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font information has semantics

adjectives in English absolutely have to be in this order: opinion-size-age-
shape-colour-origin-material-purpose Noun. So you can have a lovely little old
rectangular green French silver whittling knife. But if you mess with that word
order in the slightest you’ll sound like a maniac. It’s an odd thing that every
English speaker uses that list, but almost none of us could write it out. And as
size comes before colour, green great dragons can’t exist.

Notice that in the formal language for chemistry the occurence of ‘N’ inside
‘Ni’ or ‘Na’ cannot be seen . . . ‘Ni’ is a single symbol, as is ‘Na’.

semantics of flashing car headlights
in some languages men and women speak different languages

A man is watching a dog lick its bollocks.

“I wish i could do that”.

“Give him a biscuit, he’ll probably let you”.

We sometimes use the expression ‘positional notations’ for notations where
the meaning of a symbol depends on where it is.

Give orange me give eat orange me eat orange give me eat orange
give me you

said Nim Chimpski.
The meaning is clear but there is no syntax!

0.0.1 Further Resources

Have a look at
www.dpmms.cam.ac.uk/~tf/chchlectures.pdf

People have mentioned
“Mathematical Methods in Linguistics” by Barbara B.H. Partee, A.G. ter

Meulen, R. Wall (Studies in Linguistics and Philosophy) Springer
but i don’t know it.
public_html/cam_only/langs-and-automata/main.html

I’ve tutored courses using the material on
http://www.cl.cam.ac.uk/Teaching/2002/RLFA/reglfa.ps.gz

This is the course material used at the Computer Laboratory in Cambridge
for their 12-lecture course. It looks daunting and mathematical, but it’s actually
very well designed and thought through, so as long as you read it carefully you
will be OK. However, it does make use of ε transitions (which i hate! and which
i do not use here)

JFLAP is a complete package for doing almost anything relating to fsa, cfg,
tm, pda, L-system etc etc. Go to http://www.jflap.org/

www.dpmms.cam.ac.uk/~tf/chchlectures.pdf
public_html/cam_only/langs-and-automata/main.html
http://www.cl.cam.ac.uk/Teaching/2002/RLFA/reglfa.ps.gz
http://www.jflap.org/
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Stuff to fit in

Linguists often have to make the point to lay people that words do not have
magical powers. A word might have strong tapu connotations in one language
and not in another. Hence ‘reclaiming’ words. Logicians, too, like to make the
point that words do not have magical powers.
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Chapter 1

Introduction

One of the [many] engines for the development of Logic in the last century was
the idea that bad (= fallacious, erroneous) Philosophy could be abolished if we
cleaned up the language in which we did Philosophy. (“I saw nobody on the
road”). Some enthusiasts took this idea far too seriously. Leibnitz; Neurath.
Orwell’s 1984 does not satirise Stalinism only, it satirises this idea too. Try
googling “The Linguistic Turn”.

(In this spirit we shouldn’t expect the various gadgets in formal logic (∧,
∨, →, ∀, ∃ etc—all of which I will explain to you in due course) to correspond
exactly to the gadgets in ordinary language that they replace. Indeed on the
Neurath View the lack of correspondence could be taken as evidence both that
the programme was needed and that it was succeeding.)

Both Logicians and Linguists study languages. Linguists study natural
languages, and Logicians study—and indeed even design—artificial languages.
There isn’t a great deal of traffic between the two communities, and this is
largely because the difference between artificial and natural languages is so vast
that the two programmes experience different weather, and get driven in differ-
ent directions. However the idea that logicians and linguists share an interest in
language is an important one, and it is the chief reason why linguists (of some
persuasions at least) can profit by studying formal logic.

There is traffic in the other direction as well: at various times logicians have
become interested in linguistics—Richard Montague is a famous example and
my NZ colleague Max Cresswell another (perhaps less famous, but at least he’s
still alive).

I am a student of logic, and to me the tasks confronting the student of
natural languages seem mind-bogglingly hard: the kind of questions I ask about
artificial languages (and for which I expect answers) are—all of them—far too
difficult when asked of natural languages. Since we all of us work equally hard
one obvious inference is that linguists have to set their sights much lower. They
have to: their subject matter is a lot less tractable. There are questions one can
ask about languages that are tractable when asked about artificial languages

9



10 CHAPTER 1. INTRODUCTION

but are completely intractable when asked about natural languages.Examples here.(Semantics?)
From the point of view of linguists, the assumptions logicians make about

the nature of their subject matter come across as comically simplistic.

The languages of formal logic include the programming languages that we
find in IT. Some of you may have encountered some of them and perhaps even
written programs in them. But i am not going to assume you have.

From a linguist’s perspective, the languages of formal logic look a bit like
Basic English: they are fantastically impoverished. This is a key observation:
their very impoverishment makes their study much easier. Because the material
studied by logicians is so much more tractable, progress has been made with
it in a way that has not been made with natural languages. I think this isExamples here
the chief reason why some linguists think that a bit of input from Logic might
be useful: logicians are further down their road than linguists are down theirs,
and they might have some useful hints. Not all linguists think this, and even
those that do don’t necessarily think they need to take any interest in Logic for
their particular research areas. However the idea that the shared experiences
of logicians and linguists might make logic useful to linguists is the idea behind
courses like this. And it is a good idea.

Let’s look at some of the contrasts:
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Natural Languages Languages of Formal Logic

Syntax ascertained by fieldwork Syntax given by stipulation

Syntax changes over time Syntax fixed once for all

Linguistics is descriptive Logic is prescriptive

Problem of individuating languages No problem individuating languages

All lexical items have Most lexical items do not
pre-assigned meanings have pre-assigned meanings

Some grammatical categories
(nouns, adjectives . . . ) are open; All grammatical categories closed
some (prepositions . . . ) closed

Semantics involves complex layers Straightforward recursive
of feedback and error-correction etc (“compositional”) semantics

Alienating adjectives No alienating adjectives
(“fake Van Gogh”)

First, second and third Third person
person pronouns pronouns only

Semantically closed Semantically open

Both literal and metaphorical meaning literal meaning only.

Also, traditionally formal logic has concerned itself only with statements
(what the compscis call Booleans) rather than commands or questions, or per-
formatives.
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Talk over the slide:
semantics for natural lan-
guage done in real time? One feature of the typical uses of Logic that sets it off from your concerns is that

logics tend to be tailored to specific needs. In contrast Linguists tend to think of
natural languages as being things with completely open-ended semantics (and
open-ended lexicons for that matter). The languages studied by logicians are
very specific and designed for highly specific tasks: for arithmetics of various
kinds for example. Formal languages are now used for all sorts of things they
weren’t used for 50 years ago. cf Neurath.

In natural languages almost all words have pre-determined meanings which
cannot be altered by the language user. The exceptions are these things called
indexicals or token-reflexives, namely the pronouns, possessive adjectives and
a few temporal adverbs (“here”, “now”) ‘this’ ‘over there’, and even their
meaning—depending as it does on context—depends on it in a systematic way
that does not give the user any genuine freedom. No Humpty Dumpty!

Semantics for artificial languages can be done smoothly, and theoretical
considerations can lead to the design of programming languages with nice be-
haviour. Semantics of natural languages is a problematic business with multiple
levels of error-correction, feedback, pragmatics etc. “I love it when you play the
piano” might not mean that at all. It might mean “don’t annoy the neighbours”.

Grice’s conditions should be
dealt with later Although a lot of semantics for natural languages is recursive (or “compo-

sitional” as the linguists say1 a significant part of it isn’t. There are various
ways in which semantics can fail to be compositional. For example, people can
use a distinctive vocabulary to announce affiliation to a linguistically defined
community–at least in cases where use of that vocabulary was optional, because
then it represents a choice made by the speaker and it can convey information
to the hearer. People engaged in sports discourse will signal this fact by calling
a good player of the game under discussion ‘useful’. People who write for the
financial press often write ‘heading south’ for ‘decreasing’, or “going forward”
instead of “in the future” to signal their membership of this community. Else-
where, ‘represents’ for ‘is’ and ‘propose’ for ‘suggest’ mark out the speaker as
engaged in scientific discourse, as in the following examples:

Massif-type anorthosites are large igneous complexes of Proterozoic
age. They are almost monomineralic, representing [sic] vast accu-
mulations of plagioclase . . . the 930-Myr-old Rogaland anorthosite
province in Southwest Norway represents [sic] one of the youngest
known expressions of such magmatism. (Nature, 405 p.781.)

Writing ‘denotes’ for ‘is’ marks out the user as a mathematician.

To divide a number a by a number b means to find, if possible, a
number x such that bx = a. If such a number exists it is denoted
[sic] by a/b. H. Davenport, [14]

1Apparently this terminology goes back to [?] or do i mean [18]?.
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The grammar of an artificial language is fixed and doesn’t change over time.
(It’s also nailed down and blindingly clear beyond quibbles, tho’ that is a sep-
arate point). In contrast the syntax of natural languages is a matter to be
ascertained. The grammar of natural languages changes over time, significant
changes occurring in the timescale of a single human lifetime. We are losing
negative and interrogative inversion in English; ‘like’ is replacing ‘as if’; ‘likely’
is starting to be used as an adverb . . . and the use of some versus any is changing
even as we speak. “If anybody can do it, Jones can”. [The lexicon changes too,
and so does the semantics for words in the lexicon, but those are separate points].
This gives rise to nontrivial questions about whether the language spoken at
time t is the same language as the (slightly different) language spoken at time
t′.2 Specific answers to these questions (Is Ancient Greek the same language as
New Testament Greek? Is New Testament Greek the same language as Modern
Greek?) are not particularly interesting to linguists (they are uninteresting at
any rate in the sense that answers to them will not help linguists do their job
better): nevertheless we need to make decisions: if we can’t individuate lan-
guages we don’t know what our subject matter is. “No entity without identity”
said Quine (and he was a logician, tho’ wearing his philosopher-of-Science hat
at the time). Certainly one of the expressive resources a sophisticated speaker more here
of a language has is judicious movement between registers, and this can include
exploitation of the different associations in the minds of their hearers of archaic
vs current vs fashionable constructions and lexical items. If we think that giving
an account of how this can be done is part of the linguists’ job then that means
that we are thinking of a language that has lots of overlapping syntaxes and
overlapping lexicons rather than just one.

(Also the question of individuating languages can have huge political signif-
icance!)

In natural languages the meaning of individual lexical items is something to
be ascertained, not stipulated by fiat. You do fieldwork to find out what a word
means.

That is to say: in a natural language the meaning of the words is part of
the language. For logicians this is not true: a language for a logician—in most
cases—is a naked piece of syntax, waiting to be clothed in meaning. It is true
that many formal languages have what the computer scientists call reserved
words, which are signs (‘=’ is one) that are only ever allowed to mean one thing,
but in natural languages almost all lexical items are reserved in this sense of
having pre-assigned meaning, the exceptions being indexicals, whose denotation
is determined by the speaker in real-time.

In artificial languages, in contrast, the meaning of particular lexical items
can indeed be stipulated by fiat. Indeed the idea that syntax had a life of its
own, and that it existed independently of our need and desire to assign meaning
to it (or to invent it in order to bear meaning) was one of the most important
insights driving the study of Logic from the very outset of its renaissance 100-
odd years ago. You might think that the symbol ‘≤’ means “less than or equal

2Ask Wikipædia about Theseus’ ship.
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to” as applied to numbers, or that the symbol ‘=’ means “equal to”, and you
might reckon that you know what ‘+’ and ‘×’ mean—and you would be right,
because those symbols were brought in precisely to bear those meanings, but
they could perfectly well have borne other meanings instead: there is nothing
about those symbols in themselves that tell you that they have to bear those
interpretations. The great insight of C20th logic was that in order to understand
how symbols can bear meaning at all it is important first of all to study them
entirely stripped of their meaning. They have to be—as it were—born again!

To summarise:

• One reason for linguists to study formal logic is because it is a
very very simple instance of their general task, and it’s tractable. It
looks hard only beco’s one can aspire to do it properly!

• Another reason is that some of the more complicated logics resem-
ble natural languages sufficently for them to be invoked as part of a
theory of natural language.



Chapter 2

Some Basics

ordered pairs (which we need for lambda calculus)

true and false are the two truth-values. ‘>’ and ‘⊥’ are the two reserved
propositional letters that always denote/evaluate-to true and false.

2.1 Intension and Extension

The intension-extension distinction is an informal device but it is a standard
one which we will need at several places. We speak of functions-in-intension
and functions-in-extension and in general of relations-in-intension and
relations-in-extension. There are also ‘intensions’ and ‘extensions’ as nouns
in their own right.

Consider two properties of being human and being a featherless biped–a
creature with two legs and no feathers. There is a perfectly good sense in which
these concepts are the same (or can be taken to be, for the sake of argument:
one can tell that this illustration dates from before the time when the West
had encountered Australia with its kangaroos!), but there is another perfectly
good sense in which they are different. We name these two senses by saying
that ‘human’ and ‘featherless biped’ are the same property in extension but are
different properties in intension.

It turns up nowadays in the connection with the idea of evaluation. In
recent times there has been increasingly the idea that intensions are the sort
of things one evaluates and that the things to which they evaluate are exten-
sions. Propositions evaluate to truth-values. Truth-values (true and false)
are propositions-in-extension.

We do need both. Some operations are more easily understood on relations-
in-intension than relations-in-extension (composition for example) Ditto ances-
tral.

15
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2.2 Discrete Maths for Linguists

This is a highly concentrated version of www.dpmms.cam.ac.uk/~tf/cam_only/
discretelectures.pdf and that file is recommended to those who are entirely
free of mathsangst.

transitivity, antisymmetry, etc, equivalence relations and congruence rela-
tions.

No entity without identity. The basic entities of a science are equivalence
classes of phenomena under indistinguishability.

e.g., phonemes as equivalence classes.
one can be substituted for the other without changing meaning? or one can

be substituted for the other without changing wellformedness?
Are these the same?
Collection of congruence relations parametrised by the class of languages

Disjoint unions??

More notation

We will be using the asterisk symbol: *, in more than one way. We will do the
same with the two vertical bars ||. When a symbol is used in two related ways,
we say it is overloaded.
|X| is the cardinality of the set X.

More Ideas

type-token,
use-mention,
language-metalanguage
de re and de dicto
analytic/synthetic

Talk over this. Details in chchlectures.pdf or discretelectures.tex. How much
do we copy over?

2.3 Language/Metalanguage

2.4 The Use-Mention Distinction

We must distinguish words from the things they name: the word ‘butterfly’
is not a butterfly. The distinction between the word and the insect is known
as the “use-mention” distinction. The word ‘butterfly’ has nine letters and no
wings; a butterfly has two wings and no letters. The last sentence uses the
word ‘butterfly’ and the one before that mentions it. Hence the expression
‘use-mention distinction’.

www.dpmms.cam.ac.uk/~tf/cam_only/discretelectures.pdf
www.dpmms.cam.ac.uk/~tf/cam_only/discretelectures.pdf
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Haddocks’ Eyes

As so often the standard example is from [?].

[. . . ] The name of the song is called ‘Haddock’s eyes’.”

“Oh, that’s the name of the song is it”, said Alice, trying to feel
interested.

“No, you don’t understand,” the Knight said, looking a little vexed.
“That’s what the name is called. The name really is ‘The agèd, agèd
man’.”

“Then I ought to have said, ‘That’s what the song is called’?” Alice
corrected herself.

“No you oughtn’t: that’s quite another thing! The song is called
‘Ways and means’, but that’s only what it is called, you know!”

“Well, what is the song, then?” said Alice, who was by this time
completely bewildered.

“I was coming to that,” the Knight said. “The song really is ‘A-
sitting on a Gate’ and the tune’s my own invention”.

The situation is somewhat complicated by the dual use of single quotation
marks. They are used both as a variant of ordinary double quotation marks for
speech-within-speech (to improve legibility)—as in “Then I ought to have said,
‘That’s what the song is called’?”—and also to make names of words or strings
of words—‘The agèd, agèd man’. . . . Even so, it does seem clear that the White
Knight has got it wrong. At the very least: if the name of the song really is ‘The
agèd agèd man’ (as he says) then clearly Alice was right to say that was what the
song was called. Granted, it might have more names than just that one—‘Ways
and means’ for example—but that was no reason for him to tell her she had
got it wrong. And again, if his last utterance is to be true, he should leave the
single quotation marks off the title, or—failing that (as Martin Gardner points
out in [?])—burst into song. These infelicities must be deliberate (Carroll does
not make elementary mistakes like that), and one wonders whether or not the
White Knight realises he is getting it wrong . . . is he an old fool and nothing
more? Or is he a paid-up party to a conspiracy to make the reader’s reading
experience a nightmare? The Alice books are one long nightmare, and perhaps
not just for Alice.

Alphabet soup

People complain that they don’t want their food to be full of E-numbers. What
they mean is that they don’t want it to be full of the things denoted by the
E-numbers.1

1Mind you E-300 is Vitamin C and there’s nothing wrong with that!
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Some Good Advice

Q: Why should you never fall in love with a tennis player?

A: Because ‘love’ means ‘nothing’ to them.

Apple Crumble

“Put cream on the apple crumble”

“But there isn’t any cream!”

“Then put ‘cream’ on the shopping list!”

‘Think’

“If I were asked to put my advice to a young man in one word,
Prestwick, do you know what that word would be?”

“No” said Sir Prestwick.

“ ‘Think’, Prestwick, ‘Think’ ”.

“I don’t know, R.V. ‘Detail’?”

“No, Prestwick, ‘Think’.”

“Er, ‘Courage’?”

“No! ‘Think’ !”

“I give up, R.V., ‘Boldness’?”

“For heavan’s sake, Prestwick, what is the matter with you? ‘Think’ !”

“ ‘Integrity’? ‘Loyalty’? ‘Leadership’?”

“ ‘Think’, Prestwick! ‘Think’, ‘Think’, ‘Think’ ‘Think’ !”

Michael Frayn: The Tin Men. Frayn has a degree in Philosophy.

Ramsey for Breakfast

In the following example F.P. Ramsey2 uses the use-mention distinction to gen-
erate something very close to paradox: the child’s last utterance is an example
of what used to be called a “self-refuting” utterance: whenever this utterance
is made, it is not expressing a truth.

PARENT: Say ‘breakfast’.
CHILD: Can’t.
PARENT: What can’t you say?
CHILD: Can’t say ‘breakfast’.

2You will be hearing more of this chap.
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The Deaf Judge

JUDGE (to
PRISONER): Do you have anything to say before I pass sentence?

PRISONER: Nothing

JUDGE (to
COUNSEL : Did your Client say anything?

COUNSEL: ‘Nothing’ my Lord.

JUDGE: Funny . . . I could have sworn I saw his lips move. . .

The N-word

One standard way of creating a [token of a] name for a word is to take a token
of it and put single quotes either side of it—as indeed we have been doing above
. . . “My client said ‘nothing’ my lord”. Naturally in these circumstances one
wants to say that the word in question is mentioned not used. However there
are circumstances in which it is felt (by some) that the word enclosed in single
quotes is, nevertheless, in some sense, being used. This tends to happen when
the word being mentioned is heavily taboo-ed and has to be kept at barge-pole
length, in particular with words that we are not permitted to use. Such words
can of course still be mentioned; after all, how can one tell a new user of the
language that they are not to use the word without somehow denoting it—that
is to say, mentioning it? If you mention a word you need a name for it, but
a name that we use to mention it cannot be one obtained by putting single
quotes round it. There is a slang American word for disparagingly denoting
people with black skins; it has six letters and begins with ‘n’. I can allude to
this fact, and mention the word in so doing—as i have in fact just done. But
were i to mention it by enclosing a token of it in single quotes the sky would
probably land on my head. My defence would be that i am not using the word,
but mentioning it. I’m not going to risk it, co’s i want a quiet life. Call me a
coward: i plead guilty as charged.

This is tied up with all sorts of complex and interesting issues in philosophy
of language which you will have to come to grips with in the fullness of time.
You could try googling ‘referential opacity’ if you want to read ahead.

The predicament of speakers in situations where the mentioned word is heav-
ily taboo-ed is put to good comedic effect in Scene Five of The Life of Brian
http://montypython.50webs.com/scripts/Life_of_Brian/5.htm where Matthias,
son of Deuteronomy of Gath, is to be stoned to death for using the name of Je-
hovah. In his defence he mentions the name:

MATTHIAS: Look. I—I’d had a lovely supper, and all I said to my wife
was, ‘That piece of halibut was good enough for Jehovah.’

http://montypython.50webs.com/scripts/Life_of_Brian/5.htm
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So: there are some words that one wishes to mention—if at all—only by
using only those names of it that do not contain embedded occurrences of it—
embedded within single quotes for example. Prima facie there is a question
about how a word can acquire other safe names in this way, and there is pre-
sumably a literature on this question . . . but i don’t know any of it.

Fun on a Train

The use-mention distinction is a rich source of jokes. One of my favourites is
the joke about the compartment in the commuter train, where the passengers
have travelled together so often that they have long since all told all the jokes
they know, and have been reduced to the extremity of numbering the jokes and
reciting the numbers instead. In most versions of this story, an outsider arrives
and attempts to join in the fun by announcing “Fifty-six!” which is met with
a leaden silence, and he is tactfully told “It’s not the joke, it’s the way you tell
it”. In another version he then tries “Forty-two!” and the train is convulsed
with laughter. Apparently that was one they hadn’t heard before.3

Notice that bus “numbers” are typically numerals not numbers. Not long
ago, needing a number 7 bus to go home, I hopped on a bus that had the
string ‘007’ on the front. It turned out to be an entirely different route! Maybe
this confusion in people’s minds is one reason why this service is now to be
discontinued.4

A good text to read on the use-mention distinction is the first six paragraphs
(that is, up to about p. 37) of chapter 1 of Quine’s [?].

Related to the use-mention distinction is the error of attributing powers of
an object to representations of that object. I tend to think that this is a use-
mention confusion. But perhaps it’s a deliberate device, and not a confusion
at all. So do we want to stop people attributing to representations powers that
strictly belong to the things being represented? Wouldn’t that spoil a lot of
fun? Perhaps, but on the other hand it might help us understand the fun better.
There was once a famous English stand-up comic by the name of Les Dawson
who (did mother-in-law jokes but also) had a routine which involved playing
the piano very badly. I think Les Dawson must in fact have been quite a good
pianist: if you want a sharp act that involves playing the piano as badly as he
seemed to be playing it you really have to know what you are doing5. The moral
is that perhaps you only experience the full frisson to be had from use-mention
confusion once you understand the use-mention distinction properly.

We make a fuss of this distinction because we should always be clear about
the difference between a thing and its representation. Thus, for example, we
distinguish between numerals and the numbers that they represent. If we write
numbers in various bases (Hex, binary, octal . . . ) the numbers stay the same,

3For sophisticates: this is a joke about dereferencing.
4But it’s obvious anyway that bus numbers are not numbers but rather strings. Otherwise

how could we have a bus with a “number” like ‘7A’?
5Wikipædia confirms this: apparently he was an accomplished pianist.
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but the numerals we associate with each number change. Thus the numerals
‘XI’, ‘B’, ‘11’, ‘13’ ‘1011’ all represent the same number.6

Hotter Temperatures on the Way

No! Hotter weather on the way. Temperatures are not hot. They are numbers.
Numbers are big or small, or lucky or unlucky.

Rockets

Missing: Number of children fleeing care in Cambridgeshire rockets

Cambridge News, 17:44, 21 Feb 2017
http://www.cambridge-news.co.uk/news/cambridge-news/missing-number-children-fleeing-care-12636769

The 7 story is not that there are children fleeing their care home by Cam-
bridgeshire rocket—concerning tho’ that is (they must be in a hurry); the story
is rather that the number of such children has been mislaid:

|{x : child(x) ∧ x is fleeing care in a Cambridgeshire rocket}|
has been mislaid.

The person in charge of data capture has left it on a train. Or in a rocket,
perhaps.

6Miniexercise: What is that number, and under which systems do those numerals represent
it?

7Thank you, Ted Harding!

http://www.cambridge-news.co.uk/news/cambridge-news/missing-number-children-fleeing-care-12636769
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Chapter 3

Languages, Automata and
the Chomsky Hierarchy

We can study syntax shorn of meaning.

New stuff to fit in

Introduction

Automata are going to be interesting to us because they are a way of under-
standing parsing.

‘Automata’ (singular: automaton) is a Greek word for ‘machines’. The
automata in this course are all discrete rather than continuous machines. Or
perhaps one should say digital-rather-than-analogue.

If you are happy about this difference just check that you and I have the
same take on it: a car is an analogue machine, and a computer is a digital
machine.

Finite state machines can be quite useful in describing games, like chess, or
Go, snakes-and-ladders or draughts. This is because many games (for example,
those I have just mentioned) have machines naturally associated with them:
the board positions can be thought of as states of a machine. However, it’s not
always clear what the input alphabet is!

Snakes-and-ladders. At least if i remember properly, a snakes-and-ladders
board has 100 squares, numbered 1–100, and the game is played by the two
players each placing a piece on square 1 and, turn and turn about, rolling a
die and advancing their piece the number of places indicated by the number on
the die, and then hopping on a snake or a ladder should there be one at the
destination square.

The point of departure is this: machines are things with finite descriptions
that have states, and they move from one state to another on receiving an input,

23
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which is a character from an input alphabet.The best way to present ma-
chines is through pictures. To be formal about it: A machine M is a set S of states, together with a

family of transition operations, one for each w ∈ Σ, the input alphabet. These
transition operations are usually written as one function of two arguments rather
than lots of unary operations. Thus δ(s, c) is the state that machine is in after
it received character c when it was in state s:

δ : S × Σ→ S

There must of course be a designated start state s0 ∈ S, and there is a set
A of accepting states A ⊆ S, whose significance we will explain later. We will
also only be interested in machines with only finitely many states. There are
technicalities to do with infinity, but we don’t need to worry about them just
yet. All we mean is that for our machine M the number |S| (the size of the set
of states) must be a natural number: |S| = 1 or |S| = 2 or . . . .

Clearly any snakes-and-ladders board can be represented by a FSA over the
alphabet {1, 2, 3, 4, 5, 6} with fewer than 100 states and precisely one accepting
state. (Fewer than 100. . . ? Reflect that no square that is the point of em-
barkation for a ladder- or snake-trip can ever be occupied, so it’s not really a
state.)

3.0.1 Languages Recognised by Machines

Languages, parsing, compilers etc are the chief motivation for this course. You
might think that a language is something like English, or Spanish, or perhaps
PASCAL or JAVA or something like that: a naturally occurring set of strings-of-
letters with some natural definition and a sensible reason for being there—such
as meaning something! Who could blame you? It’s a very reasonable thing
to expect. Unfortunately for us the word ‘language’ has been hijacked by the
formal-language people to mean something much more general than that. What
they mean is the following.

We have to be careful here not to confuse the punters. ‘language’ in this context

is different even from the word as used by logicians!

We start with an alphabet Σ (and for some reason they always are called
Σ, don’t ask me why) which is a finite set of characters. We are interested in
strings of characters from the alphabet in question. A string of characters is
not the same as a set of characters. Sets do not have order—the set {a, b} is the
same set as the set {b, a} but strings do: the string ab is not the same as the
string ba. Sets do not have multiplicity: the set {a, a, b} is the same set as the set
{a, b} (which is why nobody writes things like ‘{a, a, b}’) but strings definitely
do have multiplicity: the string aab is not the same string as the string ab. Also,
slightly confusingly, although we have this ‘{’ and ‘}’ notation for sets, there
is no corresponding delimiter for strings. Notation was not designed rationally,
but just evolved haphazardly.

We write ‘Σ∗’ for the set of all strings formed from characters in Σ; a lan-
guage (“over Σ”) is just a subset of Σ∗: any subset at all. A subset of Σ∗Beware mathmospeak
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doesn’t have to have a sensible definition in order to be called a language by
the formal-language people. While we are about it, notice also that people use
the word ‘word’ almost interchangeably with ‘string’.

(Aside on notation: the use of the asterisk in this way to mean something
like “finite repetitions of” is widespread. If you have done a course in discrete
maths you might connect this with the notation ‘R∗’ for the transitive closure
of R. We will also see the notation ‘δ∗’ for the function that takes a state s,
and a string w and returns the state that the machine reaches if we start it in
s and then perform successively all the transitions mandated by the characters
in w. Thus, for example, for characters a, b and c, δ∗(s, ab) = δ(δ(s, a), b) and
δ∗(s, abc) = δ(δ(δ(s, a), b), c) and so on. In fact δ∗ : S × Σ∗ → S. It’s easier
than it looks!) Of course in linguistics the asterisk is used to flag a nonstandard
or defective word.

A word of warning. Many people confuse ⊆ and ∈, and there is a parallel
confusion that occurs here. (This is not the same as the confusion between sets
and strings: the confusion I am talking about here is the common confusion
between sets and their members!) A language is not a string: it is a set of
strings. This may be because they are thinking that strings are sets of characters
and that accordingly a language—on this view—is a set of sets. If in addition
you think that everything there is to be said about sets can be drawn in Venn
diagrams, this will confuse you. Venn diagrams give you pictures of sets of
points, but not sets of sets. A Venn diagram picture displaying three levels of
sets is impossible.

We will write ‘|w|’ for the length of the string w. This may remind you of
the notation ‘|A|’ for the number of elements of A when A is a set.

Although a language is any old subset of Σ∗, on the whole we are interested
only in languages that are infinite. And here I find that students need to be
tipped off about the need to be careful. Print out this warning and pin it to the
wall:

The languages we are interested in are usually infinite, but
the strings in them are always finite!

The set of grammatical English sentences is infinite (people sometimes say
“potentially infinite”) but each individual grammatical sentence is finite!

So ’string’ corresponds to [english] sentence not to [english] word.
Let’s have some examples. Let Σ be the alphabet {a, b}.
The language {aa, ab, ba, bb} is the language of two-letter words over Σ.

{an : n ∈ IN} is the set of all strings consisting entirely of a’s which is the
(yes, it’s infinite) language {ε, a, aa, aaa, . . .}.
{anbn : n ∈ IN} is the set of all strings that consist of a’s followed by the

same number of b’s.

Question: What might the symbol ‘ε’ mean above (in “{ε, a, aa, aaa, . . .}”).?
Click here to submit
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Answer: It must mean the empty string. What else can it be!?

Mathematics is full of informal conventions that people respect because they
find them helpful. Some of them are applicable here, and we will respect them.

1. We tend to use letters from near the beginning of the alphabet, a, b, . . . for
characters in alphabets;

2. We tend to use lower-case letters from near the end of the alphabet—like
‘u’, ‘v’ and ‘w’—for variables to range over strings;

3. ‘q’ is often a variable used to vary over states;

4. We tend to use upper-case letters from the middle of the alphabet—like
‘K’, ‘L’—for variables to range over languages.

Concatenation

If w and u are strings then wu is w with u stuck on the end, and uw is u with
w stuck on the end. Naturally |uw| = |wu| = |w| + |u|. ε is just the empty
string (which we met on page 25) so εw—the empty string with w concatenated
on the end—is just w. So ww, www and wwwww are respectively the result of
stringing two, three and five copies of w together. Instead of writing ‘wwwww’
we write ‘w5’ and we even use this notation for variable exponents, so that wn

is n copies of w strung together.

3.0.2 Languages from Machines

Some languages have sensible definitions in terms of machines. There is an easy
and natural way of associating languages with machines. It goes like this.

For each machine we single out one state as the designated “start” state.

Then we decorate some of the states of our machines with labels saying
“accepting”. My (highly personal and nonstandard!) notation for this is a
smiley smacked on top of the circle corresponding to the state in question. The
more usual notation is much less evocative: states are represented as circles,
and accepting states are represented by a pair of concentric circles.

R

,

0

1 1

0

1

0

1

0
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You start at the state indicated by the finger, and move from one state to
another by following the labelled arrows—the labels on the arrows are letters
from the input alphabet. If you land on a state (in this case there is only one)
decorated with a smiley you accept the string. (And this is a term of art)

Two Asides on Notation

• Some people write pictures of machines from which arrows might be miss-
ing, in that there could be a state s and a character c such that there is
no arrow from s labelled c. With some people this means that you stay
in s, and with some it means that you go from s to a terminally unhappy
state—which I notate with a scowlie. My policy is to put in all arrows.
This is a minority taste, but I think it makes things clearer. It’s im-
portant to remember that the alternatives of putting in all arrows versus
omitting arrows to terminally unhappy states afford us not two-different-
concepts-of-machine, but two different-notations-for-the-same-concept. I
must emphasise that my practice of putting in all arrows is not the usual
practice in the literature (it should be but it isn’t) and readers should get
used to seeing pictures with arrows missing.

• For some reason the expression ‘final state’ is sometimes used for ‘accept-
ing state’. I don’t like this notation, since it suggests that once you get
the machine into that state it won’t go any further or has to be reset or
something, and this is not true. But you will see this nomenclature in the
literature.

The use of the word “accepting” is a give-away for the use we will put this
labelling to. We say that a machine accepts a string if, when the machine is
powered up in the designated start state, and is then fed the characters from
s in order, then when it has read the last character of s it is in an accepting
state.

This gives us a natural way of making machines correspond to languages.
When one is shown a machine M one’s thoughts naturally turn to the set of
strings that M can accept—which is of course a language. We say that this set
is the language recognised by M, and we write it L(M).

Pin this to the wall too:

The set of strings accepted by a machine M is the language
recognised by M

People often confuse a machine-recognising-a-language with a machine-accepting-
a-string. It is sort-of OK to end up confusing the two words ‘recognise’ and
‘accept’ once you really know what’s going on: lots of people do. However if
you start off confusing them you will become hopelessly lost.

Two points to notice here. It’s obvious that the language recognised by a
machine is uniquely determined. However, if you start from the other direction,
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with a language and ask what machine determines it then it’s not clear that
there will be a unique machine that recognises it. There may be lots or there
may be none at all. The first possibility isn’t one that will detain us long,
but the second possibility will, for the difference between languages that have
machines that accept them and languages that don’t is a very important one.
We even have a special word for them.

Definition:

If there is a finite state machine which recognises L then L is reg-
ular.

Easy exercise. For any alphabet Σ whatever, the language Σ∗ is regular.
Exhibit a machine that recognises Σ∗. This is so easy you will probably suspect
a trick.

click here to submit

Answer: The machine with one state, and that an accepting state.

I’m not sure why Kleene (for it was he) chose the word ‘regular’ for languages
recognised by finite state machines. It doesn’t seem well motivated.

3.0.3 Some exercises

1. (a) Draw a machine that recognises the language {ε}. (This is easy but
you might have to think hard about the notation!)

(b) Draw a machine that recognises ∅, the empty language.

click here to submit

Answer:

(a) The machine has two states. The start state is accepting, and the
other state is not. The transition function takes only one value,
namely the second—nonaccepting—state. Nonaccepting states
like this—from which there is no escape—I tend to write with a
scowlie.

(b) The machine has one state, and that is a nonaccepting state (a
scowlie).

2. Explain what languages the following notations represent

(a) {a2n : n ∈ IN};
(b) {(ab)n : n ∈ IN};
(c) {anbm : n < m ∈ IN}

You might like to design machines to recognise the first two.

click here to submit
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Answer:

(a) is the set of strings of even length consisting entirely of as. The
corresponding machine has three states: the first means “I have
seen an even number of as” (this state is the start state and also
the unique accepting state); the second means “I have seen an
odd number of states” and the third is an error state (a scowlie)
to which you go if you receive any character other than an a;

(b) is the set of strings consisting of any number of copies of ab con-
catenated together. The corresponding machine has three states.
The start state (which is also the unique accepting state). . .

(c) contains those strings consisting of as followed by a greater num-
ber of bs.

3. A burglar alarm has a keypad with the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9
on it. It is de-activated by any sequence of numbers that ends with the
four characters 1, 9, 8, and 3, in that order. Once deactivated it remains
de-activated.

Represent the burglar alarm as a finite state machine and supply a state
diagram of it. Supply also a regular expression and a context-free grammar
that capture the set of strings that deactivate the burglar alarm.

3.0.4 The Thought-experiment

We live in a finite world, and all our machines are finite, so regular languages
are very important to us, since they are the languages that are recognised by
finite state machines. It’s important to be able to spot (I nearly wrote ‘recog-
nise’ there!) when a language is regular and when it isn’t. Here is a thought-
experiment that can help.

I am in a darkened room, whose sole feature of interest (since it has neither
drinks cabinet nor coffee-making facilities) is a wee hatch through which some-
body every now and then throws at me a character from the alphabet Σ. My
only task is to say “yes” if the string of characters that I have had thrown at
me so far is a member of L and “no” if it isn’t (and these answers have to be
correct!)

After a while the lack of coffee and a drinks cabinet becomes a bit much for
me so I request a drinks break. At this point I need an understudy, and it is
going to be you. Your task is to take over where I left off: that is, to continue
to answer correctly “yes” or “no” depending on whether or not the string of
characters that we (first I and then you) have been monitoring all morning is a
member of L.

What information do you want me to hand on to you when
I go off for my drinks break? Can we devise in advance a
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form that I fill in and hand on to you when I go off duty?
That is to say, what are the parameters whose values I need
to track? How many values can each parameter take? How
much space do I require in order to store those values?

Let us try some examples

1. Let L be the set of strings over the alphabet {a, b} which have the same
number of as as bs. What do you want me to tell you?

Click here to submit

Answer:

Clearly you don’t need to know the number of as and the
number of bs I’ve received so far but you do need to know the
difference between these two quantities. Although this is only
a single parameter there is no finite bound on its values (even
though the value is always finite!) and it can take infinitely
many values. so I cannot bound in advance the number of bits
I need if I am to give you this information. L is not regular.

2. Let L be the set of strings over the alphabet {a, b} which have an even
number of as and an even number of bs. What do you want me to tell
you?

click here to submit

Answer:

All you need to know is whether the number of as is even
or odd and whether the number of bs is even or odd. That’s
two parameters, each of which can take one of two values.
That’s two bits of information, and four states.

3. Let L be the set of strings over the alphabet {a, b} where the number of
as is divisible by 3 and so is number of bs. What do you want me to tell
you?

click here to submit

Answer:

It isn’t sufficient to know whether or not the number of as
is divisible by 3 (and the number of bs similarly): you need
to know the number of as and bs mod 3. But it’s still a
finite amount of information: there are two parameters we
have to keep track of, each of which can have one of three
values. as far as we are concerned in this situation, you and
I, there are only nine states.
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4. {anbn : n ∈ IN} This is the language of strings consisting of any number
of as followed by the same number of bs. (‘n’ is a variable!)

click here to submit

Answer: Clearly you need to count the a’s. This number can get
arbitrarily large, so you would need infinitely many states (“I have
seen one a”; “I have seen two a’s” . . . )

5. The “matching-brackets language”: the set of strings of left and right
brackets ‘(’ and ‘)’ that “match”. (You know what I mean!)

click here to submit

Answer: You have to keep track of how many left brackets you’ve
opened, and this number cannot be bounded in advance.

Equivalence-from-the-point-of-view-of-L must be a congruence relation for
each of the |Σ| operations “stick w on the end” (one for each w ∈ Σ). We saw
these on page 24. This is all explained in the new Discrete Mathematics notes.

3.0.5 The Pumping Lemma

The pumping lemma starts off as a straightforward application of the pigeonhole
principle. If a machine M has n states, and accepts even one string that is of state transition table here
length greater than n, then in the course of reading (and ultimately accepting)
that string it must have visited one of its states—s, say—twice. (At least twice:
quite possibly more often even than that). This means that if w is a string
accepted by M, and its length is greater than n, then there is a decomposition
of w as a concatenation of three strings w1w2w3 where w1 is the string of
characters that takes it from the start state to the state s; w2 is a string that
takes it from s on a round trip back to s; and w3 is a string that takes it from
s on to an accepting state.

This in turn tells us that M—having accepted w1w2w3—must also accept
w1(w2)nw3 for any n. M is a finite state machine and although it “knows” at
any one moment which state it is in at that moment it has no recollection of
its history, no recollection of how it got into that state nor of how often it has
been in that state before.

Thus we have proved

The Pumping Lemma

If a finite state machine M has n states, and w is a string of length
> n that is accepted by M, then there is a decomposition of w as a
concatenation of three strings w1w2w3 such that M also accepts all
strings of the form w1(w2)nw3 for any n.

It does not imply that if w is a string of length > n that is accepted by M,
and w1w2w3 is any old decomposition of w as a concatenation of three strings
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then M also accepts all strings of the form w1(w2)nw3 for any n: it says merely
that there is at least one such decomposition.

You need to be very careful when attempting to state the pumping lemma
clearly, as it has so many alternations of quantifiers: There is a number s
(actually the number of states in the machine) which is so large that for all
strings w with |w| > s that are accepted by M there are substrings x, w′, and
y of w, so that w = xw′y such that for all n, x(w′)ny is also accepted by M.
That’s four blocks of quantifiers: a lot of quantifier alternations!!They don’t know this expres-

sion The pumping lemma is very useful for proving that languages aren’t regular.
In order to determine whether a language is regular or not you need to form

a hunch and back it. Either guess that it is regular and then find a machine that
recognises it or form the hunch that it isn’t and then use the pumping lemma.
How do you form the hunch? Use the thought experiment. If the thought
experiment tells you: “a finite amount of information” you immediately know
it’s a finite-state machine, and if you think about it, it becomes clear what the
machine is. What do we do if the thought-experiment tells you that you need
infinitely many states (beco’s there appears to be no bound on the amount of
information you might need to maintain)? This is where the pumping lemma
comes into play. You use it to build bombs.

Bombs?! Read on.

3.0.6 Bombs

Let L be a language, and suppose that although L is not regular, there is
nevertheless someone who claims to have a machine M that recognises it: i.e.,
they claim to have a machine that accepts members of L and nothing else. This
person is the Spiv. This machine is fraudulent of course, but how do we prove
it? What we need is a bomb.

A bomb (for M) is a string that is either (i) a member of L not
accepted by M or (more usually) (ii) a string accepted by M that
isn’t in L. Either way, it is a certificate of fraudulence of the machine
M, and therefore something that explodes those fraudulent claims.

How do we find bombs? This is where the Pumping Lemma comes in handy.
The key to designing a bomb is feeding M a string w from L whose length is
greater than the number of states of M. M accepts w. M must have gone
through a loop in so doing. Now we ascertain what substring w′ of w sent M
through the loop, and we insert lots of extra copies of that substring next to
the one copy already there and we know that the new “pumped” string will also
be accepted by M. With any luck it won’t be in L, and so it will be a bomb.
The key idea here is that the machine has no memory of what has happened
to it beyond what is encoded by it being in one state rather than another. So
it cannot tell how often it has been though a loop. We—the bystanders—know
how often it has been sent through a loop but the machine itself has no idea.

Examples are always a help, so let us consider some actual challenges to the
bomb-maker.
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3.0.7 One-step refutations using bombs

The language {anbn : n ∈ IN} is not regular

Suppose the Spiv shows us M, a finite state machine that—according to him—
recognises the language {anbn : n ≥ 0}. The thought-experiment tells us imme-
diately that this language is not regular (this was example 4 on page 31) so we
embark on the search for a bomb with high expectations of success. In the first
instance the only information we require of the Spiv is the number of states of
M, though we will be back later for some information about the state diagram.
For the moment let k be any number such that 2k is larger than the number of
states of M. Think about the string akbk. What does M do when fed akbk? It
must go through a loop of course, because we have made k so large that it has
to. In going through the loop it is reading a substring w of akbk. What does
the substring consist of? We don’t know the exact answer to this, but we can
narrow it down to one of the three following possibilities, and in each case we
can design a bomb.

1. w consists entirely of as. Then we can take our bomb to be the string
obtained from akbk by putting n copies of w instead of just one. Using
our notation to the full, we can notate this string a(k−|w|)a(|w|·n)bk

Explain why this is correct. click here to submit

Answer: Well, w consists of |w| a’s. Remove w from akbk and put in n
copies of what you’ve taken out. Then stick on the end all the b’s you
had. M will accept this string, but this string contains more as than
bs, and M shouldn’t have accepted it.

2. w consists entirely of bs. Then our bomb will be the string obtained from
akbk by putting in several copies of w instead of just one. M will accept
this string, but this string contains more bs than as, and M shouldn’t have
accepted it. Exercise: how do we notate this bomb, by analogy with the
bomb in the previous case? click here to submit

Answer: akb(k−|w|)b(|w|·n)

3. w consists of some as followed by some bs. In this case, when we insert
n copies of w to obtain our bomb, we compel M to accept a string that
contains some as followed by some bs and then some as again (and then
some bs). But—by saying that M recognised {anbn : n ∈ IN}—the Spiv
implicitly assured us that the machine would not accept any string con-
taining as after bs. Exercise: how do we notate this bomb, by analogy
with the bomb in the previous case? click here to submit

Answer: This one is a bit tricky. Suppose w is axby then the bomb can
be a(k−x)wnb(k−y)
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So we know we are going to be able to make a bomb whatever w is. However,
if we are required to actually exhibit a bomb we will have to require the Spiv
to tell us what w is.

The language {akbak : k ≥ 0} is not regular

Suppose the Spiv turns up with M, a finite state machine that is alleged to
recognise the language {akbak : k ≥ 0}. Notice that every string in this language
is a palindrome (a string that is the same read backwards as read forwards). We
will show that M will accept some strings that aren’t palindromes, and therefore
doesn’t recognise {akbak : k ≥ 0}.

As before, we ask the Spiv for the number of states the machine has, and
get the answer m, say. Let n be any number bigger than m and consider what
happens when we give M the string anban. This will send M through a loop.
That is to say, this string anban has a substring within it which corresponds to
the machine’s passage through the loop. Call this string w. Now, since we have
force-fed the machine n a’s, and it has fewer than n states, it follows that w
consists entirely of a’s. Now we take our string anban and modify it by replacing
the substring w by lots of copies of itself. Any number of copies will do, as long
as it’s more than one. This modified string (namely a(k+|w|)bak) is our bomb.
Thus M accepts our bomb, thereby demonstrating—as desired—that it doesn’t
recognise {akbak : k ≥ 0}.

3.0.8 A few more corollaries

1. M, if it accepts anything at all, will accept a string of length less than
|M|.

2. If M accepts even one string that has more characters than M has states
will accept arbitrarily long strings.

The Pumping Lemma is a wonderful illustration of the power of The Pi-
geonhole Principle. If you have n+ 1 pigeons and only n pigeonholes to put
them in the at least one pigeonhole will have more than one pigeon in it. The
pigeonhole principle sounds too obvious to be worth noting, but the pumping
lemma shows that it is very fertile.

3.1 Operations on machines and languages

Languages are sets, and there are operations one can perform on them simply in
virtue of their being sets. If K and L are languages, so obviously are K∪L, K∩L
and K \ L. There is one further operation that we need which is defined only
because languages are sets of strings and there are operations we can perform
on strings, specifically concatenation. This concatenation of strings gives us a
notion of concatenation of languages. KL = {wu : w ∈ K ∧ u ∈ L}, and the
reader can probably guess what K∗ is going to be. It’s the union of K, KK,
KKK . . .
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EXERCISE 1. If K = {aa, ab, bc} and L = {bb, ac, ab} what are (i) KL, (ii)
LK, (iii) KK, (iv) LL? click here to submit

Answer:
KL = {aabb, aaac, aaab, abbb, abac, abab, bcbb, bcac, bcab};
LK = {bbaa, bbab, bbbc, acaa, acab, acbc, abaa, abab, abbc};
KK = {aaaa, aaab, aabc, abaa, abab, abbc, bcaa, bcab, bcbc};
LL = {bbbb, bbac, bbab, acbb, acac, acab, abbb, abac, abab};

EXERCISE 2. Can you express |KL| in terms of |K| and |L|?

click here to submit

Answer: You want to say |K| · |L|, don’t you? But if K and L are
both {a, aa} then KL = {aa, aaa, aaaa} with three elements not four,
because aaa is generated in two ways not one. All you can say is that
|KL| ≤ |K| · |L|
Contrast this with |wu| = |w|+ |u| on page 26 (overloading of vertical
bars to mean both size of a set and length of a string).

The following fact is fundamental.

If K and L are regular languages so are K ∩L, K \L, KL and K∗.

So every language you can obtain from regular languages by means of any
of the operations we have just seen is likewise regular.

Let’s talk through this result.

K ∩ L

The thought-experiment shows very clearly that the intersection of two regular
languages is regular : if I have a machine M1 that recognises L1 and a machine
M2 that recognises L2 the obvious thing to do is to run them in parallel, giv-
ing each new incoming character to both machines and accept a string if they
both accept it. Using the imagery of the thought-experiment, the clipboard of
information that I hand on to you when I go for my coffee break has become a
pair of clipboards, one for M1 and one for M2.

But although this makes it clear that the intersection of two regular lan-
guages is regular, it doesn’t make clear what the machine is that recognises the
intersection. We want to cook up a machine M3 such that we can see running-
M1-and-M2-in-parallel as merely running M3. M3 is a sort of composite of M1

and M2. What are the states of this new composite machine?
The way to see this is to recall from page 31 the idea that a state of a

machine is a state-of-knowledge about the string-seen-so-far. What state-of-
knowledge is encoded by a state of the composite machine? Obviously a state
of the composite machine must encode your knowledge of the states of the two
machines that have been composed to make the new (composite) machine. So
states of the composite machine are ordered pairs of states of M1 and M2.
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What is the state transition function for the new machine? Suppose M1

has a transition function δ1 and M2 has a transition function δ2, then the new
machine has the transition function that takes the new state 〈s1, s2〉 and a
character c and returns the new state 〈δ1(s1, c), δ2(s2, c)〉.

K ∩ L and K \ L
The proofs that a union or difference of two regular languages is regular is
precisely analogous.

People sometimes talk of the complement of a language L. L is a language
over an alphabet Σ, and its complement, relative to Σ, is Σ∗ \L. It’s easy to see
that the complement of a regular language L is regular: if we have a machine
M that recognises L, then we can obtain from it a machine that recognises the
complement of L just by turning all accepting states into non-accepting states
and vice versa.

(A common mistake is to assume that every subset of a regular language
is regular. I think there must be a temptation to assume that a subset of a
language recognised by M will be recognised by a version of M obtained by
throwing away some accepting states.)

KL

It’s not obvious that the concatenation of two regular languages is regular, but
it’s plausible. We will explain this later. For the moment we will take it as read
and press ahead. This leads us to

3.1.1 Regular Expressions

A regular expression is a formula of a special kind. Regular expressions provide
a notation for regular languages. We can declare them in BNF (Backus-Naur
form).

We define the class of regular expressions over an alphabet Σ recursively as
follows.

1. Any element of Σ standing by itself is a regular expression;

2. If A is a regular expressions, so is A∗;

3. If A and B are regular expressions, so is AB;

4. If A and B are regular expressions, so is A|B.

For example, for any character a, a∗ is a regular expression.
The idea then is that regular expressions built up in this way from characters

in an alphabet Σ will somehow point to regular languages ⊆ Σ∗. Now we are
going to recall the L() notation which we used on page 27, where L(M) is the
language recognised by M, and overload it to notate a way of getting languages
from regular expressions. We do this by recursion using the clauses above.
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1. If a is a character from Σ (and thus by clause 1, a regular expression) then
L(a) = {a}.

2. L(A|B) = L(A) ∪ L(B).

3. L(AB) = L(A)L(B). This looks a bit cryptic, but actually makes perfect
sense. L(A) and L(B) are languages. If K1 and K2 are languages, you
know what K1K2 is from page 34, so you know what L(A)L(B) is!

L(A∗) is the set L(A)∪L(AA)∪L(AAA) . . . =
⋃

n∈INA
n. An is naturally

AAAA . . . A (n times).

3.1.2 More about bombs

3.1.2.1 Palindromes do not form a regular language

You may recall that a palindrome is a string that is the same read backwards or
forwards. If you ignore the spaces and the punctuation then the strings ‘Madam,
I’m Adam’ and ‘A man, a plan, a canal—Panama!” are palindromes.

The thought-experiment swiftly persuades us that the set of palindromes
over an alphabet Σ is not regular (unless Σ contains only one character of
course!). After all—as you will have found by looking first at “Madam, I’m
Adam” and then the two longer examples—to check whether or not a string is
a palindrome one finds oneself making several passes through it, and having to
compare things that are arbitrarily far apart.

Let L be the language of palindromes over {a, b}. It isn’t regular, but there is
no obvious bomb. However, if L were regular then so too would be the language
L ∩ L(a∗ba∗). (We established on page 35 that the intersection of two regular
languages is regular.) This new language is just the language {akbak : n ∈ IN}
that we saw on page 34.

3.1.2.2 The language {ww : w ∈ Σ∗} is not regular

I don’t see how to use a bomb to show that {ww : w ∈ Σ∗} is not regular,
though it’s obvious from the thought-experiment. However, we do know that
the language L(a∗b∗a∗b∗) is regular so if our candidate were regular so too
would be the language {ww : w ∈ Σ∗} ∩ L(a∗b∗a∗b∗). Now this language is
{anbmanbm : m,n ∈ IN} and it isn’t hard to find bombs to explode machines
purporting to recognise this language. You might like to complete the proof by
finding such a bomb.

click here to submit

Answer:
A machine with k states that purports to recognise this language can
be exploded by the bomb akbkak+1bk.
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3.1.3 Some more exercises

1. Is every finite language regular?

2. The “reverse” of a regular language is regular: if L is regular, so is {w−1 :
w ∈ L} where w−1 is w written backwards.

3. You know that you cannot build a finite state machine that recognises
the matching bracket language. However you can build a machine that
accepts all and only those strings of matching brackets where the number
of outstanding opened left brackets never exceeds three.

Find a regular expression for the language accepted by this machine. (I
suggest that, in order not to drive yourself crazy, you write ‘0’ instead of
the left bracket and ‘1’ instead of the right bracket!!)

Click here to submit

I think the answer is:
(0(0(01)∗1)∗1)∗

How about the same for a machine than can cope with as many as five
outstanding brackets?

Click here to submit

Or six? Or seven? This becomes clear once you think about it. If N
is the regular expression for the machine that can cope with as many
as n outstanding open left brackets then the regular expression for the
machine that can cope with as many as n + 1 outstanding open left
brackets is N∗|(0(N∗)1)∗.

3.2 Grammars

So far we have encountered two ways of thinking about regular languages:
(i) through finite state machines; (ii) through regular expressions. These ap-
proaches have their roots in the study of machines, rather than—as you had
probably been expecting—the study of natural languages. The third approach,
you will be relieved to hear, is one that has its roots in the study of natural
languages after all.

Many years ago (when I was at school) children were taught parsing. We
were told things like the following. Sentences break down into

Subject followed by Verb followed by Object.

Or perhaps they break down into

Noun Phrase followed by Verb followed by Noun Phrase.
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These constituents break down in turn: noun phrases being composed of de-
terminer followed by adjective followed by noun.

This breaking-down process is important. The idea is that the way in which
we assemble a sentence from the parts into which we have broken it down
will tell us how to recover the meaning of a sentence from the meanings of its
constituents.

VP

NP V

Det N

The man ran

If we start off with an alphabet

Σ = {dog, cat, the, some, walk, swim, all, some . . . }

then rules like

sentence → Subject verb object

and

Noun phrase → determiner adjective noun

have the potential, once equipped with further rules like

determiner → many

determiner → the

determiner → a

determiner → some

verb → swim

verb → walk

noun → dog

noun → cat

to generate words in a language L ⊆ Σ∗. This time ‘language’ really does
mean something like ‘language’ in an ordinary sense, but the “words” that
we generate are actually things that in an ordinary context would be called
sentences. And this time we think of ‘dog’ not as a string but as a character
from an alphabet, don’t we!

The languages that we have seen earlier in this coursework can be generated
by rules like this. For example
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S → aS
S → ε

generates every string in the language L(a∗) and a set of rules like

S → aSa
S → bSb
S → ε

generates the language of palindromes over the alphabet Σ = {a, b}.

These bundles of rules are called grammars and the rules in each bundle
are called productions.

There are two sorts of characters that appear in productions. There are
nonterminals which appear on the left of productions (and sometimes on the
right). These are things like ‘noun’ and ‘verb’. Terminals are the characters
from the alphabet of the language we are trying to build, and they only ever
appear on the right-hand-side of the production. Examples here are ‘swim’,
‘walk’, ‘cat’ and ‘dog’.

Notice that there is a grammar that generates the language of palindromes
over Σ = {a, b} even though this language is not regular. Grammars that
generate regular languages have special features that mark them off. One can
ascertain what these features are by reverse-engineering the definition of regular
language from regular expressions or finite state machines, but we might as well
just give it straight off.

DEFINITION 1.
A Regular Grammar is one in which all productions are of the form

N → TN ′

or
N → T

Where N and N ′ are nonterminals and T is a string of terminals.

The other illustrations i have given are of grammars not having this re-
striction. They are context-free. Reason for this nomenclature is that in a
context-free grammar the production rules that tell us what a nonterminal can
be rewritten to do not consult the context in which the nonterminal lives.

Should Say something about how the nonterminals correspond to states of
the automatonThis long quantifier prefix is

worth making a fuss about to
the linguists 3.2.1 Exercises

EXERCISE 3.
Provide a context-free grammar for regular expressions over the alphabet {a, b}
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3.3 Actual Real, Live Regular Languages

3.3.1 Some semantics for a regular language

Ordinary modern (“arabic” but actually indian) notation for natural numbers
admits strings from the following alphabet: {‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’}.
Notice the quotation marks: the alphabet consists of the symbols not of the
numbers they name, so when I am mentioning the symbols I use their names,
which I obtain by putting single quotation marks round tokens of those same
symbols. The language of strings for notating natural numbers consists of any
string from this alphabet that doesn’t start with a ‘0’. This language is clearly
regular.

Let’s have a grammar for it, and some rule-to-rule semantics

A Grammar for base-10 notation for Natural Numbers:

singlecharacter → 0|1|2|3|4|5|6|7|8|9

nonzero → 1|2|3|4|5|6|7|8|9

expression → nonzero tailexpression

tailexpression → tailexpression singlecharacter| ε

So here is the semantics:

The meaning of ‘0’ is the number zero;
The meaning of ‘1’ is the number one;
The meaning of ‘2’ is the number two;
The meaning of ‘3’ is the number three;
The meaning of ‘4’ is the number four;
The meaning of ‘5’ is the number five;
The meaning of ‘6’ is the number six;
The meaning of ‘7’ is the number seven;
The meaning of ‘8’ is the number eight;
The meaning of ‘9’ is the number nine.

The meaning of a string (thought of as a list) that consists of a string s with
a character x stuck on the end is: (ten times the meaning of s) + (the meaning
of x).1

You might prefer your numbers to be written out with commas to make
them easier to read: ‘1,000,000’ instead of ‘1000000’. This is slightly more
complicated. . . It seems that most if not

all natural languages are
context-free

We see here in microcosm many of the features we see in more sophisticated
cases. We are defining a function that takes pieces of syntax (things that are en-

1Observe here that ‘x’ is a variable that takes as its values the characters ‘0’, ‘1’ . . . .



42 CHAPTER 3. LANGUAGES AND AUTOMATA

tirely innocent of meaning) and gives out meanings, and does so in a systematic
way that takes account of the way in which we parse the syntax.

3.4 Some semantics for a regular language

Ordinary modern (“arabic” but actually indian) notation for natural numbers
admits strings from the following alphabet: {‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’}.
Notice the quotation marks: the alphabet consists of the symbols not of the
numbers they name, so when I am mentioning the symbols I use their names,
which I obtain by putting single quotation marks round tokens of those same
symbols. The language of strings for notating natural numbers consists of any
string from this alphabet that doesn’t start with a ‘0’. This language is clearly
regular.

Let’s have a grammar for it, and some rule-to-rule semantics

A Grammar for base-10 notation for Natural Numbers:

singlecharacter → 0|1|2|3|4|5|6|7|8|9

nonzero → 1|2|3|4|5|6|7|8|9

expression → nonzero tailexpression

tailexpression → tailexpression singlecharacter| ε

So here is the semantics:

The meaning of ‘0’ is the number zero;
The meaning of ‘1’ is the number one;
The meaning of ‘2’ is the number two;
The meaning of ‘3’ is the number three;
The meaning of ‘4’ is the number four;
The meaning of ‘5’ is the number five;
The meaning of ‘6’ is the number six;
The meaning of ‘7’ is the number seven;
The meaning of ‘8’ is the number eight;
The meaning of ‘9’ is the number nine.

The meaning of a string (thought of as a list) that consists of a string s with
a character x stuck on the end is: (ten times the meaning of s) + (the meaning
of x).2

You might prefer your numbers to be written out with commas to make
them easier to read: ‘1,000,000’ instead of ‘1000000’. This is slightly more
complicated. . .An exercise here!

2Observe here that ‘x’ is a variable that takes as its values the characters ‘0’, ‘1’ . . . .
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We see here in microcosm many of the features we see in more sophisticated
cases. We are defining a function that takes pieces of syntax (things that are en-
tirely innocent of meaning) and gives out meanings, and does so in a systematic
way that takes account of the way in which we parse the syntax.

Roman numerals? phonology rules? Coats of arms?

Gules, a cross ermine between four lions passant guardant Or, charged
with a closed book fesswise of the first, clasped and garnished of
thesecond, the clasps to base.

A description of Oxford University’s coat of arms. Presumably in a regular
language.

Ambiguous parses; decidability of language equivalence.
No ambiguous parses in regular languages. Why not?

In any natural language, the language of strings of phonemes compliant with
the phonological rules of that language form a regular language.

Phonological rules say things like: if the last two phonemes were x followed
by y you cannot then have a z next; you cannot begin a word with an x; you
cannot end it with a y; everything else is OK. Not hard to show that if all the
phonological rules look like that then the set of permitted strings forms a regular
language. Suppose your alphabet is Σ and the number of previous characters
you have to remember in order to comply with these rules is n. Then you can
form an NFA whose set of states is Σn. An exercise here!

[should really say something about this: get a right-regular grammar]

3.4.1 Some semantics for a regular language

Ordinary modern (“arabic” but actually indian) notation for natural numbers
admits strings from the following alphabet: {‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’}.
Notice the quotation marks: the alphabet consists of the symbols not of the
numbers they name, so when I am mentioning the symbols I use their names,
which I obtain by putting single quotation marks round tokens of those same
symbols. The language of strings for notating natural numbers consists of any
string from this alphabet that doesn’t start with a ‘0’. This language is clearly
regular.

Let’s have a grammar for it, and some rule-to-rule semantics.

A Grammar for base-10 notation for Natural Numbers:

singlecharacter → 0|1|2|3|4|5|6|7|8|9

nonzero → 1|2|3|4|5|6|7|8|9

expression → nonzero tailexpression

tailexpression → tailexpression singlecharacter| ε
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So here is the semantics:

The meaning of ‘0’ is the number zero;
The meaning of ‘1’ is the number one;
The meaning of ‘2’ is the number two;
The meaning of ‘3’ is the number three;
The meaning of ‘4’ is the number four;
The meaning of ‘5’ is the number five;
The meaning of ‘6’ is the number six;
The meaning of ‘7’ is the number seven;
The meaning of ‘8’ is the number eight;
The meaning of ‘9’ is the number nine.

The meaning of a string (thought of as a list) that consists of a string s with
a character x stuck on the end is: (ten times the meaning of s) + (the meaning
of x).3

You might prefer your numbers to be written out with commas to make
them easier to read: ‘1,000,000’ instead of ‘1000000’. This is slightly more
complicated. . .Vowel harmony?

We see here in microcosm many of the features we see in more sophisticated
cases. We are defining a function that takes pieces of syntax (things that are en-
tirely innocent of meaning) and gives out meanings, and does so in a systematic
way that takes account of the way in which we parse the syntax.

3.5 Pushdown Automata

We have characterised context-free languages in terms of grammars, but they
can also be characterised in terms of machines. There is a special kind—a
special class—of machines which we call push-down automata (or“PDA” for
short) that are related to context-free languages in the same way that finite
state machines are related to regular languages. Just as a language is regular iff
there is a finite-state machine that recognises it (accepts all the strings in it and
accepts no other strings), so a language is context-free iff there is a pushdown
automaton that recognises it.

So what is a push-down automaton? One way in to this is to first reflect
on what extra bells and whistles a finite state machine must be given if it is
to recognise a context-free language such as the matching-brackets language,
and to then engineer those bells and whistles into the machine. The thought-
experiment comes in handy here. What does the thought-experiment tell you
about the matching backets language? Run the experiment and you will find
that to crack the matching-brackets language it would be really nice to have a
stack4. Every time you see a left bracket you push it onto the stack and every
time you see a right-bracket you pop a left-bracket off the stack; whenever the

3Observe here that ‘x’ is a variable that takes as its values the characters ‘0’, ‘1’ . . . .
4A stack of course is one of those things-with-springs that plates in cafeterias sit on, so the

top plate is always the same height no matter how many plates there are in it—within reason.
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stack is empty you are in an accepting state. If you ever find yourself trying to
pop a bracket off an empty stack you know that things have gone permanently
wrong so you shunt yourself into a scowlie. What I need to hand over to you
when I go off for my coffee is the stack (or the scowlie).

Let us now try to formalise the idea of a machine-with a stack. Our way in
is to start off by thinking of a PDA as a finite state machine which we are going
to upgrade, so we have the idea of start state and accepting state as before.
The stack of course contains a string of characters. For reasons of hygiene
we will tend to assume that the alphabet of characters that go on the stack
(the “pushdown alphabet”) is disjoint from the alphabet that the context free
language is drawn from. Clearly if there is to be any point in having a stack at
all then the machine is going to have to read it, and this entails immediately that
the transition function of the machine has not two arguments (as the transition
function of a finite state machine does, namely the old state and the character
being read) but three, with the novel third argument being the character at
the top of the stack. And of course the transition function under this new
arrangement not only tells you what state the machine will go into, but what
to do with the stack—namely push onto it a word (possibly empty) from the
stack alphabet.

(This is a bit confusing: the transition function in the new scheme of things
takes an input which is an ordered triple of the contents-of-the-stack, the new
character that is being fed it by the user, and the current state; the value is
a pair of a state and the new contents-of-the-stack. However the transition
function doesn’t look at the whole of the contents of the stack but only the
top element. Specifically this means that the new stack can differ from the
old in only very limited ways. The new stack is always the old stack with the
top element replaced by a string (possibly empty) of characters from the stack
alphabet.)

If you are happy with this description you might now like to try designing
a PDA that accepts the matching bracket language. (Hint: it has only three
states: (i) accepting, (ii) wait-and-see, and (iii) dead!)

click here to submit
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Answer: The reason why we need a stack is to keep track of the number
of unmatched left brackets we have accumulated. We don’t need it for
anything else so the stack alphabet has only one character (which might
as well be a left bracket. I know we said the alphabets should be kept
disjoint for reasons of hygiene but...!) The PDA starts in the accepting
state with an empty stack. Transition rules are as follows:

1. If you are in the dead state, stay there whatever happens.

2. If you are in the accepting state

(a) if you read a right bracket go to the dead state;

(b) if you read a left-bracket push it onto the stack and go to
the wait-and-see state;

3. If you are in the wait-and-see state then

(a) if you read a left bracket push it on the stack and remain in
the wait-and-see state;

(b) if you read a right bracket pop the top character off the
stack and stay in the wait-and-see state unless the stack is
now empty, in which case go to the accepting state.

Notice that if you are in the wait-and-see state then the stack is not
empty, so we don’t have to define the transition function for the case
when the stack is not empty. Similarly when we are in the accepting
state the stack must be empty. These two facts are not hard to see, but
are a wee bit tricky to prove. You would have to prove by induction on
the length n of possible input strings that for all strings s of length n
when the machine has read s then if it’s in the wait-and-see state then
the stack is not empty and if it is in the accepting state then the stack
is empty.
The PDA you have just written is a deterministic PDA.

There is a slight complication in that PDA’s are nondeterministic, so the
parallel is with regular languages being recognised by nondeterministic finite
automata rather than FSAs. . . But we haven’t dealt with nondeterministic ma-
chines yet. So we’d better deal with them at once!

There seems to be a hiatus here—nondeterministic machines!



Chapter 4

Propositional Logic

Where do we make a fuss
about our connectives be-
ing truth-functional? Here?
or in the intension/extension
section

So let’s start by looking at a very simple logical language: the language of
propositional logic.

A formula (or sentence) is either

• A letter: p, q, r . . . ; or

• The result of putting ‘∧’, ‘∨’, ‘→’ between two formulæ or
a ‘¬’ in front of a formula’

Nothing else is a formula.

Actually, while we are about it, we may as well provide for this toy language
the corresponding toy example of a (context-free) grammar for it:

S → (S ∧ S)

S → (S ∨ S)

S → (S → S)

S → ¬(S)
beware of the double use of
‘→’ in the third line! use →
Talk over the slide

This is not so much a language as a skeleton of a language. A natural
language comes equipped with meanings for all its words: for linguists the
meanings of the words are part of the language. Here only the meanings of
the mathematical-looking symbols ‘∧’ etc. are determined. They are reserved
words (see p. 13). Grammatically they are what you linguists would probably
call conjunctions—things like ‘and’ and ‘or’. In formal logic we call such things
connectives—beco’s we use the word ‘conjunction’ for something else. (Another
annoying example of two communities using divergent notations for the same
thing!)

In contrast the letters ‘p’, ‘q’, ‘r’ etc have no internal structure and do not
come equipped with any meaning. They are dummies or variables, and they

47
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stand for statements in the sense that the intended use of this syntax is to
replace the letters with things like ‘Daisy is a cow’ that have truth-values: that
is, are true or false.

You could, if you wanted, think of this language as like a natural language
where we know the grammar and some of the parts of speech (the conjunctions),
but where we do not know the meanings of any of the other items in the lexicon.

People use this language to formalise ordinary language arguments. We use
∨ for ‘or’ and ‘∧’ for ‘and’.

Let’s have some illustrations.

“If Anna can cancan or Kant can’t cant, then Gre-
ville will cavil vilely. If Greville will cavil vilely,
Will won’t want. But Will will want. Therefore,
Kant can cant.”

We abbreviate

Anna can cancan to A
Kant can cant to K
Greville will cavill vilely to G
Will will want to W

Then in the new language I am introducing we can write this as

(A ∨ ¬K)→ G; G→ ¬W
K

above and below the line
It looks as if there are two stages of semantics: one at which you decide what

complex expressions the letters are dummies for, and another at which you give
truth-values to those complex expressions. It becomes a language in your sense
once you replace the p and q etc by complex expressions.

Of course historically the purpose of the invention of propositional logic was
to capture the structure of arguments, and that isn’t really what we as linguists
are trying to do.

Origin of the terminology propositional. Euclid. In propositional logic we
are not trying to capture commands, merely assertions.

Use examples from Kalisch and Montague, particularly the God example.
Talk about ∨ and ∧ (‘wedge’) and ¬ and truth tables. Talk about rules for
connectives. (but not→-int or ∨-elim!). The connectives are part of the Logical
Vocabulary (whose meaning is fixed).

Then talk about how some connectives are more extensional than others and
how we are interested in extensional connectives in the first instance. Not 2!

Truth tables.
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and, because, despite are intensions that all have the same extension.

Very hard to capture implies with an extensional logic. Say something
about the material conditional at this point, but very briefly. (It’s covered in
appendix 11.1.1)

Must talk about Disjunctive Normal Form. DNF prepare us for possible
world semantics.

EXERCISE 4.

1. Propositional letters are p, p′, p′′, p′′′ . . . . This is a regular language.

Exercise: Write a machine that recognises it.

(Think: what is the alphabet?) Make somewhere the point
that this ′ operation has no
semantics2. A literal is either a propositional letter, or a propositional letter preceded

by a ‘¬’.

The set of literals forms a regular language.

Exercise: Write a machine that recognises it.

(Think: what is the alphabet?)

3. A basic disjunction is a string like p ∨ ¬q ∨ r, namely a string of literals
separated by ‘∨’. (For the sake of simplicity we overlook the fact that no
literal may occur twice!) Even if the language is in-

finite! Extended notion of
‘regular’ here

The set of basic disjunctions forms a regular language.

Exercise: Write a machine that recognises it.

(Think: what is the alphabet?)

4. A formula in CNF is a string of basic disjunctions separated by ∧, in the
way that a basic disjunction is a set of literals separated by ‘∨’.1

The set of formulæ in CNF forms a regular language. have to be very careful say-
ing things like this

Exercise: Write a machine that recognises it.

(Think: what is the alphabet?)

Write context-free grammars for conjunctive normal form and disjunctive
normal form.

click here to submit

1You might think that we need to wrap up each basic disjunction in a pair of matching
brackets. In general this is true, but here we can get away without doing it.
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A Grammar for CNF:

Formula → conjunct ∧ Formula
Formula → ε
conjunct → literal ∨ conjunct
conjunct → ε
literal → atomic
literal → negatomic
atomic → p, q, r . . .
negatomic → ¬ atomic

Notice how in this case the production rules have genuine natural se-
mantic meaning. Notice also that the grammar is not regular.

A tautology is something whose truth table has nothing but 1s in its main
column.

4.1 Formal Semantics for Propositional Logic

A language in the sense of the previous chapter is a set of strings, nothing more.
However as linguists we are more likely to be interested in languages whose
formulæ (expressions, strings, whatever) can be evaluated to a meaning.. In
this chapter we consider how to describe this process in a formal rigorous way.

However, in order to illustrate the techniques we are going to use we are
going to start with semantics for something even simpler than the Propositional
Calculus.

These strings (which are compound numerals) evaluate to numbers; the ex-
pressions of Propositional Calculus evaluate to truth values.

PC is not a single language but a family of languages. Each of these lan-
guages contains variables and the variables have to be told what to evaluate to.
Thus semantics for a propositional language is that process that tells us how to
evaluate a complex expression on being told how to evaluate the propositional
variables that appear within it. A valuation [for a given propositional language]
is a function that assigns truth-values (not meanings!) to the primitive letters
of that language. We will use the letter ‘v’ to range over valuations. Now we
define a satisfaction relation sat between valuations and complex expressions.
We do this by recursion or (as you would say) compositionally.

DEFINITION 2.

A complex expression φ might be a propositional letter and—if it is—then
sat(v, φ) is just v(φ), the result of applying v to φ;

If φ is the conjunction of ψ1 and ψ2 then sat(v, φ) is sat(v, ψ1)∧sat(v, ψ2);
If φ is the disjunction of ψ1 and ψ2 then sat(v, φ) is sat(v, ψ1)∨sat(v, ψ2);
If φ is the conditional whose antecedent is ψ1 and whose consequent is ψ2

then sat(v, φ) is sat(v, ψ1)→ sat(v, ψ2);
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If φ is the negation of ψ1 then sat(v, φ) is ¬sat(v, ψ1) ;
If φ is the biconditional whose two immediate subformulæ are ψ1 and ψ2

then sat(v, φ) is sat(v, ψ1)←→ sat(v, ψ2).

Notice that here I am using the letters ‘φ’ and ‘ψ1’ and ‘ψ2’ as variables that
range over formulæ, as in the form of words “If φ is the conjunction of ψ1 and
ψ2 then . . . ”. They are not abbreviations of formulæ. There is a temptation to
write things like

“If φ is ψ1 ∧ ψ2 then sat(v, φ) is sat(v, ψ1) ∧ sat(v, ψ2)”

or perhaps

sat(v, ψ1 ∧ ψ2) is sat(v, ψ1) ∧ sat(v, ψ2) (4.1)

Now although our fault-tolerant pattern matching enables us to see imme-
diately what is intended, the pattern matching does, indeed, need to be fault-
tolerant. (In fact it corrects the fault so quickly that we tend not to notice the
processing that is going on.)

In an expression like ‘sat(v, φ)’ the ‘φ’ has to be a name of a formula, as we
noted above, not an abbreviation for a formula. But then how are we to make
sense of

sat(v, ψ1 ∧ ψ2) (4.2)

The string ‘ψ1 ∧ ψ2’ has to be the name of formula. Now you don’t have to
be The Brain of Britain to work out that it has got to be the name of whatever
formula it is that we get by putting a ‘∧’ between the two formulæ named by
‘ψ1’ and ‘ψ2’—and this is what your fault-tolerant pattern-matching wetware
(supplied by Brain-Of-Britain) will tell you. But we started off by making a
fuss about the fact that names have no internal structure, and now we suddenly
find ourselves wanting names to have internal structure after all!

In fact there is a way of making sense of this, and that is to use the cunning
device of corner quotes to create an environment wherein compounds of names
of formulæ (composed with connectives) name composites (composed by means
of those same connectives) of the formulæ named..

That is to say, we have a kind of environment command that creates an
environment within which [deep breath]

contructors applied to pointers to objects

construct

pointers to the objects thereby constructed.

So 4.1 would be OK if we write it as

sat(v, pψ1 ∧ ψ2q) is sat(v, ψ1) ∧ sat(v, ψ2) (4.3)

Corner quotes were first developed in [26]. See pp 33–37. An alternative
way of proceding that does not make use of corner quotes is instead to use an
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entirely new suite of symbols—as it might be ‘and’ and ‘or’ and so on, and
setting up links between them and the connectives ‘∧’ and so on in the object
language so that—for example

ψ1 and ψ2 (A)

is the conjunction of ψ1 and ψ2. The only drawback to this is the need to
conjure up an entire suite of symbols, all related suggestively to the connectives
they are supposed to name. Here one runs up against the fact that any symbols
that are suitably suggestive will also be laden with associations from their other
uses, and these associations may not be helpful. Suppose we were to use an
ampersand instead of ‘and’; then the fact that it is elsewhere used instead of ‘∧’
might cause the reader to assume it is just a synonym for ‘∧’. There is no easy
way through.

[Actually let’s introduce here a bit of semi-standard notation: in-
stead of writing ‘sat(φ, v)’ we’ll write ‘[[φ]]v’ or perhaps just ‘[[φ]]’
if v is understood or doesn’t matter.]

Might want to put this some-
where else

4.1.1 Envoi

Those last few paragraphs were really only for linguistic sophisticates.
The crucially important moral that I want you to take away from this discus-

sion of easy cases of semantics is the way in which the semantics of a recursively
defined language is driven, item by item, by the clauses that make up the def-
inition. Every way of making new expressions from old has a corresponding
semantical rule. The phrase rule-to-rule semantics is sometimes used. Defini-
tion 2 looks tedious and obsessional and too trivial to be of any interest but
it exhibits the fundamental features of importance that you need to master.
[namely..?]

4.2 Confluence, and Eager and Lazy Evaluation

4.2.1 Confluence

The recursive definition of the satisfaction relation between valuations and com-
plex formulæ gives us a way of determining what truth-value a formula receives
under a valuation. Start with what the valuation does to the propositional let-
ters (the leaves of the parse tree) and work up the tree. The recursive definition
tells us uniquely what the answer must be but it doesn’t tell us uniquely how
to calculate it. Traditionally the formal logic that grew up in the 20th century
took no interest in how things like sat(φ, v) were actually calculated. It wasn’t
until linguists and computer scientists took an interest in these matters that
anyone thought the details of the calculation could be interesting. And those
details are actually very interesting, very interesting indeed. They introduce us
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to two new ideas, or perhaps three depending on how you individuate ideas.
The first idea is confluence.

In calculating the truth-value of φ according to a valuation v for some com-
plex expression φ we start with the truth-values (according to v) of the propo-
sitional letters inside φ and use the recursion to calculate the truth-values-
according-to-v of ever larger subformulæ of φ until we reach φ itself. If two
subformulæ are p ∧ q and s ∧ t there is nothing to say that we should com-
pute the truth-value-according-to-v of p∧ q before we compute the truth-value-
according-to-v of s ∧ t or the other way round. It clearly doesn’t make any
difference. Neither calculation interferes with the other. The process that the
two calculations are part of is said to be confluent. We will see manifold exam-
ples of confluent processes later: it is an important idea.

When we see λ-calculus in chapter 10 we will meet a major theorem (the
Church-Rosser theorem) that says that a certain simplification process (called
β-reduction) is confluent.

But we could end with a non-example. The process of compiling a guest
list for a party is not reliably confluent. At any stage in the compilation you
may add to the growing list anyone who is on speaking terms with everyone on
the list so far. But Arthur and Bertha might both be on speaking terms with
everyone on the list l but not with each other!

4.2.2 Eager and Lazy Evaluation

The other idea is that of evaluation strategy. The way of calculating sat(φ, v)
that we have just seen (start with what the valuation does to the propositional
letters—the leaves of the parse tree—and work up the tree) is called Eager
evaluation also known as Strict evaluation. But there are other ways of
calculating that will give the same answer. One of them is the beguilingly
named Lazy evaluation which we will now describe.

Consider the project of filling out a truth-table for the formula A∧(B∨(C∧
D)). One can observe immediately that any valuation (row of the truth-table)
that makes ‘A’ false will make the whole formula false:
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A ∧ (B ∨ (C ∧ D))
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

A ∧ (B ∨ (C ∧ D))
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

Now, in the remaining cases we can observe that any valuation that makes
‘B’ true will make the whole formula true:
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A ∧ (B ∨ (C ∧ D))
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

A ∧ (B ∨ (C ∧ D))
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 1 1 0 0
1 1 1 1 0 1
1 1 1 1 1 0
1 1 1 1 1 1

In the remaining cases any valuation that makes ‘C’ false will make the
whole formula false.
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A ∧ (B ∨ (C ∧ D))
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
1 0 0 0 0 0 0
1 0 0 0 0 0 1
1 0 1 0
1 0 1 1
1 1 1 1 0 0
1 1 1 1 0 1
1 1 1 1 1 0
1 1 1 1 1 1

A ∧ (B ∨ (C ∧ D))
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
1 0 0 0 0 0 0
1 0 0 0 0 0 1
1 0 0 0 1 0 0∗

1 1 0 1 1 1 1∗

1 1 1 1 0 0
1 1 1 1 0 1
1 1 1 1 1 0
1 1 1 1 1 1

The starred ‘0∗’ and ‘1∗’ are the only cases where we actually have to look
at the truth-value of D.

In some sense we are doing the same things in these two settings, of eager
and lazy evaluation. But there’s a sense in which we are not doing the same
things, in that there are more moves we are allowed to make in the lazy case
than in the eager case. Nevertheless

(i) Both projects are confluent, and

(ii) The two projects give the same answer in the end.
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I’m not offering to prove these allegations. I’m hoping they are obvious, or
at least plausible.

However the situation is more complicated if the evaluation functions we are
processing are not total. Then it is no longer true that lazy and eager evaluation
give the same answer. Suppose we want the truth-value of A∨B, and we know
that A is true. Lazy evaluation will infer that A ∨ B is true; however eager notation!!
evaluation will not say that A ∨ B is true until it ascertains [[B]], the truth-
value of B. This means that if, for any reason, [[B]] is undefined then eager
evaluation will never tell us that A ∨B is true.

To get realistic examples of situations where our valuations are partial func-
tions we have to go to a rather more mathematical setting—the setting, in
fact, where these ideas of eager-and-lazy first arose, namely in connection with
languages whose expressions evaluate to numbers or other data objects. For
example:

if x ≥ 0 then f(x) else g(x).

No point in calculating all three of [[x ≥ 0]], f(x) and g(x) and then deciding
which of f(x) and g(x) to output. First you evaluate x to see whether it is above
or below 0 and then you do whichever of f(x) and g(x) that it turns out you
need. Indeed it might not be merely wasteful to calculate both f(x) and g(x);
it might not even be possible. It could be the case that the calculation of the
one you don’t need does not ever terminate, so you sit in a loop for ever.

The standard examples of cases where lazy evaluation is something you have
to think about are mathematical—like the above only worse—but I came across
this illustration in the course of my EEG work when I had a patient with
HHT—hereditary hæmorrhagic telangiectasia. You don’t need to know what it
is—indeed I didn’t know what it was either, and I had to look it up! This is
what I found.

There are four diagnostic criteria, otherwise known as the Curação criteria,
named after the country in which was held the meeting that formally defined
hereditary hæmorrhagic telangiectasia. Any patient who ticks at least two of
the following boxes has HHT.

1. Spontaneous recurrent epistaxis;
2. Multiple teleangiectasias on typical locations;
3. Proven visceral arterio-venous malformation (lung, liver, brain,
spine);
4. First-degree family member with HHT.

(For current purposes you do not need to know what any of epistaxis, teleang-
iectasias, visceral etc mean!)

That is to say, you want to verify the disjunction

(1 ∧ 2) ∨ (1 ∧ 3) ∨ (1 ∧ 4) ∨ (2 ∧ 3) ∨ (2 ∧ 4) ∨ (3 ∧ 4)
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Clearly your evaluation strategy is not going to be the eager strategy of
evaluating all the disjuncts first! That would result in a task that would never
halt.2 Clearly the sensible thing to do is to try 1, 2 and 3 first and then if two
of them succeed you don’t need to check 4; if only one of them succeeds then
you need to check 4; if none of 1, 2 and 3 succeed then you don’t need to check
4!

Lazy evaluation is an important concept in the semantics of ordinary lan-
guage, but that’s not beco’s natural language has feedback formulæ, but rather
because an expression in spoken natural language is not presented to the hearer
as a complete static object, which can then be contemplated the way we con-
templated A ∧ (B ∨ (C ∧D)) above—in its entirely.

4.2.3 Sorites

I take it you are all familiar with the Sorites paradox?

How is it that we are ever able to get definite answers to vague questions?
Any theory of vague predicates must explain how this can happen. Because we
do get definite answers.

One of my pet hunches is that consideration of evaluation strategies may hold
the key to understanding the semantics of vague predicates. A vague predicate
V ( ) typically has a large family of non-vague sharpenings so that V (x) is a
disjunction of lots of sharpenings V (x)←→ V1(x) ∨ V2(x) ∨ . . . Vn(x).

For example, the vague concept of adult is a disjunction of (among others)
the non-vague predicates

Starting compulsory schooling 5
Criminal responsibility 12
Making binding contracts (Scotland), girls 12
Baby sitting 14
Being lent a shotgun, to use without certificate
on owner’s premisses 14
Making binding contracts (Scotland), boys 14
Entering licensed premisses 14
Being given a shotgun, if holding certificate 15
Stopping compulsory schooling 16
Buying cigarettes 16
Heterosexual intercourse 16
Driving motorcycle 16
Marriage without parental consent (Scotland) 16
Buying/consuming cider/perry on licensed premisses 16
Driving car 17
Buying or hiring shotgun or ammunition 17
Marriage without parental consent (England) 18

2Or, at least, could never be completed: Your parents are first-degree family members, and
although many people have parents living, and many have grandparents living, nobody has
all their ancestors living!
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Voting 18
Making binding contracts (England) 18
Buying or consuming alcohol on licenced premisses 18
Homosexual intercourse (male) 21
Adopting a child 21

The table comes from [20].
One obtains a determinate (non-vague) answer to a question “Does x bear

this [vague] predicate by evaluating the disjunction lazily.
To summarise:

• Lazy evaluation differs from eager evaluation in that it allows more
reductions, more inferences;

• Typically (e.g. in propositional logic) both sets of rules are con-
fluent;

• If the valuations are total functions then lazy and eager evaluation
give the same answers;

• If the valuations are not total (allowing a third outcome, fail or
crash) then lazy and eager evaluation can disagree. In this setting
we do need to treat (i) the cases of failure that are revealed only at
the end of time differently from (ii) failures that are revealed in this
life by a loud bang and smoke and lights going out;

• Notice that the difference between lazy and eager has no bite if
the language for which we are providing semantics is regular!

• Streams?

4.3 Validity and Inference

Not of particular interest to linguists, tho’ of great interest in Logic and philos-
ophy.

We will need to know about the rules of inference when we come to Curry-
Howard in chapter 10. I shall put them on the blackboard but not expect you
to master them.

4.3.1 The Rules of Natural Deduction

In the following table we see that for each connective we have two rules: one to
introduce the connective and one to eliminate it. These two rules are called the
introduction rule and the elimination rule for that connective.

Richard Bornat calls the elimination rules “use” rules because the elimina-
tion rule for a connective C tells us how to use the information wrapped up in
a formula whose principal connective is C.

(The idea that everything there is to know about a connective can be cap-
tured by an elimination rule plus an introduction rule has the same rather
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operationalist flavour possessed by the various meaning is use doctrines one
encounters in philosophy of language. In this particular form it goes back to
Prawitz, and possibly to Gentzen.)references?

The rules tell us how to exploit the information contained in a formula.
(Some of these rules come in two parts.)

Introduction Rules Elimination Rules

∨-int: A
A∨B ;

B
A∨B ; ∨-elim ???

∧-int: A B
A∧B ; ∧-elim: A∧B

A
; A∧B

B

→-int ??? →-elim: A A→B
B

You will notice the division into two columns. You will also notice the two
lacunæ: for the moment there is no ∨-use rule and no →-int rule.

Some of these rules look a bit daunting so let’s start by cutting our teeth on
some easy ones.

EXERCISE 5.

1. Using just the two rules for ∧, the rule for ∨-introduction and→-elimination
see what you can do with each of the following sets of formulæ:3

A, A→ B;
A, A→ (B → C);
A, A→ (B → C), B;
A, B, (A ∧B)→ C;
A, (A ∨B)→ C;
A ∧B, A→ C;
A ∧B, A→ C, B → D;
A→ (B → C), A→ B, B → C;
A, A→ (B → C), A→ B;
A, ¬A.

2. Deduce C from (A ∨B)→ C and A;
Deduce B from (A→ B)→ A and A→ B;
Deduce R from P , P → (Q→ R) and P → Q;

You will probably notice in doing these questions that you use one of your
assumptions more than once, and indeed that you have to write it down more
than once (= write down more than one token!) This is particularly likely to
happen with A ∧ B. If you need to infer both of A and B then you will have
to write out ‘A ∧ B’ twice—once for each application of ∧-elimination. (And

3Warning: in some cases the answer might be “nothing!”.
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of course you are allowed to use an assumption as often as you like. If it is a
sunny tuesday you might use ∧-elimination to infer that it is sunny so you can
go for a walk in the botanics, but that doesn’t relieve you of the obligation of
inferring that it is tuesday and that you need to go to your 11 o’clock lecture.)

If you try writing down only one token you will find that you want your
sheet of paper to be made of lots of plaited ribbons. Ugh. How so? Well, if you
want to infer both A and B from A ∧ B and you want to write ‘A ∧ B’ only
once, you will find yourself writing ‘ A∧B

A B ’ and then building proofs downward
from the token of the ‘A’ on the lower line and also from the ‘B’ on the lower
line. They might rejoin later on. Hence the plaiting.

Now we can introduce a new rule, the ex falso sequitur quodlibet. better explain at some point
why it is truth-preservingEx falso sequitur quodlibet; ⊥

A

Double negation ¬¬AA
Is this the right place for
double neg? aka classical
contradiction.

The Latin expression ex falso . . . means: “From the false follows whatever
you like”.

The two rules of ex falso and double negation are the only rules that specif-
ically mention negation. Recall that ¬B is logically equivalent to B → ⊥, so
the inference

A ¬A
⊥ (4.4)

—which looks like a new rule—is merely an instance of →-elimination.

The rule of →-introduction

The time has now come to make friends with the rule of →-introduction. Re-
calling what introduction rules do, you can se that the →-introduction rule will
be a rule that tells you how to prove things of the form A → B. Well how, in
real life, do you prove “if A then B”? Well, you assume A and deduce B from
it. What could be simpler!? Let’s have an illustration. We already know how
to deduce A ∨C from A (we use ∨-introduction) so we should be able to prove
A→ (A ∨ C).

A ∨-int
A ∨ C (4.5)

So we just put ‘A→ (A ∨ C)’ on the end . . . ?

A ∨-int
A ∨ C (4.6)

A→ (A ∨ C)

That’s pretty obviously the right thing to do, but for one thing. The last
proof has A → (A ∨ C) as its last line (which is good) but it has A as a live
premiss. We assumed A in order to deduce A ∨ C, but although the truth of
A ∨ C relied on the truth of A, the truth of A→ (A ∨ C) does not rely on the
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truth of A. (It’s a tautology, after all.) We need to record this fact somehow.
The point is that, in going from a deduction-of-A ∨ C-from-A to a proof-of-
A→ (A∨C), we have somehow used up the assumption A. We record the fact
that it has been used up by putting square brackets round it, and putting a
pointer from where the assumption A was made to the line where it was used
up.

[A]1
∨-int

A ∨ C →-int (1)
A→ (A ∨ C)

(4.7)

N.B.: in →-introduction you don’t have to cancel all occurrences of the
premiss: it is perfectly all right to cancel only some of them .

The rule of ∨-elimination

“they will either contradict the Koran, in which case they are heresy, or they
will agree with it, so they are superfluous.”

Here is an example, useful to those of you who fry your brains doing sudoku.

3 8
1 6 4 9 7

4 7 1 6

2 8 7 5
5 1 8

8 4 2

7 5 1 8 4
4 3 5 7 1

6

There is a ‘5’ in the top right-hand box—somewhere. But in which row?
The ‘5’ in the top left-hand box must be in the first column, and in one of the
top two rows. The ‘5’ in the fourth column must be in one of the two top cells.
(It cannot be in the fifth row because there is already a ‘5’ there, and it cannot
be in the last three rows because that box already has a ‘5’ in it.) So the ‘5’ in
the middle box on the top must be in the first column, and in one of the top
two rows. These two ‘5’s must of course be in different rows. So where is the
‘5’ in the rightmost of the three top boxes? Either the ‘5’ in the left box is on
the first row and the ‘5’ in the middle box is on the second row or the 5 in the
middle box is in the first row and the ‘5’ in the left box is in the second row.
We don’t know which of the possibilities is the true one, but it doesn’t matter:
either way the ‘5’ in the rightmost box must be in the bottom (third) row.Need detailed explanation of

∨-elim here



4.3. VALIDITY AND INFERENCE 63

The Identity Rule

Finally we need the identity rule:

A B C . . .

A
(4.8)

(where the list of extra premisses may be empty) which records the fact that
we can deduce A from A. Not very informative, one might think, but it turns
out to be useful. After all, how else would one obtain a proof of the undoubted
tautology A → (B → A), otherwise known as ‘K’? One could do something
like

[A]2 [B]1
∧-int

A ∧B ∧-elim
A →-int (1)

B → A →-int (2)
A→ (B → A)

(4.9)

but that is grotesque: it uses a couple of rules for a connective that doesn’t
even appear in the formula being proved! The obvious thing to do is

[A]2 [B]1
identity rule

A →-int (1)
B → A →-int (2)

A→ (B → A)

(4.10)

If we take seriously the observation above concerning the rule of→-introduction—
namely that you are not required to cancel every occurrence of an assumption—
then you conclude that you are at liberty to cancel none of them, and that
suggests that you can cancel assumptions that aren’t there—then we will not
need this rule. This means we can write proofs like 4.11 below. To my taste, it
seems less bizarre to discard assumptions than it is to cancel assumptions that
aren’t there, so I prefer 4.10 to 4.11. It’s a matter of taste.

[A]1
→-int

B → A →-int (1)
A→ (B → A)

(4.11)

It is customary to connect the several occurrences of a single formula at
introductions (it may be introduced several times) with its occurrences at elim-
ination by means of superscripts. Square brackets are placed around eliminated
formulæ, as in the formula displayed above.

There are funny logics where you are not allowed to use an assumption more
than once: in these resource logics assumptions are like sums of money. This
also gives us another illustration of the difference between an argument (as in
logic) and a debate (as in rhetoric). In rhetoric it may happen that a point—
even a good point—can be usefully made only once . . . in an ambush perhaps.
One such logic is Linear Logic, and it has been alleged that it could be useful
in linguistics. However I am not going to treat it here. Do some very simple illus-

trations of compound proofs
here
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4.3.2 What do the rules mean??

One way in towards an understanding of what the rules do is to dwell on the
point made by my friend Richard Bornat that elimination rules are use rules:

The rule of →-elimination

The rule of →-elimination tells you how to use the information wrapped up
in ‘A → B’. ‘A → B’ informs us that if A, then B. So the way to use the
information is to find yourself in a situation where A holds. You might not be
in such a situation, and if you aren’t you might have to assume A with a view
to using it up later—somehow. We will say more about this.

The rule of ∨-elimination

The rule of ∨-elimination tells you how to use the information in ‘A∨B’. If you
are given A ∨B, how are you to make use of this information without knowing
which of A and B is true? Well, if you know you can deduce C from A, and you
ALSO know that you can deduce C from B, then as soon as you are told A∨B
you can deduce C. One could think of the rule of ∨-elimination as a function
that takes (1) A∨B, (2) a proof of C from A and (3) a proof of C from B, and
returns a proof of C from A ∨B. This will come in useful on page ??.

There is a more general form of ∨-elimination:

[A1]1 [A2]1

...
...

C C

. . . [An]1

...
C A1 ∨A2 ∨ . . . An ∨-elim (1)
C

(4.12)

where we can cancel more than one assumption. That is to say we have a
set {A1 . . . An} of assumptions, and the rule accepts as input a list of proofs of
C: one proof from A1, one proof from A2, and so on up to An. It also accepts
the disjunction A1∨ . . . An of the set {A1 . . . An} of assumptions, and it outputs
a proof of C.

The rule of ∨-elimination is a hard one to grasp so do not panic if you don’t
get it immediately. However, you should persist until you do. Some of the
challenges in the exercise which follows require it.

EXERCISE 6.
Deduce P → R from P → (Q→ R) and P → Q;
Deduce (A→ B)→ B from A;
Deduce C from A and ((A→ B)→ B)→ C;
Deduce ¬P from ¬(Q→ P );
Deduce A from B ∨ C, B → A and C → A;
Deduce ¬A from ¬(A ∨B);



4.3. VALIDITY AND INFERENCE 65

Deduce Q from P and ¬P ∨Q;
Deduce Q from ¬(Q→ P ).

Will need to cut this back
heavily
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Chapter 5

Predicate (first-order) Logic

5.1 Towards First-Order Logic

Drill down, but how far? Lloyd Reinhardt’s story.
The following puzzle comes from Lewis Carroll.

Dix, Lang, Cole, Barry and Mill are five friends who dine together
regularly. They agree on the following rules about which of the two
condiments—salt and mustard—they are to have with their beef.
(For some reason they always have beef?!)

Formalise the following.

1. If Barry takes salt, then either Cole or Lang takes only one of
the two condiments, salt and mustard (and vice versa). If he
takes mustard then either Dix takes neither condiment or Mill
takes both (and vice versa).

2. If Cole takes salt, then either Barry takes only one condiment,
or Mill takes neither (and vice versa). If he takes mustard then
either Dix or Lang takes both (and vice versa).

3. If Dix takes salt, then either Barry takes neither condiment
or Cole takes both (and vice versa). If he takes mustard then
either Lang or Mill takes neither (and vice versa).

4. If Lang takes salt, then either Barry or Dix takes only one
condiment (and vice versa). If he takes mustard then either
Cole or Mill takes neither (and vice versa).

5. If Mill takes salt, then either Barry or Lang takes both condi-
ments (and vice versa). If he takes mustard then either Cole or
Dix takes only one (and vice versa).

As I say, this puzzle comes from Lewis Carroll. The task he sets is to ascertain
whether or not these conditions can in fact be met. I do not know the answer,

67
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and it would involve a lot of hand-calculation—which of course is the whole
point! I don’t suppose for a moment that you want to crunch it out (I haven’t
done it and I have no intention of doing it—after all, I have a life) but it’s a
good idea to think a bit about some of the preparatory work.

The way to do this would be to create a number of propositional letters, one
each to abbreviate each of the assorted assertions “Barry takes salt”, “Mill takes
mustard” and so on. How many propositional letters will there be? Obviously
10, co’s you can count them: each propositional letter corresponds to a choice
of one of {Dix, Lang, Cole, Barry, Mill}, and one choice of {salt, mustard} and
2 × 5 = 10. We could use propositional letters ‘p’, ‘q’, ‘r’, ‘s’, ‘t’, ‘u’, ‘v’, ‘w’,
‘x’ and ‘y’. This is probably what you have done. But notice that using ten
different letters—mere letters—in this way fails to capture certain relations that
hold between them. Suppose they were arranged like:

‘p’: Barry takes salt ‘u’: Barry takes mustard
‘q’: Mill takes salt ‘v’: Mill takes mustard
‘r’: Cole takes salt ‘w’: Cole takes mustard
‘s’: Lang takes salt ‘x’: Lang takes mustard
‘t’: Dix takes salt ‘y’: Dix takes mustard

Then we see that two things in the same row are related to each other in a
way that they aren’t related to things in other rows; ditto things in the same
column. This subtle information cannot be read off just from the letters ‘p’,
‘q’, ‘r’, ‘s’, ‘t’, ‘u’, ‘v’, ‘w’, ‘x’ and ‘y’ themselves. That is to say, there is
internal structure to the propositions “Mill takes salt” etc, that is not captured
by reducing each to one letter.

The time has come to do something about this.

A first step would be to replace all of ‘p’, ‘q’, ‘r’, ‘s’, ‘t’, ‘u’, ‘v’, ‘w’, ‘x’ and
‘y’ by things like ‘ds’ and ‘bm’ which will mean ‘Dix takes salt’ and ‘Barry takes
mustard’. Then we can build truth-tables and do other kinds of hand-calculation
as before, this time with the aid of a few mnemonics. If we do this, the new
things like ‘bm’ are really just propositional letters as before, but slightly bigger
ones. The internal structure is visible to us—we know that ‘ds’ is really short
for ‘Dix takes salt’ but it is not visible to the logic. The logic regards ‘ds’ as a
single propositional letter. To do this satisfactorily we must do it in a way that
makes the internal structure explicit.

5.2 First-order Logic

What we need is Predicate Logic. It’s also called First-Order Logic and
sometimes Predicate Calculus. In this new pastime we don’t just use sugges-
tive mnemonic symbols for propositional letters but we open up the old propo-
sitional letters that we had, and find that they have internal structure. “Romeo
loves Juliet” will be represented not by a single letter ‘p’ but by something
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with suggestive internal structure like L(r, j). We use capital Roman letters as
predicate symbols (also known as relation symbols). In this case the letter
‘L’ is a binary relation symbol, co’s it relates two things. The ‘r’ and the ‘j’
are arguments to the relation symbol. They are constants that denote the
things that are related to each other by the (meaning of the) relation symbol.

The obvious way to apply this to Lewis Carroll’s problem on page 67 is to
have a two-place predicate letter ‘T ’, and symbols ‘d’, ‘l’, ‘m’, ‘b’ and ‘c’ for
Dix, Lang, Mill, Barry and Cole, respectively. I am going to write them in
lower case beco’s we keep upper case letters for predicates—relation symbols.
And we’d better have two constants for the condiments salt and mustard: ‘s’ for
salt and—oops!—can’t use ‘m’ for mustard co’s we’ve already used that letter
for Mill! Let’s use ‘u’. So, instead of ‘p’ and ‘q’ or even ‘ds’ etc we have:

‘T (b, s)’: Barry takes salt ‘T (b, u)’: Barry takes mustard
‘T (m, s)’: Mill takes salt ‘T (m,u)’: Mill takes mustard
‘T (c, s)’: Cole takes salt ‘T (c, u)’: Cole takes mustard
‘T (l, s)’: Lang takes salt ‘T (l, u)’: Lang takes mustard
‘T (d, s)’: Dix takes salt ‘T (d, u)’: Dix takes mustard

And now the symbolism we are using makes it clear what it is that two
things in the same row have in common, and what it is that two things in the
same column have in common.

I have used here a convention that you always write the relation symbol
first, and then put its arguments after it, enclosed within parentheses: we don’t
write ‘mT s’. However identity is a special case and we do write “Hesperus
= Phosphorous” (the two ancient names for the evening star and the morning
star) and when we write the relation symbol between its two arguments we
say we are using infix notation. (Infix notation only makes sense if you have
two arguments not three: If you had three aguments where would you put the
relation symbol if not at the front?)

Here’s an exercise I found in [18]. (See p ??.)

If Herbert can take the flat only if he divorces his wife then he
should think twice. If Herbert keeps Fido, then he cannot take the
flat. Herbert’s wife insists on keeping Fido. If Herbert does not keep
Fido then he will divorce his wife—at least if she insists on keeping
Fido.

You will need constant names ‘h’ for Herbert, ‘f ’ for Fido, and ‘w’ for the
wife. You will also need a few binary relation symbols: K for keeps, as in
“Herbert keeps Fido”. Some things might leave you undecided. Do you want
to have a binary relation symbol ‘T ’ for takes, as in T (h, f) meaning “Herbert
takes the flat”? If you do you will need a constant symbol ‘f ’ to denote the
flat. Or would you rather go for a unary relation symbol ‘TF ’ to be applied
to Herbert? No-one else is conjectured to take the flat after all . . . If you are



70 CHAPTER 5. PREDICATE (FIRST-ORDER) LOGIC

undecided between these, all it means is that you have discovered the wonderful
flexibility of predicate calculus.

Rule of thumb: We use Capital Letters for properties and relations; on
the whole we use small letters for things. (We do tend to use small letters for
functions too). The capital letters are called relational symbols or predicate
letters and the lower case letters are called constants.

EXERCISE 7. Formalise the following, using a lexicon of your choiceSurely these are a bit hard,
at this stage?

1. Romeo loves Juliet; Juliet loves Romeo.

2. Balbus loves Julia. Julia does not love Balbus. What a pity. 1

3. Fido sits on the sofa; Herbert sits on the chair.

4. Fido sits on Herbert.

5. If Fido sits on Herbert and Herbert is sitting on the chair then Fido is
sitting on the chair.

6. The sofa sits on Herbert. [just because something is absurd doesn’t mean
it can’t be said!]

7. Alfred drinks more whisky than Herbert; Herbert drinks more whisky than
Mary.

8. John scratches Mary’s back. Mary scratches her own back.

[A binary relation can hold between a thing and itself. It doesn’t have to
relate two distinct things.]

5.3 The Syntax of First-order Logic

Explain the gadgetry: constants, individual variables, predicate letters and func-
tion letters. Boolean connectives, then quantifiers.

Linguists will probably be able to understand the concept of a free variable
and a binder Then you can stick them with Curry-Howard.Binders!

All the apparatus for constructing formulæ in propositional logic works too
in this new context: If A and B are formulæ so are A ∨ B, A ∧ B, ¬A and so
on. However we now have new ways of creating formulæ, new gadgets which weThere is really an abuse of

notation here: we should use
quasi-quotes . . .

had better spell out:

5.3.1 Constants and variables

Constants tend to be lower-case letters at the start of the Roman alphabet (‘a’,
‘b’ . . . ) and variables tend to be lower-case letters at the end of the alphabet
(‘x’, ‘y’, ‘z’ . . . ). Since we tend to run out of letters we often enrich them with
subscripts to obtain a larger supply: ‘x1’ etc.

1I found this in a latin primer: Balbus amat Juliam; Julia non amat Balbum . . . .
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5.3.2 Predicate letters

These are upper-case letters from the Roman alphabet, usually from the early
part: ‘F ’ ‘G’ . . . . They are called predicate letters because they arise from a
programme of formalising reasoning about predicates and predication. ‘F (x, y)’
could have arisen from ‘x is fighting y’. Each predicate letter has a particular
number of terms that it expects; this is the arity of the letter. ‘loves’ has arity 2
(it is binary) ‘sits-on’ is binary too. If we feed it the correct number of terms—so
we have an expression like F (x, y)—we call the result an atomic formula.

The equality symbol ‘=’ is a very special predicate letter: you are not
allowed to reinterpret it the way you can reinterpret other predicate letters.
(The Information Technology fraternity say of strings that cannot be assigned
meanings by the user that they are reserved). It is said to be part of the
logical vocabulary. The equality symbol ‘=’ is the only relation symbol that
is reserved. In this respect it behaves like ‘∧’ and ‘∀’ and the connectives, all of
which are reserved in this sense.

Unary predicates have one argument, binary predicates have two; n-ary
have n. Similarly functions.

Atomic formulæ can be treated the way we treated literals in propositional
logic: we can combine them together by using ‘∧’ ‘∨’ and the other connectives.

lots of illustrations here
pleaseFinally we can bind variables with quantifiers. There are two: ∃ and ∀.

We can write things like

(∀x)F (x) Everything is a frog;
(∀x)(∃y)L(x, y) Everybody loves someone

To save space we might write this second thing as

(∀xy)L(x, y)

The syntax for quantifiers is variable-preceded-by quantifier enclosed in brack-
ets, followed by stuff inside brackets:

(∃x)(. . .) and (∀y)(. . .)

We sometimes omit the pair of brackets to the right of the quantifier when no
ambiguity is caused thereby.

The difference between variables and constants is that you can bind variables
with quantifiers, but you can’t bind constants. The meaning of a constant is
fixed.

. . . free complete this explanation;
quantifiers are connectives
too

For example, in a formula like

(∀x)(F (x)→ G(x))

the letter ‘x’ is a variable: you can tell because it is bound by the universal
quantifier. The letter ‘F ’ is not a variable, but a predicate letter. It is not bound
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by a quantifier, and cannot be: the syntax forbids it. In a first-order language
you are not allowed to treat predicate letters as variables: you may not bind
them with quantifiers. Binding predicate letters with quantifiers (treating them
as variables) is the tell-tale sign of second-order Logic.

We also have

5.3.3 Function letters

These are lower-case Roman letters, typically ‘f ’, ‘g’, ‘h’ . . . . We apply them
to variables and constants, and this gives us terms: f(x), g(a, y) and suchlike.
In fact we can even apply them to terms: f(g(a, y)), g(f(g(a, y), x)) and so
on. So a term is either a variable or a constant or something built up from
variables-and-constants by means of function letters. What is a function? That
is, what sort of thing do we try to capture with function letters? We have seen
an example: father-of is a function: you have precisely one father; son-of is not
a function. Some people have more than one, or even none at all.

5.4 Warning: Scope ambiguities
Perhaps this could be moved
into a section called some-
thing like ‘subtleties of eval-
uation’

“All that glisters is not gold”

is not

(∀x)(glisters(x)→ ¬gold(x))

and

“All is not lost”

is not

(∀x)(¬lost(x))

All Frenchmen are not racist

The difference is called a matter of scope. ‘Scope’? The point is that
in “(∀x)(¬ . . .)” the “scope” of the ‘∀x’ is the whole formula whereas in the
‘¬(∀x)(. . .) it isn’t.

It is a curious fact that humans using ordinary language can be very casual
about getting the bits of the sentence they are constructing in the right order
so that each bit has the right scope. We often say things that we don’t literally
mean. On the receiving end, when trying to read things like (∀x)(∃y)(x loves
y) and (∃y)(∀x)(x loves y), people often get into tangles because they try to
resolve their uncertainty about the scope of the quantifiers by looking at the
overall meaning of the sentence rather than by just checking to see which order
they are in!

Worth making the point that resolution of scope ambiguities by rearrange-
ment in this way is a part of natural-language semantics but is not part of the
semantics of formal logics. Another way in which life is easier for logicians than
it is for linguists!



5.5. FIRST-PERSON AND THIRD-PERSON 73

5.5 First-person and third-person

Natural languages have these wonderful gadgets like ‘I’ and ‘you’. These connect
the denotation of the expressions in the language to the users of the language.
This has the effect that if A is a formula that contains one of these pronouns then
different tokens of A will have different meanings! This is completely unheard-
of in the languages of formal logic: it’s formula types that the semantics gives
meanings to, not formula-tokens. Another difference between formal languages
and natural languages is that the users of formal languages (us!) do not belong to
the world described by the expressions in those languages. (Or at least if we do
then the semantics has no way of expressing this fact.) Formal languages do have
variables, and variables function grammatically like pronouns, but the pronouns
they resemble are third person pronouns not first- or second-person pronouns.
This is connected with their use in science: no first- or second-person perspective
in science. This is because science is agent/observer-invariant. Connected to
objectivity. The languages that people use/discuss in Formal Logic do not deal
in any way with speech acts/formula tokens: only with the types of which they
are tokens.

Along the same lines one can observe that in the formal languages of logic
there is no tense or aspect or mood.

5.6 Some exercises to get you started

EXERCISE 8.
Render the following fragments of English into predicate calculus, using a lexicon
of your choice.

This first bunch involve monadic predicates only and no nested quantifiers.

1. Every good boy deserves favour; George is a good boy. Therefore George
deserves favour.

2. All cows eat grass; Daisy eats grass. Therefore Daisy is a cow.

3. Socrates is a man; all men are mortal. Therefore Socrates is mortal.

4. Daisy is a cow; all cows eat grass. Therefore Daisy eats grass.

5. Daisy is a cow; all cows are mad. Therefore Daisy is mad.

6. No thieves are honest; some dishonest people are found out. Therefore
Some thieves are found out.

7. No muffins are wholesome; all puffy food is unwholesome. Therefore all
muffins are puffy.

8. No birds except peacocks are proud of their tails; some birds that are proud
of their tails cannot sing. Therefore some peacocks cannot sing.
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9. A wise man walks on his feet; an unwise man on his hands. Therefore no
man walks on both.

10. No fossil can be crossed in love; an oyster may be crossed in love. There-
fore oysters are not fossils.

11. All who are anxious to learn work hard; some of these students work hard.
Therefore some of these students are anxious to learn.

12. His songs never last an hour. A song that lasts an hour is tedious. There-
fore his songs are never tedious.

13. Some lessons are difficult; what is difficult needs attention. Therefore some
lessons need attention.

14. All humans are mammals; all mammals are warm blooded. Therefore all
humans are warm-blooded.

15. Warmth relieves pain; nothing that does not relieve pain is useful in toothache.
Therefore warmth is useful in toothache.

16. Guilty people are reluctant to answer questions;

17. Louis is the King of France; all Kings of France are bald. Therefore Louis
is bald;

18. Anyone who plays Aussie rules runs 20km in 90 minutes; anyone who can
run 20km in 90 minutes is a serious athlete; you have to be a thug to play
Aussie rules. Therefore at least some serious athletes are thugs.

EXERCISE 9. Render the following into Predicate calculus, using a lexicon
of your choice. These involve nestings of more than one quantifier, polyadic
predicate letters, equality and even function letters.

1. Anyone who has forgiven at least one person is a saint.

2. Nobody in the logic class is cleverer than everybody in the history class.

3. Everyone likes Mary—except Mary herself.

4. Jane saw a bear, and Roger saw one too.

5. Jane saw a bear and Roger saw it too.

6. Some students are not taught by every teacher;

7. No student has the same teacher for every subject.

8. Everybody loves my baby, but my baby loves nobody but me.

EXERCISE 10. These involve nested quantifiers and dyadic predicates
Match up the formulæ on the left with their English equivalents on the right.
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(i) (∀x)(∃y)(x loves y) (a) Everyone loves someone
(ii) (∀y)(∃x)(x loves y) (b) There is someone everyone loves
(iii) (∃y)(∀x)(x loves y) (c) There is someone that loves everyone
(iv) (∃x)(∀y)(x loves y) (d) Everyone is loved by someone

EXERCISE 11. Render the following pieces of English into Predicate calculus,
using a lexicon of your choice.

1. Everyone who loves is loved;

2. Everyone loves a lover;

3. The enemy of an enemy is a friend

4. The friend of an enemy is an enemy

5. Any friend of George’s is a friend of mine

6. Jack and Jill have at least two friends in common

7. Two people who love the same person do not love each other.

8. None but the brave deserve the fair.

9. If there is anyone in the residences with measles then anyone who has a
friend in the residences will need a measles jab.

10. No two people are separated by more than six steps of aquaintanceship.

This next batch involves nested quantifiers and dyadic predicates and equal-
ity.

EXERCISE 12. Render the following pieces of English into Predicate calculus,
using a lexicon of your choice.

1. There are two islands in New Zealand;

2. There are three2 islands in New Zealand;

3. tf knows (at least) two pop stars;

(You must resist the temptation to express this as a relation between tf and
a plural object consisting of two pop stars coalesced into a kind of plural
object like Jeff Goldblum and the Fly. You will need to use ‘=’, the symbol
for equality.)

4. You are loved only if you yourself love someone [other than yourself !];

5. God will destroy the city unless there are (at least) two righteous men in
it;

2The third is Stewart Island
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6. There is at most one king of France;

7. I know no more than two pop stars;

8. There is precisely one king of France;

9. I know three FRS’s and one of them is bald;

10. Brothers and sisters have I none; this man’s father is my father’s son.

11. * Anyone who is between a rock and a hard place is also between a hard
place and a rock.

5.7 Transitive, reflexive etc

Armed with this new language we can characterise some important properties:
(Ideally we would have dealt with this stuff in section 2.2 but at that stage we
didn’t have the notaton)

• A relation R is transitive if ∀x∀y∀z((R(x, y) ∧R(y, z))→ R(x, z))

• A relation R is symmetrical if ∀x∀y(R(x, y)←→ R(y, x))

• (∀x)(R(x, x)) says that R is reflexive; and (∀x)(¬R(x, x)) says that R is
irreflexive.

• A relation that is transitive, reflexive and symmetrical is an equivalence
relation.

The binary relation “full sibling of” is symmetric, and so is the binary re-
lation “half-sibling of”. However, “full sibling of” is transitive whereas “half-
sibling of” is not.

5.8 Russell’s Theory of Descriptions

‘There is precisely one King of France and he is bald’ can be captured satisfacto-
rily in predicate calculus/first-order logic by anyone who has done the preceding
exercises. We get

(∃x)((K(x) ∧ (∀y)(K(y)→ y = x) ∧B(x))) (A)

Is the formulation we arrive at the same as what we would get if we were to
try to capture (B)?

“The King of France is bald” (B)

Well, if (A) holds then the unique thing that is King of France and is bald
certainly sounds as if it is going to be the King of France, and it is bald, and so if
(A) is true then the King of France is bald. What about the converse (or rather
its contrapositive)? If (A) is false, must it be false that the King of France
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is bald? It might be that (A) is false because there is more than one King
of France. In those circumstances one might want to suspend judgement on
(B) on the grounds that we don’t yet know which of the two prospective Kings
of France is the real one, and one of them might be bald. Indeed they might
both be bald. Or we might simply feel that we can’t properly use expressions
like “the King of France” at all unless we know that there is precisely one. If
there isn’t precisely one then allegations about the King of France simply lack
truth-value—or so it is felt.

What’s going on here is that we are trying to add to our language a new
quantifier, a thing like ‘∀’ or ‘∃’—which we could write ‘(Qx)(. . .) so that
‘(Qx)(F (x))’ is true precisely when the King of France has the property F .
The question is: can we translate expressions that do contain this new quan-
tifier into expressions that do not contain it? The answer depends on what Is this the first place where

we talk about translations?truth-value you attribute to (B) when there is no King of France. If you think
that (B) is false in these circumstances then you may well be willing to accept
(A) as a translation of it, but you won’t if you think that (B) lacks truth-value.

If you think that (A) is the correct formalisation of (B), and that in general
you analyse “The F is G” as

(∃x)((F (x) ∧ (∀y)(F (y)→ y = x) ∧G(x))) (C)

then you are a subscriber to Russell’s theory of descriptions.

5.9 First-order and Second-order

We need to be clear right from the outset about the difference between first-order
and second-order. In first-order languages predicate letters and function letters
cannot be variables. The idea is that the variables range only over individual
inhabitants of the structures we consider, not over sets of them or properties of
them. This idea—put like that—is clearly a semantic idea. However it can be
(and must be!) given a purely syntactic description.

In propositional logic every wellformed expression is something which will
evaluate to a truth-value: to true or to false. These things are called booleans
so we say that every wellformed formula of propositional logic is of type bool. Explain this idiom

In first order logic it is as if we have looked inside the propositional letters
‘p’, ‘q’ etc. that were the things that evaluate to true or to false, and have
discovered that the letter—as it might be—‘p’ actually, on closer inspection,
turned out to be ‘F (x, y)’. To know the truth-value of this formula we have to
know what objects the variables ‘x’ and ‘y’ point to, and what binary relation
the letter ‘F ’ represents.

First-order logic extends propositional logic in another way too. Blah quan-
tifiers.

Logicians dislike and distrust second order logic for various reasons that need
not concern linguists. If you are using logic in a descriptive way rather than a
normative way, so that you are looking to it to furnish a regimented version of
ordinary language of the kind that linguists study, then you will definitely need
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second order logic: Kasia’s example “swimming is healthy” certainly looks like
a wff from a second-order language. (Tho’ you could gloss it as: people who
swim are ceteris paribus healthier than people who don’t.)

5.9.1 Many-sorted

Difference between two-sorted and second-order. Many-sorted.
(possibly copy stuff from part II logic lecture notes)

If you think the universe consists of only one kind of stuff then you will
have only one domain of stuff for your variables to range over. If you think the
universe has two kinds of stuff (for example, you might think that there are two
kinds of stuff: the mental and the physical) then you might want two domains
for your variables to range over.

If you are a cartesian dualist trying to formulate a theory of mind in first-
order logic you would want to have variables of two sorts: for mental and for
physical entities.

Possibly say more about this

5.10 Semantics for first-order logic

In this section we develop the ideas of truth and validity (which we first saw in
the case of propositional logic) in the rather more complex setting of predicate
logic. It’s all admittedly a bit scary and if you suffer from mathsangst you
can skip it, beco’s it isn’t strictly neccessary for any material that comes later.
However, it is fairly central, and if this were an examinable course I would insist
on you coming to grips with it.

It may even be (if our progress is too slow) that I won’t even get round to
lecturing it.

We are going to say what it is for a formula to be true in a structure. We
will achieve this by doing something rather more general. What we will give
is—for each language L—a definition of what it is for a formula of L to be true
in a structure. Semantics is a relation not so much between an expression and
a structure as between a language and a structure. [Slogan: semantics for an
expression cannot be done in isolation.]

We know what expressions are, so what is a structure? It’s a set with
knobs on. You needn’t be alarmed here by the sudden appearance of the word
‘set’. You don’t need to know any fancy set theory to understand what is going
on. The set in question is called the carrier set, or domain. One custom in
mathematics is to denote structures with characters in uppercase FRAKTUR
font, typically with an ‘M’.

The obvious examples of structures arise in mathematics and can be mis-
leading and in any case are not really suitable for our expository purposes here.
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We can start off with the idea that a structure is a set-with-knobs on. Here is
a simple example that cannot mislead anyone.

The carrier set is the set {Beethoven, Handel, Domenico Scarlatti} and the
knobs are (well, is rather than are because there is only one knob in this case)
the binary relation is-the-favourite-composer-of. We would obtain a different
structure by adding a second relation: is-older-than perhaps.

If we are to make sense of the idea of an expression being true in a structure
then the structure must have things in it to match the various gadgets in the
language to which the expression belongs. If the expression contains a two-place
relation symbol ‘loves’ then the structure must have a binary relation on it to
correspond. This information is laid down in the signature. The signature of
the structure in the composers example above has one binary relation symbol
and three constant symbols; the signature of set theory is equality plus one bi-
nary predicate; the signature of the language of first-order Peano arithmetic has
slots for one unary function symbol, one nullary function symbol (or constant)
and equality.

Let’s have some illustrations, at least situations where the idea of a signature
is useful.

• Cricket and baseball resemble each other in a way that cricket and tennis
do not. One might say that cricket and baseball have the same signature.
Well, more or less! They can be described by giving different values to the
same set of parameters.

• It has been said that a French farce is a play with four characters, two
doors and one bed. This aperçu is best expressed by using the concept
of signature.

• Perhaps when you were little you bought mail-order kitsets that you as-
sembled into things. When your mail-order kitset arrives, somewhere
buried in the polystyrene chips you have a piece of paper (the “mani-
fest”) that tells you how many objects you have of each kind, but it does
not tell you what to do with them. Loosely, the manifest is the signature
in this example. Instructions on what you do with the objects come with
the axioms (instructions for assembly).

• Recipes correspond to theories: lists of ingredients to signatures.

Structure Signature Axioms
French Farce 4 chars, 2 doors 1 bed Plot
Dish Ingredients Recipe
Kitset list of contents Instructions for assembly
Cricket/baseball innings, catches, etc Rules
Tennis/table tennis

It is now time to tackle the semantics of first-order logic. This time the
function we define from the syntax will give back not meaning but truth-values.
Still, the machinery is very similar.
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We will need the idea of valuation from the semantics of propositional logic,
definition 2 page 50. We will need it, but we have to do some preparatory work
first.

We start with the idea of a structure for a language.

5.10.1 The Domain

The first thing to settle is what our universe of discourse is to be. In technical
jargon, we have to decide what the variables in our language are going to range
over. The things the variables range over are the things that we deem to exist in
the piece of semantical theatre we are embarking on. The universe of discourse
is often referred to as the domain or as the carrier set. The locution ‘carrier set’
alludes to the fact that the domain carries the semantics—everything is built
on it. Let us use the capital Roman letter ‘D’ to denote the domain.

5.10.2 Interpretations

Once we have decided what is is we are going to be talking about, we are in a
position to decide what the meanings of the relation and function symbols in
our language are to be. If our language contains a binary relation symbol such
as ‘<’, and we have decided what objects our variables are to range over, then
the interpretation of the symbol ‘<’ will have to be a binary relation holding
between (some or all of) those objects. [close examination of the syntax will
have told us that ‘<’ is a binary relation symbol rather than a variable or a
propositional constant].

The interpretation can/should be thought of as a function that takes pieces
of syntax (such as the ‘<’ symbol) as arguments and gives back as values suitable
bits of the domain D.

The symbol ‘=’ is a reserved word: its interpretation must be the equality
relation on D. It can never be anything else. What, never? Well, hardly ever.
If ‘=’ points to anything other than the equality relation on D we say that the
interpretation is nonstandard.

5.10.3 Assignment Functions

Think of them as the states of a program. (Beware, the connection with the idea
of state of a finite state machine, altho’ real enough, is pretty tenuous and—at
this stage—is merely misleading.)

An assignment function f is a function from variables to elements of D: it
tells you what the values (in D) are of the variables of L. Assignment functions
are sometimes taken to be partial, sometimes taken to be total. It doesn’t much
matter . . .

How do we write the value of f (the thing in D) that f gives to the variable
‘x’? We’d better not write it “f(x)”, because that expression points to whatever
it is to which the function f (the thing pointed to by the letter ‘f ’) sends the
thing pointed to by the letter ‘x’. That’s not what we want. Our function f
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here does not point to something that acts on things pointed to by the variable
‘x’; it points to something that acts on the variable ‘x’ itself! To make this clear
we should really describe the behaviour of an assignment function f by means
of a variable that ranges over variables.

Anyway we now need a satisfaction relation. This holds between assign-
ment functions and expressions of our language L. To illustrate with an example
that is as simple as possible. What would it be for the assignment function f to
satisfy the formula ‘x < y’? Well, the interpretation has told us which things
in D are related by the interpretation of ‘<’. We say that:

f satisfies ‘x < y’ if the thing-to-which-f -sends-the-variable-‘x’ stands
in the relation-which-is-the-interpretation-of-‘<’ to the thing-to-which-
f -sends-the-variable-‘y’.

Similarly for any other atomic formula.

What about compound (“molecular”) formulæ? Easy, we define what it
is for an assignment function to satisfy a compound formula by a a process
known variously as compositional (if you are a linguist) or recursive (if you are
a logician). We have clauses like

f satisfies the conjunction of two formulæ if and only if it satisfies
both conjuncts.

f satisfies the disjunction of two formulæ if and only if it satisfies at
least one disjunct.

These two clauses were stated with great care. I did not write

f satisfies A ∧B if and only if it satisfies A and satisfies B. (1)

To write such a thing would not be legitimate, at least in the absence of
certain linguistic conventions which we have not yet set up (and probably won’t).
For (1) to be squeaky-clean the letters ‘A’ and ‘B’ would have to be variables
ranging over formulæ. OK, we say, we hereby let ‘A’ and ‘B’ be variables ranging
over formulæ. But now we have a problem with the symbol ‘∧’. Hitherto ‘∧’ has
been a symbol that we put between two formula-tokens to obtain a new formula type-token
token. Here it is being put between two variables that range over formulæ. This
harks back to the discussion earlier, in the propositional case, and we refer the
reader back to that passage. See page 51.

5.10.4 The quantifiers and the satisfaction relation

The tricky cases involve the two quantifiers. When do we want to say that an
assignment function f satisfies an expression like ‘(∃x)A’? Well, it’s going to
depend on what f does to the variable ‘x’. [. . . ]
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5.10.5 Truth (of a formula in a model)

If a formula is satisfied by all assignment functions operating under the rubric
of an interpretation we say that the formula is true—according to that inter-
pretation.

Notice the way in which the difference between first-order and second order
is played out in this process: Things that you can’t quantify over are settled
at the stage where we define the interpretation; quantifiable variables are dealt
with later on, by the assignment functions.

5.11 Expressive Power

The expressive power [of a language] is a very important idea in Logic which is
probably of interest to linguists too. It sounds like a circular endeavour—or at
least one without a firm foundation—because how is one to say what a language
can express except by use of language? However, one must not be discouraged.

Let us start with a very simple observation: the language of propositional
logic is not regular.

This because if A and B are expressions of the language of propositional
logic then so is p(A ∨ B)q, so that grammatical expressions of this language
can have arbitrarily many left-hand brackets open at any one time so, by the
pumping lemma, the language cannot be regular.

EXERCISE 13. Let L be a regular language over an alphabet Σ2 and let Σ1 be
a subset of Σ2. Let L � Σ1 be the set of all strings w′ ∈ Σ∗1 such that there is
w ∈ L where w′ is the result of deleting from w all characters in Σ2 \Σ1. [Why
is this not the same as L ∩ Σ∗1?]

(i) Show that L � Σ1 is regular.

(ii) Deduce that the language of (wellformed) propositional formulæ
(over some fixed alphabet) is not regular.

However, the language of propositional logic is context-free. What about
the language of first-order logic? Apparently this depends on whether or not
one is allowed to reuse variables. Do you want to allow

(∀x)(F (x)→ G(x)) ∧ (∃x)(P (x))

as wellformed? Or should we insist on replacing the ‘x’ in one of the conjuncts
by a ‘y’ to make the formula less confusing? I have been told that if you want
to forbid the reuse of variables then the resulting grammar is not context-free.

Of slightly more interest in the idea of semantic closure. This harks back to
the language/metalanguage distinction from page 16.

“What i am now saying is false”
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It is a simple consequence of the liar paradox that no language can completely
describe its own semantics. We say: no language can be semantically closed.
Natural languages of course are semantically closed, but then they allow us to
do nasty things like the Liar Paradox which upset logicians and shouldn’t be
allowed to happen.

If we want to preclude disasters like the Liar Paradox then the semantics for a
language has to be provided in a metalanguage. And the semantics for the met-
alanguage has to be provided in a metametalanguage and so on. . . transfinitely!

Perhaps say something about completeness theorems.
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Chapter 6

Syntactic types

Somewhere make the point
that nouns and verbs are
of the same syntactic type.
Binders: set abstracts, λ-
terms and ε-terms. What
is the syntactic type of a
binder?

The syntactic type of a piece of syntax is the gadget that tells you what sort
of object that piece of syntax evaluates to. A syntactic type is a complex piece
[of syntax!] in its own right. We start with two simple syntactic types: bool

(short for ‘boolean’: we saw this expression on page 77) and ind; more complex
syntactic types are built up from them.

A thing of type ind will be a thing that always evaluates to an individual.
Thus ind is the syntactic type of variables and constant symbols.

bool is the type of truth-values, so that the propositional letters ‘p’ and ‘q’
and suchlike you met in chapter 4 and all the complex formulæ built up from
them by means of the connectives are of syntactic type bool.

The propositional connectives ‘and’ ‘or’ etc clearly take two booleans and
give back a boolean, so they are all of type (bool × bool) -> bool. (Except
of course that ¬, negation, is of type bool -> bool)

What about the formulæ of first order logic?

A monadic predicate [symbol] has syntactic type ind -> bool.

A dyadic predicate [symbol] has syntactic type (ind × ind) -> bool.

However, we apply the connectives to predicates as well as booleans. Not
only can we write

It is tuesday and the sun is shining

(in which ‘and’ is clearly of syntactic type (bool × bool) -> bool) but also

Fred is handsome and charming

in which ‘and’ is a connective [you linguists would probably say a conjunction
but don’t confuse me] joining two predicates (= thing of type ind -> bool) not
two statements (= thing of type bool) so it is clearly—in this case—of syntactic
type

(ind -> bool) × (ind -> bool) -> (ind -> bool).
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Actually, without tooo much striving, one can find analogous examples where
Fred has been replaced by a tuple:

William and Kate are married and are launching a new aircraft-
carrier

in which ‘and’ is of type

((ind2 -> bool) × (ind2 -> bool)) -> (ind2 -> bool)

So, really, ‘and’ and its analogues are of [“polymorphic”] type

((indn -> bool) × (indn -> bool)) -> (indn -> bool)

where n can be any whole number. What happens if n = 0? The expression
simplifies to bool × bool -> bool.

What about quantifiers?

Think about what use you put quantifiers to. You have a complex expression
φ, with a variable ‘x’ free in it. This expression is saying something about x,
so it is of syntactic type ind -> bool. You whack a ‘∃x’ or a ‘∀x’ on the
front, getting a thing that has a truth-value, which is to say, is of syntactic
type bool. This tells us that a quantifier [symbol] is [a piece of syntax] of type
(ind -> bool) -> bool.

Well, that’s an oversimplification. That’s what happens if φ has only one
free variable. If it has n free variables then the result of whacking a single
quantifier on the front has n − 1 free variables, so really a quantifier can have
syntactic type
(indn -> bool) -> (ind(n−1) -> bool), for any n.

If n = 1 then of course (indn -> bool) -> (ind(n−1) -> bool) simplifies
to (ind -> bool) -> bool. This makes sense: ind0 -> bool should indeed
be bool: a complex formula with no free variables in it (which is what a thing
of syntactic type ind0 -> bool will be) is clearly of syntactic type bool.

What about determiners? A determiner is a thing that takes a predicate
symbol and returns a quantifier. For example ‘the’ and ‘most’ are determiners.
Thus [the denotation of] the string “The man” is a quantifier: something that
can be applied to a monadic predicate to give a truth-value—as in ‘the man
sings’—so it is a quantifier. ‘man’ is a one-place place predicate symbol, so the
syntactic type of the determiner ‘the’ is

(ind -> bool) -> (indn -> bool) -> (indm -> bool).

Thus:
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String Syntactic Type

the (ind -> bool) -> ((ind -> bool) -> bool))

man ind -> bool

the man (ind -> bool) -> bool

sings ind -> bool

the man sings bool

Observe that the type of ‘the man’ is the result of applying the type of ‘the’
to the type of ‘man’; next we find that the type of ‘the man sings’ is the result
of applying the type of ‘the man’ to the type of ‘sings’.

Observe further that if we do the same parsing to ‘most men sing’ we get
the same

I suppose that this means that in English the word ‘all’ is a determiner rather
than a quantifier, since its typical use is in things like “all men sing’ which has
the same syntax as ‘most men sing’.

Adverbial Modifiers and Modal Operators

Adverbial modifiers can clearly be of syntactic type

(indn -> bool) -> (indn -> bool)

for any n > 0.
The modal operators ‘2’ and ‘�’ can be applied to closed formulæ and so

can be of syntactic type

(indn -> bool) -> (indn -> bool)

for any n ≥ 0.
In the degenerate case where n = 0 they are of type bool -> bool.

Adverbs lead us straight to the next chapter.
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Chapter 7

Modal Logic

Modern mathematical logic has founded itself on truth-functional connectives,
and this restriction has proved very fruitful. Initially one reason why it was fruit-
ful was that nobody had any clue how to do semantics for non-truth-functional
(intensional) connectives. The obvious examples of such intensional connectives
are modal operators. Linguists know all about modal verbs! Philosophers were
interested in the possibility of intensional logics because they wanted to reason
about necessity and contingency: Neccessarily 2+2 = 4 (written ‘2(2+2 = 4)’)
and its dual: �. There was a raft of questions about principles of modal reason-
ing: p→ 22p? p→ 2�p? Is ��p ever false? Of course the answers will depend
on which intensional monadic connectives 2 and � are supposed to capture.

The symbols ‘2’ and ‘�’ were draughted in to stand for ‘neccessarily’ and
‘possibly’—two notions which modern logic inherited from mediæval philosophy.

The modal operators ‘2’ and ‘�’ can be applied to formulæ with free vari-
ables in them and so can be of syntactic type

(indn -> bool) -> (indn -> bool)

for any n ≥ 0.

Natural languages have lots of lexical items of this flavour; we call them
adverbs. For example we might have a predicate modifier V whose intended
meaning is something like “a lot” or “very much’, so that if L(x, y) was our
formalisation of x loves y then V(L(x, y)) means x loves y very much.

Adverbs are not truth-functional (The truth value of “Balbus loves Julia
very much” does not depend merely on the truth-value of “Balbus loves Julia”)

That all changed in 19571, when Kripke fully spelled out the technique we
are going to see in this chapter.

1The prehistory is contentious, let us say.
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7.1 Possible World Semantics

This should really be called “Multiple world semantics” but the current usage
is entrenched.

In section 4.1 each valuation went on its merry way without reference to any
other valuation: if you wanted to know whether a valuation v made a formula
φ true you had to look at subformulæ of φ but you didn’t have to look at what
any other valuation did to φ or to any of its subformulæ. That is to say, the
definition of sat(v, φ) makes no reference to any valuation other than v. The
key thought is that if you compel the definition of sat(v, φ) to consult valuations
other than v then you will get a much richer semantics. In this new setting we
call the valuations worlds and we have an “accessibility” relation between the
worlds.

DEFINITION 3. A Possible World Model M has several components:

• There is a collection of worlds and a binary relation of satisfaction be-
tween worlds and formulæ, written ‘W |= φ’;

• There is a binary relation R of accessibility between the worlds; if R(W1,W2)
we say W1 can see W2.

• Each world may have inhabitants, and we may stipulate W |= φ(~x) for
atomic φ and tuples ~x of inhabitants of W .

• Finally there is a designated (or ‘actual’ or ‘root’) world WM
0 . We say

that M satisfies φ if W0 |= φ.

Some comments:

• Notice that it is only when φ is atomic that we are free to stipulate
that W |= φ(~x). Furthermore, altho’ declining-to-stipulate-that-W |= φ(~x) is
equivalent to a stipulation that W 6|= φ(~x) (as long as φ is atomic) it does not
amount to a stipulation that W |= ¬φ(~x). All will become clear below!
• It is a side-effect of our definitions that W |= ⊥ never holds. We write this

as W 6|= ⊥. We cannot declare this explicitly—as Aristotle said, a definition
cannot be negative—but it works out that way’
• I wouldn’t stake my life on it but I think we generally take it that our

worlds are never empty: every world has at least one inhabitant. However there
is emphatically no global assumption that all worlds have the same inhabitants.
Objects may pop in and out of existence. However we do take the identity rela-
tion between inhabitants across possible worlds as a given. Thus the apparatus
allows us to stipulate that a particular object might have φ in one world but
not in another.

Armed with this, we can sex up the various clauses in the definition of the
satisfaction relation. Some remain unaltered:

• W |= A ∧B iff W |= A and W |= B;
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• W |= A ∨B iff W |= A or W |= B;

• W |= (∃x)A(x) iff there is an x in W such that W |= A(x).

but some now make use of the accessibility relation. Then we can give rules like

• W |= 2A iff every W ′ |= A for every W ′ s.t. R(W,W ′);

• W |= �A iff W ′ |= A for at least one W ′ s.t. R(W,W ′);

• W |= A→ B iff every W ′ such that R(W,W ′) that |= A also |= B;

• W |= ¬A iff there is no W ′ such that R(W,W ′) and W ′ |= A;

• W |= (∀x)A(x) iff for all W ′RW and all x in W ′, W ′ |= A(x).

The apparatus of possible world semantics puts no restrictions whatever
on what properties the accessibility relation R might have. This freedom of
manœuvre is very useful beco’s it turns out that imposing conditions on the
accessibility relation corresponds to enforcing certain modal principles. As re-
marked above, this was one of the problems the invention of this semantics was
supposed to solve.

The reader might wish to check that There is an arrow in here

EXERCISE 14. if the accessibility relation is (for example)

transitive then the principle ��p→ �p holds
reflexive 2p→ p holds
symmetrical p→ 2�p holds
empty 2p holds

You remember what ‘transitive’ etc mean from section 5.7.

There is quite a lot that can be said along these lines, but we don’t need
to know the details of it to understand how the machinery works. That said,
checking the truth of the four assertions above makes a useful exercise that a
beginner should attempt, even if not this very minute and second.

However the gadgetry has outgrown its original application, and you don’t
have to be interested in modal logic to find possible world semantics useful.

Chat about quantifier alternation. There is a case for writing out the def-
initions in a formal language, on the grounds that the quantifier alternation
(which bothers a lot of people) can be made clearer by use of a formal language.
The advantage of not using a formal language is that it makes the language-
metalanguage distinction clearer.
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7.2 Language and Metalanguage again

It is very important to distinguish between the stuff that appears to the left of
a ‘|=’ sign and that which appears to the right of it. The stuff to the right of
the ‘|=’ sign belongs to the object language and the stuff to the left of the ‘|=’
sign belongs to the metalanguage. So that we do not lose track of where we are
I am going to write ‘→’ for if–then in the metalanguage and ‘&’ for and in the
metalanguage instead of ‘∧’. And I shall use square brackets instead of round
brackets in the metalanguage.

If you do not keep this distinction clear in your mind you will end up making
one of the two mistakes below (tho’ you are unlikely to make both.)

For example here is a manœuvre that is perfectly legitimate:

If

¬[W |= A→ B]

then it is not the case thatThis illustration uses a con-
structive arrow

(∀W ′ ≥W )(W ′ |= A → W ′ |= B)

So, in particular,

(∃W ′ ≥W )(W ′ |= A & ¬(W ′ |= B))

The inference drawn here from ¬∀ to ∃¬ is perfectly all right in the meta-
language, even though it might perhaps not be allowed in the object language.
[depends what we are trying to model]

In contrast it is not all right to think that—for example—W |= ¬A ∨ ¬B
is the same as W |= ¬(A ∧ B) (on the grounds that ¬A ∨ ¬B is the same as
¬(A∧B)). After all, that principle might not be good in the logic we are trying
to model.

Another way of warding off the same temptation is to think of the stuff after
the ‘|=’ sign as stuff that goes on in a fiction. You, the reader of a fiction, know
things about the characters in the fiction that they do not know about each
other. Just because something is true doesn’t mean they know it!! (This is
what the literary people call Dramatic Irony.)

(This reflection brings with it the thought that reading “W |= ¬¬A” as “W
believes not not A” is perhaps not the happiest piece of slang. After all, in
circumstances where W |= ¬¬A there is no suggestion that the fact-that-no-
world-≥-W -believes-A is encoded in W in any way at all. )Could say more about this

We could make it easier for the nervous to discern the difference between the
places where it’s all right to use classical reasoning (the metalanguage) and the
object language (where it isn’t) by using different fonts or different alphabets.
One could write “For all W” instead of (∀W ) . . .”. That would certainly be a
useful way of making the point, but once the point has been made, persisting
with it looks a bit obsessional: in general people seem to prefer overloading to
disambiguation.
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7.2.1 A possibly helpful illustration

Let us illustrate with the following variants on the theme of “there is a Magic
Sword.” All these variants are classically equivalent. The subtle distinctions
that the possible worlds semantics enable us to make are very pleasing.

1. ¬∀x¬MS(x)

2. ¬¬∃xMS(x)

3. ∃x¬¬MS(x)

4. ∃xMS(x)

The first two are constructively equivalent as well.
To explain the differences we need the difference between histories and

futures.

• A future (from the point of view of a world W ) is any world W ′ ≥W .

• A history is a string of worlds—an unbounded trajectory through the
available futures. No gaps between worlds...?

¬∀x¬MS(x) and ¬¬∃xMS(x) say that every future can see a future in which
there is a Magic Sword, even though there might be histories that avoid Magic
Swords altogether: Magic Swords are a permanent possibility: you should never
give up hope of finding one.

How can this be, that every future can see a future in which there is a magic
sword but there is a history that contains no magic sword–ever? It could happen
like this: each world has precisely two immediate children. If it is a world with
a magic sword then those two worlds also have magic swords in them. If it is a
world without a magic sword then one of its two children continues swordless,
and the other one acquires a sword. We stipulate that the root world contains
no magic sword. That way every world can see a world that has a magic sword,
and yet there is a history that has no magic swords.
∃x¬¬MS(x) says that every history contains a Magic Sword and moreover

the thing which is destined to be a Magic Sword is already here. Perhaps it’s
still a lump of silver at the moment but it will be a Magic Sword one day.

7.2.2 If there is only one world then the logic is classical

If M contains only one world—W , say—then M believes classical logic. We can
illustrate this in two ways:

1. Suppose M |= ¬¬A. Then W |= ¬¬A, since W is the root world of M. If
W |= ¬¬A, then for every world W ′ ≥W there is W ′′ ≥W that believes
A. So in particular there is a world ≥ W that believes A. But the only
world ≥ W is W itself. So W |= A. So every world ≥ W that believes
¬¬A also believes A. So W |= ¬¬A→ A.
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2. W either believes A or it doesn’t. If it believes A then it certainly believes
A∨¬A, so suppose W does not believe A. Then W can see no world that
believes A. So W |= ¬A and thus W |= (A ∨ ¬A). So W believes the law
of excluded middle.

show that the mofdal operators are trivial if there is only one world
We must show that the logic
of quantifiers is classical too The same arguments can be used even in models with more than one world,

if the worlds in question can see only themselves.
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Enhanced syntax

8.1 Quantifiers

We know about ∃ and ∀. They are not the only ones! The-king-of-France is
another one. In Mathematical Logic we consider also “for all but finitely many”
written ‘∀∞’ and its dual ∃∞ “there are at least infinitely many”.

Mathematically we think of a quantifier Q over a domain D as a set of subsets
of D, so that (Qx)φ(x) is saying that {x : φ(x)} ∈ Q. Thus, to illustrate, ∃ is
the set of all nonempty subsets of D, and ∀ is the singleton {D} of D. Also ∃∞
is the set of all infinite subsets of D, and ∀ is the collection of subsets of D with
finite complement (“cofinite”).

8.1.1 Predicate Modifiers

In the old grammar books I had at school we were taught that adjectives had
three forms: simple (“cool”) comparative (“cooler”) and superlative (“coolest”).
These could be represented in higher order logic by two predicate modifiers. The Tho’ we don’t really think of

these things as part of the
language. Sort this out!

‘-er’ (comparative) modifier takes a one-place predicate letter and returns a
two-place predicate letter, which will always point to a partial order. The ‘-est’
(superlative) operator takes a one-place predicate letter and returns another
one-place predicate letter. In fact, by using Russell’s theory of descriptions we
can see how to define the superlative predicate in terms of the comparative.

“x is the King of France” according to Russell’s analysis is

K(x) ∧ (∀y)(K(y)→ y = x)

So “x is the coolest” will be

(∀z)(cooler-than(x, z)) ∧ (∀y)((∀z)(cooler-than(y, z)→ y = x)).

Another predicate modifier is too.

No woman can be too thin or too rich.

We will not consider them further.
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8.2 epsilon terms

They were invented by Hilbert for reasons that need not concern us. The syntax
is that (εx)φ(x) is an object of type ind, so that ε is a binder (like a quantifier
or the set-forming brackets {, }) of syntactic type (ind → bool) → ind. The
idea is that (εx)φ(x) is a thing about which one knows only that it bears the
property φ as long as there is something that bears φ. If there is nothing that
is φ then we know nothing about it at all. The word ‘generic’ comes to mind:
(εx)φ(x) is a bit like a generic thing-that-is-φ, except that it exists even if there
is nothing that is φ. This genericity makes it attractive to linguists of a certain
stamp contemplating assertions like “a whale is a mammal”. You might think
that this could be formalised using ε terms as

Mammal((εx)(whale(x)))

but that doesn’t work. The only thing one knows about the generic whale
(“the epsilon whale”) is that it is a whale if there are any. If there aren’t any
whales then all bets are off, and if there are any whales then it is one and has all
those properties that all whales have, whatever they are. OK, if all whales are
mammals and there are whales, then the epsilon whale is a whale, and therefore
a mammal. But that’s only beco’s all whales are mammals. Is it a toothed
whale or a baleeen whale? There’s no telling.

The original reason for Hilbert to be interested in them was that a language
qith ε-terms has the same expressive power as a language with the existential
and the universal quantifier. This is because

(∃x)whale(x) is the same as whale((εx)whale(x));

and

(∀x)whale(x) is the same as whale((εx)¬whale(x)).

Quite how useful is this ability to get rid of quantifiers is anyone’s guess. It
is a matter of record that there are people who think that ε calculus is useful,
and you may fall in with them.

Plurals. see [22].
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Game Semantics

We use \mathfrak font letters to range over structures, with the corresponding
upper case Roman letter for the carrier set: thus A is the carrier set of A.

The reader is assumed to know what combinatorial games are, what strate-
gies are, and so on. Usually one considers the possibility of nondeterministic
strategies, but in this setting all our strategies will be deterministic.

9.1 Hintikka Games

Hintikka games can give us semantics for any first-order language that contains
relation symbols of any arity, function symbols of any arity, individual constants
and propositional constants, the connectives ∨ and ∧, and quantifiers and ⊥
but—for the moment—no other connectives. M is a structure with carrier set
M .

There are two players, True and False. True is female and False is male.
They play G(φ,M) as follows:1

DEFINITION 4. How to play the game G(φ,M):

If φ is ψ1 ∧ ψ2 they play G(ψ1,M) and G(ψ2,M), and True must win
both, otherwise she loses;

if φ is ψ1 ∨ ψ2 they play G(ψ1,M) and G(ψ2,M), and True must win at
least one, otherwise she loses;

if φ is ∃xψ(x) they play all the games G(ψ(m),M) for all m ∈ M, and
True must win at least one of them, or else she loses;

if φ is ∀xψ(x) they play all the games G(ψ(m),M) for all m ∈ M, and
True must win all of them, or else she loses;

1We will sometimes write ‘G(φ)’ where M is obvious from context or is irrelevant.
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If we have ⊥ as a propositional constant in the language we need the rule:
if φ is ⊥ False wins.

If φ is atomic or negatomic2, True wins if M |= φ and False wins other-
wise. (The match referees have access to the diagram of M.)

In the two clauses for the quantifiers the games are not, strictly speaking, G(ψ(m),M),

but G(ψ(x),M[a]), where what i really mean (and almost certainly haven’t notated

properly) is the Hintikka game for ψ(x) played over the expansion M[m] of M obtained

by giving a name to the element m ∈M and forcing ‘x’ to point to m.

The reader will notice that a play of G(φ,M) has no moves, and that there-
fore there is only one strategy (the empty strategy) for each player! This makes
it easy to prove by structural induction on formulæ the proposition that

REMARK 1. M |= φ iff True has a winning strategy in G(φ,M).

This is a notational triviality, and I have set up the game in this way in order
to make the proof of the remark obvious. These games are normally presented
quite differently, where instead of the players playing all possible games, they
choose which games to play. So we change the relevant clauses to

If φ is ψ1 ∧ ψ2 False picks a conjunct ψi and they play G(ψi,M);

if φ is ψ1 ∨ ψ2 True picks a disjunct ψi and they play G(ψi,M);

if φ is ∃xψ(x) True picks m from M and they play G(ψ(m),M);

if φ is ∀xψ(x) False picks m from M and they play G(ψ(m),M);

if φ is atomic or negatomic, True wins if M |= φ and False wins
otherwise.

and this is the version I will use, if only to secure conformity with standard
usage.

The difference between the two presentations is significant. My treatment in
terms of simultaneous plays makes the proof of remark 1 a deflationary triviality,
provable by an induction on the subformula relation. To prove the same result
for the usual definition requires an appeal to the axiom of choice, and we feel
that the entry of the axiom of choice onto the stage at this point is an artefact
of the presentation and makes an unwelcome distraction. Part of the project is
to understand how little skolemisation has to do with the axiom of choice.

Semantics by means of Hintikka games is just the ordinary recursive seman-
tics spiced up and made to look different. The difference is that game semantics
can be sensibly invoked in settings where the usual recursive semantics cannot
be applied, for example the branching quantifier language and languages with
illfounded subformula relations. There are various interesting applications that
we will not cover here, but which I cannot forbear to mention.

2‘⊥’ is of course an atomic formula.
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9.2 Applications to other languages

9.2.1 Negation

There are various ways of dealing with negation but the subsequent development
of these ideas is not affected in any way that I can see by any choice we make
on how to treat negation, so i will ignore it.

Why is this safe? Beco’s we can—in a way that preserves logical equivalence—
import negation so that negation signs appear attached only to atomic formulæ.

One standard way of including negation in this treatment is to give the
players rôles, and they swap rôles whenever they encounter a negation sign.
Various people have had this idea but it seems to have been first published by
Neil Tennant [?].3

9.2.2 Monotone quantifiers

A monotone quantifier over M is simply an upward-closed subset of P(M),
where M is the carrier set of M. The enhancement to deal with monotone
quantifiers appears to be due to Aczel. (I learnt it from Aczel: [1].) Qx.ψ(x)
says simply that {x : ψ(x)} ∈ Q where Q is the upward-closed subset of P(M)
corresponding to Q. We add to the recursion the clause

If φ is (Qx)ψ(x) player True picks X ∈ Q, player False picks a ∈ X
and they play G(ψ(a),M).

This enhancement by Aczel is designed for the usual context where players
make moves. However it can be modified to work in the context of definition
4. If φ is (Qx)ψ(x) they play simultaneously all the games (G,ψ, q,M) for all
q ∈ Q and True has to win one of them. What is the game (G,ψ, q,M)? It
is the game that True and False play by playing simultaneously all the games
G(ψ(a),M) for a ∈ q, and False has to win them all.)

9.2.3 Possible World Semantics

If we want a constructive or modal treatment we can easily provide one. For ex-
ample True and False play G(2φ,W ) by playing simultaneously all the games
G(φ,W ′) for all worlds W ′ accessible from W—and True of course has to win
them all.

If we want semantics for a constructive logic. . .

True and False play G((∀x)φ(x),W ) by playing simultaneously all the
games G(φ(m),W ′) for all worlds W ′ accessible from W and all m ∈ W ′—
and True of course has to win them all.

3Miniexercise: explain why this is not the same as saying that G(¬φ,M) is misère G(φ,M).
Neil writes “You should also look at my treatment of the intuitionistic case in my paper
’Language Games and Intuitionism’. Two other papers are my reply to Hintikka in the Nordic
JPL and my piece for the volume on Williamson on knowledge. I’ll send you the PDFs of
these too.”
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True and False play G((φ → ψ),W ) by playing simultaneously, for all
worlds W ′ accessible from W , all the games G(φ,W ′) and G(ψ,W ′) where
True has to win either G(ψ,W ′) or the game G(φ,W ′) modified by the players
swapping rôles.

9.2.4 Feedback formulæ and Fixed-point Logic

Many years ago (in the 1970s) Aczel considered the possibility of applying this
semantics to what he called feedback formulæ, formulæ which had themselves
as proper subformulæ. Nothing in the definition of this game relies for its
legitimacy on the subformula relation on the language being wellfounded. If
it is illfounded the game can have plays of length ω. But that is allowed! As
far as I know Aczel never published his work on this, but I would imagine that
someone must have noticed that this kind of game semantics can be given for
fixpoint logics. There is presumably a literature on this, but I don’t know it.Chase this up

(We saw feedback formulæ in section ??: the definition of HHT is a feedback
formula.)

9.3 Branching Quantifiers

Branching quantifier formulæ (Henkin [4]) look like4(
∀x∃y
∀z∃w

)
(A(x, y, z, w)) (φ)

These branching quantifier formulæ are problematic, and we see this even
with the simplest possible cases. Suppose we have a matrix game in mind; let
A(x, y) be the payoff of row x played against column y. Consider the formula(

∀y
∃x

)
(A(x, y) ≥ k) (9.1)

and the Hintikka game played over it. It is a game of imperfect information
beco’s it has simultaneous moves. The result is that neither player has a winning
strategy. If we want to say that the formula is true iff True has a winning
strategy in the Hintikka game and that the formula is false iff False has a
winning strategy in the Hintikka game then we have to concede that there is a
truth-value gap. Formula 9.1 looks like both

(∀y)(∃x)(A(x, y) ≥ k) and (∃x)(∀y)(A(x, y) ≥ k),

but is not equivalent to either.

4A message from (the late) Graham Solomon: Lloyd Humberstone sketched a compositional
semantics for branching quantifiers, in a critical notice of Hintikka’s The Game of Language,
in [7]. Tom Patton [8] rejected Humberstone’s proposal. Have there been any other, more
recent, published proposals for compositional semantics for branching quantifiers?
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Henkin [4] saw from day one that formulæ with branching quantifiers had
great expressive power. For example this formula says there are as many things
that are F as there are things that are G:

(
∀a∃b′
∀b∃a′

)
((a = a′ ←→ b = b′) ∧ (F (a)→ G(b′)) ∧ (G(b)→ F (a′))) (9.2)

A slight modification of this gives a way of saying that there are infinitely
many things that are F . You invent a constant and say that it has F , and then
say there is a bijection between the extension of F and the extension of F \{a}.
That is to say, just add a new constant ‘c’ and—in formula 9.2—replace ‘G(x)’
with ‘F (x) ∧ x 6= c’.

Each branch in the quantifier prefix is ∀∗∃∗ , and even with such compara-
tively modest complexity we get strength beyond first-order. It turns out that,
for our purposes, ∀∗∃∗ is all we need. The analysis we develop below is applica-
ble to formulæ with ∀∗∃∗∀∗∃∗ prefixes (and beyond) among their branches, but
such formulæ are not required.

The syntax of φ looks dead cute, and it’s pretty clear that the formula ought
to mean something like: “for all x and for all z there are y (depending only on
x) and w (depending only on z) such that . . . ”. The obvious way to capture
this meaning is by means of a sort of pseudo-skolemisation obtaining

(∀x)(∀z)A(x, f(y), z, g(w)) (psk(φ))

and it should be clear how to do this in the general case. Let us make this a
definition.

DEFINITION 5.

1. The pseudo-skolemisation of a branching-quantifier formula is the ∀∗
sentence obtained by first replacing every existentially quantified variable
v by a term of the form: function letter of arity n applied to the n univer-
sally quantified variables in whose scope v appears, and then deleting the
existential quantifiers.

2. A branching-quantifier formula ψ is true in a structure M iff M can
be expanded5 by Skolem functions to a structure in which the pseudo-
skolemisation of ψ is true.6

This gives us an immediate proof of the old result ([?], [?]) that every branch-
ing quantifier formula is equivalent to a Σ2

1 formula. There is a converse too,
and we will get round to it later (theorem ??.)

5beware: this is model-theoretic jargon. It means adding new gadgets to the structure not
new elements to it.

6It has to be admitted that this definition has the meaning we want it to have only if the
Axiom of Choice is globally true, but this is probably less of a worry for my audience than it
is for me. I am much struck by the fact that the axiom of choice is not needed for the proof
that skolemisation preserves satisfiability.
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9.3.1 Teams

The Skolemisation suggests a Hintikka game treatment of this that makes True
and False into teams of two players. Each team has a player for each row of
the quantifier prefix; the prefix has two rows, so we have two players. For a
discussion of the possible genesis of this idea see section ??. We think of True
as being a team composed of two players, and False similarly. Each player is
allowed to respond only to the moves made by the player on the other team that
they are marking—as it were. That is to say, team False has a player Falsex

whose job is to instantiate the x variables: he is marked by player Truey whose
job it is to find witnesses for the y variables. And of course team False also
has a player Falsez whose job is to instantiate the z variables: he is marked by
player Truew whose job it is to find witnesses for the w variables. 7

Consider the predicament of player Truey in team True who has been given
the job of picking witnesses for the variable ‘y’. Her job is to mark the player
Falsex in team False whose job it is to instantiate ‘x’. She is not allowed to
take any account of the moves made by the other member Falsez of team False.
Of course her comrade-in-arms Truew is told of all moves made by Falsez, so
one way to think of this is as Truey and Truew being required to operate a
system of chinese walls. They can agree on a strategy in advance, and they
share a common purpose, but they must not share information.

How are we, the referees, to detect any breaches of these rules? One obvious
thing we can do is to get the two teams to play the game repeatedly, and check
that Truey’s move depends solely on Falsex’s moves. That is to say, we blow
a whistle if we find that Falsex has repeated a move made in an earlier play
of the game but Truey’s the second time is not the same as her reply the first
time.We should say something

about how this means that
team True have to be play-
ing deterministiaclly, o/w
they might be accused of
cheating

7Of course the general branching-quantifier prefix is not a set of rows, but an arbitrary
partial order, so that the members of the two teams are not indexed by rows as if they were
rugby forwards but rather by maximal chains through the poset.
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Curry-Howard

Must introduce the slang
expression “propositions-as-
types”

The Curry-Howard trick is to exploit the possibility of using the letters ‘A’, ‘B’
etc. to be dummies not just for propositions but for sets. This means reading
the symbols ‘→’, ‘∧’, ‘∨’ etc. as symbols for operations on sets as well as on
formulæ. The ambiguity we will see in the use of ‘A→ B’ is quite different from
the ambiguity arising from the two uses of the word ‘tank’. Those two uses are
completely unrelated. In contrast the two uses of the arrow in ‘A→ B’ have a
deep and meaningful relationship. The result is a kind of cosmic pun. Here is
the simplest case.

Altho’ we use it as a formula in propositional logic, the expression ‘A→ B’ is
used by various mathematical communities to denote the set of all functions from
A to B. To understand this usage you don’t really need to have decided whether
your functions are to be functions-in-intension or functions-in-extension; either
will do. The ideas in play here work quite well at an informal level. A function
from A to B is a thing such that when you give it a member of A it gives you
back a member of B.

10.1 Decorating Formulæ

10.1.1 The rule of →-elimination

Consider the rule of →-elimination

A A→ B →-elim
B

(10.1)

If we are to think of A and B as sets then this will say something like “If I
have an A (abbreviation of “if i have a member of the set A”) and an A → B
then I have a B”. So what might an A→ B (a member of A→ B) be? Clearly
A → B must be the set of functions that give you a member of B when fed a
member of A. Thus we can decorate 10.1 to obtain
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a : A f : A→ B
→-elim

f(a) : B
(10.2)

which says something like: “If a is in A and f takes As to Bs then f(a) is
a B.1 This gives us an alternative reading of the arrow: ‘A → B’ can now be
read ambiguously as either the conditional “if A then B” (where A and B are
propositions) or as a notation for the set of all functions that take members of
A and give members of B as output (where A and B are sets).

These new letters preceding the colon sign are decorations. The idea
of Curry-Howard is that we can decorate entire proofs—not just individual
formulæ—in a uniform and informative manner.

We will deal with →-int later. For the moment we will look at the rules for
∧.

10.2 Rules for ∧
10.2.1 The rule of ∧-introduction

Consider the rule of ∧-introduction:

A B ∧-int
A ∧B (10.3)

If I have an A and a B then I have a . . . ? thing that is both A and B? No.
If I have one apple and I have one banana then I don’t have a thing that is both
an apple and a banana; what I do have is a sort of plural object that I suppose
is a pair of an apple and a banana. The thing we want is called an ordered
pair: 〈a, b〉 is the ordered pair of a and b. So the decorated version of 10.3 is

a : A b : B ∧-int〈a, b〉 : A×B (10.4)

Say something about how
we use × here . . . What is the ordered pair of a and b? It might be a kind of funny plural

object, like the object consisting of all the people in this room, but it’s safest to
be entirely operationalist about it: all you know about ordered pairs is that there
is a way of putting them together and a way of undoing the putting-together,
so you can recover the components. Asking for any further information about
what they are is not cool: they are what they do. Be doo be doo. That’s
operationalism for you.

10.2.2 The rule of ∧-elimination

If you can do them up, you can undo them: if I have a pair-of-an-A-and-a-B
then I have an A and I have a B.

1So why not write this as ‘a ∈ A’ if it means that a is a member of A? There are various
reasons, some of them cultural, but certainly one is that here one tends to think of the
denotations of the capital letters ‘A’ and ‘B’ and so on as predicates rather than sets.
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〈a, b〉 : A ∧B
a : A

〈a, b〉 : A ∧B
b : B

A×B is the set {〈a, b〉 : a ∈ A∧ b ∈ B} of2 pairs whose first components are
in A and whose second components are in B. A×B is the Cartesian product
of A and B.

(Do not forget that it’s A×B not A∩B that we want. A thing in A∩B is
a thing that is both an A and a B: it’s not a pair of things one of which is an
A and the other a B; remember the apples and bananas above.)

10.2.1 Rules for ∨
To make sense of the rules for ∨ we need a different gadget.

A

A ∨B
B

A ∨B
If I have a thing that is an A, then I certainly have a thing that is either an

A or a B—namely the thing I started with. And in fact I know which of A and
B it is—it’s an A. Similarly If I have a thing that is a B, then I certainly have
a thing that is either an A or a B—namely the thing I started with. And in
fact I know which of A and B it is—it’s a B.

Just as we have cartesian product to correspond with ∧, we have disjoint
union to correspond with ∨. This is not like the ordinary union you may
remember from school maths. You can’t tell by looking at a member of A ∪ B
whether it got in there by being a member of A or by being a member of B.
After all, if A ∪ B is {1, 2, 3} it could have been that A was {1, 2} and B was
{2, 3}, or the other way round. Or it might have been that A was {2} and B
was {1, 3}. Or they could both have been {1, 2, 3}! We can’t tell. However,
with disjoint union you can tell.

To make sense of disjoint union we need to rekindle the idea of a copy from
section ??. The disjoint union A tB of A and B is obtained by making copies Resuscitate this?
of everything in A and marking them with wee flecks of pink paint and making
copies of everything in B and marking them with wee flecks of blue paint, then
putting them all in a set. We can put this slightly more formally, now that we
have the concept of an ordered pair: A tB is

(A× {pink}) ∪ (B × {blue}),

where pink and blue are two arbitrary labels.
(Check that you are happy with the notation: A × {pink} is the set of all

ordered pairs whose first component is in A and whose second component is in
{pink} which is the singleton of3 pink, which is to say whose second component
is pink. Do not ever confuse any object x with the set {x}—the set whose sole

2If you are less than 100% happy about this curly bracket notation have a look at the
discrete mathematics material on my home page.

3The singleton of x is the set whose sole member is x.
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member is x! So an element of A × {pink} is an ordered pair whose first
component is in A and whose second component is pink. We can think of such
an ordered pair as an object from A labelled with a pink fleck.)Say something about A t

B = B tA ∨-introduction now says:

a : A b : B
〈a, pink〉 : A tB 〈b, blue〉 : A tB

∨-elimination is an action-at-a-distance rule (like →-introduction) and to
treat it properly we need to think about:

10.3 Propagating Decorations

The first rule of decorating is to decorate each assumption with a variable, a
thing with no syntactic structure: a single symbol.4 This is an easy thing to
remember, and it helps guide the beginner in understanding the rest of the
gadgetry. Pin it to the wall:

Decorate each assumption with a variable!

How are you to decorate formulæ that are not assumptions? You can work
that out by checking what rules they are the outputs of. We will discover through
some examples what extra gadgetry we need to sensibly extend decorations
beyond assumptions to the rest of a proof.

10.4 Rules for ∧
10.4.1 The rule of ∧-elimination

A ∧B ∧-elim
B

(10.5)

We decorate the premiss with a variable:

x : A ∧B ∧-elim
B

(10.6)

. . . but how do we decorate the conclusion? Well, x must be an ordered pair
of something in A with something in B. What we want is the second component
of x, which will be a thing in B as desired. So we need a gadget that when we
give it an ordered pair, gives us its second component. Let’s write this ‘snd’.

x : A ∧B
snd(x) : B

4You may be wondering what you should do if you want to introduce the same assumption
twice. Do you use the same variable? The answer is that if you want to discharge two
assumptions with a single application of a rule then the two assumptions must be decorated
with the same variable.
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By the same token we will need a gadget ‘fst’ which gives the first compo-
nent of an ordered pair so we can decorate5

A ∧B ∧-elim
A

(10.7)

to obtain

x : A ∧B
fst(x) : A

10.4.2 The rule of ∧-introduction

Actually we can put these proofs together and whack an ∧-introduction on the
end:

x : A ∧B x : A ∧B
snd(x) : B fst(x) : A
〈snd(x), fst(x)〉 : B ∧A

10.5 Rules for →
7.2.2.1 The rule of →-introduction

Here is a simple proof using →-introduction.

[A→ B]1 A
→-elim

B →-int (1)
(A→ B)→ B

(10.8)

We decorate the two premisses with single letters (variables): say we use ‘f ’
to decorate ‘A → B’, and ‘x’ to decorate ‘A’. (This is sensible. ‘f ’ is a letter
traditionally used to point to functions, and clearly anything in A→ B is going
to be a function.) How are we going to decorate ‘B’? Well, if x is in A and f is
a function that takes things in A and gives things in B then the obvious thing
in B that we get is going to be denoted by the decoration ‘f(x)’:

f : [A→ B]1 x : A
f(x) : B

??? : (A→ B)→ B

So far so good. But how are we to decorate ‘(A→ B)→ B’? What can the
‘???’ stand for? It must be a notation for a thing (a function) in (A→ B)→ B;
that is to say, a notation for something that takes a thing in A→ B and returns
a thing in B. What might this function be? It is given f and gives back f(x).

5Agreed: it’s shorter to write ‘x1’ and ‘x2’ than it is to write ‘fst(x)’ and ‘snd(x)’ but this
would prevent us using ‘x1 and x2’ as variables and in any case I prefer to make explicit the
fact that there is a function that extracts components from ordered pairs, rather than having
it hidden it away in the notation.
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So we need a notation for a function that, on being given f , returns f(x).
(Remember, we decorate all assumptions with variables, and we reach for this
notation when we are discharging an assumption so it will always be a variable).
We write this

λf.f(x)

This notation points to the function which, when given f , returns f(x). In
general we need a notation for a function that, on being given x, gives back
some possibly complex term t. We will write:

λx.t

for this. Thus we have

f : [A→ B]1 x : A
→-elim

f(x) : B
→-int (1)

λf.f(x) : (A→ B)→ B

(10.9)

Thus, in general, an application of →-introduction will gobble up the proof

x : A
...

t : B

and emit the proof

[x : A]

...
t : B

λx.t : A→ B

This notation—λx.t—for a function that accepts x and returns t is incredibly
simple and useful. Almost the only other thing you need to know about it is
that if we apply the function λx.t to an input y the output must be the result
of substituting ‘y’ for all the occurrences of ‘x’ in t. In the literature this result
is notated in several ways, for example [y/x]t or t[y/x].Go over a proof of S at this

point

10.6 Rules for ∨
We’ve discussed ∨-introduction but not ∨-elimination. It’s very tricky and—
at this stage at least—we don’t really need to. It’s something to come back
to—perhaps!

EXERCISE 15. Go back and look at the proofs that you wrote up in answer to
exercise 5, and decorate those that do not use ‘∨’.
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10.7 Remaining Rules

10.7.1 Identity Rule

Here is a very simple application of the identity rule. See [27]: Semantical
Archæology.

A B
B

B → A
A→ (B → A)

Can you think of a function from A to the set of all functions from B to A?
If I give you a member a of A, what function from B to A does it suggest to
you? Obviously the function that, when given b in B, gives you a.

This gives us the decoration

a : A b : B
b : B

λb.a : B → A
λa.(λb.a) : A→ (B → A)

The function λa.λb.a has a name: K for Konstant. (See section ??.) Show how do do this using
the option of cancelling non-
existent assumptions.10.7.2 The ex falso

The ex falso sequitur quodlibet speaks of the propositional constant ⊥. To
correspond to this constant proposition we are going to need a constant set.
The obvious candidate for a set corresponding to ⊥ is the empty set. Now
⊥ → A is a propositional tautology. Can we find a function from the empty set
to A which we can specify without knowing anything about A? Yes: the empty
function! (You might want to check very carefully that the empty function ticks
all the right boxes: is it really the case that whenever we give the empty function
a member of the empty set to contemplate it gives us back one and only one
answer? Well yes! It has never been known to fail to do this!! Look again at
page ??.) That takes care of ⊥ → A, the ex falso.

10.7.3 Double Negation

What are we to make of A → ⊥? Clearly there can be no function from A to
the empty set unless A is empty itself. What happens to double negation under
this analysis?

((A→ ⊥)→ ⊥)→ A

• If A is empty then A → ⊥ is the singleton of the empty function and is
not empty. So (A→ ⊥)→ ⊥ is the set of functions from a nonempty set
to the empty set and is therefore the empty set, so ((A→ ⊥)→ ⊥)→ A
is the set of functions from the empty set to the empty set and is therefore
the singleton of the empty function, so it is at any rate nonempty.
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• However if A is nonempty then A→ ⊥ is empty. So (A→ ⊥)→ ⊥ is the
set of functions from the empty set to the empty set and is nonempty—
being the singleton of the empty function—so ((A→ ⊥)→ ⊥)→ A is the
set of functions from the singleton of the empty function to a nonempty
set and is sort-of isomorphic to A. empty.

So ((A → ⊥) → ⊥) → A is not reliably inhabited, in the sense that it’s
inhabited but not uniformly. This is in contrast to all the other truth-table
tautologies we have considered. Every other truth-table tautology that we have
looked at has a lambda term corresponding to it.

This chapter has been concerned with the relations between the λ-calculus
and propositional logic. However the λ-calculus has a life of its own, and—if
you can conquer your mathsangst—is something you should definitely pursue.



Chapter 11

Appendices

11.1 Notes to Chapter one

11.1.1 The Material Conditional

Lots of students dislike the material conditional as an account of implication.
The usual cause of this unease is that in some cases a material conditional
p→ q evaluates to true for what seem to them to be spurious and thoroughly
unsatisfactory reasons: namely, that p is false or that q is true. How can q follow
from p merely because q happens to be true? The meaning of p might have no
bearing on q whatever! Standard illustrations in the literature include

If Julius Cæsar is Emperor then sea water is salt.

need a few more examples
These example seem odd because we feel that to decide whether or not p implies
q we need to know a lot more than the truth-values of p and q.

This unease shows that we have forgotten that we were supposed to be
examining a relation between extensions, and have carelessly returned to our
original endeavour of trying to understand implication between intensions. ∧
and ∨, too, are relations between intensions but they also make sense applied
to extensions. Now if p implies q, what does this tell us about what p and q
evaluate to? Well, at the very least, it tells us that p cannot evaluate to true

when q evaluates to false.

Thus we can expect the extension corresponding to a conditional to satisfy
modus ponens at the very least.

How many extensional connectives are there that satisfy modus ponens? For
a connective C to satisfy modus ponens it suffices that in each of the two rows
of the truth table for C where p is true, if pC q is true in that row then q is true
too.

111
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p C q
1 ? 1
0 ? 1
1 0 0
0 ? 0

We cannot make pC q true in the third row, because that would cause C to
disobey modus ponens, but it doesn’t matter what we put in the centre column
in the three other rows. This leaves eight possibilities:

(1) :
p q

q
(2) :

p p←→ q

q
(3) :

p ¬p
q

(4) :
p p→ q

q

p C1 q p C2 q p C3 q p C4 p
1 1 1 1 1 1 1 0 1 1 1 1
1 0 0 1 0 0 1 0 0 1 0 0
0 1 1 0 0 1 0 1 1 0 1 1
0 0 0 0 1 0 0 1 0 0 1 0

(5) :
p ⊥
q

(6) :
p p ∧ q

q
(7) :

p ¬p ∧ q
q

(8) :
p ¬p ∧ ¬q

q

p C5 q p C6 q p C7 q p C8 p
1 0 1 1 1 1 1 0 1 1 0 1
1 0 0 1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 1 1 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0

The horizontal lines should
not go all the way across,
but be divided into four seg-
ments, one for each truth ta-
ble. I haven’t worked out
how to make that happen!

. . . obtained from the rule of modus ponens by replacing ‘p → q’ by each of
the eight extensional binary connectives that satisfy the rule.

(1) will never tell us anything we didn’t know before;
(5) we can never use because its major premiss is never true;
(6) is a poor substitute for the rule of “∧-elimination”;
(3),(7) and (8) we will never be able to use if our premisses are consistent.

(2), (4) and (6) are the only sensible rules left. (2) is not what we are after
because it is symmetrical in p and q whereas “if p then q” is not. The advantage
of (4) is that you can use it whenever you can use (2) or (6). So it’s more use!

We had better check that this policy of evaluating p→ q to true unless there
is a very good reason not to does not get us into trouble. Fortunately, in cases
where the conditional is evaluated to true merely for spurious reasons, then no
harm can be done by accepting that evaluation. For consider: if it is evaluated
to true merely because p evaluates to false, then we are never going to be able
to invoke it (as a major premiss at least), and if it is evaluated to true merely
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because q evaluates to true, then if we invoke it as a major premiss, the only
thing we can conclude—namely q—is something we knew anyway.

This last paragraph is not intended to be a justification of our policy of
using only the material conditional: it is merely intended to make it look less
unnatural than it otherwise might. The astute reader who spotted that nothing
was said there about conditionals as minor premisses should not complain. They
may wish to ponder the reason for this omission.

11.2 Notes to Chapter 5

11.2.1 Subtleties in the definition of first-order language

The following formula looks like a first-order sentence that says there are at
least n distinct things in the universe. (Remember the

∨
symbol from page

??.)

(∃x1 . . . xn)(∀y)(
∨
i≤n

y = xi) (11.1)

But if you are the kind of pedant that does well in Logic you will notice
that it isn’t a formula of the first-order logic we have just seen because there
are variables (the subscripts) ranging over variables! If you put in a concrete
actual number for n then what you have is an abbreviation of a formula of our
first-order language. Thus

(∃x1 . . . x3)(∀y)(
∨
i≤3

y = xi) (11.2)

is an abbreviation of

(∃x1x2x3)(∀y)(y = x1 ∨ y = x2 ∨ y = x3) (11.3)

(Notice that formula 11.2.1 isn’t actually second-order either, because the dodgy
variables are not ranging over subsets of the domain.)

11.3 Church on intension and extension

“The foregoing discussion leaves it undetermined under what cir-
cumstances two functions shall be considered the same. The most
immediate and, from some points of view, the best way to settle
this question is to specify that two functions f and g are the same
if they have the same range of arguments and, for every element a
that belongs to this range, f(a) is the same as g(a). When this is
done we shall say that we are dealing with functions in extension.

It is possible, however, to allow two functions to be different on the
ground that the rule of correspondence is different in meaning in
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the two cases although always yielding the same result when applied
to any particular argument. When this is done we shall say that
we are dealing with functions in intension. The notion of difference
in meaning between two rules of correspondence is a vague one,
but, in terms of some system of notation, it can be made exact in
various ways. We shall not attempt to decide what is the true notion
of difference in meaning but shall speak of functions in intension
in any case where a more severe criterion of identity is adopted
than for functions in extension. There is thus not one notion of
function in intension, but many notions; involving various degrees
of intensionality”.

Church [13]. p 2.
The intension-extension distinction has proved particularly useful in com-

puter science—specifically in the theory of computable functions, since the dis-
tinction between a program and the graph of a function corresponds neatly
to the difference between a function-in-intension and a function-in-extension.
Computer Science provides us with perhaps the best-motivated modern illus-
tration. A piece of code that needs to call another function can do it in either of
two ways. If the function being called is going to be called often, on a restricted
range of arguments, and is hard to compute, then the obvious thing to do is
compute the set of values in advance and store them in a look-up table in line
in the code. On the other hand if the function to be called is not going to be
called very often, and the set of arguments on which it is to be called cannot be
determined in advance, and if there is an easy algorithm available to compute
it, then the obvious strategy is to write code for that algorithm and call it when
needed. In the first case the embedded subordinate function is represented as a
function-in-extension, and in the second case as a function-in-intension.

The concept of algorithm seems to be more intensional than function-in-
extension but not as intensional as function-in-intension. Different programs
can instantiate the same algorithm, and there can be more than one algorithm
for computing a function-in-extension. Not clear what the identity criteria for
algorithms are. Indeed it has been argued that there can be no satisfactory
concept of algorithm see [10]. This is particularly unfortunate because of the
weight the concept of algorithm is made to bear in some philosophies of mind
(or some parodies of philosophy-of-mind [“strong AI”] such as are to be found
in [21]).1

1Perhaps that is why is is made to carry that weight! If your sights are set not on devising
a true philosophical theory, but merely on cobbling together a philosophical theory that will
be hard to refute then a good strategy is to have as a keystone concept one that is so vague
that any attack on the theory can be repelled by a fallacy of equivocation. The unclarity in
the key concept ensures that the target presented to aspiring refuters is a fuzzy one, so that
no refutation is ever conclusive. This is why squids have ink.
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