only living Nobel prizewinner I know is Andrew Huxley.

6. God will destroy the city unless there are (at least) two righteous men in
it;

7. There is at most one king of France;

(∀xy)(K(x) ∧K(y) → x = y)

8. I know no more than two pop stars;

(∀xyz)((K(x) ∧K(y) ∧K(z)) → (x = y ∨ x = z ∨ y = z))

9. There is precisely one king of France;

(∃x)(K(x) ∧ (∀y)(K(y) → y = x))

Notice that
(∃x)(∀y)(K(x) ∧ (K(y) → y = x))

would do equally well. Make sure you are happy about this.

10. I know three FRS’s and one of them is bald;
2The third is Stewart Island
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11. Brothers and sisters have I none; this man’s father is my father’s son.

12. * Anyone who is between a rock and a hard place is also between a hard
place and a rock.


