
Thomas Forster

November 22, 2020

2

Contents

0.1 New stuff to fit in . 3

1 Machines 7
1.1 Languages Recognised by Machines 8

1.1.1 Languages from Machines 10
1.1.2 Some exercises . 11

1.2 The Thought-experiment . 13
1.3 The Pumping Lemma . 16
1.4 Bombs . 17

1.4.1 One-step refutations using bombs 17
1.4.2 A few more corollaries . 19

2 Operations on machines and languages 21
2.1 Regular Expressions . 23

2.1.1 More about bombs . 23
2.2 Kleene’s theorem . 24

2.2.1 Some more exercises . 26
2.3 Arden’s rule and some stuff like that 27

3 Grammars 29
3.0.1 Exercises . 31

3.1 Pushdown Automata . 31
3.2 Exercises . 33

4 Nondeterministic Machines 35

5 A Coursework 39

0.1 New stuff to fit in

Fe2+ and Fe3+ rather than Fe++ and Fe+++

Ambiguous parses; decidability of language equivalence
Phonetic rules say things like: if the last two phonemes were x and then

y you cannot then have a z next; you cannot begin a word with an x; you
cannot end it with a y; everything else is OK. Not hard to show that the set of

3

4 CONTENTS

permitted strings forms a regular language. Suppose your alphabet is Σ and the
number of previous characters you have to remember in order to comply with
these rules is n. Then you can form an NFA whose set of states is Σn. This
strategy will even accommodate rules like those for vowel harmony: you make
copies of each string: one for a front-vowel environment, one for a back-vowel
environment . . .

Must cover Arden’s rule
What is the unit for concatenation? (The language consisting of the empty

string.)
A program for Kleene’s theorem would be an acceptable piece of coursework.

Introduction

Mathematical background

I assume that the reader knows what a natural number is.
There is a genuine hard-core proof by induction (Kleene’s theorem) but it is

not examinable.
There are some ideas from Logic that readers will find helpful: it will help

them if they know what conjunctive and disjunctive normal form are tho’ it’s
not necessary; Universal Generalisation and ∀-introduction would help too, but
chiefly for Kleene’s theorem which is not examinable. Congruence relations are
mentioned on page 15. Disjoint unions appear too.

We will be using the asterisk symbol: *, in more than one way. We will do
the same with the two vertical bars ||. When a symbol is used in two related
ways, we say it is overloaded.

Useful URLs and other materials

There are many of course. Here are three that have been recommended to me.

• I’ve tutored courses using the material on

http://www.cl.cam.ac.uk/Teaching/2002/RLFA/reglfa.ps.gz

This is the course material used at the Computer Laboratory in Cambridge
for their 12-lecture course. It looks daunting and mathematical, but it’s
actually very well designed and thought through, so as long as you read
it carefully you will be OK. However, it does make use of ε transitions
(which i hate! and do not make much use of here)

• My colleague Richard Crouch has some useful teaching material on his
home page. Look under http://www.parc.com/crouch. Under “Teach-
ing Material” you will find pdf files for “Formal Language Theory”.

• JFLAP is a complete package for doing almost anything relating to fsa,
cfg, tm, pda, L-system etc etc. Go to http://www.jflap.org/

0.1. NEW STUFF TO FIT IN 5

• These next two items are very good, but they contain a lot more than you
need for this course.

1. Arto Salomaa: Computation and Automata. Encyclopædia of math-
ematics and its applications. CUP 1985

2. John E Hopcroft and Jeffrey D Ullman. Introduction to Automata
Theory, Languages and Computation. Addison-Wesley

6 CONTENTS

Chapter 1

Machines

This is a course on Languages, Automata and Computation. We have to start
somewhere, and ‘a’ is before ‘c’ or ‘l’ so let’s start with automata!

‘Automata’ (singular: automaton) is a Greek word for ‘machines’. The
automata in this course are all discrete rather than continuous machines. Or
perhaps one should say digital-rather-than-analogue. If you are not happy about
this difference go away and ask your supervisor before you read any further. If
you are happy about this difference just check that you and I have the same
take on it: a car is an analogue machine, and a computer is a digital machine.

There are two ways into machines, and one can profitably run both—one
does not have to choose one.

• One can draw a couple of FSAs and talk through what they do.

• One can start with a well-motivated story from life and say how this might
be a machine. Try for example:

http://www.philosophy.uncc.edu/logic/projectTALLC/tallc2/applets/puzzles/wj/wj_jar.html

or try googling ‘water jugs’
snakes and ladders

Finite state machines can be quite useful in describing games, like chess, or
Go, or draughts. This is because many games (for example, those I have just
mentioned) have machines naturally associated with them: the board positions
can be thought of as states of a machine. It’s not always clear what the input
alphabet is!

The point of departure is this: machines are things with finite descriptions
that have states, and they move from one state to another on receiving an input,
which is a character from an input alphabet.

To be formal about it: A machine M is a set S of states, together with a
family of transition operations, one for each w ∈ Σ, the input alphabet. These
transition operations are usually written as one function of two arguments rather
than lots of unary operations. Thus δ(s, c) is the state that machine is in after
it received character c when it was in state s:

7

8 CHAPTER 1. MACHINES

δ : S × Σ→ S

There must of course be a designated start state s0 ∈ S, and there is a set
A of accepting states A ⊆ S, whose significance we will explain later. We will
also only be interested in machines with only finitely many states. There are
technicalities to do with infinity, but we don’t need to worry about them just
yet. All we mean is that for our machine M the number |S| (the size of the set
of states) must be a natural number: |S| = 1 or |S| = 2 or

1.1 Languages Recognised by Machines

Languages, parsing, compilers etc are the chief motivation for this course. You
might think that a language is something like English, or Spanish, or perhaps
(since you might be a computer Science student) PASCAL or JAVA or some-
thing like that: a naturally occurring set of strings-of-letters with some natural
definition and a sensible reason for being there—such as meaning something!
Who could blame you? It’s a very reasonable thing to expect. Unfortunately for
us the word ‘language’ has been hijacked by the formal-language people to mean
something much more general than that. What they mean is the following.

We start with an alphabet Σ (and for some reason they always are called
Σ, don’t ask me why) which is a finite set of characters. We are interested in
strings of characters from the alphabet in question. A string of characters is
not the same as a set of characters. Sets do not have order—the set {a, b} is the
same set as the set {b, a} but strings do: the string ab is not the same as the
string ba. Sets do not have multiplicity: the set {a, a, b} is the same set as the set
{a, b} (which is why nobody writes things like ‘{a, a, b}’) but strings definitely
do have multiplicity: the string aab is not the same string as the string ab. Also,
slightly confusingly, although we have this ‘{’ and ‘}’ notation for sets, there
is no corresponding delimiter for strings. Notation was not designed rationally,
but just evolved haphazardly.

We write ‘Σ∗’ for the set of all strings formed from characters in Σ; a lan-
guage (“over Σ”) is just a subset of Σ∗: any subset at all. A subset of Σ∗

doesn’t have to have a sensible definition in order to be called a language by
the formal-language people. While we are about it, notice also that people use
the word ‘word’ almost interchangeably with ‘string’.

(Aside on notation: the use of the asterisk in this way to mean something
like “finite repetitions of” is widespread. If you have done a course in discrete
maths you might connect this with the notation ‘R∗’ for the transitive closure
of R. We will also see the notation ‘δ∗’ for the function that takes a state s,We haven’t defined δ yet!
and a string w and returns the state that the machine reaches if we start it in
s and then perform successively all the transitions mandated by the characters
in w. Thus, for example, for characters a, b and c, δ∗(s, ab) = δ(δ(s, a), b) and
δ∗(s, abc) = δ(δ(δ(s, a), b), c) and so on. In fact δ∗ : S × Σ∗ → S. It’s easier
than it looks!)

1.1. LANGUAGES RECOGNISED BY MACHINES 9

A word of warning. Many people confuse ⊆ and ∈, and there is a parallel
confusion that occurs here. (This is not the same as the confusion between sets
and strings: the confusion I am talking about here is the common confusion
between sets and their members!) A language is not a string: it is a set of
strings. This may be because they are thinking that strings are sets of characters
and that accordingly a language—on this view—is a set of sets. If in addition
you think that everything there is to be said about sets can be drawn in Venn
diagrams, this will confuse you. Venn diagrams give you pictures of sets of
points, but not sets of sets. A Venn diagram picture displaying three levels of
sets is impossible.

We will write ‘|w|’ for the length of the string w. This may remind you of
the notation ‘|A|’ for the number of elements of A when A is a set.

Although a language is any old subset of Σ∗, on the whole we are interested
only in languages that are infinite. And here I find that students need to be
tipped off about the need to be careful. Print out this warning and pin it to the
wall:

The languages we are interested in are usually infinite, but
the strings in them are always finite!

Let’s have some examples. Let Σ be the alphabet {a, b}.
The language {aa, ab, ba, bb} is the language of two-letter words over Σ.

{an : n ∈ IN} is the set of all strings consisting entirely of a’s which is the
(yes, it’s infinite) language {ε, a, aa, aaa, . . .}.
{anbn : n ∈ IN} is the set of all strings that consist of a’s followed by the

same number of b’s.

Question: What might the symbol ‘ε’ mean above (in “{ε, a, aa, aaa, . . .}”).?
Click here to submit

Answer. It must mean the empty string. What else can it be!? Notice that
since the set {ε, a, aa, aaa, . . .} was the set of strings of as, then the empty is
a string of as. It is also a string of bs. . .

Mathematics is full of informal conventions that people respect because they
find them helpful. Some of them are applicable here, and we will respect them.

1. We tend to use letters from near the beginning of the alphabet, a, b, . . . for
characters in alphabets;

2. We tend to use lower-case letters from near the end of the alphabet—like
‘u’, ‘v’ and ‘w’—for variables to range over strings;

3. ‘q’ is often a variable used to vary over states;

4. We tend to use upper-case letters from the middle of the alphabet—like
‘K’, ‘L’—for variables to range over languages.

10 CHAPTER 1. MACHINES

Concatenation

If w and u are strings then wu is w with u stuck on the end, and uw is u with
w stuck on the end. Naturally |uw| = |wu| = |w| + |u|. ε is just the empty
string (which we met on page 9) so εw—the empty string with w concatenated
on the end—is just w. So ww, www and wwwww are respectively the result of
stringing two, three and five copies of w together. Instead of writing ‘wwwww’
we write ‘w5’ and we even use this notation for variable exponents, so that wn

is n copies of w strung together.

1.1.1 Languages from Machines

Some languages have sensible definitions in terms of machines. There is an easy
and natural way of associating languages with machines. It goes like this.

For each machine we single out one state as the designated “start” state.
Then we decorate some of the states of our machines with labels saying

“accepting”. My (highly personal and nonstandard!) notation for this is a
smiley smacked on top of the circle corresponding to the state in question. The
more usual notation is much less evocative: states are represented as circles,
and accepting states are represented by a pair of concentric circles.

Two Asides on Notation

• Some people write pictures of machines from which arrows might be miss-
ing, in that there could be a state s and a character c such that there is
no arrow from s labelled c. With some people this means that you stay
in s, and with some it means that you go from s to a terminally unhappy
state—which I notate with a scowlie. My policy is to put in all arrows.
This is a minority taste, but I think it makes things clearer. It’s im-
portant to remember that the alternatives of putting in all arrows versus
omitting arrows to terminally unhappy states afford us not two-different-
concepts-of-machine, but two different-notations-for-the-same-concept. I
must emphasise that my practice of putting in all arrows is not the usual
practice in the literature (it should be but it isn’t) and readers should get
used to seeing pictures with missing arrows.

• For some reason the expression ‘final state’ is sometimes used for ‘accept-
ing state’. I don’t like this notation, since it suggests that once you get
the machine into that state it won’t go any further or has to be reset or
something, and this is not true. But you will see this nomenclature in the
literature.

The use of the word “accepting” is a give-away for the use we will put this
labelling to. We say that a machine accepts a string if, when the machine is
powered up in the designated start state, and is then fed the characters from
s in order, then when it has read the last character of s it is in an accepting
state.

1.1. LANGUAGES RECOGNISED BY MACHINES 11

This gives us a natural way of making machines correspond to languages.
When one is shown a machine M one’s thoughts naturally turn to the set of
strings that M can accept—which is of course a language. We say that this set
is the language recognised by M, and we write it L(M).

Pin this to the wall too:

The set of strings accepted by a machine M is the language
recognised by M

People often confuse a machine-recognising-a-language with a machine-accepting-
a-string. It is sort-of OK to end up confusing the two words ‘recognise’ and
‘accept’ once you really know what’s going on: lots of people do. However if
you start off confusing them you will become hopelessly lost.

Two points to notice here. It’s obvious that the language recognised by a
machine is uniquely determined. However, if you start from the other direction,
with a language and ask what machine determines it then it’s not clear that
there will be a unique machine that recognises it. There may be lots or there
may be none at all. The first possibility isn’t one that will detain us long,
but the second possibility will, for the difference between languages that have
machines that accept them and languages that don’t is a very important one.
We even have a special word for them.

Definition:

If there is a finite state machine which recognises L then L is reg-
ular.

Easy exercise. For any alphabet Σ whatever, the language Σ∗ is regular.
Exhibit a machine that recognises Σ∗. This is so easy you will probably suspect
a trick.

click here to submit

Answer: The machine with one state, and that an accepting state.

I’m not sure why Kleene (for it was he) chose the word ‘regular’ for languages
recognised by finite state machines. It doesn’t seem well motivated.

1.1.2 Some exercises

1. (a) Draw a machine that recognises the language {ε}. (This is easy but
you might have to think hard about the notation!)

(b) Draw a machine that recognises ∅, the empty language.

click here to submit

12 CHAPTER 1. MACHINES

Answer:

(a) The machine has two states. The start state is accepting, and the
other state is not. The transition function takes only one value, namely
the second—nonaccepting—state. Nonaccepting states like this—from
which there is no escape—I tend to write with a scowlie.

(b) The machine has one state, and that is a nonaccepting state (a scowlie).

2. Explain what languages the following notations represent

(a) {a2n : n ∈ IN};
(b) {(ab)n : n ∈ IN};
(c) {anbm : n < m ∈ IN}

You might like to design machines to recognise the first two.

click here to submit

Answer:

(a) is the set of strings of even length consisting entirely of as. The corre-
sponding machine has three states: the first means “I have seen an even
number of as” (this state is the start state and also the unique accepting
state); the second means “I have seen an odd number of states” and the
third is an error state (a scowlie) to which you go if you receive any
character other than an a;

(b) is the set of strings consisting of any number of copies of ab concatenated
together. The corresponding machine has three states. The start state
(which is also the unique accepting state). . .

(c) contains those strings consisting of as followed by a greater number of
bs.

3. For those of you who remember what CNF and DNF are. (If you don’t
yet know what CNF and DNF are, either find out or skip the question)

(a) Propositional letters are p, p′, p′′, p′′′ This is a regular language.

Exercise: Write a machine that recognises it.

(Think: what is the alphabet?)

(b) A burglar alarm has a keypad with the digits 0,1,2,3,4,5,6,7,8 and 9
on it. It is de-activated by any sequence of numbers that ends with
the four characters 1,9,8, and 3, in that order. Once deactivated it
remains de-activated.

Represent the burglar alarm as a finite state machine and supply a
state diagram of it. Supply also a regular expression and a context-
free grammar that capture the set of strings that deactivate the bur-
glar alarm.

1.2. THE THOUGHT-EXPERIMENT 13

(c) A literal is either a propositional letter, or a propositional letter pre-
ceded by a ‘¬’.

The set of literals forms a regular language.

Exercise: Write a machine that recognises it.

(Think: what is the alphabet?)

(d) A basic disjunction is a string like p ∨ ¬q ∨ r, namely a string of
literals separated by ‘∨’. (For the sake of simplicity we overlook the
fact that no literal may occur twice!)

The set of basic disjunctions forms a regular language.

Exercise: Write a machine that recognises it.

(Think: what is the alphabet?)

(e) A formula in CNF is a string of basic disjunctions separated by ∧, in
the way that a basic disjunction is a set of literals separated by ‘∨’.1

The set of formulæ in CNF forms a regular language.

Exercise: Write a machine that recognises it.

(Think: what is the alphabet?)

1.2 The Thought-experiment

We live in a finite world, and all our machines are finite, so regular languages
are very important to us, since they are the languages that are recognised by
finite state machines. It’s important to be able to spot (I nearly wrote ‘recog-
nise’ there!) when a language is regular and when it isn’t. Here is a thought-
experiment that can help.

I am in a darkened room, whose sole feature of interest (since it has neither
drinks cabinet nor coffee-making facilities) is a wee hatch through which some-
body every now and then throws at me a character from the alphabet Σ. My
only task is to say “yes” if the string of characters that I have had thrown at
me so far is a member of L and “no” if it isn’t (and these answers have to be
correct!)

After a while the lack of coffee and a drinks cabinet becomes a bit much for
me so I request a drinks break. At this point I need an understudy, and it is
going to be you. Your task is to take over where I left off: that is, to continue
to answer correctly “yes” or “no” depending on whether or not the string of
characters that we (first I and then you) have been monitoring all morning is a
member of L.

What information do you want me to hand on to you when
I go off for my drinks break? Can we devise in advance a
form that I fill in and hand on to you when I go off duty?
That is to say, what are the parameters whose values I need

1You might think that we need to wrap up each basic disjunction in a pair of matching
brackets. In general this is true, but here we can get away without doing it.

14 CHAPTER 1. MACHINES

to track? How many values can each parameter take? How
much space do I require in order to store those values?

Let us try some examples

1. Let L be the set of strings over the alphabet {a, b} which have the same
number of as as bs. What do you want me to tell you?

Click here to submit

Answer:

Clearly you don’t need to know the number of as and the number
of bs I’ve received so far but you do need to know the difference
between these two quantities. Although this is only a single pa-
rameter there is no finite bound on its values (even though the
value is always finite!) and it can take infinitely many values. so
I cannot bound in advance the number of bits I need if I am to
give you this information. L is not regular.

2. Let L be the set of strings over the alphabet {a, b} which have an even
number of as and an even number of bs. What do you want me to tell
you?

click here to submit

Answer:

All you need to know is whether the number of as is even or
odd and whether the number of bs is even or odd. That’s two
parameters, each of which can take one of two values. That’s two
bits of information, and four states.

3. Let L be the set of strings over the alphabet {a, b} where the number of
as is divisible by 3 and so is number of bs. What do you want me to tell
you?

click here to submit

Answer:

It isn’t sufficient to know whether or not the number of as is
divisible by 3 (and the number of bs similarly): you need to know
the number of as and bs mod 3. But it’s still a finite amount
of information: there are two parameters we have to keep track
of, each of which can have one of three values. as far as we are
concerned in this situation, you and I, there are only nine states.

4. {anbn : n ∈ IN} This is the language of strings consisting of any number
of as followed by the same number of bs. (‘n’ is a variable!)

1.2. THE THOUGHT-EXPERIMENT 15

click here to submit

Answer: Clearly you need to count the a’s. This number can get arbitrarily
large, so you would need infinitely many states (“I have seen one a”; “I have
seen two a’s” . . .)

5. The “matching-brackets language”: the set of strings of left and right
brackets ‘(’ and ‘)’ that “match”. (You know what I mean!)

click here to submit

Answer: You have to keep track of how many left brackets you’ve opened,
and this number cannot be bounded in advance.

Each language L generates an equivalence relation on strings, and the thought-
experiment is a way of getting us to think about it. While I am running the
thought experiment I retain—each time a new character comes through the
hatch to give me a string s—only that information which I will need in order
to answer subsequent questions about whether or not later extensions of s are
members of L. For example, when L is the language that consists of strings with
an even number of as and an even number of bs, I don’t bother distinguishing
between—for example— aabb and abab. It’s true they are different strings. But
as far as I am concerned they are equivalent. Indeed, it’s even true that for any
string w of characters that I might later receive and put on the end of aabb or
abab, ababw and aabbw are equivalent—in the same way ababa and aabb are.

As you remember from Discrete Maths (and if you don’t, well!—you know
now!) to each equivalence relation there corresponds a set of equivalence classes.
The key idea behind the thought-experiment is that the machine that you are
imagining yourself to be is that machine whose states are equivalence classes
of strings under this relation of equivalence-from-the-point-of-view-of-L. Do
not worry if you do not see how to give a satisfactory mathematical-looking
definition of this relation of equivalence-from-the-point-of-view-of-L: it’s quite
hard to do it properly, even though the idea should be appealing enough. The
language L is regular if and only if the binary relation on strings of equivalence-
from-the-point-of-view-of-L has only finitely many equivalence classes.

Equivalence-from-the-point-of-view-of-L must be a congruence relation for
each of the |Σ| operations “stick w on the end” (one for each w ∈ Σ). We saw
these on page 7. This is all explained in the new Discrete Mathematics notes.

I think i owe you a health warning at this point. This thought is experiment is
veru useful, and when it tells you that a language ought to be regular (beco’s you
need to maintain only a finite information) then you can trust. However there
are examples of languages that are regular for quite deep and obscure reasons
which are not readily revealed to be regular by the thought experiment. For
example, let your alphabet be, say, Σ = {a, b, c, d}, and consider the language
consisting of those strings from Σ∗ which do not contain five evenly spaced
as, nor five evenly spaced bs, nor five evenly spaced cs, nor five evenly spaced

16 CHAPTER 1. MACHINES

ds. The thought experiment strongly suggests that this language is not regular,
because it looks as if you need to store the whole of the string-seen-so-faer. After
all, the spacing could be as wide as you please. Nevertheless the language is
actually finite and is therefore regular after all! This is very far from obvious(!)
Do not, whatever you do, google Van der Waerden’s theorem.

1.3 The Pumping Lemma

The pumping lemma starts off as a straightforward application of the pigeonhole
principle. If a machine M has n states, and accepts even one string that is of
length greater than n, then in the course of reading (and ultimately accepting)
that string it must have visited one of its states—s, say—twice. (At least twice:
quite possibly more often even than that). This means that if w is a string
accepted by M, and its length is greater than n, then there is a decomposition
of w as a concatenation of three strings w1w2w3 where w1 is the string of
characters that takes it from the start state to the state s; w2 is a string that
takes it from s on a round trip back to s; and w3 is a string that takes it from
s on to an accepting state.

This in turn tells us that M—having accepted w1w2w3—must also accept
w1(w2)nw3 for any n. M is a finite state machine and although it “knows” at
any one moment which state it is in at that moment it has no recollection of
its history, no recollection of how it got into that state nor of how often it has
been in that state before.

Thus we have proved

The Pumping Lemma

If a finite state machine M has n states, and w is a string of length
> n that is accepted by M, then there is a decomposition of w as a
concatenation of three strings w1w2w3 such that M also accepts all
strings of the form w1(w2)nw3 for any n.

It does not imply that if w is a string of length > n that is accepted by M,
and w1w2w3 is any old decomposition of w as a concatenation of three strings
then M also accepts all strings of the form w1(w2)nw3 for any n: it says merely
that there is at least one such decomposition.

You need to be very careful when attempting to state the pumping lemma
clearly, as it has so many alternations of quantifiers: There is a number s
(actually the number of states in the machine) which is so large that for all
strings w with |w| > s that are accepted by M there are substrings x, w′, and
y of w, so that w = xw′y such that for all n, x(w′)ny is also accepted by M.
That’s four blocks of quantifiers: a lot of quantifier alternations!!

The pumping lemma is very useful for proving that languages aren’t regular.
In order to determine whether a language is regular or not you need to form

a hunch and back it. Either guess that it is regular and then find a machine that
recognises it or form the hunch that it isn’t and then use the pumping lemma.

1.4. BOMBS 17

How do you form the hunch? Use the thought experiment. If the thought
experiment tells you: “a finite amount of information” you immediately know
it’s a finite-state machine, and if you think about it, it becomes clear what the
machine is. What do we do if the thought-experiment tells you that you need
infinitely many states (beco’s there appears to be no bound on the amount of
information you might need to maintain)? This is where the pumping lemma
comes into play. You use it to build bombs.

Bombs?! Read on.

1.4 Bombs

Let L be a language, and suppose that although L is not regular, there is
nevertheless someone who claims to have a machine M that recognises it: i.e.,
they claim to have a machine that accepts members of L and nothing else. This
person is the Spiv. This machine is fraudulent of course, but how do we prove
it? What we need is a bomb.

A bomb (for M) is a string that is either (i) a member of L not
accepted by M or (more usually) (ii) a string accepted by M that
isn’t in L. Either way, it is a certificate of fraudulence of the machine
M, and therefore something that explodes those fraudulent claims.

How do we find bombs? This is where the pumping lemma comes in handy.
The key to designing a bomb is feeding M a string w from L whose length is
greater than the number of states of M. M accepts w. M must have gone
through a loop in so doing. Now we ascertain what substring w′ of w sent M
through the loop, and we insert lots of extra copies of that substring next to
the one copy already there and we know that the new “pumped” string will also
be accepted by M. With any luck it won’t be in L, and so it will be a bomb.
The key idea here is that the machine has no memory of what has happened
to it beyond what is encoded by it being in one state rather than another. So
it cannot tell how often it has been though a loop. We—the bystanders—know
how often it has been sent through a loop but the machine itself has no idea.

Examples are always a help, so let us consider some actual challenges to the
bomb-maker.

1.4.1 One-step refutations using bombs

The language {anbn : n ∈ IN} is not regular

Suppose the Spiv shows us M, a finite state machine that—according to him—
recognises the language {anbn : n ≥ 0}. The thought-experiment tells us imme-
diately that this language is not regular (this was example 4 on page 14) so we
embark on the search for a bomb with high expectations of success. In the first
instance the only information we require of the Spiv is the number of states of
M, though we will be back later for some information about the state diagram.

18 CHAPTER 1. MACHINES

For the moment let k be any number such that 2k is larger than the number of
states of M. Think about the string akbk. What does M do when fed akbk? It
must go through a loop of course, because we have made k so large that it has
to. In going through the loop it is reading a substring w of akbk. What does
the substring consist of? We don’t know the exact answer to this, but we can
narrow it down to one of the three following possibilities, and in each case we
can design a bomb.

1. w consists entirely of as. Then we can take our bomb to be the string
obtained from akbk by putting n copies of w instead of just one. Using
our notation to the full, we can notate this string a(k−|w|)a(|w|·n)bk

Explain why this is correct. click here to submit

Answer: Well, w consists of |w| a’s. Remove w from akbk and put in n copies
of what you’ve taken out. Then stick on the end all the b’s you had. M will
accept this string, but this string contains more as than bs, and M shouldn’t
have accepted it.

2. w consists entirely of bs. Then our bomb will be the string obtained from
akbk by putting in several copies of w instead of just one. M will accept
this string, but this string contains more bs than as, and M shouldn’t have
accepted it. Exercise: how do we notate this bomb, by analogy with the
bomb in the previous case? click here to submit

Answer: akb(k−|w|)b(|w|·n)

3. w consists of some as followed by some bs. In this case, when we insert
n copies of w to obtain our bomb, we compel M to accept a string that
contains some as followed by some bs and then some as again (and then
some bs). But—by saying that M recognised {anbn : n ∈ IN}—the Spiv
implicitly assured us that the machine would not accept any string con-
taining as after bs. Exercise: how do we notate this bomb, by analogy
with the bomb in the previous case? click here to submit

Answer: This one is a bit tricky. Suppose w is axby then the bomb can be
a(k−x)wnb(k−y)

So we know we are going to be able to make a bomb whatever w is. However,
if we are required to actually exhibit a bomb we will have to require the Spiv
to tell us what w is.

The language {akbak : k ≥ 0} is not regular

Suppose the Spiv turns up with M, a finite state machine that is alleged to
recognise the language {akbak : k ≥ 0}. Notice that every string in this language
is a palindrome (a string that is the same read backwards as read forwards). We

1.4. BOMBS 19

will show that M will accept some strings that aren’t palindromes, and therefore
doesn’t recognise {akbak : k ≥ 0}.

As before, we ask the Spiv for the number of states the machine has, and
get the answer m, say. Let n be any number bigger than m and consider what
happens when we give M the string anban. This will send M through a loop.
That is to say, this string anban has a substring within it which corresponds to
the machine’s passage through the loop. Call this string w. Now, since we have
force-fed the machine n a’s, and it has fewer than n states, it follows that w
consists entirely of a’s. Now we take our string anban and modify it by replacing
the substring w by lots of copies of itself. Any number of copies will do, as long
as it’s more than one. This modified string (namely a(k+|w|)bak) is our bomb.
Thus M accepts our bomb, thereby demonstrating—as desired—that it doesn’t
recognise {akbak : k ≥ 0}.

1.4.2 A few more corollaries

1. M, if it accepts anything at all, will accept a string of length less than
|M|.

2. If M accepts even one string that has more characters than M has states
will accept arbitrarily long strings.

The Pumping Lemma is a wonderful illustration of the power of The Pi-
geonhole Principle. If you have n+ 1 pigeons and only n pigeonholes to put
them in the at least one pigeonhole will have more than one pigeon in it. The
pigeonhole principle sounds too obvious to be worth noting, but the pumping
lemma shows that it is very fertile.

20 CHAPTER 1. MACHINES

Chapter 2

Operations on machines
and languages

Languages are sets, and there are operations one can perform on them simply in
virtue of their being sets. If K and L are languages, so obviously are K∪L, K∩L
and K \ L. There is one further operation that we need which is defined only
because languages are sets of strings and there are operations we can perform
on strings, specifically concatenation. This concatenation of strings gives us a
notion of concatenation of languages. KL = {wu : w ∈ K ∧ u ∈ L}, and the
reader can probably guess what K∗ is going to be. It’s the union of K, KK,
KKK . . .

EXERCISE 1 If K = {aa, ab, bc} and L = {bb, ac, ab} what are (i) KL, (ii)
LK, (iii) KK, (iv) LL? click here to submit

Answer:
KL = {aabb, aaac, aaab, abbb, abac, abab, bcbb, bcac, bcab};
LK = {bbaa, bbab, bbbc, acaa, acab, acbc, abaa, abab, abbc};
KK = {aaaa, aaab, aabc, abaa, abab, abbc, bcaa, bcab, bcbc};
LL = {bbbb, bbac, bbab, acbb, acac, acab, abbb, abac, abab};

EXERCISE 2 Can you express |KL| in terms of |K| and |L|?

click here to submit

Answer: You want to say |K| · |L|, don’t you? But if K and L are both
{a, aa} then KL = {aa, aaa, aaaa} with three elements not four, because aaa
is generated in two ways not one. All you can say is that |KL| ≤ |K| · |L|
Contrast this with |wu| = |w| + |u| on page 10 (overloading of vertical bars
to mean both size of a set and length of a string).

The following fact is fundamental.

21

22 CHAPTER 2. OPERATIONS ON MACHINES AND LANGUAGES

If K and L are regular languages so are K ∩L, K \L, KL and K∗.

So every language you can obtain from regular languages by means of any
of the operations we have just seen is likewise regular.

Let’s talk through this result.

K ∩ L

The thought-experiment shows very clearly that the intersection of two regular
languages is regular : if I have a machine M1 that recognises L1 and a machine
M2 that recognises L2 I obviously run them in parallel, giving each new incoming
character to both machines and accept a string if they both accept it. Using the
imagery of the thought-experiment, the clipboard of information that I hand on
to you when I go for my coffee break has become a pair of clipboards, one for
M1 and one for M2.

But although this makes it clear that the intersection of two regular lan-
guages is regular, it doesn’t make clear what the machine is that recognises the
intersection. We want to cook up a machine M3 such that we can see running-
M1-and-M2-in-parallel as merely running M3. M3 is a sort of composite of M1

and M2. What are the states of this new composite machine?

The way to see this is to recall from page 14 the idea that a state of a
machine is a state-of-knowledge about the string-seen-so-far. What state-of-
knowledge is encoded by a state of the composite machine? Obviously a state
of the composite machine must encode your knowledge of the states of the two
machines that have been composed to make the new (composite) machine. So
states of the composite machine are ordered pairs of states of M1 and M2.

What is the state transition function for the new machine? Suppose M1

has a transition function δ1 and M2 has a transition function δ2, then the new
machine has the transition function that takes the new state 〈s1, s2〉 and a
character c and returns the new state 〈δ1(s1, c), δ2(s2, c)〉.

K ∩ L and K \ L
The proofs that a union or difference of two regular languages is regular is
precisely analogous.

People sometimes talk of the complement of a language L. L is a language
over an alphabet Σ, and its complement, relative to Σ, is Σ∗ \L. It’s easy to see
that the complement of a regular language L is regular: if we have a machine
M that recognises L, then we can obtain from it a machine that recognises the
complement of L just by turning all accepting states into non-accepting states
and vice versa.

(A common mistake is to assume that every subset of a regular language
is regular. I think there must be a temptation to assume that a subset of a
language recognised by M will be recognised by a version of M obtained by
throwing away some accepting states.)

2.1. REGULAR EXPRESSIONS 23

KL

It’s not obvious that the concatenation of two regular languages is regular, but
it’s plausible. We will explain this later. For the moment we will take it as read
and press ahead. This leads us to

2.1 Regular Expressions

A regular expression is a formula of a special kind. Regular expressions provide
a notation for regular languages. We can declare them in BNF (Backus-Naur
form).

We define the class of regular expressions over an alphabet Σ recursively as
follows.

1. Any element of Σ standing by itself is a regular expression;

2. If A is a regular expressions, so is A∗;

3. If A and B are regular expressions, so is AB;

4. If A and B are regular expressions, so is A|B.

For example, for any character a, a∗ is a regular expression.
The idea then is that regular expressions built up in this way from characters

in an alphabet Σ will somehow point to regular languages ⊆ Σ∗. Now we are
going to recall the L() notation which we used on page 11, where L(M) is the
language recognised by M, and overload it to notate a way of getting languages
from regular expressions. We do this by recursion using the clauses above.

1. If a is a character from Σ (and thus by clause 1, a regular expression) then
L(a) = {a}.

2. L(A|B) = L(A) ∪ L(B).

3. L(AB) = L(A)L(B). This looks a bit cryptic, but actually makes perfect
sense. L(A) and L(B) are languages. If K1 and K2 are languages, you
know what K1K2 is from page 21, so you know what L(A)L(B) is!

L(A∗) is the set L(A)∪L(AA)∪L(AAA) . . . =
⋃

n∈INAn. An is naturally
AAAA . . . A (n times).

2.1.1 More about bombs

2.1.1.1 Palindromes do not form a regular language

You may recall that a palindrome is a string that is the same read backwards or
forwards. If you ignore the spaces and the punctuation then the strings ‘Madam,
I’m Adam’ and ‘A man, a plan, a canal—Panama!” are palindromes.

(Even better: A man, a plan, a canoe, pasta, heros, rajahs, a coloratura,
maps, snipe, percale, macaroni, a gag, a banana bag, a tan, a tag, a banana bag

24 CHAPTER 2. OPERATIONS ON MACHINES AND LANGUAGES

again (or a camel), a crepe, pins, Spam, a rut, a Rolo, cash, a jar, sore hats, a
peon, a canal—Panama!!)

The thought-experiment swiftly persuades us that the set of palindromes
over an alphabet Σ is not regular (unless Σ contains only one character of
course!). After all—as you will have found by looking first at “Madam, I’m
Adam” and then the two longer examples—to check whether or not a string is
a palindrome one finds oneself making several passes through it, and having to
compare things that are arbitrarily far apart.

Let L be the language of palindromes over {a, b}. It isn’t regular, but there is
no obvious bomb. However, if L were regular then so too would be the language
L ∩ L(a∗ba∗). (We established on page 22 that the intersection of two regular
languages is regular.) This new language is just the language {akbak : n ∈ IN}
that we saw on page 18.

2.1.1.2 The language {ww : w ∈ Σ∗} is not regular

I don’t see how to use a bomb to show that {ww : w ∈ Σ∗} is not regular,
though it’s obvious from the thought-experiment. However, we do know that
the language L(a∗b∗a∗b∗) is regular so if our candidate were regular so too
would be the language {ww : w ∈ Σ∗} ∩ L(a∗b∗a∗b∗). Now this language is
{anbmanbm : m,n ∈ IN} and it isn’t hard to find bombs to explode machines
purporting to recognise this language. You might like to complete the proof by
finding such a bomb.

click here to submit

Answer:
A machine with k states that purports to recognise this language can be
exploded by the bomb akbkakbk.

2.2 Kleene’s theorem

Kleene’s theorem states that a language is regular if it can be notated by a
regular expression. One direction of this is fairly easy: showing that if there is
a regular expression for a language L then there is a machine that recognises L.
This breaks down into several steps, one for each constructor: slash, concate-
nation and Kleene star. We’ve seen how to do slash—after all L(K1|K2) is just
L(K1) ∪ L(K2)—but to do the other two involves nondeterministic machines
and we don’t encounter those until later.

The hard part is the other direction: showing how to find a regular expression
for the language recognised by a given machine.

What we prove is something apparently much stronger:
For every machine M, for any two states q1 and q2 of M, and for any set

Q of states, there is a regular expression φ(q1, q2, Q) which notates the set of
strings that take us from state q1 to state q2 while never leaving the set Q.

Of course all we are after is the regular expression formed by putting slashes
between all the expression φ(q1, q2, Q) where q1 is the initial state, q2 is an

2.2. KLEENE’S THEOREM 25

accepting state, and Q is the set of all states. But it turns out that the only
way to prove this special case is to prove the much more general assertion.

We prove this general assertion by induction. The only way to have a hope of
understanding this proof is to be quite clear about what it is we are proving by
induction. You are probably accustomed to having ‘n’ as the induction variable
in your proofs by induction so let’s do that here.

“For all machines M, and for all subsets Q of the set of M’s states
with |Q| = n, and for any two states q1 and q2 of M, there is a
regular expression φ(q1, q2, Q) which notates the set of strings that
take us from state q1 to state q2 while never leaving the set Q”

We fix M once for all (so that we are doing a ‘∀-introduction rule, or “uni-
versal generalisation” on the variable ‘M’) and we prove by induction on ‘n’
that this is true for all n.

At the risk of tempting fate, I am inclined to say at this point that if you
are happy with what has gone so far in this section (and that is quite a big if!)
then you have done all the hard work. The proof by induction is not very hard.
The hard part lay in seeing that you had to prove the more general assertion
first and then derive Kleene’s theorem as a consequence.

Proofs by induction all have two parts. (i) A base case, and (ii) induction
step. I submit, ladies and gentlemen, that the base case—with n = 1—is
obvious. Whatever M, s and q are, you can either get from q1 to q2 in one
hop by means of—character c, say (in which case the regular expression is c)—
or you can’t, in which case the regular expression is ε.

Now let’s think about the induction step. Suppose our assertion true for n.
We want to prove it true for n+ 1.

We are given a machine M, and two states q1 and q2 of M. We want to show
that for any set Q of states of M, with |Q| = n+ 1, there is a regular expression
that captures the strings that take the machine from q1 to q2 without leaving
Q.

What are we allowed to assume? The induction hypothesis tells us that for
any two states s′ and t′ and any set Q′ of states with |Q′| = n, there is a regular
expression that captures the strings that take the machine from q′1 to q′2 without
leaving Q′. (I have written ‘q′1’ and ‘q′2’ and Q′ because I don’t want to reuse
the same variables!)

For any state r in Q, we can reason as follows: “Every string that takes M
from q1 to q2 without leaving Q either goes through r or it doesn’t.

The strings that take M from q1 to q2 without either going through r or
leaving Q are captured by a regular expression because |Q \ {r}| = n. Let w1

be this regular expression.
The strings that take M from q1 to q2 via r are slightly more complicated.

By induction hypothesis we have a regular expression for the set of strings that
take M from q1 to r without going through q2 (while remaining in Q)—because
|Q \ {q2}| = n—so let’s call that regular expression w2. Similarly by induction
hypothesis we have a regular expression for the set of strings that take M from r

26 CHAPTER 2. OPERATIONS ON MACHINES AND LANGUAGES

to q2 without going through q1 (while remaining in Q)—because |Q\{q1}| = n—
so let’s call that regular expression w3. Finally by induction hypothesis we have
a regular expression for the set of strings that take M from r back to r without
going through q1 or q2 (while remaining in Q)—because |Q\{q1, q2}| = n−1—so
let’s call that regular expression w4.

Now a string that takes M from q1 to q2 via r will consist of a segment that
takes M from q1 to r (captured by w2) followed by a bit that takes it from r
back to r any number of times (captured by w∗4) followed by a bit that takes M
from r to q2 (captured by w3).

So the regular expression we want is w1|w2(w4)∗w3.
This concludes the proof
If you are a confident and fluent programmer in a language that handles

strings naturally then you should try to program the algorithm on which this
proof relies. It will give you good exercise in programming and will help you
understand the algorithm.

2.2.1 Some more exercises

1. Is every finite language regular?

2. The “reverse” of a regular language is regular: if L is regular, so is {w−1 :
w ∈ L} where w−1 is w written backwards.

3. You know that you cannot build a finite state machine that recognises
the matching bracket language. However you can build a machine that
accepts all and only those strings of matching brackets where the number
of outstanding opened left brackets never exceeds three.

Find a regular expression for the language accepted by this machine. (I
suggest that, in order not to drive yourself crazy, you write ‘0’ instead of
the left bracket and ‘1’ instead of the right bracket!!)

Click here to submit

I think the answer is:
(0(0(01)∗1)∗1)∗

How about the same for a machine than can cope with as many as five
outstanding brackets?

Click here to submit

Or six? Or seven? This becomes clear once you think about it. If N is the
regular expression for the machine that can cope with as many as n oustanding
open left brackets then the regular expression for the machine that can cope
with as many as n+ 1 oustanding open left brackets is (0(N∗)1)∗

4. Find regular expressions for the regular languages in the CNF exercise on
page 12.

2.3. ARDEN’S RULE AND SOME STUFF LIKE THAT 27

2.3 Arden’s rule and some stuff like that

B I G H O L E H E R E

28 CHAPTER 2. OPERATIONS ON MACHINES AND LANGUAGES

Chapter 3

Grammars

So far we have encountered two ways of thinking about regular languages:
(i) through finite state machines; (ii) through regular expressions. These ap-
proaches have their roots in the study of machines, rather than—as you had
probably been expecting—the study of natural languages. The third approach,
you will be relieved to hear, is one that has its roots in the study of natural
languages after all.

Many years ago (when I was at school) children were taught parsing. We
were told things like the following. Sentences break down into

Subject followed by Verb followed by Object.

Or perhaps they break down into

Noun Phrase followed by Verb followed by Noun Phrase.

These constituents break down in turn: noun phrases being composed of de-
terminer followed by adjective followed by noun.

This breaking-down process is important. The idea is that the way in which
we assemble a sentence from the parts into which we have broken it down
will tell us how to recover the meaning of a sentence from the meanings of its
constituents.

If we start off with an alphabet

Σ = {dog, cat, the, some, walk, swim, all, some . . . }

then rules like

sentence → Subject verb object

and

Noun phrase → determiner adjective noun

have the potential, once equipped with further rules like

29

30 CHAPTER 3. GRAMMARS

determiner→ the a some many

verb → swim

verb → walk

noun → dog

noun → cat

to generate words in a language L ⊆ Σ∗. This time ‘language’ really does
mean something like ‘language’ in an ordinary sense (and ‘word’ now means
something like sentence’). But the “words” that we generate are actually things
that in an ordinary context would be called sentences. And this time we think
of ‘dog’ not as a string but as a character from an alphabet, don’t we!

The languages that we have seen earlier in this coursework can be generated
by rules like this. For example

S → aS
S → ε

generates every string in the language L(a∗) and a set of rules like

S → aSa
S → bSb
S → ε

generates the language of palindromes over the alphabet Σ = {a, b}.
These bundles of rules are called grammars and the rules in each bundle

are called productions.
There are two sorts of characters that appear in productions. There are

nonterminals which appear on the left of productions (and sometimes on the
right). These are things like ‘noun’ and ‘verb’. Terminals are the characters
from the alphabet of the language we are trying to build, and they only ever
appear on the right-hand-side of the production. Examples here are ‘swim’,
‘walk’, ‘cat’ and ‘dog’.

Notice that there is a grammar that generates the language of palindromes
over Σ = {a, b} even though this language is not regular. Grammars that
generate regular languages have special features that mark them off. One can
ascertain what these features are by reverse-engineering the definition of regular
language from regular expressions or finite state machines, but we might as well
just give it straight off.

DEFINITION 1 A Regular Grammar is one in which all productions are of
the form

N → TN ′

or

N → T

Where N and N ′ are nonterminals and T is a string of terminals.

3.1. PUSHDOWN AUTOMATA 31

The other illustrations i have given are of grammars not having this restric-
tion. They are context-free. Reason for this nomenclature is Details missing here

3.0.1 Exercises

EXERCISE 3 Provide a context-free grammar for regular expressions over the
alphabet {a, b}

3.1 Pushdown Automata

We have characterised context-free languages in terms of grammars, but they
can also be characterised in terms of machines. There is a special kind—a
special class—of machines which we call push-down automata (or“PDA” for
short) that are related to context-free languages in the same way that finite
state machines are related to regular languages. Just as a language is regular iff
there is a finite-state machine that recognises it (accepts all the strings in it and
accepts no other strings), so a language is context-free iff there is a pushdown
automaton that recognises it.

So what is a push-down automaton? One way in to this is to first reflect
on what extra bells and whistles a finite state machine must be given if it is
to recognise a context-free language such as the matching-brackets language,
and to then engineer those bells and whistles into the machine. The thought-
experiment comes in handy here. What does the thought-experiment tell you
about the matching backets language? Run the experiment and you will find
that to crack the matching-brackets language it would be really nice to have a
stack1. Every time you see a left bracket you push it onto the stack and every
time you see a right-bracket you pop a left-bracket off the stack; whenever the
stack is empty you are in an accepting state. If you ever find yourself trying to
pop a bracket off an empty stack you know that things have gone permanently
wrong so you shunt yourself into a scowlie. What I need to hand over to you
when I go off for my coffee is the stack (or the scowlie).

Let us now try to formalise the idea of a machine-with a stack. Our way in
is to start off by thinking of a PDA as a finite state machine which we are going
to upgrade, so we have the idea of start state and accepting state as before.
The stack of course contains a string of characters. For reasons of hygiene
we will tend to assume that the alphabet of characters that go on the stack
(the “pushdown alphabet”) is disjoint from the alphabet that the context free
language is drawn from. Clearly if there is to be any point in having a stack at
all then the machine is going to have to read it, and this entails immediately that
the transition function of the machine has not two arguments (as the transition
function of a finite state machine does, namely the old state and the character
being read) but three, with the novel third argument being the character at
the top of the stack. And of course the transition function under this new

1A stack of course is one of those things with springs that plates in cafeterias sit on, so the
top plate is always the same height no matter how many plates there are in it—within reason.

32 CHAPTER 3. GRAMMARS

arrangement not only tells you what state the machine will go into, but what
to do with the stack—namely push onto it a word (possibly empty) from the
stack alphabet.

(This is a bit confusing: the transition function in the new scheme of things
takes an input which is an ordered triple of the contents-of-the-stack, the new
character that is being fed it by the user, and the current state; the value is
a pair of a state and the new contents-of-the-stack. However the transition
function doesn’t look at the whole of the contents of the stack but only the
top element. Specifically this means that the new stack can differ from the
old in only very limited ways. The new stack is always the old stack with the
top element replaced by a string (possibly empty) of characters from the stack
alphabet.)

If you are happy with this description you might now like to try designing
a PDA that accepts the matching bracket language. (Hint: it has only three
states: (i) accepting, (ii) wait-and-see, and (iii) dead!)

click here to submit

3.2. EXERCISES 33

Answer: The reason why we need a stack is to keep track of the number of
unmatched left brackets we have accumulated. We don’t need it for anything
else so the stack alphabet has only one character (which might as well be a left
bracket. I know we said the alphabets should be kept disjoint for reasons of
hygiene but...!) The PDA starts in the accepting state with an empty stack.
Transition rules are as follows:

1. If you are in the dead state, stay there whatever happens.

2. If you are in the accepting state

(a) if you read a right bracket go to the dead state;

(b) if you read a left-bracket push it onto the stack and go to the
wait-and-see state;

3. If you are in the wait-and-see state then

(a) if you read a left bracket push it on the stack and remain in the
wait-and-see state;

(b) if you read a right bracket pop the top character off the stack and
stay in the wait-and-see state unless the stack is now empty, in
which case go to the accepting state.

Notice that if you are in the wait-and-see state then the stack is not empty,
so we don’t have to define the transition function for the case when the stack
is not empty. Similarly when we are in the accepting state the stack must
be empty. These two facts are not hard to see, but are a wee bit tricky to
prove. You would have to prove by induction on the length n of possible input
strings that for all strings s of length n when the machine has read s then if
it’s in the wait-and-see state then the stack is not empty and if it is in the
accepting state then the stack is empty.
The PDA you have just written is a deterministic PDA.

There is a slight complication in that PDA’s are nondeterministic, so the
parallel is with regular languages being recognised by nondeterministic finite
automata rather than FSAs. . . But we haven’t dealt with nondeterministic ma-
chines yet. So we’d better deal with them at once!

3.2 Exercises

EXERCISE 4 Write context-free grammars for conjunctive normal form and
disjunctive normal; form. See page 12.

click here to submit

34 CHAPTER 3. GRAMMARS

Answer:
Formula → conjunct ∧ Formula
Formula → ε
conjunct → literal ∨ conjunct
conjunct → ε
literal → atomic
literal → negatomic
atomic → p, q, r . . .
negatomic → ¬ atomic
Notice how in this case the production rules have genuine natural semantic
meaning.

Chapter 4

Nondeterministic Machines

A nondeterministic machine is just like a deterministic machine except that its
transition behaviour isn’t deterministic. If you know the state a deterministic
machine M is in then you know what state it will go to when you give it character
a (or b or whatever). With a nondeterministic machine you only know the set of
states that it might go to next. Notice that a deterministic machine is simply a
nondeterministic machine where this set-of-states-that-it-might-go-to is always
a singleton.

Nondeterministic machines (hereafter NFAs—“nondeterministic finite au-
tomata”) are a conceptual nightmare. The fact that they are nondeterministic
makes for a crucial difference between them and deterministic machines. In
the deterministic case you don’t have to distinguish in your mind between its
behaviour in principle and its behaviour in practice, since its behaviour in prac-
tice is perfectly reproducible. That means that you can think of a deterministic
machine either as an abstract machine—a drawing perhaps—or as a physical
machine, according to taste. With NFAs there is a much stronger temptation
to think of them as actual physical devices whose behaviour is uncertain, rather
than as abstract objects. And the difficulty then is that NFAs are not physically
realisable in the way one would like.

If NFAs are so nasty, why do we study them? The answer is that they
tie up some loose ends and enable us to give a smooth theoretical treatment
that improves our understanding and appreciation. So let us get straight what
they are for. We started this course with a connection between machines and
languages. A machine accepts strings and recognises a language. A (physical)
nondeterministic machine can accept strings in exactly the same way that a
(physical) deterministic one does. You power it up, and feed in the characters
one-by-one and when it’s finished reading the string its either in an accepting
state or it isn’t. The subtlety is that a nondeterministic machine, on having read
a string, might be in any of several states, perhaps some of which are accepting
and perhaps some not. The only sensible definition we can give of an (abstract)
nondeterministic machine recognising a language is this:

35

36 CHAPTER 4. NONDETERMINISTIC MACHINES

The language recognised by a nondeterministic machine M
is the set of strings that one of its physical realisations might
accept.

The task of remembering and understanding this definition is made much
easier for you once you notice that the definition for recognition of languages
by deterministic machines is simply a special case of this.

Nondeterministic machines are useful to us because of the combination of
two facts.

(i) If L is a language recognised by a nondeterministic ma-
chine M then there is a deterministic machine M′ which can
be obtained in a systematic way from M that also recognises
L.

(ii) There are circumstances in which it is very easy to pro-
duce a nondeterministic machine that recognises a language
but no obvious easy way to produce a deterministic one.

Let us now prove (i) and illustrate (ii).

(i): Finding a DFA that emulates an NFA

(i) Suppose I have a nondeterministic machine M, presented to me in its start
state. I have a handful of characters {c1, c2, c3 . . .} that I feed to the machine
one by one. Initially I know the machine is in the start state. But after I’ve
given it c1 I know only that it is in one of the states that it can go to from
the start state on being given c1. And after I’ve given it c2 I know only that
it is one of those states it can reach from the start state in two hops if given
c1 followed by c2 . . . and so on. We seem to be losing information all the time.
But all is not lost. Although I do not have certain knowledge of the state M is
in, I do nevertheless have certain knowledge of the set of states that it might be
in. And this is something I can keep track of, in the following sense. I can say
“If it’s in one of the states s or s′ or s′′ and I give it character c then either it
was in s in which case it’s now in s′′′ or s′′′′′ or it was in s′ in which case it’s
now in In other words

1. if I know the set of states that it might be in now (and that it must be in
one of them) and

2. I know the character it is being given, then

3. I know the set of states that it might be in next (and it must be in one of
them).

Now comes the trick. Think of the set-of-states-that-it-might-be-in as a state
of a new machine! One way of seeing this is to think of the states of the
new deterministic machine as the states of uncertainty you might be in about
the state of the nondeterministic machine. We have seen something like this

37

before: in the discussion of the thought-experiment we were viewing states of the
machine as states of knowledge of the string-so-far; this time we are thinking of
states of the new (deterministic) machine as states-of-knowledge-of-what-state-
the-nondeterministic-machine-might-be-in. If we take seriously the

empty set of states in the
power set construction for
states then we can make
sense of the convention that
missing arrows take you to a
fail state.

(ii) An Application of NFAs

I mentioned earlier that the concatenation of two regular languages is regular.
Suppose I have a deterministic machine M1 that recognises L and a deterministic
machine M2 that recognises K. The idea is to somehow “stick M2 on the end
of M1”.

The difficulty is that if w is a string in LK, it might be in LK for more
than one reason, since it might be decomposible into a string-from-K followed
by a string-from-L in more than one way. So one can’t design a machine for
recognising LK by saying “I’ll look for a string inK and then—when I find one—
swap to looking for a string in L”. You have to start off imagining that you
are in M1; that much is true. However when you reach an accepting state you
have to choose between (i) staying in M1 and (ii) making an instantaneous hop
through a trap-door to the start-state of M2. That is where the nondeterminism
comes in. These instantaneous hops are called “ε-transitions”. You do them
between the clock ticks at which you receive new characters. I don’t like ε-
transitions and I prefer theoretical treatments that don’t use them. However,
they do appear in the literature and you may wish to read up about them.

For those who do like ε-transitions, here is a description of a nondeterministic
machine that recognises LK. It looks like the disjoint union M1 tM2 of M1

and M2. Transitions between the states of M1 are as in M1 and transitions
between the states of M2 are as in M2. In addition for each accepting state of
M1 there is a ε-transition to the start state of M2.

For those of you who—like me—do not like ε-transitions, here is a different
nondeterministic machine that recognises LK. Like the last one, it looks like
the disjoint union M1 tM2 of M1 and M2. Transitions between the states of
M1 are as in M1 and transitions between the states of M2 are as in M2. In
addition, whenever s is a state of M1 and c a character such that δ(s, c) is an
accepting state of M1, we put in an extra arrow from s to the start state of M2,
and label this new arrow with a ‘c’ too. The effect of this is that when you are
in s and you receive a c, you have to guess whether to stay in M1 (by going to
an accepting state in M1) or make the career move of deciding that the future
of the string lies with K, in which case you move to the start state of M2.

The manner in which we got rid of ε-transitions in this case is perfectly
general. You can always get rid of them by introducing a bit of nondeterminism
in the way we have just done. And you can go in the other

direction too.

38 CHAPTER 4. NONDETERMINISTIC MACHINES

Chapter 5

A Coursework

An interleaving of two words w1 and w2 is a word obtained by inserting the
characters from w1 into w2 in the order in which they appear in w1. Thus, for
example, b0a1c is an interleaving of bac and 01. So are bac01 and ba0c1 for that
matter.

Question 1

We start with a brief exercise to check that you understand what an interleaving
is. Let w1 and w2 be two words having no characters in common.

(i) How many ways are there of interleaving w1 and w2?

(ii) Supply all the words that can be obtained by interleaving abc
with 01, and arrange them lexicographically, taking the characters
to be in the order 0 < 1 < a < b < c.

Question 2

Now let L1 and L2 be regular languages. Let the interleaving of L1 and L2

be the set of words that can be obtained by interleaving words from L1 with
words from L2. (Beware: overloading of ‘interleaving”!)

Suppose L1 and L2 are recognised by deterministic finite state ma-
chines M1 and M2. Explain how to obtain from M1 and M2 a
nondeterministic machine that recognises the interleaving of L1 and
L2.

HINT One question one can always ask about a nondeterministic machine
is: how badly does it fail to be deterministic? That is to say, if we know it is in
state σ, and we give it character c, how many different states might it go to? Of
course if it is deterministic the answer is 1. For the moment one might call the

39

40 CHAPTER 5. A COURSEWORK

maximal value this can take (as σ and c vary) the degree of nondeterminism of
the machine.

So the hint is: what might the degree of nondeterminism be of the machine
you are building?

It will probably help if you start by considering a simple case where L1 and
L2 come from disjoint alphabets. What is the degree of nondeterminism in this
case?

Question 3

What can you say about the case where you are interleaving more than two
languages?

