
Some notes on DMI and DMII material

Thomas Forster

May 11, 2014

COMPUTER SCIENCE TRIPOS Part IA 2013 Paper 2 Q
5(b)

Suppose there is a surjection f : D →→ (D → D). Show that this
happens if and only if D has precisely one element.

If D has one element then D → D is the singleton of the identity function
11D and both D and D → D are singletons so there is a surjection as desired.

If D is empty then D → D is the singleton of the empty function. There
can be no surjection from the empty set to a nonempty set, so again, we get the
result we want.

Now suppose D is a set with at least two members. Let us name two of
them ‘a’ and ‘b’. Suppose further that f : D → (D → D). We will show that f
is not surjective.

The challenge is to cook up a function δ : D → D which is not in the range
of f . And we have to cook up such a function using only f , a and b. . . .

Observe that we have to use both a and b. After all, we saw above that
if f has only one member there is a surjection. We should expect a diagonal
construction to appear, so tinkering with f(x) applied to x would be a good
thing to start with. And of course we have to alter the thing on the diagonal,
so something like the following would be worth trying.

Define a function δ : D → D by

if (f(x))(x) = a then b else a

The chief effect of this definition is that

(∀d ∈ D)(δ(d) 6= (f(d))(d)) (1)

We now claim that δ is not in the range of f . For suppose δ were f(d0); we
obtain a contradiction by considering δ(do).

δ(do) = f(d0)(d0) (the underlined parts are identical by definition).

But we also have

1

δ(do) = (f(d0))(d0) by (1)

giving us the contradiction we sought.

Observe that we used only the fact that D has two distinct elements. We
had not assumed that D was finite. You can try [tho’ you shouldn’t] to prove
this result by induction on the size of D, but that only proves it for D that are
finite.

For the cognoscenti. . . we have also used excluded middle on x = a, in the
definition of δ.

A question on the last example sheet of DM I
2013

RTP

xm+n = xn · xm

That’s what it sez on the example sheet, and of course it’s true for any kind
of number—but the example sheet is on induction!

Observe that all these three variables could be variables ranging over IN. So
any of these variables could become embroiled in an induction. It looks fairly
clear that induction on ‘x’ is not going to be much use to us. Pretty obviously
we want to do a UG on ‘x’. But what do we do with the other two variables?
I can’t see an easy way to find the correct approach, and this is typical of this
kind of problem. I just wrestled with it until it came out.

We fix x and prove by induction on ‘m’ that, for each m,

(∀n)(xn+m = xn · xm)

Start with m = 0.

(∀n)(xn+0 = xn · x0)

That was easy. Now for the induction step.
For the induction assume

(∀n)(xn+m = xn · xm)

So certainly

(∀n)(x(n+1)+m = xn+1 · xm)

whence

(∀n)(x(n+1)+m = xn · x · xm)

2

Then we do lots of rearrangement using associativity and commutativity of
addition.

(∀n)(x(n+1)+m = xn · x1+m)

(∀n)(x(n+1)+m = xn · xm+1)

(∀n)(xn+(1+m) = xn · xm+1)

(∀n)(xn+(m+1) = xn · xm+1)

which is the same statement for m+ 1.

You have to chose your induction carefully in order to not get into a tangle.
Observe that these three variables are treated in three different ways! UG

on ‘z’, induction on ‘m’, and the ‘n’ is carried around and not inducted on.

Exercise 1.3 in DM II

“Suppose 99 passengers are assigned to one of two flights, one to Almeria and
one to Barcelona. Show one of the flights has at least 50 passengers assigned to
it. (Which flight is it?)”

Students find this question disconcerting, co’s it’s so bloody obvious: what
on earth is one supposed to say? The answer is that you are supposed to say
the following: suppose neither of the planes had as many as 50 passengers on
it. Then the largest number of passengers in aggregate that there could be is
98. But there are 99. So it isn’t true that neither of the planes has as many as
50 passengers on it. So at least one does.

The point of the question (easy to miss, in the midst of one’s puzzlement
about how to prove the obvious) is that the conclusion is obtained by means
of a proof by contradiction. Generally, if one is trying to prove the exis-
tence of something—a solution to an equation perhaps—then one prefers direct
proofs to proofs-by-contradiction. Typically a proof that does not use proof-
by-contradiction can be unpicked to reveal a construction of the object whose
existence one is trying to prove. In contrast we find that existence proofs that
use proof-by-contradiction cannot be unpicked in this way, and this is strikingly
illustrated by the question before you. You are trying to prove that there is a
plane with ≥ 50 passengers on it. You assume that there isn’t, obtain a contra-
diction, and conclude that there is. It’s a proof all right, but it doesn’t tell you
which plane is the answer.

The best advice is to avoid proof-by-contradiction whenever possible, for
precisely that reason. Sometimes, however—as this example illustrates—it is the
only proof available. How can i assert this so confidently? Beco’s information
about the planes is symmetric: anything you can prove about one you can prove

3

about the other, and you clearly can’t prove that they both have ≥ 50 people
on them co’s there are only 99 passengers all told. A proof that didn’t use
proof-by-contradiction would tell you which of the two planes it was that had
≥ 50 passengers on it, and there can clearly be no such proof. The proof that
we have—using proof-by-contradiction—is the only show in town.

A discussion of Question B11 in Glynn Winskel’s
DMII notes

The Question

“Define the length of a Boolean proposition by structural induction as follows:

|a| = 1,
|>| = 1,
|⊥| = 1,
|A ∧B| = |A|+ |B|+ 1,
|A ∨B| = |A|+ |B|+ 1,
|¬A| = |A|+ 1 .

Define a translation which eliminates disjunction from Boolean expressions
by the following structural induction:

tr(a) = a, tr(>) = >, tr(⊥) = ⊥,
tr(A ∧B) = tr(A) ∧ tr(B),
tr(A ∨B) = ¬(¬tr(A) ∧ ¬tr(B)),
tr(¬A) = ¬tr(A).

Prove by structural induction on Boolean propositions that

|tr(A)| ≤ 3|A| − 1,

for all Boolean propositions A.”

Discussion

This is a beautiful question, co’s it touches several important points. It tests
your understanding of structural induction; it tests your ability to do the fiddly
manipulation necessary to perform the inductive step; it underlines the impor-
tance of having a sufficiently strong induction hypothesis, and finally it makes
a point about dereferencing.

So: we have a propositional language—a recursive datatype of formulæ—
which starts off with three propositional letters (“literals”) ‘a’, ‘>’ and ‘⊥’. We
then build up compound formulæ by means of the constructors ‘∧’, ‘∨’ and ‘¬’.
We have a length function defined on objects in the datatype of formulæ, written

4

with two vertical bars as in the question, which is roughly what you think it
is—so that the length of a literal is 1, and the length of a conjunction (or a
disjunction) of two formulæ is one plus the sum of their lengths, and the length
of the negation of a formula is one plus the length of the formula. Evidently the
question-designer thought that the length of a ‘(’ or a ‘)’ is zero!

One tends naturally to write the second half of the preceding paragraph with
expressions like

|A ∧B| = |A|+ |B|+ 1.

This looks fair enough, and in some sense it is, but we need to be clear about
the conventions we are using. The letter ‘A’ by itself is a single symbol, so a
pedant might insist that |A| = 1. This is wrong of course: the letter ‘A’ is not a
formula, but a variable ranging over formulæ. . . when looking for the length |A|
of A we have to see through the variable all the way to the value it takes—and
that value is a formula. All this is well and good, but it can cause some confusion
when we start thinking about expressions like: |A ∨ B|. The constructor ‘∨’ is
something we put between two formulæ to make a new formula; we don’t put
it between two names of formulæ or between two pointers to formulæ! Until we
have a convention to make our practice OK, writing things like ‘|A∨B|’ should
generate a syntax error warning. If you look back to the first page you will
find that i wrote

“. . . length of a literal is 1, and the length of a conjunction (or a
disjunction) of two formulæ is one plus the sum of their lengths. . . ”

. . . and this is syntactically correct. When we wrote ‘|A∧B|’ we should really
have written ‘| the conjunction of A and B|’.

There are two ways of dealing with this. One is to have explicit names for the
constructors, as it might be ‘conjunction of . . . ’ and ‘disjunction of . . . ’ and
‘negation of . . . ’ This makes huge demands on our supply of alphanumerics.
The other solution is to have a kind of environment command that creates an
environment within which [deep breath]

contructors applied to pointers to objects construct pointers to
the objects thereby constructed.

Inside such a context things like ‘|A ∨ B|’ have the meaning we intend here.
There is a culture within which this environment is created by the ‘p’ symbol
(LATEX: \ulcorner) and closed by the ‘q’ symbol (LATEX: \urcorner). In fact
people tend to leave things out.

Thus we should/should have posed the question as:

“Define the length of a Boolean proposition by structural induction as fol-
lows:

|a| = 1,
|>| = 1,

5

|⊥| = 1,
|pA ∧Bq| = |A|+ |B|+ 1,
|pA ∨Bq| = |A|+ |B|+ 1,
|p¬Aq| = |A|+ 1 .

Define a translation which eliminates disjunction from Boolean expressions
by the following structural induction:

tr(a) = a, tr(>) = >, tr(⊥) = ⊥,
ptr(A ∧B) = tr(A) ∧ tr(B),
tr(A ∨B) = ¬(¬tr(A) ∧ ¬tr(B)),
tr(¬A) = ¬tr(A)q.

Prove by structural induction on Boolean propositions that

|tr(A)| ≤ 3|A| − 1,

for all Boolean propositions A.”

The above use of corner quotes illustrates how there is no restriction that
says that the scope of the corner quotes has to live entirely inside a single
formula. I use corner quotes in what follows, but (although—i think–i have put
them in correctly) they can be inserted correctly in more than one way.

The Proof by Structural Induction

We aspire to prove by structural induction on the recursive datatype of formulæ
that

(∀A)(|tr(A)| ≤ 3 · |A| − 1)

The base case we verify easily. The induction step has three cases

¬ If |tr(A)| ≤ 3·|A| what is |ptr(¬A)q|? ptr(¬A) = ¬tr(A)q so p|tr(¬A)| =
|¬tr(A)|q, and |p¬tr(A)q| is |tr(A)|+ 1 which is certainly ≤ 3 · |p¬Aq|.

∧ If |tr(A)| ≤ 3 · |A| and |tr(B)| ≤ 3 · |B| what is |ptr(A ∧B)q|?
ptr(A∧B)q is ptr(A)∧tr(B)q. By induction hypothesis |tr(A)| ≤ 3·|A|−1
and |tr(B)| ≤ 3·|B|−1 so p|tr(A)∧tr(B)|q ≤ (3·|A|−1)+(3·|B|−1)+1.
The final ‘+1’ is for the ‘∧’. This rearranges to

|ptr(A) ∧ tr(B)q| ≤ 3 · (|A|+ |B|)− 1

but |A|+ |B| ≤ |pA ∧Bq| whence

p|tr(A) ∧ tr(B)| ≤ 3 · (|A ∧B|)− 1q and finally

p|tr(A ∧B)| ≤ 3 · (|A ∧B|)− 1q.

6

∨ If |tr(A)| ≤ 3 · |A| and |tr(B)| ≤ 3 · |B| what is |tr(A∨B)|? ptr(A∨B)q
is p¬(¬tr(A) ∧ ¬(tr(B)))q. What is the length of this last expression?
Clearly it’s going to be |tr(A)| + |tr(B)| + one for the outermost ‘¬’ +
one for the ‘¬’ attached to tr(A) + one for the ‘¬’ attached to tr(B) +
one for the ‘∧’ . . . giving |tr(A)| + |tr(B)| + 4. By induction hypothesis
|tr(A)| ≤ 3 · |A| − 1 and |tr(B)| ≤ 3 · |B| − 1 so we have

p|tr(A∨B)| ≤ (3 · |A| − 1) + (3 · |B| − 1) + 4q. We can rearrange this to

p|tr(A ∨B)| ≤ 3 · (|A|+ |B|)− 1− 1) + 4q and further to

p|tr(A ∨B)| ≤ 3 · (|A|+ |B|) + 2q.

Now |A|+ |B| = p|A ∨B|q− 1 so we can substitute getting

p|tr(A ∨B)| ≤ 3 · (|A ∨B| − 1)) + 2q and rearrange again to get

p|tr(A ∨B)| ≤ 3 · |A ∨B| − 1q as desired.

A final thought . . . I wouldn’t mind betting that quite a lot of thought went
into this question. We’ve proved |tr(A)| ≤ 3 · |A| − 1 so we’ve certainly also
proved the weaker claim |tr(A)| ≤ 3 · |A|. However wouldn’t stake my life on
our ability to prove the weaker claim by induction. You might like to try . . . i’m
not going to!

Exercise C.1 in DM II

Part (i). If you think of A, B, C and D as intervals in IR, then the LHS is an
intersection of two rectangles in the plane and the RHS is a rectangle in the
plane.

Exercise 3.34 in DM II

The set of rationals is countable, so if the set of irrationals is countable, so too
would be the set of reals, and it ain’t. You all got that.

Observe however that this proof does not prove that the set of irrationals is of
size 2ℵ0 (tho’, as a matter of fact, it is). . . . After all—for all you know—it might
be possible to chop the reals into two smaller pieces, both of them uncountable.
Finding a bijection between the reals and the irrationals requires a bit of work.
Fiddly. If you want to try, you might like to think about continued fractions.
But you probably have enough on your plate as it is.

Find a bijection between P(X ×Y) and P(X)→ Y

Need a picture here. (Hint!)
Left-to-right

7

Given A ⊆ P(X × Y) we want a function f : P(X)→ Y .
Evidently we want

L : λxX .{y ∈ Y : 〈x, y〉 ∈ A}.

Right-to-left

R : λf.{〈x, y〉 : y ∈ f(x)}.

Finally we want to check that these two functions are inverse to each other.
(That’s the best way to check that each is injective and surjective)

L(R(f)) = L({〈x, y〉 : y ∈ f(x)})
= λx.{y : 〈x, y〉 ∈ {〈x, y〉 : y ∈ f(x)}}
= λx.{y : y ∈ f(x)}
= λx.f(x)
= f

R(L(A)) = R(λx.{y : 〈x, y〉 ∈ A})
= {〈x, y〉 : y ∈ λz.{y : 〈x, y〉 ∈ A}(x)}
= {〈x, y〉 : 〈x, y〉 ∈ A}
= A

8

