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I should perhaps admit that in this file I have recycled some material from
Logic, Induction and sets. It doesn’t matter, and i’'m mentioning it only in case
there are people who have read that book and are waiting for an opportunity to
say that I am guilty of autoplagiarism. “Why not rewrite it?” you might ask.
Because it was perfect already. But that of course is a piece of plagiarism too
(from Schonberg, as it happens). Funny, isn’t it, that there is nothing about the
action of copying/quoting that makes it wrong; it’s just that you’re supposed
to say when you’ve done it. Perhaps the next time I rob a bank i’ll just put my
hand up to say i've done it and they’ll let me keep the money.
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Chapter 1

Introduction

Warning! Discrete Mathematics is a grabbag of tricks. It doesn’t really have a
unifying theme, being defined by what it excludes rather than what it contains:
it’s that part of first-year university mathematics that isn’t continuous, that
isn’t the stuff that used to be called “calculus” —differentiation and integration.
However, on the whole, what gets put into a course like this is not so much
a body of knowledge and skills bound together by some internal logic (even
negative logic) of its own, but rather the background mathematics that the
lecturer thinks that the well-equipped computer science students have to have
in their knapsacks. Quite what you need in your knapsack depends to a certain
extent on what epoch you are going to live and work in. Nowadays you are less
likely to need familiarity with different ways of representing numbers (binary,
HEX, octal, decimal) than you would have done thirty years ago, but you are
more likely to need to know about cryptography. Some topics which is some
sense “ought” to be in a discrete maths course tend to get hived off into other
courses; finite state machines often get treated separately and my notes on them
are still in a separate file.

So this is a course on those bits of background mathematics that don’t involve
integration and differentiation, and which I think might be useful to you: it isn’t
supposed to have a consistent theme beyond that, so don’t worry if you can’t
find one. One rather nice side-effect of this is that there is no obviously best
book either, and you can do a lot worse than follow the habit I have had for many
years of looking in the second-hand books section of charity shops and buying
anything that looks like a book on first-year university mathematics. There
are lots of such books (because lots of different communities need to do first-
year mathematics: engineers, students doing psyschology, science, economics,
computer science, medicine . ..) and in places like that they can be quite cheap.
There is of course always the danger that if you buy three of them you end up
with three different systems of notation, and it has to be admitted that this is a
pain. On the other hand, this pain is nothing more than the fact that there are
lots of different and pairwise incompatible notations, and that is something—
sadly—you are going to have to get used to!

7



8 CHAPTER 1. INTRODUCTION

In fact the single most important lesson for you to learn from this course is
confidence in manipulating the mathematical symbols you will need later. We
will banish mathsangst.

It is true that this material was assembled originally for the delectation of
first-year students at Queen Mary. However it is now used by first students at
Cambridge ...and in their second term of studies. In their first term they will
have been exposed to a certain amount of logic, and—in particular—to ML.

You should now read (or reread!) ‘Alice in Wonderland’ and ‘Through the
Looking Glass and what Alice found there’, preferably the edition [4] with Mar-
tin Gardner’s annotations, entitled ‘The Annotated Alice’. Lewis Carroll was
one of the nineteenth century writers who started the process that led later
to the mathematisation of logic that in turn led to modern mathematical logic
and computer science. In fact, while we are about it, anything else by Martin
Gardner that comes your way should be snapped up and devoured.

The chief difficulty that students have with Discrete Mathematics is the lack
of theorems, a lack of deliverables. The real lessons you will take away from this
course is a not a knapsack full of theorems, but a new way of thinking about
the materials. This lack of deliverables can be very disconcerting, and it often
has the effect that students can be quite lost and yet not realise it. There is
a difference between—on the one hand—thinking “Yes, I feel comfortable with
this stuff: it looks OK” and—on the other—genuinely understanding it in the
sense of being able to apply it to any purposes of yours that might crop up. If
my experience of teaching this stuff is anything to go by there seems to be a very
strong tendency to mistake the first for the second. The danger then is that
once you realise that you hadn’t, after all, understood the first three weeks of
material, you suddenly find yourself three weeks behind and stuff is still coming
at you at the same rate as before. The way to combat this tendency is to make
sure you know what you are letting yourself in for, and know how it differs from
things in which you have got embroiled in the past.

1.1 Some Puzzles to Get You Started

Don’t look down on puzzles:

A logical theory may be tested by its capacity for dealing with puz-
zles, and It is a wholesome plan, in thinking about logic, to stock
the mind with as many puzzles as possible, since these serve much
the same purpose as is served by experiments in physical science.

Bertrand Russell

EXERCISE 1. A boz is full of hats. All but three are red, all but three are blue,
all but three are brown, all but three are white. How many hats are there in the
box?
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EXERCISE 2. The main safe at the bank is secured with three locks, A, B and
C. Any two of the three system managers can cooperate to open it. How many
keys must each manager have?

EXERCISE 3. A storekeeper has mine bags of cement, all but one of which
weigh precisely 50kg, and the odd one out is light. He has a balance which he
can use to compare weights. How can he identify the rogue bag in only three
weighings? Can he still do it if he doesn’t know if the rogue bag is light?

EXERCISE 4. A father, a mother, a father-in-law, a mother-in-law, a husband,
a wife, a daughter-in-law, a son-in-law, a niece, a nephew, a brother, a sister,
an uncle and an aunt all went on holiday. There were only four people! How
can this be

EXERCISE 5. There were five delegates, A, B, C, D and E at a recent summit.

B and C spoke English, but changed (when D joined them) to Spanish,
this being the only language they all had in common;

The only language A, B and E had in common was French;

The only language C and E had in common was Italian;

Three delegates could speak Portugese;

The most common language was Spanish;

One delegate spoke all five languages, one spoke only four, one spoke only
three, one spoke only two and the last one spoke only one.

Which languages did each delegate speak?

EXERCISE 6. People from Bingo always lie and people from Bongo always tell
the truth.

o If you meet three people from these two places there is a single question
you can ask all three of them and deduce from the answers who comes from
where. What might it be?

o If you meet two people, one from each of the two places (but you don’t
know which is which) there is a single question you can ask either one of
them (you are allowed to ask only one of them!) and the answer will tell
you which is which. What is it?

EXERCISE 7.

Brothers and sisters have I none
This man’s father is my father’s son

To whom is the speaker referring?

1 think you have to assume that the aunt is an aunt in virtue of being an aunt of another
member of the party, that the father is a father of another member of the party, and so on.
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EXERCISE 8. You are told that every card that you are about to see has a
number on one side and a letter on the other. You are then shown four cards
lying flat, and on the uppermost faces you see

EK4r7

It is alleged that any card with a vowel on one side has an even number on the
other. Which of these cards do you have to turn over to check this allegation?

EXERCISE 9. A bag contains a certain number of black balls and a certain
number of white balls. (The exact number doesn’t matter). You repeatedly do
the following. Put your hand in the bag and remove two balls at random: if they
are both white, you put one of them back and discard the other; if one is black
and the other is white, you put the black ball back in the bag and discard the
white ball; if they are both black, you discard them both and put into the bag a
random number of white balls from an inexhaustible supply that just happens to
be handy.
What happens in the long run?

EXERCISE 10.

318
116 4 917
4 7
2|8 7 5
5 1 8
8 4 2
7 5 11 8 4
413 ) 71
6

EXERCISE 11. Hilary and Jocelyn are married. One evening they invite Alex
and Chris (also married) to dinner, and there is a certain amount of handshak-
ing, tho’ naturally nobody shakes hands with themselves or their spouse. Later,
Jocelyn asks the other three how many hands they have shaken and gets three
different answers.

How many hands has Hilary shaken? How many hands has Jocelyn shaken?

The next day Hilary and Jocelyn invite Chris and Alexr again. This time
they also invite Nicki and Kim (also married). Again Jocelyn asks everyone
how many hands they have shaken and again they all give different answers.

How many hands has Hilary shaken this time? How many has Jocelyn
shaken?

EXERCISE 12. You are shown 99 boxes, each of them containing some blue
balls and some red balls, which you allowed to count. You are then told that you
may take 50 of the boxes, and the idea is to select your boxes so that you end
up with at least half the blue balls and at least half of the red balls.

Can you do it?
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These two are slightly more open-ended.

EXERCISE 13. You are given a large number of lengths of fuse. The only
thing you know about each length of fuse is that it will burn for precisely one
minute. (They’re all very uneven: in each length some bits burn faster than
others, so you don’t know that half the length will burn in half a minute or
anything like that). The challenge is to use the burnings of these lengths of fuse
to measure time intervals. You can obviously measure one minute, two minutes,
three minutes and so on by lighting each fuse from the end of the one that’s just
about to go out. What other lengths can you measure?

EXERCISE 14. A Cretan says “Everything I say is false”. What can you
infer?

Those exercises might take you a little while, but they are entirely do-able
even before you have done any logic. Discuss them with your friends. Don’t
give up on them: persist until you crack them!

If you disposed of all those with no sweat try this one:

EXERCISE 15. You and I are going to play a game. There is an infinite line
of beads stretching out in both directions. Each bead has a bead immediately
to the left of it and another immediately to the right. A round of the game
is a move of mine followed by a move of yours. I move first, and my move is
always to point at a bead. All the beads look the same: they are not numbered
or anything like that. I may point to any bead I have not already indicated.
You then have to give the bead a label, which is one of the letters a-z. The
only restriction on your moves is that whenever you are called upon to put a
label on the neighbour of a bead that already has a label, the new label must be
the appropriate neighbour of the bead already labelled, respecting alphabetical
order: the predecessor if the new bead is to the left of the old bead, and the
successor if the new bead is to the right. For example, suppose you have labelled
a bead with ‘p’; then if I point at the bead immediately to the right of it you
have to label that bead ‘q’; were I to point to the bead immediately to the left of
it you would have to label it ‘o’. If you have labelled a bead ‘z’ then you would
be in terminal trouble were I to point at the bead immediately to the right of it;
if you have labelled a bead ‘a’ then you would be in terminal trouble if I then
point at the bead immediately to the left of it. If you have labelled some bead
‘37 and some bead to the right of it ‘q’ then the beads between the two has to
be given labels between %k’ and ‘p’. We decide in advance how many rounds we
are going to play. I win if you ever violate the condition on alphabetic ordering
of labels. You win if you don’t lose.

Clearly you are going to win the one-round version, and it’s easy for you to
win the two-round version. The game is going to last for five rounds.

How do you plan your play?

How do you feel about playing six rounds?
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It may surprise you (and it would probably surprise most people) to be
told that all these puzzles are mathematical, even tho’s they don’t involve any
numerical calculation .... Welcome to Discrete Mathematics!



Chapter 2

Read this first!

I am not going to expose you to any new Mathematics in this chapter, but that
doesn’t mean you should skip it. Read it first, to prepare you for what is to
come. I am a great believer in Naming the Devil: philosophers have argued for a
long time about the relation between thought and language but we do all agree
that many things become easier to see and recognise once you have a name for
thenﬂ In the next few sections I shall be introducing you to some terminology.
You won’t have to prove anything using it, but it will help you once you come
to proving other things, and it will help you get your bearings.

2.1 The Existential Other

Many of my students ask me how to write an exam answer. Robert Craft
asked Stravinsky whom he wrote for; Stravinsky replied “For myself and the
Hypothetical Other”. That should be the audience for which you write your
exam answers, and explanations. Who is your Hypothetical Other?

There are many approaches to this, but one that will help you in practis-
ing to write answers—or take notes—is to write something in the form of an
explanation for a suspicious person of at least normal intelligence. If you have
an annoying younger sibling who won’t take anything on trust, then write it
for them. Or it could be your supervision partner who slept in and missed the
supervision at which you learnt these cool things that you now have to explain
to them. Or you could try writing a message to your future self, for when you
come to revise the material you are taking notes on you will surely have forgot-
ten at least some of it. The key idea is to write for an audience. The point of
having an audience in mind is that—when you wonder “Shall I put this in ...?

n [10] Oliver Sacks wrote “Muscular Dystrophy ...was never seen until Duchenne de-
scribed it in the 1850’s. By 1860, after his original description, many hundreds of cases had
been recognised and described, so much so that Charcot said “How come that a disease so
common, so widespread, and so recognisable at a glance—a disease that has doubtless always
existed—how come that it is only recognised now? Why did we need M. Duchenne to open
our eyes?” ”

13
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Shall T leave that out?”—your knowledge of the audience tells you which way
to jump.

Bearing this in mind will help you write answers to these questions which
might enable your tutor to get a clear picture of what you understand and what
you don’t.

2.2 Here are some things you will need

EXERCISE 16.

1. Factorise x2 — 32.
2. What is the sum of the first n natural numbers?

3. If you toss a coin and roll a dicﬂ how many different results can you get?
How about two coins and two dice? How about four dice? Make explicit
to yourself the way you calculated these answers.

4. How many ways are there of arranging n things in a row? Can you explain
why?

5. The expression ‘(Z) "> what does it mean, and what is its value?

6. What is a function? Ezplain injective and surjective. Let A = {a,b}; B =
{1,2,3}; What are the members of A x B? Of B x A?. Identify these
members (to your annoying younger sibling). How many functions are
there from A to B? From B to A? Identify these functions (to your
annoying younger sibling)

7. What is a prime number?

8. (a) x97): is this the same as (x¥)*? Can you simplify either of these
further?
(b) What is x°% Do you remember why?
9. We will also assume you know about matriz multiplication, tho’ not much
will hang on it.

Multiply the matriz

O N =
W = N
—= w O

by the matriz

2Yes, ‘die’ is the singular of ‘dice’!
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= O N
O~
—_ W

explaining the steps.

Much if not all of this will be explained below

2.3 Things you are not going to need and which
we won’t cover

Complex numbers, truth tables ...

2.4 Things you mightn’t need

Some of the following you won’t need directly in Cambridge 1a Discrete Math-
ematics. However you will need them for other courses, and if you haven’t got
them under control it might be an early sign of trouble ahead not just in DM
but also in the other courses for which you will need them.

e Sums of Arithmetic Progressions, sums of Geometric Progressions,
e Consider the power series
1+ 2422+ 22 + 32* + 52° + 828 + 1327 . ..

where the coefficient of ‘™ is the nth Fibonacci number. Do you know
how to sum it?

e Expansion of (1 + z)™;

2.5 Philosophical Introduction: the Paedagogi-
cal Difficulties

It might seem odd to kick off a file of course materials on Discrete Mathematics
with a section that has a title like this, but there is a reason. Some proofs
just are hard, and people experience difficulty accordingly. But there are bot-
tlenecks where people experience difficulties with the underlying concepts, and
particularly with the notation.

The hard part of doing discrete maths isn’t learning the proofs of the theo-
rems. By and large the proofs are not particularly difficult at this level—though
they can appear daunting. The hard part is making a certain kind of mental
jump. Once you have made this jump, everything is easy. Let me explain.
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Mathematicians often complain that lay people think that mathematics is
about numbers. It isn’t, and they are right to complain. Not just because it’s a
mistake, but because it’s a mistake that throws people off the scent. Mathemat-
ics is a process of formalisation and abstraction that can be applied to all sorts
of things, not just numbers. It just so happens that the only bits of mathematics
that the average lay person encounters is mathematics as applied to numerosity,
which is where numbers come from. In fact we can apply mathematical methods
to all sorts of other ideas. (Geometry, for example).

2.5.1 Variables and Things

In applying mathematical methods to a topic we find that we take a number of
steps. One of them is summarised in a famous remark of the twentieth century
philosopher W.V.Quine: “To be is to be the value of a variable”. You are
probably quite happy if I say

“Let x be a number between 1 and 1000; divide it by 2 ...”
or (if you are old enough to have done geometry at school)

“Let ABC be a triangle; extend the side AB ...".
In contrast you are almost certainly not happy if I say

“Let R be a binary relation on a set X; compose it with its in-
verse. .. ",

Why is this? It is because numbers (and perhaps triangles) are mathematical
objects in your way of thinking, whereas relations aren’t. And what has this
got to do with being the value of a variable? Quine’s criterion for a species
of object to be a mathematical object (in the way that numbers—or perhaps
triangles—are) is that variables can range over mathematical objects. From
your point of view, the utility of the observations of Quine’s is that it enables
you to tell which things you are comfortable thinking of mathematically.

Computer Scientists in their slang make the distinction (from the point of
view of a programming language) between first class objects and the rest.
First class objects are the kinds of things that the variables of the language
can take as values. Typically, for a programming language, numbers such as
integers or floating-point reals will be first-class objects, but operations on those
numbers will not.

This distinction between first-class objects and the rest is echoed in ordinary
language (well, in all the ordinary languages known to me, at least) by the
difference between nouns and verbs.

Let us take a live example, one that bothers many beginners in discrete
mathematics. Relations are not mathematical objects for most people. (“Let
R be a binary relation on a set X...”!) In consequence many people are not
happy about being asked to perform operations on relations. The problem is
not that they are unacquainted with the fact that—for example—the uncle-of
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relation is the composition of the brother-of relation with the parent-of relation.
This is, after all, something you can explain easily to any foreigner who asks
you what the word ‘uncle’ means! The problem is that they don’t know that
this fact is a fact about composition of relations. This is because they don’t
think of relations as being the kind of things you perform operations on, and
that in turn is because they don’t think of relations as things at all!

You are quite happy applying operations to numbers. The conceptual leap
you have to make here is to be willing to apply operations to relations. Although
thinking of them as things (rather than as relations between things) and then
thinking of them as the substrates of operations are two steps rather than one,
it’s probably best to think of them as two parts of a single move.

But relations are only one example of entities that you are now going to have
to think of mathematically. Others are sets, functions and graphs.

This business of manufacturing new kinds of thing for us to think about and
do things to has been much discussed by philosophers ever since the days of
the Ancient Greeks. I first encountered the word for this process—“hypostasis”
when I was a philosophy student. But it’s not just philosophy students who
need to think about it—as you can see!

Null objects

Another sign that a species of object (number, set, line ...) has become a
mathematical object for you is when you are happy about degenerate or null
objects of that species. You may remember being told in school that the discov-
ery that zero was a number was a very important one. An analogous discovery
you will be making here is that the empty set is a set. (Perhaps this is the
same discovery, since numbers like 1, 2, 3, ... (though not 1.5, 5/3, = ...) are
answers to questions about how many elements there are in a set. “0” is the
answer to “How many things are there in the empty set?”.) If you think that the
empty set “isn’t there” it’s because you don’t think that sets have any existence
beyond the existence of their members. Contrast this with the relaxed feeling
you have about an empty folder or file in a directory on your computer (as
it might be Things_I_learnt_from_Twitter.xls). Files and folders on your
computer are things that—for you—are unproblematic objects of thought in a
way that makes it possible for you to think of empty ones. You are happy to
perform operations on them, after all. .. reading them, writing to them, copying
them . ... To that extent you are thinking of them as mathematical objects: the
ability to be relaxed about the empty set is one of the things you will acquire
when you start thinking of sets as mathematical objects.

We build formulee by taking conjunctions or disjunctions of collections of
formulze. What is the conjunction of the empty set of formulse? The disjunction
of the empty set of formule? Never mind about the answer to this just yet
(though we will soon); for the moment I am trying to impress you with (i) the
novel idea that the question is a sensible one and (ii) that accepting the fact
that it is a sensible question is part of thinking of sets as mathematical objects,
which in turn is part of doing Discrete Maths.

duplicates material on p. 77

Integrate this last para into
the preceding para
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(My Ph.D. thesis has the shortest title on record: “N.F.” A title is a string
of characters. So the shortest possible title is the empty string of characters.
Note that having the empty string as your title is not the same as having no
title!) TTBA “untitled”. When we get on to Languages and Automata you
will have to distinguish between the empty language (the language that has no
formulee in it) and the language whose sole formula is the empty string!! I want
you to understand this distinction.

2.5.2 Envoi

I'm inflicting on you this brief digression on Philosophy and Foundations because
every student, in mastering the skills and ideas of Computer Science, has to
go through a hugely speeded-up version of the journey that Mathematics and
Philosophy went through in dreaming up these objects in the first place.

2.6 The Type-Token distinction

The terminology ‘type-token’ is due to the remarkable nineteenth century Amer-
ican philosopher Charles Sanders Peirce. (You may have heard the tautology
((A — B) — A) — A referred to as Peirce’s Law). The two ideas of token and
type are connected by the relation “is an instance of”. Tokens are instances of

types.
It’s the distinction we reach for in situations like the following

o (i) “I wrote a book last year”
(ii) “I bought two books today”

In (ii) the two things I bought were physical objects, but the thing I
wrote in (i) was an abstract entity. What I wrote was a type. The things I
bought today with which I shall curl up tonight are tokens. This important
distinction is missable because we typically use the same word for both
the type and the token.

e A best seller is a book large numbers of whose tokens have been sold.
There is a certain amount of puzzlement in copyright law about ownership
of tokens of a work versus ownership of the type. James Hewitt owns the
copyright in Diana’s letters to him but not the letters themselves. (Or is
it the other way round? )

e I remember being very puzzled when I was first told about printing. I was
told that each piece of type could only be used once. Once for each book,
in the sense of once for each print run Not once for each copy of a book.
The copies from any one print run are all tokens of a type.

o | read somewhere that “ ...next to Mary Woollstonecroft was buried
Shelley’s heart, wrapped in one of his poems.” To be a bit more precise,
it was wrapped in a token of one of his poems.
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e You have to write an essay of 5000 words. That is 5000 word tokens. On
the other hand, there are 5000 words used in this course material that
come from latin. Those are word types.

e Grelling’s paradox concerning the words heterological and homological. : a
heterological word is one that is not true of itself. ‘long’ is heterological:
it is not a long word. ‘English’ is not heterological but homological, for it
is an English word. Notice that it is word types not word tokens that are
heterological (or homological!) It doesn’t make any sense to ask whether
or not ‘italicised’ is heterological. Only word tokens can be italicised!

e What is the difference between “unreadable” and “illegible”? A book
(type) is unreadable if it so badly written that one cannot force oneself to
read it. A book (token) is illegible if it is so defaced or damaged that one
cannot decypher the (tokens of) words on the page.

e We must not forget the difference between a program (type) and the tokens
of it that run on various machines.

e Genes try to maximise the number of tokens of themselves in circulation.
We attribute the intention to the gene type because it is not the action
of any one token that invites this mentalistic metaphor, but the action
of them all together. However it is the number of tokens that the type
appears to be trying to maximise.

The type-token distinction was independently rediscovered by the people
who brought us object-oriented programming. Their distinction between class
and object is the same as the type-token distinction, and the divergence in
notation is (presumably) caused solely by lack of communication between the
various cultures that need this idea.

2.7 Copies

Buddhas

It is told that the Buddha could perform miracles. But—Ilike Jesus—he felt they
were vulgar and ostentatious, and they displeased him.

A merchant in a city of India carves a piece of sandalwood into a bowl.
He places it at the top of some bamboo stalks which are high and very
slippery, and declares that he will give the bowl to anyone who can get it
down. Some heretical teachers try, but in vain. They attempt to bribe the
merchant to say they had succeeded. The merchant refuses, and a minor
disciple of the Buddha arrives. (His name is not mentioned except in this
connection). The disciple rises through the air, flies six times round the
bowl, then picks it up and delivers it to the merchant. When the Buddha
hears the story he expels the disciple from the order for his frivolity.
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But that didn’t stop him from performing them himself when forced into
a corner. In Siete Noches [I] (from which the above paragraph is taken) J. L.
Borges procedes to tell the following story, of a miracle of courtesy. The Buddha
has to cross a desert at noon. The Gods, from their thirty-three heavans, each
send him down a parasol. The Buddha does not want to slight any of the
Gods, so he turns himself into thirty-three Buddhas. Each God sees a Buddha
protected by a parasol he sentE|

Apparently he did this routinely whenever he was visiting a city with several
gates, at each of which people would be waiting to greet him. He would make
as many copies of himself as necessary to be able to appear at all the gates
simultaneously, and thereby not disappoint anyone.

Minis
: How many elephants can you fit in a mini?
: Four: two in the front and two in the back.

: How many giraffes can you fit in a mini?
: None: it’s full of elephants.

: How can you tell when there are elephants in the fridge?
: Footprints in the butter.

: How can you tell when there are two elephants in the fridge?
: You can hear them giggling when the light goes out.

: How can you tell when there are three elephants in the fridge?
: You have difficulty closing the fridge door.

: How can you tell when there are four elephants in the fridge?
: There’s a mini parked outside.

O PO PO PO PO PO

Sets

If Ais a set with three members and B is a set with four members, how many
ordered pairs can you make whose first component is in A and whose second
component is in B?

Weeeeell . . . you pick up a member of A and you pair it with a member of B
... that leaves two things in A so you can do it again .... The answer must be
three!

Wrong! Once you have picked up a member of A and put it into an ordered
pair—it’s still there!

One would tend not to use the word token in this connection. One would be
more likely to use a word like copy. One makes lots of copies of the members of

3As is usual with Borges, one does not know whether he has a source for this story in the
literature, or whether he made it up. And—again, as usual—it doesn’t matter.
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A. Just as the Buddha made lots of copies of himself rather than lots of tokens
of himself. I suppose you could say that the various tokens of a type are copies
of each other.

It is possible to do a lot of rigorous analysis of this distinction, and a lot
of refinements suggest themselves. However, in the culture into which you are
moving the distinction is a piece of background slang useful for keeping your
thoughts on an even keel, rather than something central you have to get abso-
lutely straight. In particular we will need it later (see page [84]) when making
sense of ideas like disjoint union.

2.8 The Use-Mention Distinction

We must distinguish words from the things they name: the word ‘butterfly’
is not a butterfly. The distinction between the word and the insect is known
as the “use-mention” distinction. The word ‘butterfly’ has nine letters and no
wings; a butterfly has two wings and no letters. The last sentence uses the
word ‘butterfly’ and the one before that mentions it. Hence the expression
‘use-mention distinction’.

Haddocks’ Eyes
As so often the standard example is from [2].
[...] The name of the song is called ‘Haddock’s eyes’.”

“Oh, that’s the name of the song is it”, said Alice, trying to feel
interested.

“No, you don’t understand,” the Knight said, looking a little vexed.
“That’s what the name is called. The name really is ‘The agéd, aged
man’.”

“Then I ought to have said, ‘That’s what the song is called’?” Alice
corrected herself.

“No you oughtn’t: that’s quite another thing! The song is called
‘Ways and means’, but that’s only what it is called, you know!”

“Well, what is the song, then?” said Alice, who was by this time
completely bewildered.

“I was coming to that,” the Knight said. “The song really is ‘A-
sitting on a Gate’ and the tune’s my own invention”.

The situation is somewhat complicated by the dual use of single quotation
marks. They are used both as a variant of ordinary double quotation marks for
speech-within-speech (to improve legibility)—as in “Then I ought to have said,
‘That’s what the song is called’ 7”—and also to make names of words or strings
of words—‘The aged, aged man’. ... Even so, it does seem clear that the White
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Knight has got it wrong. At the very least: if the name of the song really is ‘The
aged ageéd man’ (as he says) then clearly Alice was right to say that was what the
song was called. Granted, it might have more names than just that one—Ways
and means’ for example—but that was no reason for him to tell her she had
got it wrong. And again, if his last utterance is to be true, he should leave the
single quotation marks off the title, or—failing that (as Martin Gardner points
out in [4])—burst into song. These infelicities must be deliberate (Carroll does
not make elementary mistakes like that), and one wonders whether or not the
White Knight realises he is getting it wrong ...is he an old fool and nothing
more? Or is he a paid-up party to a conspiracy to make the reader’s reading
experience a nightmare? The Alice books are one long nightmare, and perhaps
not just for Alice.

Alphabet soup

People complain that they don’t want their food to be full of E-numbers. What
they mean is that they don’t want it to be full of the things denoted by the
E-numbers [

Some Good Advice

Q: Why should you never fall in love with a tennis player?

A: Because ‘love’ means ‘nothing’ to them.

Apple Crumble

“Put cream on the apple crumble”
“But there isn’t any cream!”
“Then put ‘cream’ on the shopping list!”

‘Think’
“If T were asked to put my advice to a young man in one word,
Prestwick, do you know what that word would be?”
“No” said Sir Prestwick.
“ ‘Think’, Prestwick, ‘Think’ ”.
“I don’t know, R.V. ‘Detail’ 7”
“No, Prestwick, ‘Think’.”
“Er, ‘Courage’?”
“No! ‘Think’!”
“I give up, R.V., ‘Boldness’?”

“For heavan’s sake, Prestwick, what is the matter with you? ‘Think’!”

4Mind you E-300 is Vitamin C and there’s nothing wrong with that!
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“ ‘Integrity’? ‘Loyalty’? ‘Leadership’?”
“ ‘Think’, Prestwick! ‘Think’, ‘Think’, ‘Think’ ‘Think’!”

Michael Frayn: The Tin Men. Frayn has a degree in Philosophy.

Ramsey for Breakfast

In the following example F.P. Ramseyﬂ uses the use-mention distinction to gen-
erate something very close to paradox: the child’s last utterance is an example
of what used to be called a “self-refuting” utterance: whenever this utterance
is made, it is not expressing a truth.

PARENT:  Say ‘breakfast’.

CHILD: Can’t.
PARENT: What can’t you say?
CHILD: Can’t say ‘breakfast’.

The Deaf Judge

JUDGE (to
PRISONER): Do you have anything to say before I pass sentence?

PRISONER: Nothing

JUDGE (to
COUNSEL : Did your Client say anything?

COUNSEL: ‘Nothing’ my Lord.

JUDGE: Funny ...I could have sworn I saw his lips move. ..

The N-word

One standard way of creating a [token of a] name for a word is to take a token
of it and put single quotes either side of it—as indeed we have been doing above
... “My client said ‘nothing’ my lord”. Naturally in these circumstances one
wants to say that the word in question is mentioned not used. However there
are circumstances in which it is felt (by some) that the word enclosed in single
quotes is, nevertheless, in some sense, being used. This tends to happen when
the word being mentioned is heavily taboo-ed and has to be kept at barge-pole
distance, in particular with words that we are not permitted to use. Such words
can of course still be mentioned; after all, how can one tell a new user of the
language that they are not to use the word without somehow denoting it—that
is to say, mentioning it? If you mention a word you need a name for it, but a
name that we use to mention it cannot be one obtained by putting single quotes

5You will be hearing more of this chap.
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round it. There is a slang American word for disparagingly denoting people
with black skins; it has six letters and begins with ‘n’. I can allude to this fact,
and mention the word in so doing—as I have in fact just done. But if my way
of mentioning it was by enclosing a token of it in single quotes the sky would
probably land on my head. My defence would be that I am not using the word,
but mentioning it. I'm not going to risk it, co’s I want a quiet life. Call me a
coward: I plead guilty as charged.

This is tied up with all sorts of complex and interesting issues in philosophy
of language which you will have to come to grips with in the fullness of time.
You could try googling ‘referential opacity’ if you want to read ahead.

The predicament of speakers in situations where the mentioned word is heav-
ily taboo-ed is put to good comedic effect in Scene Five of The Life of Brian
http://montypython.50webs.com/scripts/Life_of_Brian/5.htm, where Matthias,
son of Deuteronomy of Gath, is to be stoned to death for using the name of Je-
hovah. In his defence he mentions the name:

MATTHIAS: Look. I-—1I’d had a lovely supper, and all I said to my
wife was, ‘That piece of halibut was good enough for Jehovah.’

So: there are some words that one wishes to mention—if at all—only by
using only those names of it that do not contain embedded occurrences of it—
embedded within single quotes for example. Prima facie there is a question
about how a word can acquire other safe names in this way, and there is pre-

Remove this disclaimer sumably a literature on this question ...but I don’t know any of it.

Banach-Tarski

There aren’t many good mathematical jokes, God knows, but this is one of
them. ..

Give a good anagram of ‘Banach-Tarski’.
and the answer is
‘Banach-Tarski Banach-Tarski’

...the point being that the Banach-Tarski paradox (look it up) concerns the

possibility of chopping up a solid sphere into finitely many pieces and reassem-
Do we want subsubsection or bling the pieces to make two new spheres each the same size as the original.
subsection* here?

Fun on a Train

The use-mention distinction is a rich source of jokes. One of my favourites is
the joke about the compartment in the commuter train, where the passengers
have travelled together so often that they have long since all told all the jokes
they know, and have been reduced to the extremity of numbering the jokes and
reciting the numbers instead. In most versions of this story, an outsider arrives
and attempts to join in the fun by announcing “Fifty-six!” which is met with
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a leaden silence, and he is tactfully told “It’s not the joke, it’s the way you tell
it”. In another version he then tries “Forty-two!” and the train is convulsed
with laughter. Apparently that was one they hadn’t heard beforeﬂ

A good text to read on the use-mention distinction is the first six paragraphs
(that is, up to about p. 37) of chapter 1 of Quine’s [9].

Related to the use-mention distinction is the error of attributing powers of
an object to representations of that object. I have always tended to think that
this is a use-mention confusion, but perhaps it’s a deliberate device, and not a
confusion at all. So do we want to stop people attributing to representations
powers that strictly belong to the things being represented? Wouldn’t that spoil
a lot of fun? Perhaps, but on the other hand it might help us understand the
fun better. There was once a famous English stand-up comic by the name of Les
Dawson who (did mother-in-law jokes but also) had a routine which involved
playing the piano very badly. I think Les Dawson must in fact have been quite
a good pianist: if you want a sharp act that involves playing the piano as badly
as he seemed to be playing it you really have to know what you are doingﬂ The
moral is that perhaps you only experience the full frisson to be had from use-
mention confusion once you understand the use-mention distinction properly.

We make a fuss of this distinction because we should always be clear about
the difference between a thing and its representation. Thus, for example, we
distinguish between numerals and the numbers that they represent. (Notice
that bus “numbers” are typically numerals not numbers, in the sense that the
thing that identifies the bus is the character (the numeral) on it, rather than
the number denoted by that numeral. Not long ago, needing a number 7 bus to
go home, I hopped on a bus that had the string ‘007’ on the front. It turned out
to be an entirely different route! And this despite the fact that the numerals
‘007’ and ‘7’ denote the same number. Maybe this confusion in people’s minds
is one reason why this service is now to be discontinued@ If we write numbers
in various bases (Hex, binary, octal ...) the numbers stay the same, but the
numerals we associate with each number change. Thus the numerals ‘XI’, ‘B’,
‘117, ‘137 1011’ all represent the same numberﬂ

Hotter Temperatures on the Way

No! Hotter weather on the way. Temperatures are not hot. They are numbers.
Numbers are big or small, or lucky or unlucky.

Rockets

Missing: Number of children fleeing care in Cambridgeshire rockets

SFor sophisticates: this is a joke about dereferencing.

"Wikipzedia confirms this: apparently he was an accomplished pianist.

8But it’s obvious anyway that bus numbers are not numbers but rather strings. Otherwise
how could we have a bus with a “number” like ‘7A’?

9Miniexercise: What is that number, and under which systems do those numerals represent
it?
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Cambridge News, 17:44, 21 Feb 2017
http://www.cambridge-news.co.uk/news/cambridge-news/missing-number-children-fleeing

The E story is not that there are children fleeing their care home by Cam-
bridgeshire rocket—concerning tho’ that is (they must be in a hurry); the story
is rather that the number of such children has been mislaid:

[{z : child(z) A z is fleeing care in a Cambridgeshire rocket}|
has been mislaid.

The person in charge of data capture has left it on a train. Or in a rocket,
perhaps.

2.9 Intension and Extension

The intension-extension distinction is an informal device but it is a standard
one which we will need at several places. We speak of functions-in-intension
and functions-in-extension and in general of relations-in-intension and
relations-in-extension. There are also ‘intensions’ and ‘extensions’ as nouns
in their own right.

Consider two properties of being human and being a featherless biped-a
creature with two legs and no feathers. There is a perfectly good sense in which
these concepts are the same (or can be taken to be, for the sake of argument:
one can tell that this illustration dates from before the time when the West had
encountered Australia with its kangaroos!), but there is another perfectly good
sense in which they are different. We name these two senses by saying that
‘human’ and ‘featherless biped’ are the same property-in-extension but are
different properties-in-intension.

A more modern and more topical illustration is as follows. A piece of code
that needs to call another function can do it in either of two ways.

If the function being called is going to be called often, on a restricted
range of arguments, and is hard to compute, then the obvious thing
to do is compute the set of values in advance and store them in a
look-up table in line in the code.

On the other hand if the function to be called is not going to be
called very often, and the set of arguments on which it is to be called
cannot be determined in advance, and if there is an easy algorithm
available to compute it, then the obvious strategy is to write code
for that algorithm and call it when needed.

In the first case the embedded subordinate function is represented as a function-
in-extension, and in the second case as a function-in-intension.
Functions-in-extension are sometimes called the graphs of the corresponding
functions-in-intension: the graph of a function f is {{z,y) : * = f(y)}, where
Provide forward reference we write ‘(x,y)’ for the ordered pair of 2 and y. One cannot begin to answer

10Thank you, Ted Harding!
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exercise on page unless one realises that the question must be, “How
many binary relations-in-extension are there on a set with n elements?” (There
is no answer to “how many binary relations-in-intension ...7?” Explain to the
Hypothetical Other why this is so.)

One reason why it is a bit slangy is captured by an apercu of Quine’s: “No
entity without identity”. What this obiter dictum means is that if you wish
to believe in the existence of a suite of entities—mnumbers, ghosts, functions-
in-intension or whatever it may be—then you must have to hand a criterion
that tells you when two numbers (ghosts, functions-in-intension) are the same
number (ghost, etc.) and when they are different numbers (ghosts, etc). We
need identity criteria for entities belonging to a suite if we are to reason rigor-
ously about those entities. And sadly, although we have a very robust criterion
of identity for functions-in-extension, we do not yet have a good criterion of
identity for functions-in-intension. Are the functions-in-intension Az.x + = and
Az.2 - x two functions or one? Is a function-in-intension an algorithm? Or are
algorithms even more intensional than functions-in-intension?

[Ooops, I mentioned A-calculus there before telling you what it is. Az.F(x) is
the function that, when given z, returns F(z). (You may have seen the notation
‘f :x— F(z) too.) When we apply a function Az.... to an argument a we
knock the ‘Az’ off the front and replace all the ‘x’s in the dots by ‘a’s. Thus
Az.2? applied to 2 evaluates to 22 = 4.]

The intension-extension distinction turns up nowadays connection with the
idea of evaluation. In recent times there has been increasingly the idea that
intensions are the sort of things one evaluates and that the things to which they
evaluate are extensions. Propositions evaluate to truth-values. Truth-values
(true and false) are propositions-in-extension.

We do need both. Some operations are more easily understood on relations-
in-intension than relations-in-extension (composition for example) Ditto ances-
tral (see p.

Properties-in-extension are just sets. Relations-in-extension and functions-
in-extension are sets of tuples.

2.10 Semantic Optimisation and the Principle
of Charity

When a politician says “We have found evidence of weapons-of-mass-destruction
programme-related activities”, you immediately infer that that have not found
weapons of mass destruction (whatever they are). Why do you draw this infer-
ence?

Well, it’s so much easier to say “We have found weapons of mass destruc-
tion” than it is to say “We have found evidence of weapons-of-mass-destruction
programme-related activities” that the only conceivable reason for the politi-
cian to say the second is that he won’t be able to get away with asserting the
first. After all, why say something longer and less informative when you can say
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something shorter and more informative? We here, doing a course in Discrete
Mathematics, will tend to see this as a principle about maximising the amount
of information you convey while minimising the amount of energy you expend
in conveying it. We will be doing a teeny weeny bit of optimisation theory (in
chapter [7)) but only a very teeny-weeny bit (just enough for you to develop a
taste for it) and certainly not enough to come to grips with all the complexities
of human communication. But it’s not a bad idea to think of ourselves as gen-
erally trying to minimise the effort involved in conveying whatever information
it is that we want to convey.

Quine used the phrase “The Principle of Charity” for the assumption one
makes that the people one is listening to are trying to minimise effort in this way.
It’s a useful principle, in that by charitably assuming that they are not being
unneccessarily verbose it enables one to squeeze a lot more information out of
one’s interlocutors’ utterances than one otherwise might, but it’s dangerous.
Let’s look at this more closely.

Suppose I hear you say

We have found evidence of weapons-of-mass-destruction programme-
related activities. (1)

Now you could have said
We have found weapons of mass destruction. (2)

...but you didn’t—even though it’s shorter. Naturally I will of course put two
and two together and infer that you were not in a position to say (2), and
therefore that you have not found weapons of mass destruction. However, you
should notice that (1) emphatically does not imply that

We have not found weapons of mass destruction. (3)

After all, had you been lucky enough to have found weapons of mass de-
struction then you have most assuredly found evidence of weapons-of-mass-
destruction programme-related activities: the best possible evidence indeed. So
what is going on?

What’s going on is that (1) does not imply (3), but that (4) does!

We have chosen to say “We have found evidence of weapons-of-mass-
destruction programme-related activities” instead of “We have found
weapons of mass destruction . (4)

Notice that (1) and (4) are not the same!

Now the detailed ways in which this optimisation principle is applied in or-
dinary speech do not concern us here—beyond one very simple consideration.
I want you to understand this optimisation palaver well enough to
know when you are tempted to apply it, and to lay off. The formal
languages we use in mathematics and computer science are languages
of the sort where this kind of subtle reverse-engineering of interlocu-
tors’ intentions is a hindrance not a help. Everything is to be taken
literally.
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2.10.1 Overloading

Not quite the same as ambiguity.

+ on reals and on natural numbers are different operations. They look sort-
of similar, because they obey some of the same rules, so there is a temptation
to think are the same thing—and certainly to use the same symbol for them.
A symbol used in this way is said to be overloaded, and it’s not quite the
same as the symbol being ambiguous because there is a connection of meaning polymorphism?
between the two uses which there might not be when a symbol is being used
ambiguously.

Overloading is a way of being thrifty in our use of notation. The drawback
is that it gets us into the habit of expecting to find ambiguities even in settings
where there are none. This leads us to...

2.11 Fault-tolerant pattern-matching

My brother-in-law once heard someone on the bus say “My mood swings keep
changing.” He—like you or I on hearing the story—knew at once that what the
speaker was trying to say was that they suffer from mood swings!

This is an example of something we do all the time. It’s fault-tolerant pattern
matching. There are things out there is the world that we need to recognise,
for good or ill. Things we might want to eat or to mate with, things that might
want to eat us. We need to be able to spot these things, and we need to be
able to spot them even if they imperfectly presented to us on account of the
signal to noise ratio being less than it should be. We need to be able to match
the patterns that we see in the outside world to the template in our heads, and
because real signals are noisy, we need to be tolerant of faults and noise. Hence
the expression fault-tolerant pattern matching.

Reinterpreting silly utterances like this so that they make sense is something
that we are incredibly good at. And by ‘incredibly good’ I mean that this is
one of the things we can do vastly better that computers do (in contrast to the
things like multiplying 100-digit numbers in our head, which computers can do
very much better than we can). In fact we are so good at it that nobody has
yet quite worked out how we do it, though there is a vast literature on it, falling
under the heading of what people in linguistics call “pragmatics”. Interesting
though that literature is I am mentioning it here only to draw your attention to
the fact that learning to do this sort of thing better is precisely what we are not
going to do. I want you to recognise this skill, and know when you are using it,
in order not to use it at all!

Fault-tolerant pattern matching is very useful in everyday life but abso-
lutely no use at all in the lower reaches of computer science. It is all too
easy for fault-tolerant pattern matching to turn into overenthusiastic pattern
matching—otherwise known as syncretism: the error of making spurious connec-
tions between ideas. A rather alarming finding in the early days of experiments
on sensory deprivation was that people who are put in sensory deprivation tanks
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start hallucinating: their receptors expect to be getting stimuli, and when they
don’t, they wind up their sensitivity until they start getting positives. Since they
are in a sensory deprivation chamber, those positives are one and all spurious
... we have been overinterpreting.

2.11.1 Overinterpretation

Why on earth might we not want to use it?? Well, one of the differences between
the use of symbols in mathematics (e.g. in programming languages) and the
use of symbols in everyday language is that in maths we use symbols formally
and rigidly and we suffer for it if we don’t. If you write a bit of code with
a grammatical error in it the O/S will reject it: “Go away and try again.”
One of the reasons why we design mathematical language (and programming
languages) in this po-faced fault-intolerant way is that that is the easiest way to
do it. Difficult though it is to switch off the error-correcting pattern-matching
software that we have in our heads, it is much more difficult still to discover how
it works and thereby emulate it on a machine—which is what we would have to
do if we were to have a mathematical or programming language that is fault-
tolerant and yet completely unambiguous. In fact this enterprise is generally
regarded as so difficult as to be not worth even attempting. There may even be
some deep philosophical reason why it is impossible even in principle: I don’t
know.

Switching off our fault-tolerant pattern-matching is difficult for a variety of
reasons. Since it comes naturally to us, and we expend no effort in doing it, it
requires a fair amount of self-awareness even to realise that we are doing it. An-
other reason is that one feels that to refrain from sympathetically reinterpreting
what we find being said to us or displayed to us is unwelcoming, insensitive,
and somehow not fully human, and that one will be told off for it. Be that as
it may, you have to switch all this stuff off all the same. Tough!

So we all need some help in realising that we do it. I've collected in section
a few examples that have come my way. I'm hoping that you might find
them instructive.

2.11.2 Scope ambiguities

Years ago when I was about ten a friend of my parents produced a German
quotation, and got it wrong. I corrected hinﬂ and he snapped “All right,
everybody isn’t the son of a German Professor”) (My father was Professor of
German at University College London at the time). Quick as a flash I replied
“What you mean is ‘Not everybody is the son of a professor of German’.”.

I was quite right. (Let’s overlook the German professor/professor of German
bit). He said that Everybody Isn’t the son of a professor of German. That’s not
true. Plenty of people are; I am, for one. What he meant was “Not everybody is
...7. It’s the difference between “(Vz)(—...)” and “—(Vx)(...)”"—the difference
is real, and it matters.

17 was a horrid child, and I blush to recall the episode.
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The difference is called a matter of scope. ‘Scope’? The point is that in
“(Vx)(—...)” the “scope” of the ‘Va’ is the whole formula, whereas in ‘=(Vz)(...)
it isn’t.

For you, the moral of this story is that you have to identify with the annoying
ten-year old rather than with the adult that he annoyed: it’s the annoying 10-
year-old that is your role model here!

It is a curious fact that humans using ordinary language can be very casual
about getting the bits of the sentence they are constructing in the right order
so that each bit has the right scope. We often say things that we don’t literally
mean. (“Everybody isn’t the son of ...” when we mean “Not everybody is...”)
On the receiving end, when trying to read things like (Vz)(3y)(x loves y) and
(3y)(Vx)(x loves y), people often get into tangles because they try to resolve
their uncertainty about the scope of the quantifiers by looking at the overall
meaning of the sentence rather than by just checking to see which order they
are in!

All that glisters is not gold
Every Frenchman is not racist.

EXERCISE 17. Match up the formule on the left with their English equivalents
on the right.

(i) (Vx)(Jy)(z loves y) (a) Everyone loves someone

(1) (Vy)(3x)(z loves y) (b) There is someone everyone loves

(iii) (Jy)(Vo)(x loves y) (¢) There is someone that loves everyone
(iv) (3x)(Yy)(x loves y) (d) Everyone is loved by someone

In the real world people make mistakes and say things that aren’t exactly
what they mean ( “Everybody isn’t the son of a German Professor”) so listeners
have to get quite good at spotting these errors and correcting them. So good,
in fact, that we don’t notice we do it. In mathematics (and, in particular,
with programming languages) errors of the kind we are so skillful at correcting
are never allowed to occur in the texts in the first place, so there is no need
to have lots of clever software to detect and correct them. The fault-tolerant
pattern-matching skill is no longer an asset and its deployment merely distracts
us from the task of reading the formula in question. The result is that when
we encounter a formula with nasty alternations of quantifiers and tricky scoping
(such as the Pumping Lemma from Languages-and-Automata which is lying in
wait for you even as we speak) we think “This looks ghastly; it can’t be what he
means. Life isn’t that bad: let’s reach for the rescoping software” whereas what
we should be doing is just trying to read it as it is. Sadly life—or at any rate
the Pumping Lemma—really is that bad! The Pumping Lemma is less than
completely straightforward to read even with the best of intentions (it has more
quantifiers in it than we are used to) and attempting to read it without first
switching off your rescoping software is a sure recipe for disaster.

First occurrence of the word

‘quantifier’.
it

Should explain
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2.12 Howlers of Overinterpretation

AT \Yy.2

What is Az.Ay.2? Overinterpretation will probably make you think this should
simplify to 2; it doesn’t. It really just is the function whose constant value is the
function whose constant value is 2. What happens if you apply this function to
37 It’s actually idiotically simple. It’s the result of applying to 3 the function
whose constant value is the function whose constant value is 2. And please do
not make the mistake of thinking that the function with constant value 2 (the
one that returns 2 whatever it is given as argument) is the same as the number
2. There is an important difference between a pint of Guinness and the magic
Guinness glass (given by the Leprichaun to the Irishman who released him from
a bottle wherein he’d been trapped since the Bronze Age) that automatically
refills itself with Guinness every time anyone drinks from it. This difference is
not quite the same as the difference between 2 and Az.2 but it might help to
remind you of that difference.

We do need to distinguish between an object and the unary functions whose
constant value is that object. However I don’t want to think about a nullary
function (a function with no input) whose [constant] value is x: that would
start to sound too much like mediaeval theology. Nevertheless you might need
to think about this kind of thing in the years to come.

The square of a relation

What is the square of the < relation on IN? Well, one thing it ain’t is {(z, y) : 2% < y?},
which is the answer one of my students gave once. You get into this mess if you
forget what the square of a relation is, and fault-tolerantly match to something
you do know, such as squaring of numbersiﬂ

Actually it’s a perfect example of the kind of mess you can get into if—before
taking on board the idea of overinterpretation—you free-associate rather than
actually think. You have to learn how not to overinterpret—and to be born
again as a mathmo/compsci—before it is safe to free-associate like this.

The Power Set of the empty set

The Power set of a set is the set of all its subsets.

The empty set is the set with no elements. We write it as ‘D’ or occasionally
as ‘{}’. Isay the empty set because there is in fact only one empty set. There is
the criterion of identity for sets: two sets are the same set if they have the same
members. (Not true for multisets or lists for example). So what is the power
set of the empty set? Let’s take this question slowly, in stages, and answer
it carefully by reading entirely literally all the definitions we need to refer to.

121f you want to know what the square of a relation is, it’s the result of composing (see
section |3.2.1) a relation with itself. The square of the parent relation is the grandparent
relation.
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Recall that the power set, P(X), of a set X is the set of all subsets of X. Y is
a subset of X (written ‘Y C X) if everything that is in ¥ is in X. So in order
to devise the power set of the empty set we are going to open up a bag and put
into it everything we can find that is a subset of the empty set.

Q: So what are the subsets of 7

Were you about to say “none”? If you were about to say that, then I want to
smack your wrist. Obviously the empty set is a subset of itself—just look at the
definition!! So why did you leave it out? Because it didn’t sound like a sensible
answer. Why didn’t it sound like a sensible answer? Because somewhere in your
mind is the unspoken assumption that if I ask you for the something-or-others
of X, you should come up with something new. “He can’t be wanting me to
mention X co’s he already knows that.” But recall the definition of ‘subset of’:
x C y holds precisely when everything that is in = is also in y. So every set is
(trivially) a subset of itself. So in particular the empty set is a subset of itself.

Very well, we are agreed there is one subset of (), namely @ itself. Also,
by extensionality (see page [37| for a definition of extensionality) it is the only
subset. (That bit, at least, is unproblematic.)

Q: OK, So what is the power set of the empty set?

Were you about to say #? If so I'm going to smack your wrist yet again. You were
probably thinking something like “...the empty set is {} so the set containing
the empty set must be {{}} and the curly brackets can’t be doing anything so
that must be the same as {}”. This mistake arises from your overinterpretation
of data that you feel to be suspect, namely {{}}. But if you are careful, you will
see that it isn’t suspect at all, and it won’t be hard to explain this to yourself.
The set that contains all the subsets of the empty set has as one of its members
(its sole member as it happens) the empty set. So it isn’t empty! So it can’t
be the same as the empty set. (This uses the Principle of the Indiscernibility of
Identicals. Look it up.)

So the mistake of thinking that P()) = @ arises from thinking that the
expression ‘{(}}’ is a bit of suspect data to which you need to apply your fault-
tolerant pattern-matching software. The idea that ‘{()}’ is a bit of suspect data
is a separate mistake that deserves an analysis of its own. The trap is the trap
of thinking that because the empty set has nothing inside it then it actually
isn’t there at all. Why do you think this? Because you are not happy with the
idea of a set being empty. But—I put it to you—there is nothing any odder
about the idea of an empty set than there is about the idea of an empty folder,
or an empty file. It’s no odder than the idea that zero is an integer. “How
many strawberries have you got in that punnet?” “None, sadly!”. Once you are
thinking about sets properly this difficulty goes away.

duplicates material on p. 7?7
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The Power Set of {1,2,3}

I once had a student who, when asked in an exam to write down all the subsets
of {1,2,3}, supplied only {1,2}, {1,3} and {2,3}. My guess is that

e She omitted {1,2,3} on the grounds that ‘subset’ probably meant ‘proper
subset’. We saw this mistake earlier;

e She omitted the singleton subsets because she was probably thinking some-
thing like “Why would anyone want to write down ‘{1}’? That’s silly.
Anyone writing that down probably really means ‘1’, and that isn’t a set,
so I can leave it out”.

e She left out the empty set because she didn’t think it was there. We've
seen this too.

Miniexercise: So just what exactly is the power set of {1, 2,3}, Dear Reader?

Affirming the consequent

Years ago I was teaching elementary Logic to a class of first-year law students,
and I showed them this syllogism:

“If George is guilty he’ll be reluctant to answer questions; George is
reluctant to answer questions. Therefore George is guilty.”

Then I asked them: Is this argument valid? A lot of them said ‘yes’.

We all know that an obvious reason—the first reason that comes to mind—
why someone might be reluctant to answer questions is that they might have
something to hide. And that something might be their guilt. So if they are re-
luctant to answer questions you become suspicious at once. Things are definitely
not looking good for George. Is he guilty? Yeah—string him up!

But what has this got to do with the question my first-years were actually
being asked? Nothing whatever. They were given a premiss of the form P — @,
and another premiss ). Can one deduce P from this? Clearly not. Thinking
that you can is the fallacy of affirming the consequent

There are various subtle reasons for us to commit this fallacy, and we haven’t
got space to discuss them here. The question before the students in this case
was not: do the premisses (in conjunction with background information) give
evidence for the conclusion? The question is whether or not the inference from
the premisses to the conclusion is logically valid. And that it clearly isn’t.
The mistake my students were making was in misreading the question, and
specifically in misreading it as a question to which their usual fault-tolerant
pattern-matching software would give them a swift answer.

13Explain the terminology. Affirm the antecedent, infer the consequent. Need to explain
antecedent and consquent and contrapositive. Perhaps a glossary at the end.
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Cartesian Product with the Empty Set

A x B (the “cartesian product of A and B”) is the set of all ordered pairs whose
first component is in A and whose second component is in B. So A x ) is the
cartesian product of A (a set) with the empty set, which is to say the set of all
ordered pairs whose first component is in A and whose second component is in
the empty set.

What does A X () actually turn out to beﬂ Do the sensible thing: try to form
ordered pairs whose first components are in A and whose second components
are in (). So you pick up a member of A to put into your chase (that’s the thing
printers hold in their hand and into which they put bits of type when setting
something up in type) and then you reach for a member of (. Ouch!

There is a danger of getting into a tangle by trying to find the correct
description of the set of defective ordered pairs: things that should have become
ordered pairs but never made it because—altho’ they have a first component
in A—they somehow lack a second component. A x () certainly looks like the
obvious place to put these discards and offcuts. You might well think that such
a discard-or-offcut is just a member of A, and conclude that A x @) is A.

However there are no ordered pairs whose first component is in A and whose
second component is in (): any attempt to assemble one fails. A long way of
saying this is to say that the set of all such pairs—namely A x —is (), and that
of course is the correct answer.

What do you do with the discards and offcuts? It doesn’t matter. It’s the
ordered pairs you are interested in. Discards and offcuts? Discard them! You
certainly don’t put them into A x (.

(When you encounter regular languages later you will meet the notation
‘LM’ for the set of strings consisting of a string from L consed onto the front
of a string from M. What happens if L is empty? What happens if L contains
only the empty string?)

Is the Identity Relation a Function?

“Well, functions give you back values when you feed them arguments.
The identity relation obviously doesn’t do anything so it can’t be a
function!”

Is that what you were thinking? Shame on you! Of course the identity
relation is a function. Look at the definition of a function: each argument is
related to one and only one value. The identity relation relates each thing to
one and only one thing, namely itself! Duh!

Is the Identity Relation a Partial Order?

Lots of people say: ‘no’! They think that because it doesn’t order things then
it can’t be a partial order. However, if you read the definitions you will see that

Mone might like to frame this question as “What does A x (§ evaluate to?
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it is.

Can a Relation be both Symmetrical and Antisymmetrical?

“Well, obviously not, because the words sound as if the conditions
are mutually contradictory. On the other hand, why would they be
asking me if it was that easy? Er ... is this a multiple choice question
... 72 Will I be penalised for guessing? ... Can I ask a friend?’

How about just answering the question? It might be quicker!

Suppose R is both symmetrical and antisymmetrical. Then, whenever x is
related to y by R, y is related to by R—by symmetry. But if z is related to
y and y to x, then z = y by antisymmetry. So if z is related to y, x = y. So R
must be a subset of the identity relation. So perhaps the identity relation itself
might be both symmetrical and antisymmetrical, and so indeed it turns out.

And that is about all you can say!

Is the Empty Relation Transitive?

I have had students get in a tangle over the question whether or not the empty
relation is transitiv@ Or over the question of whether or not the relation
{(1,2)} is transitive. It’s the same tangle. The tangle is this: for a relation to
be transitive, it’s necessary for it to contain the ordered pair (x,z) whenever
it contains the ordered pairs (z,y) and (y,z). “But what if it doesn’t contain
any ordered pair?” they wail. Or “What if it contains an ordered pair (x,y)
but no pair (y,z)?” This is overinterpretation. Nobody said it in order to be
transitive it had to contain an ordered pair (x,y) or had to contain pairs (z,y)
and (y, z). Merely that if it contained pairs (x,y) and (y, z) then it would have
to contain the ordered pair (z,z). If it doesn’t satisfy the antecedent of the
conditional then the condition is trivially satisfied. It’s mechanical to check that
the empty relation and the relation {(1, 2)} are transitive. Ian Stewart’s example
If you pick a guinea pig up by its tail its eyes fall out—is true. Conditionals
whose antecedents are false are vacuously true: in the nature of things these
conditionals are unlikely to be useful but that doesn’t make them false.

You only get into a tangle if you try to be too clever, and overinterpret.

Coda

If you get these questions wrong it’s almost certainly not because you are igno-
rant or stupid, but because you are approaching them the wrong way.

15See section if you do not yet know what transitive means.
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Sets and relations

That was an introductory pep talk. Now we start on some mathematics!

Sets are extensions. Two sets with the same members have the same set.
This is the axiom of extensionality for sets.

One could say that sets are properties-in-extension. The properties human
and featherless biped (see page [26) are true of the same things but are not
the same property. Lists and multisets are extensional too, but we have to be
careful about how we express this fact. The lists [1;3] and [3;1] have the same
members but are not the same list. For two lists to be the same list they not
only have to have the same elements but have to have them in the same slots.
For two multisets to be the same multiset it is necessary not only that they have
the same members but that they have them with the same multiplicity.

ordered not ordered
repetitions allowed lists multisets
no repetitions wellorderings sets

Multisets in brief

The two most natural examples of things-that-we-want-to-think-of-as multisets
are (i) the set of roots of a polynomial; and (ii) the set of factors of a natural
number. The equation z? — 3z + 2 = 0 has two solutions, 1 and 2. That is to
say, the set of its solutions is {1,2}. The equation 22 —2x + 1 has two solutions,
but they are both 1, so the set of its solutions is the set {1}. But thinking of
the collection of answers as a set conceals the fact that (in some sense!) there
are two roots, which just happen to be the same. A better way of presenting
the same information would be to say that that the collection of roots is the
multiset {1,1}. What this means of course is that the appropriate datatype for
the collection of solutions of 2 — 3z 4+ 2 = 0 is multiset not set. What about
the set of prime factors of 607 That is the multiset {2,2,3,5}. Notice that the

37

which way round to write
relational composition, and
which way round to write
pairs in functions
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collection of roots-of-a-polynomial, or of prime-factors-of-a-natural-number is
always best thought of as a multiset rather than as a set, even if every member
has multiplicity one! The multiset {1,2} is not the same object as the set {1, 2},
any more than the list [1] is the same as the set {1}.

Although we are not going to see any more uses of multisets here, they are
a useful data structure and you should not forget about them entirely. My
chief reason for mentioning them here is to bring out into the open the range
of different datatypes that may come your way the better to understand what
is going on. When you say that 22 — 4x + 4 has two roots, the extensional data
object whose cardinality is two is a multiset not a set. You need to always be
clear about what you are dealing witl“E

There is no standard notation for lists and multisets, though some program-
ming languages (ML for example) use square brackets for lists with semicolons as
delimiters. Thus [1;2;4] is the list whose elements are 1,2 and 4 in that order.
(Why did I say elements of the list [1;2; 4] but members of the set {1,2,4}? I’'m
not sure: I don’t think there is any significance to it.)

Pure Set Theory

There is a discipline of Pure Set theory, that studies sets that can only have
other sets as members, but mostly we will be interested only in sets whose
members are things other than sets, and which are therefore of more immediate
interest. Sets of numbers, or sets of ordered pairs, or sets of matrices, or sets
of sets of matrices. Generally we are not likely to be interested in sets-of-sets-
of things for n more than about 2. The discipline of Pure Set Theory had a
vogue in the twentieth century as a purported foundation of mathematics. The
philosophers of the early twentieth century were very struck by the fact that it
seemed to be possible (and it still does) to find (what compscis like us would
call) implementations of all manner of mathematical objects into set theory.
Ordered pairs, naturals, reals, complexes, functions etc etc. It was felt that the
mere possibility of these implementations into set theory told us somehow what
these various mathematical gadgets were. Thus there came the idea that set
theory could be a foundation for mathematics. This idea has been a long time
dying, and it’s far from dead even now ...tho’ it is on the way out.

That’s not to say that the theory of pure sets is not an interesting and
exciting branch of mathematics—it is. It’s just that it doesn’t do what is claimed
for it. For us the point is that you don’t need to know any.

While we are about it, there is a distinction Pure Set Theorists make which
won’t much concern us here. Some sets are paradoxical—such as the set of all
sets that are not members of themselves. If you think about this you will tie
yourself in a knot. Is it a member of itself or not? If it is, it isn’t, and if it isn’t
it is!! Clearly it can’t exist—but then I shouldn’t have been talking about the
set of all sets that aren’t members of themselves. Set theorists tend to use the

1Say something about natural numbers as multisets of primes? Deals very nicely with hcf,
lem and divisibility—it’s just C.
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word proper class for dodgy collections like this one. This is because they use
the word class in a noncommittal way to cover not only collections that are
OK (which means the vast majority of them) but also the dangerous collections
like the collection of all sets that aren’t members of themselves. A proper class
is a thing that’s a bit like a set except that it’s not allowed to be a member of
anything—and that’s because it’s not really there! We also talk of families and
collections when we want to be noncommittal. That explains why when we
are considering a class that cannot be a set (like the Russell class {z : © & x})
we call it a proper class. This usage of the word ‘proper’ is like its usage in
proper subset, which you may have seen earlier. (Miniexercise: what does “z is
a proper subset of y” mean?)

I am giving the paradoxes very short shrift in this material. They are very
titillating, and although they do have connections with things you need to un-
derstand (Cantor’s theorem and proofs of uncountability and—later on—the
Unsolvability of the Halting Problem) they are of little direct relevance and
they will most assuredly do your head in should you spend any time on them.
There is a theory that it’s not possession of language or tools or representational
art that distinguishes Homo sapiens sapiens from Homo sapiens neanderthalen-
sis (let alone the other species of the genus Homo) but the ability to lose sleep
over the paradoxes. However you shouldn’t make that a reason to study them.
After all, if you're reading this, the chances are that you are already known to
be a specimen of Homo sapiens sapiens.

3.1 Sets for Discrete Mathematics

There are hardly any theorems in set theory that we need to know, and, of
those that we are going to prove, one of them (Cantor’s theorem) is very easy.
(In fact, one of the things that disconcerts first-year students is that there are
no tangible deliverables in first-year Discrete Mathematics). What is going to
take up most of our time is the task of coming to grips with the notation, which
was never designed to make it easy for new entrants to feel at home! (In fact
it was never designed at all.) The other theorem that I'm going to prove (the
Inclusion-Exclusion Principle in section isn’t really very hard either, but
if one tries to prove it properly one has to absorb a lot of notation, which makes
working through it a very useful discipline. That’s the peak, and the rising
ground starts here.

3.1.1 Representing Sets Graphically

You have probably encountered Venn diagrams. They are a useful way of il-
lustrating equalities and inequalities between unions, intersections and comple-

ments of sets. AUBUC = AN BN C and suchlike.
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Venn diagrams won’t prove equalities and inequalities, but they can be a
useful picture to draw if you are in doubt about them, and can sometimes
help you visualise things and think them through. Of course if you are going
to use them to check an equation or inequation, you have to draw your sets
properly: the circle for A must overlap with the circle for B, and neither must
be included in the other, lest you appear to have a proof that A C B or vice
versa. If you are drawing a picture to check an equation that mentions three
sets A, B and C, you will want to draw the three circles so that all eight
unions/intersections/ differenceeﬂ are present, and this can in fact be done. Here
we come to our first cautionary tale. You can draw three circles so that all
unions/intersections/differences are present, but you can’t draw four. Try it
and see. The appearance of the number 3 here is to do with the fact that the
surface of the paper on which you are drawing your picture has two dimensions.
If you want to draw four regions for A, B, C' and D then they can’t all be
convex. (Type ‘Anthony Edwards’ (or ‘A.W.F. Edwards’) and ‘Venn diagram’
into your favourite search engine. Yes, and if you happen to be in Cambridge
go and look at the windows in Caius dining hall.) If you want four convex
regions showing all unions/intersections/differences then you have to go up a
dimension. You can imagine four spheres in space intersecting in all possible
ways. Although this fact is a very cute piece of Discrete Mathematics in its own
right I am dragging it in here as an illustration to warn you about the way in
which notations which are handy and attractive sometimes fail to give you the
whole picture.

While we are about it there is another reason why you shouldn’t think of
Venn diagrams as the be-all and end-all of Set theory. Venn diagrams are no
good for representing more than two levels of sets. One can indicate a point ¢
inside a region called C' but one cannot indicate members of ¢—should ¢ be a

2Why are there eight? If you don’t already know, this will be explained in section
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set in its own right—mnor can one indicate things that C' is a member of. This is
a grave limitation on Venn diagrams as ways of illustrating facts in set theory.
Examples of important constructs using three levels which therefore cannot be
represented: (X, JX, P(X). (We define these in section p[8)

Notice that I have just—quite automatically—exploited a common conven-
tion that we use a lower case letter (in this case ‘¢’) for a variable to range over
elements of a set denoted by the corresponding uppercase variable (in this case
‘C"). Some people use a convention that if we are to have a third level—things
that C'is to be a member of—we use a calligraphic font: C.

Moral: Venn diagrams are fine, but don’t allow the comfortable feelings you
have about them to constrain your imagination when it comes to sets.

3.1.2 Notating Sets

The simplest of the many notations we have uses curly brackets in connection
with commas: thus {1,2,4} is the set whose members are 1, 2 and 4.

Please note: these curly brackets are not mere punctuation, as ‘(" and
‘) are in English. They are part of the grammar. ‘{’ and ‘}’ cannot be replaced
by ‘(’ and )’ to make things easier to read. And they cannot be omitted without
changing the meaning. Remember the discussion of the power set of the empty
set on page [33]

There are actually two fundamentally different ways of notating sets. The
system of the previous paragraph takes notations for the individual members of
a set, puts them in a row, and places curly brackets round them. The result
is a notation for the set whose members we have listed. The other notation
for sets also uses curly brackets, but doesn’t mention the members explicitly
in the way we have just seen: instead it mentions them indirectly (in a way
that assembler programmers might recognise as bearing a haunting similarity
to indirect addressing). The notation

{z: F} (3.1)

denotes the set of all things satisfying the condition F' that we find after the
colon. This piece of notation is a set abstract. Thus the set abstract

{z:x=2ve=4}
denotes the set of all things that are equal to 2 or to 4—so we could have written
it as
{2,4}
Similarly the set abstract
{r:z € Avee B}

has a shorter notation too, and one that you know: A U B. This indirect
notation, using variables and the colon, enables us to write down notations for
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infinite sets—in contrast to the first notation (curly brackets plus commas),
which obviously enables us to point to finite sets only.

We saw the intension/extension distinction in section One could say
that the curly bracket notation in ‘{2,3,5}’ is extensional and the notation in
“{x : ¢} is intensional, but this observation is impressionistic. If the reader
finds it unhelpful (s)he is free to ignore it. . .the intension/extension distinction
is always slightly slangy.

Colons and Vertical Bars

Some people write ‘{x|F}’ for the set of things that are F. The vertical bar
has uses already—we will write ‘|z|” for the number of thingsﬂ in the set x, and
‘|z|” for the absolute value of a complex number xz—indeed also the length of
the vector z—and all these are uses you will most certainly encounter (there
is yet another use: some people write ‘f|X’ for the restriction of the function
f to the set X, though this is probably an attempt to write ‘f [ X’ when they
haven’t got the ¢ |’ sign) and we don’t want to introduce further confusion by
giving it a fourth use. I shall adhere to the alternative notation that uses a
colon: {z : F(x)} as above. However you should be warned that many people
prefer the notation with the vertical bar.

3.1.3 Curly Brackets

So far we have seen two styles of notation for sets:

(i) The extensional (“explicit”) notation, as in ‘{a, b}’ for the pair of a and b;

(ii) The intensional (“indirect”) notation, as in ‘{z : © > 2}".

There isn’t a huge amount to say about the first notation, but the second
needs quite a lot of discussion and explanation, because there are enhancements
of it which put things other than variables to the left of the colon. These
enhancements are in widespread use, and you will have to master them ...and
they take a bit of getting used to!

The following expression turned up in an example sheet. Or was it a exam
question(?) I forget. Anyway, it’s a(n admittedly fairly extreme) example of the
kind of notation you are going to have to be happy with. I’'m going to gradually
work through it, using it as a peg on which to hang various definitions.

{22zeIN | 2<5 A 20/ze{weN:w<z}} (3.2)

Notice that in formula[3.2] the thing between the left ‘{” and the ‘|’ isn’t just
a naked variable as it was in formula [3.1] This exploits two conventions which
we explain in the two sections following, sections and

3Make a note of this announcement, co’s I am not planning to repeat it!
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3.1.4 (Booleans to the left of a colon)
Often instead of writing things like

{z:2€ AND}

(where @ is some condition or other) we move the membership part of the
condition to the left of the colon thus:

{reA:d}
For example, where A = IN and ® is (Jy)(z = 2 - y): instead of writing
{z:2eINAFy)(z=2"-9y)} (3.3)
we can write

{reN:(Fy)(z=2-y)} (1)

which means exactly the same thing. The difference is merely one of emphasis:
the second notation suggests somehow that the natural numbers is a kind of
context or environment for what happens after the colon. And, yes—in case
you were wondering—this last thing is, indeed, the same as

NN{z:(Fy)(z=2-y)} (2)

This looks perverse, but there is reason to it, which we have just alluded
to. We use it in situations where one feels that the set A provides a context.
For example the expression {z : % < 26} denotes the set of all numbers whose
square is less than 26. We might be interested in the set of all real numbers
whose square is less than 26, in which case one would write

{r:2® <26 Az € R} (3.4)

or one might be interested in the set of all natural numbers whose square is
less than 26, in which case one would write

{z: 2 <26 A2 c IN} (3.5)

but—because in circumstances like this one usually is thinking of IR or IN as

a universe of discourse, the place where it is happening—one would write these
as

{reR : 2% < 26} (3.6)

and

{reN : 2% <26} (3.7)

where the thing to the left of the colon is not a variable but a boolean with a
variable in it.
Before you go any further check your understanding by doing this exercise:
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EXERCISE 18.

Write out the set in formula in primary (“extensional”) notation.

Why do I not ask you to write out the set from formula |3.0| in extensional
notation?

There is a similar notation for the quantifiers: often one writes ‘(¥n € IN)(...)’
instead of ‘(Vn)(n € N — ...)" and ‘(3In € IN)(...)  instead of ‘(In)(n e N A ...)’
and here, too, there is a suggestion that IN is a kind of environment or local
universe or context. We can use the same notational device in connection with
A-terms too. Thus, Az € X.{z} is the function that sends members of X to
their singletons. This function will reappear in the proof of Cantor’s theorem

in section B.3.41

Here is a live example from an actual example sheet

{f: IN={0,1} | (Yn e N)(f(n) < f(n+1)}

The thing to the left of the colon (well, the vertical bar) is a boolean, but
not a boolean like ‘x € IN’. It’s an assertion that f is a function from IN to
{0,1}. This set abstract could more clearly be written as

{7 (fIN={0,1) A (Yn € N)(f(n) < f(n+1))}

The convention my colleague was appealing to is that, if ® and ¥ are both
booleans with ‘z’ free, then {®(x) : U(x)} is just {z : ®(x) A U(z)}. Notice too
(and do not be alarmed by) the dual use of the colon!

This was on a first year example sheet, so you should aim to cope with this
kind of notation. Incidentally, can you describe this set in words? How many
members does it have?

3.1.5 Function symbols to the left of a colon!
We can even write formulee (1) and (2) as
{2y :y € N} (3.8)

This is possible because there is a convention that allows us to write

{fly):ye X}

to mean the set of values of the function f for aguments in X, and {2y : y € IN}
is just a special case of this.
Thus we can write things like

{z3 € IN : 2? < 26} (3.9)
Formula denotes the set that you get from the set denoted by formula

Carefull How do we know by replacing every number in that set by its cube.

that ‘x’ ranges over IN?
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As we will see later, functions(-in-extension) are sets of ordered pairs. If we
want a notation for the set of all ordered pairs satisfying a condition ¢ on its
two components we would definitely prefer writing

{(z,y) - oz, )}
to

{p: (32)(Fy)(fst(p) = = A snd(p) =y A d(z,))}

and these two mean the same thing.

Index sets

Now, if {f(y) : y € X} is a set, so is

Uirw) sy e X}

and this is sometimes written

U rw

yeX

and when we do this we often speak of X as an index set

c-introduction and elimination

The last point the questionmaster was trying to get across is that w € {x : ¢(x)}
is the same as ¢(w). Being a member of the set of all green things is just the
same as being a green thin

Or rather, since the example is

20/ze{weN|w<z} (3.10)

the point is that being a member of the set of green slimy things is the same as
being green and slimy. Thus (by €-elimination) formula is just the same as

20/z€IN A 20/z <z (3.11)

This will simplify formula [3.2] to

{22€eIN:2<5 A 20/z€IN A 20/z < z} (3.12)

So we ascertain what

4The study of proofs as mathematical objects is beyond the scope of these notes, but you
will probably encouinter it in a Logic course in your second year. If w € {z : ¢(x)} is the
same as ¢(w) then we have a rule of inference that says we can deduce w € {z : ¢(x)} from
¢(w). We will call this rule the rule of €-introduction since it introduces the symbol ‘€’ into
the conclusion. The equivalence can be used to draw an inference in the opposite direction:
the rule of €-elimination, whereby in inferring ¢(w) from w € {z : ¢(z)} we have discarded
an occurrence of ‘€’. Hence the title of this subsection.

fst occurrence of ‘fst’?

say more about this
need lots more exercises here
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{zeIN: 2<5 A 20/z€IN A 20/z < z} (3.13)

is and then multiply everything in it by 2. A simple case analysis shows that
the only natural number z below 5 such that 20/z < z is 5. So the set of
is {5}. (Not 5 itself! That’s another point the questionmaster was trying to
make!)

Finally multiply everything in {5} by 2 to obtain {10}.

It gets worse

You will even see things like
{£n: ®(n)} (%)

There are more casual notations to be seen, but I won’t expose you to them.
The general idea at this stage is: do not be casual; you shouldn’t use slang until
you have learned to talk proper!

3.1.6 Exercises

EXERCISE 19. Give two set abstracts for the set of those natural numbers that
are perfect squares, one using the existential quantifier 3 and the other using
the trick introduced in this section of moving some information to the left of the
colon

EXERCISE 20. A circle is the set of points in the plane (that’s IR? for the
moment) that are a fized distance from the centre. Write down a set abstract
denoting a circle. It will have two freeﬂ variables in it (“parameters”). (It is
customary to write d(z,y) for the distance between points x and y.)

5¢ree’ not explained yet.
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An ellipse is the set of points in the plane the sum of whose distances from
two points (the foci—f1 and fo in the picture) is a constant. (In the picture
above a+b = c+d). Write down a set abstract denoting an ellipse. It will have
three free variables in it (“parameters”).

EXERCISE 21. A parabola is the set of points the sum of whose distances from
a giwen point and a given line is a constant. Write down a set abstract denoting
a parabola.

3.1.7 Variables and binders

Some people make explicit the presence inside F' of the variable that is to the
left of the semicolon, the business variable (or eigenvariable if you want a fancy
name for it). Thus you might see ‘{x : F(z)}’ or (since some people don’t)
“{x : F}’. Both of these are shorthand for set abstractions. In the first case you
are being told that the variable ‘x’ really does appear inside the expression that
F represents, and in the second case you aren’t being told this. But usually you
will be given the formula in full rather than a shorthand for it.
Several subtleties arise at this point.

1. (Vacuous quantification and abstraction)

What does ‘{x : A}’ mean, if the variable ‘=’ does not appear in A at all?
Well, it means either the empty set or the universe, depending on what
A is. After all, if 2 is not mentioned by A, the yes/no answer to “Is x in
the set?” does not depend on x; they’re either all in, or none. Similarly
(Vz)A (when ‘z’ does not occur in A) is just the same as A. Similarly Az.t
(when ‘2z’ does not occur in t) is just the constant function that always
gives the result t.

degrees of freedom?

2. (alpha-conversion). There is no difference between {z : F(2)} and {y : F(y)}.

Those of you who have done a bit of logic will recognise this as the same
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phenomenon that (Vz)(F(z)) and (Yy)(F(y)) are in some sense the same
formula. You may feel that this is a slight bug in the design of our lan-
guage: it makes distinctions that we don’t need. We will find the same
phenomenon arising in lambda calculus, and there there is a known alter-
native which does not have this bug: combinatory logic. There is no space
to discuss these matters here. Sufficient unto the day is the evil thereof.

3.1.8 Variables, free and bound; Binders

There is a connection here with two other ideas which are probably new to you
with this course. Quantifiers and A-terms. You can take a formula with an ‘x’
free in it (such as ‘z > 3’) and prefix it by a quantifier, like ‘v’ or ‘3. Or you
can take a term with ‘z’ free in it (such as ‘z +5’) and prefix it with ‘Az’. This
gives you expressions like {z : > 3} or (Vz)(x > 3) or Ax.(z + 5) in which the
variable ‘z’ is no longer free. So the curly-brackets-in-pairs, the quantifiers, and
the letter A\ are all called binders. Often having a word enables you to keep
track of the connection of ideas.

EXERCISE 22.
Can you explain the difference between ‘f :x vy’ and ‘f :x — y’?

Have a look at section 2.12

Of course the thing to the right of the dot might be another lambda term. I
shall also adhere to the universal practice of writing ‘Azy.(...)" for ‘Az.(Ay.(...))".
Lambda calculus is a great improvement on the old system, under which people
would write things like ‘y = F(z)’ and ‘y = 2?’, relying on an implicit con-
vention that—where ‘z’ and ‘y’ are the only two variables used—then y is the
output (the vertical axis used to be called “ordinate”) and z is the input (the
horizontal axis used to be called “abcissa”). This convention—and others like
it—have served us quite well, but in the information technology age, when one
increasingly wants machines to do a lot of the formula manipulations that used
to be done by humans, it turns out that lambda notation and notations related
to it are more useful. Another reason for using lambda calculus rather than the
assumption that x is an input and y an output is that life is simpler and syntax
is easier to describe if all variables are equivalent in the sense that they don’t
come equipped with baggage. We want (Vz)(®) to mean the same as (Vy)(P)
and we want this interchangeability to apply across the board. We will see more
of A-calculus in section

Sumset, Power set etc

We will now briefly go over some notations that you are probably familiar with,
just in case you aren’t! You know what ‘C’ means. Care to guess what ‘2O’
means? (It’s pronounced ‘superset’.)

There are other notations along these lines that you will need to know if you
do not know them already.
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Sumset: (Jz :={y:(3z)(y € 2 Az € x)}; and

Intersection Nz :={y: (Vz)(z €x = y € 2)}.

P(z) is the power set of z: {y:y C z}.

Set difference: x \ y is the set of things that are in « but not in y.
The symmetric difference: xAy, of z and y, is the set of things in
one or the other but not both: (x\ y) U (y \ ). This is sometimes
written ‘XOR’.

EXERCISE 23. (Computer Science Tripos 2009 paper 1 question (c))
IfUANUB =0 does it follow that ANB =07

DEFINITION 1.
A partition II of a set x is a family of pairwise disjoint nonempty subsets of
that collectively exhaust x, so that | JII = x

The members of the partition are called its pieces.

If II; and Iy are partitions of x, we say that I1; refines Iy if every piece
of Iy is a subset of a piece of Ils.

Do not confuse this capital ‘I’ with the capital ‘IT’ used to denote the product
of all numbers in a set!

EXERCISE 24. Which of the sets in the left column are partitions, and of
which set(s) in the right column (if any) are they partitions?

(1) {{1},{2,3},{1,2}} (a) {1,2,3}
(i) {{1},{2,4},{3}} (b) {1,2,3}
(i) {{1,2},{2,4},{3}} (c) {1,2,3,4}
(i) {{1,3},{2,4}} (d){1,2,4,3}
(v) {{1},{3},{2,4}} (e) {1,3,2,4}
(vi) {{1},0,{3},{2,4}} (f){2,1,3,4}

(vit) {{1}, {5}, {3}, {2,4}} (9) {2,1,3,4}

EXERCISE 25. (%)
List all partitions of {a,b,c}. (You might find it helpful to draw a picture of
each —a kind of Venn Diagram.)

3.2 Relations and Functions

Relations-in-extension and functions-in-extension are sets of tuples. What is a
tuple? An n-tuple is just a list of length n. E|

For the rest of this section we are going to think of relations generally as
relations-in-extension: sets of tuples. Quite a lot of what we are going to do

6Some programming languages—ML for example—distinguish between n-tuples and lists of
length n. We won’t make this distinction, and we don’t at this stage need to go into why they
do.
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makes sense when done to relations-in-intension as well, but the default will be
that all relations under discussion are relations-in-extension.

The n-tuples that will be most important to us are those where n = 2. We
call these tuples ordered pairs. An ordered pair has two different—we used
the word slot earlier. If p is a pair, we can write fst(p) and snd(p) for the
first and second components of p (the things in the first and second slots of
p). We will also write ‘Z’ for the n-tuple ‘(x;...x,)’. This is because I write
ordered pairs, triples, and so on with angle brackets: (x,y). However, the world
being the deeply flawed place it is, you will find people using round brackets for
this, and writing the ordered pair of x and y as ‘(z,y)’. I avoid it because this
notation is used for several other things already, but not everybody feels like
me, and you must not panic when you see it notated differently.

e (z,y) might be the open interval {z € R:z < z < y}.
While we are about it [z,y] is (in the same tradition) the closed
interval {z € R : 2 < z < y}, and (z,y] is (in the same tradition)
the half-open interval {z € R: z < z < y}, and [z, y) similarly.

e (z,y) might also be the permutation (sometimes called a transposi-
tion) that swaps = and y and fixes everything else.

e (z,y) is also the Highest Common Factor of z and y.

All this is in small print because mostly you don’t really need it: it’s here only
to put things in context. However when we come to chapter ] you will encounter
the usage (x,y) for the highest common factor of z and y.

3.2.1 Relations

The arity of a function or a relation is the number of arguments it is supposed
to have. It is a significant but generally unremarked fact that one can do most
of mathematics without ever having to consider relations of arity greater than
2. Relations of arity two are binary.

We write R(x,y) to mean that x and y are related by R. Sometimes we write
it as ¢ Ry instead. This is infix notation. Infix notation is universally used with
order relations. We always write ‘¢ < y’ rather than ‘< (z,y)’, though there
is no significance to this fact. I respect this tradition, but I tend not to use
infix notation otherwise. One reason for this is that there is no way of writing
ternary etc relations as infix!

Relations being sets, you can do anything to relations that you can do to
sets: all the boolean operations: union, intersection, set difference and so on.
But there are some extra operations you can do to relations which don’t arise
in this way. Composition and inverse; mere sets do not have composition and
inverse, but sets of ordered pairs do. And just as there are special sets (the
empty set, the universal set) there are also some special relations: one example
is the identity relation. It’s often written ‘Ax’ or ‘1x’ (where X is the intended
domain) or even just ‘1’. For any set X there is also the universal relation on
X, which is X x X. There doesn’t seem to be a standard notation for this
construct. For my part i intend to stick to ‘1’ or ‘1x’ when we need to be clear
that it is X that we are restricting the identity relation to.
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3.2.2 Composition and inverse

x is related to y by R-composed-with-S if there is a z such that z is related
to z by R and z is related to y by S. In symbols, in infix notation

x RoS y<+— (3z)(xRz A 25Y)

So Ro S is the composition of R with S. Often written R - S.
If we don’t want to use infix we can write the biconditional as

T will try to stick to ‘o’ here because I want to go only using ‘-’ for multiplication

of numbers. (Notice that we really do mean ‘3’ not ‘V’: for a woman to be your
aunt it is sufficient for her to be the sibling of even one of your parents; she
doesn’t have to be a sibling of both of them!)

[Miniexercise: How can your aunt be a sibling of both your parents, without
any laws being broken?]

Notice that I haven’t mentioned ordered pairs here, and this definition of
R o S works for relations-in-intension just as well as for relations-in-extension.
In fact it’s probably more natural to think of composition as something one
does to relations-in-intension. Lots of examples here please

EXERCISE 26. Write down a set abstract for the composition Ro S of two
binary relations-in-extension R and S.
IfRCAXxBand ANB =0, what is RoR?
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You might wonder what the composition of two ternary relations is. Don’t:
we won’t need it. But do bear in mind that R o S is not in general the same
as S o R: the sibling of your parent is probably not the parent of your sibling.
Come to think of it, is it legally possible for them to be the same? There’s a

mini exercise!

If RoS = SoR we say that R and S commute. This word ‘commute’ is
probably more usually used of functions:

If (Vz)(f(g(x)) = g(f(x))) we say f and g commute.

(see the end of section )

There is a style of picture which, although you will not explicitly need to
know about it, you may find helpful. For example, when people say that the
following diagram “commutes”

a
A >

B
b \ ¢
D

C —»

they mean that coa =dob.

Ro R is written R?, and similarly R"*! is Ro R™ for all natural numbers n.
Remember that 1 is the identity relation, and R o1 is just R, so one can think
of 1 as R%, which is pleasing. The inverse or converse of R, written ‘R™!", is
{{z,y) : (y,x) € R}. However, do not be misled by this exponential notation
into thinking that Ro R~ is the identity.

(What can you say about R if Ro R is the identity? On this last point see
exercise [38| part (v). If you matched (v) up correctly by a process of elimination
then you will have checked the correctness of your answer independently.)

Do not be confused by the difference between the converse R~! of a relation
R and its complement: (X x X) \ R, the set of ordered pairs not in R. Just to
check, have a quick look at the following

EXERCISE 27.

Is the complement of the converse of R the same as the converse of the
complement?

Is the converse of the converse of R the same as R?

Is the complement of the complement of R the same as R?
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3.2.3 Digraphs and Matrices for Relations-in-Extension

A digraph (short for “directed graph”) is a set of vertices joined by lines that
may have directions on them. So there might be an arrow from a to b and an
arrow from b to a. Normally we do not allow there to be edges from a vertex
back to itself, but in settings where we do allow such edges in digraphs, we call
them “digraphs with loops”.

Have a look at

https://www.dpmms.cam.ac.uk/~tf/cam_only/discrete-trial-101-test.

pdf

It is sometimes convenient to think of a binary relation as a matrix whose
entries are 1 and 0 (proxies for true and false). This has an advantage, namely
that under this scheme the matrix product of the matrices for R and S is the
matrix for RoS. (If you want the entries to be true and false (instead of their
proxies of 1 and 0) you have to take multiplication to be A and addition to be
V (in your definition of matrix multiplication).

If this is the matrix for the relation R C A x B

R by by b3
a1 T T F
a | F F T
as | T F T

and this is the matrix for the relation S C B x C'

S c1 C2 C3

b | T T F
by | T F F
bs | F T F

then we obtain the matrix for R o S by matrix multiplication ...
You might like to fill in the question marks yourself . ..

EXERCISE 28.

ROS‘Cl Cy C3
ay T 7 7

a2
as

However, in principle it is not a good habit to think of binary relations
as matrices in this way, because it forces one to decide on an ordering of the
underlying set (after all, we have to decide on an order in which to write down
the rows and columns) and this choice of an order makes this representation
less general than the picture of binary relations-in-extension as sets of ordered
pairs. (If you look at the table of compatibility between blood groups,
the suggestive distribution of crosses is suggestive only because the columns are
written in the same order as the rows.)

More chat here
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Despite this, it can be useful at times, since it does give a nice picture of
converses: the matrix of inverse/converse R~! of R is the transpose of the matrix
corresponding to R (so a symmetrical relation is one whose matrix is equal to its
own transpose—and this is true however you order the elements of the domain)
and this fact may help you break into this set of ideas.

This possibility of representing binary relations as matrices with values in
{0,1} or in {true, false} serves also to make the point that you must always
be prepared to re-think the data structures that you use in writing programs.
Sometimes you might want to think of relations as matrices, sometimes as di-
graphs, sometimes as God-knows-what. And the same goes for other data struc-
tures too; this trick of trying to think of a object that is prima facie of one data
type as actually belonging to another is essential if you are to exploit all your
algorithms fully. If you can contort your problem into a problem about graphs
then you can use a graph algorithm on it; if you can contort it into a problem
about matrices then you can use a matrix algorithm on it.

Most of the applications of matrices belong in what one might loosely call
‘Continuous Mathematics’ rather than Discrete Mathematics (specifically in
connection with Vector Spaces) and we do not cover Vector Spaces here.

But perhaps the real significance for us of these two possible ways of concep-
tualising relations-in-extension is that the choice between them illustrates very
well what a course like this is for. You may well, Dear Reader, yet have—at some
point in the future—the experience of being paid money to write a computer
system that reasons about, processes, computes with etc, certain real world
phenomena. (In my case it was writing an advanced flight telecommunications
network). Before you even start writing any code you need to get straight how
you are going to conceptualise the objects you are supposed to reason about.
There are these relations-in-extension you are going to compute with. Do you
want to think of them as digraphs? As Boolean matrices? Or (heavan forbid)
something I haven’t yet thought of? You need to be relaxed about all these
possibilities.

3.2.4 Other properties of relations

A relation R is transitive if VaVyVz R(z,y) A R(y,z) — R(x,z) (or, in brief,
R? C R). A relation R is symmetrical if VaVy(R(z,y) +— R(y,z)) or R =
R~'. Beginners often assume that symmetrical relations must be reflexive. They
are wrong, as witness “rhymes with”, “conflicts with”, “can see the whites of
the eyes of”, “is married to”, “is the sibling of” and so on.

A binary relation R is extensional if

(Vo) (Vy)(z = y «— (V2)(R(z, 2) <= R(y, 2)).

Notice that a relation can be extensional without its converse being extensional:
think “square roots”. An extensional relation on a set X corresponds to an
injection from X into P(X), the power set of X. For us the most important
example of an extensional relation will be €, set membership. Two sets with
the same members are the same set.
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A binary relation on a set X is reflexive if it relates every member of X to
itself. (A relation is irreflexive if it is disjoint from the identity relation: note
that irreflexive is not the same as not-reflexive!) That is to say, R is reflexive iﬂm
(Vx € X)({z,z) € R). Notice that this means that reflexivity is not a property
of a relation, but of the structure (X, R) of which the relation is a component.

EXERCISE 29. (%)

Look up ‘monophyletic’. Using only the auzilliary relation “is descended
from” give a definition in first-order logic of what is is for a one-place predicate
of lifeforms (reptile(x), whale(x) ...) to be monophyletic.

EXERCISE 30. Show that, for all R, S and T,

(i) RCS > RoTCSoT;
(i) RCS—-ToRCToS;
(iti))Ro (SUT) = (RoS)U(RoT);
(iv) (RoS)~'=S8"1oR7L

Which of the following are true?

(i) RCS—RtCS;
(ii)) RCS— R 1DS°L;
(iii)R=R"*—1CR.

Finally, it may be worth making the point that not all relations are binary
relations. There is a natural three-place relation of betweenness that relates
points on a line, but this doesn’t concern us much. Of more interest (it lurks in
the background in chapter [4]is the three-place relation of “later than” between
hours on a clock. We cannot take this relation to be binary because if we do,
it will simply turn out to be the universal relation. Every time on the clock is
later than every other time if you wait long enough! However, with a three-place
relation we can say “Starting at 12 o’clock we first reach 3 o’clock and then 6
o’clock” (which is true) and “Starting at 12 o’clock we first reach 6 o’clock and
then 3 o’clock” (which isn’t). Or we can think of it as “starting at « and reading
clockwise we encounter y first and then 2”)

EXERCISE 31. (%)

Consider the clockface below. Write down the graph of the three-place order
relation on the four positions on the face.

I think this is the first place where i have used this standard abbreviation: ‘iff’ means if
and only if’.
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3.2.5 Equivalence relations

An equivalence relation is a relation that is symmetrical, transitive and re-

flexive. There is an important connection with the partitions that we met in
definition [l in section B.1.8

For example, the equivalence relation on the set {a,b,c,d, e} that relates
a,b and c¢ to each other, and relates d and e to each other, corresponds to the
partition {{a, b, c},{d,e}} of {a,b,c,d,e}. The pieces of this partition are called
the equivalence classes of the equivalence relation. Similarly any partition of
a set A gives us an equivalence relation on A. The relation that holds between
two members of A when they belong to the same piece of the partition is an
equivalence relation.

The following picture shows us some things we will want to define and de-
scribe.
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Here we have a picture of a surjection f: A — B, where B = {d, s,t,u,v} and Refer back to definition [ on
A={a,g,i,k,1,m,n,o0,p,q,r b}. The left-to-right arrows in the picture corre- p[9
spond (one-to-one) with the ordered pairs in [the graph of] f. The five things

that look like parachutes falling left-to-right are examples of things often called
fibres. Thus a fibre is a thing in the target (range, codomain, call it what

you like) together with all the arrows that reach it, and the sources of the ar-

rows which can be found bundled into an ellipse on the left. Since the function
going from left-to-right is f we say that these fibres are fibres of f. The set

of (five) ellipses on the left is a partition of A, and each ellipse is a piece (of

that partition). There is an equivalence relation lurking here, and that is the
relation that holds between any two members of A that belong to the same

piece (ellipse). It’s perhaps a wee bit laborious to write out all the ordered pairs

in this relation, co’s there are quite a few of them. How many, exactly? We
don’t seem to have used the letter ‘E’ in this picture, so we can use it to denote

this equivalence relation. (The letter ‘E’ is often used to denote an equivalence
relation.) Finally we say that f is a classifier for FE, by which we mean that

(Vey)(f(x) = f(y) «— E(z,y)).

Thus every surjection gives rise to an equivalence relation FE, and it is a
classifier for E. There are other classifiers for F, since 7w o f is such a classifier
whenever 7 is a permutation of {d, s, ¢, u,v}.
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For example, the function that sends every set to its cardinality [notated
in various ways] is a classifier for the relation of being-in-bijection-with aka
equipollence.

You are not going to be asked any time soon any questions in any exam that
rely on your knowing the words ‘fibre’ or ‘classifier’ but in my experience the
ability to use them properly helps get things clear in your mind.

Just as we often write ‘<’ rather than ‘R’ or ‘S’ when we want to point to a
partial order (and write it as an infix to boot) so we often write ‘~’ rather than
‘R’ or ‘S” when we want to point to an equivalence relation (and write that as
an infix too)

It may be helpful here to introduce some notation:

If ~ C X x X (ie., if ~ is an equivalence relation on X) then ...

We write ‘[z].’ for the equivalence class of z under ~. In curly
bracket notation this is ‘{a’ : 2’ ~ z}".

We write ‘X/ ~” for {[z]~ : € X}, the set of equivalence classes of
members of X. It is sometimes called the quotient of X “over” ~.

X/ ~ is a partition of X, a set of pairwise disjoint subsets of X that collec-
tively exhaust X.

We have seen earlier how there is a correspondence between partitions of a
set and equivalence relations on that set. If Il is a partition of a set X, then
the binary relation that holds between members of X when they belong to thwe
same piece of II is an equivalence direction. For the other direction, if we are
given an equivalence relation ~ on X then we can obtain a partition IT of X
...how? Every x in X belongs to a piece of the partition (the pieces must
cover the whole of X) so ...what else do we find in the piece that contains x?
Everything that is related to x by ~!

It has to be admitted that this takes some getting used to!

If an equivalence relation ~ has n equivalence classes we say that it is “of
index n”

Congruence relations

DEFINITION 2. An equivalence relation ~ is a congruence relation for an
n-ary function f if, whenever x; ~ y; fori <n, then f(z1...zp) ~ f(y1...Yn).

Congruence relations will crop up in other courses too but one particular
example will be important to us here, and it’s one that may be known to you
already. The equivalence relation on natural numbers: “n and m have the
same remainder on division by p” is a congruence relation for addition and for
multiplication. We will deal with this in chapter [4
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If you know any chemistry you probably know the fact that the relation on
isotopes of “having the same number of protons” is a congruence relation for all
of chemistry. (Tho’ you don’t know that fact under that description!) This is
why the name of a chemical element covers lots of different isotopes.

(Well, that’s not entirely true. The difference between the two stable iso-
topes (protium and deuterium) of hydrogen are sufficient to give rise to genuine
differences in chemistry. If you give up drinking H>O and take to drinking D>O
instead it will eventually kill you. Wondering whether or not H and D are dif-
ferent elements is not a totally stupid question, but it’s a question about what
the identity criteria for chemical elements are to be, rather than a substantive
question in the practice of chemistry.)

Blood Groups

Here is another real-life example of a congruence relation. Consider the relation
between humans “It is safe for = to receive a transfusion of blood from y.”
Ignoring for the moment the fact that there are blood-borne diseases such as
HIV, CJD, Hep C and so on, we find that if x can safely receive a transfusion
of blood from g, and y’ belongs to the same blood group as y, then x can safely
receive a transfusion of blood from 3’. That is to say, the equivalence relation
of having-the-same-blood-group is a congruence relation for the binary relation
“r can safely receive a transfusion of blood from g”. In fact this is how blood
groups were discovered.

That way we can think of the relation “x can safely receive a transfusion of
blood from y” as really a relation between the blood groups, and summarise it
in the following matrix.

Columns are donors, rows are recipients.

O- O+ B—- B+ A- A+ AB— AB+
Oo- | X
O+ | X X
B— | X X
B+ | X X X X
A- | X X
A+ | X X X X
AB—- | X X X X
AB+| X X X X X X X X

The blood groups themselves (O-, O+, B-, B+, A-, A+, AB- and AB+) are
the equivalence classes under this equivalence relation.

You may be struck by the pleasing pattern made by the Xs: I certainly was.
It looks a bit like a thing they call a “Sierpifiski triangle” (no: don’t google
it!) What I want you to do is follow the same path I trod when I spotted this
pattern, namely:

I) Does this pattern tell you anything significant about the properties of
this compatibility relation? I'm thinking of reflexivity, transitivity, symmetry,
antisymmetry etc. etc. When you’ve got that sorted out, procede to part II.

Need some exercises
equivalence relations

on



Should cut this back a lot

This section is a jumble of
pieces all stuck together and
needs to be sorted out

Get this reference right

We need to define contrapos-
itive
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IT) We have already seen other ways of representing binary relations. Try
some of them on this data and see if you get any pretty pictures. I tried it and I
got a three-dimensional shape. I want you to find that three-dimensional shape.

IIT) One moral I want to draw from this coursework is that Discrete Math-
ematics and mere thought can be useful in developing profitable hypotheses in
the sciences. You probably know enough biology to know that characters are
inherited by genes, and that we each have two copies of each gene. Each gene
can come in several forms called alleles. Some alleles are dominant in that you
express them even if you have only one copy (brown eyes); some are recessive in
that you express them only if you have two copies (blue eyes, green eyes). The
picture you have developed will suggest to you a hypothesis about how many
genes there are that control your blood group, and how many alleles there are
at each gene, and which are dominant. Formulate this hypothesis.

Do not forget that this is a discrete mathematics question, not a biology
question. There is nothing to be gained—and time to be lost—in surfing the
web for information about blood groups.

Any one subject matter may admit lots of congruence relations, not just
one. The arithmetic of the integers invites us to look at the congruence relation
of + and x of having-the-same-remainder-mod-p, but the identity relation is a
congruence relation for these operations (for all operations, indeed).

3.2.6 Partial orders

Order relations obviously have to be transitive, and they cannot be symmetrical
because then they would not distinguish things, would they? Indeed transitive
relations that are symmetrical are called equivalence relations (as long as they
are reflexive). So how do we capture this failure of symmetry? We start by
noticing that, although an order relation must of course be transitive and cannot
be symmetrical, it is not obvious whether we want it to be reflexive or want it to
be irreflexive. Since orderings represent ways of distinguishing things, they do
not have anything natural to say about whether things are related to themselves
or not. Is x less than itself? Or not? Does it matter which way we jump?
Reflection on your experience with < and < on the various kinds of numbers
you've dealt with (naturals, integers, reals and rationals) will make you feel that
it does not much matter. After all, in some sense < and < contain the same
information about numbers (See exercise . These two ways give rise to
two definitions.

1. A strict partial order is irreflexive, transitive and asymmetrical. (A
relation is asymmetrical if it cannot simultaneously relate = to y and y
to x. This of course implies irreflexivity.)

2. A partial order is reflexive, transitive and ...well it cannot be asym-
metrical because x < . We need to weaken asymmetry to a condition
that says that, if x # y, then not both < y and y < z. This condition,
usually expressed as its contrapositive (Vay)(z <y Ay <z — x =y), is
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antisymmetry and is the third clause in the definition of partial order.

A relation that is reflexive and transitive (antisymmetry not guaranteed) is
a preorder or quasiorder. For example the relation between humans “x can
safely receive blood from donor y” is a preorder. The intersection of a preorder
with its converse is always an equivalence relation. In this case the equivalence
relation is the relation of having-the-same-blood-group.

You absolutely must have these definitions at your fingertips, co’s
these things crop up all the time. Merely knowing where to look
them up isn’t enough.

EXERCISE 32. Are either of the following true?
1. The identity relation is a partial order.
2. The empty relation is a strict partial order.

If R is a partial ordering of a set X, then R\ {(z,z) : x € X} is a strict
partial ordering of X, and if R is a strict partial ordering of a set X, then
RU{(x,x): x € X} is a partial ordering of X. You obtain each from the other
by unioning with the identity relation or substracting the identity relation. Thus
each concept (partial order and strict partial order) can be defined in terms of
the other. There is a scrap of logical slang that comes in handy here: we say
that each can be defined if we take the other as primitive. A primitive is a
concept in terms of which you define other concepts.

This interdefinability of partial orders with the corresponding strict partial
orders is something that you are probably familiar with in an informal way. If
you want to talk about natural numbers it doesn’t much matter whether you
use < or < because of the equivalences

T<NY ¢ T<NY V T=Y

and
T<NY ¢ T<NY A T FY.

This line of thought can help clarify where the definition of antisymmetry comes
from. If you think of <y then it is clear that a strict partial order must be
asymmetrical: (Vz,y)(—(x < y Ay < x)), transitive: (Vzyz)(z <yAy < z. —
x < z) and irreflexive: (Vz)(—(z < x)) [tho’ irreflexivity actually follows from
asymmetry]. The way to understand the definition of antisymmetrical is to ask
yourself: “If i have an asymmetrical relation, and i take the union of it with the
identity relation, what condition-like-asymmetry does the new relation satisfy?”
It can’t be straight-up asymmetry beco’s x is always related to x (co’s we took
the union with the identity relation) but it will say that # cannot be related to
y at the same time as y is related to x unless x = y. And this is antisymmetry.

Total orders are a special kind of partial order. (Do not overinterpret and
assume that partial orders cannot be total!) Again, they come in two flavours:
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1. A strict total order is a strict partial order that satisfies the extra con-
dition (Vzy)(z < yVy < &V = y). Because this condition says there are
no more than three possibilities, it is called trichotomy (from two Greek
words meaning three and to cut as in a-tom, lobo-tomy.)

2. A total order is a partial order with the extra condition (Vzy)(x < yVy <
x). This property is called connexity, and relations bearing it are said
to be connected. (“connected” also has a meaning in graph theory, so
beware)

Thus trichotomy and connexity are related to each other the way antisym-
metry and asymmetry are.

A poset (X, <x) is a set X with a partial ordering <x.

A monotone function from a poset (A, <4) to a poset (B, <p) is
a function f: A — B such that Voy(x <a y — f(x) <p f(y)).

The word ‘monotone’ in mathematics refers to functions f which satisfy condi-
tions like

z<y— f(z) < f(y)

We say such a function is monotone increasing with respect to <. (If instead
f satisfies x <y — f(x) > f(y) we say f is monotone decreasing with respect
to <.) Of course, it may be (as it is in fact the case here) that the partial
order in the antecedent of the condition is not the same partial order as in the
consequent, so ideally we would need a more complex form of words along the
lines of “f is monotone [increasing] with respect to < and <'”. However this
ideal notation is never used, being sacrificed by ellipses to the form of words “f
is monotone [increasing)”.

We use it here because the function F' that takes a set of assumptions A
and returns the set F'(A) of its logical consequences is monotone with respect
to set-inclusion :

ACB— F(A) C F(B).

The definition of a partial ordering as a relation that is transitive, reflexive
and antisymmetrical applies equally well to relations-in-intension and relations
in extension. A partial-order-in-extension is a set of ordered pairs. Generally
relations-in-extension are sets of ordered tuples. But certain kinds of relations
have other representations as extensional objects. We have seen that binary
relations can be pictured as digraphs-with-loops as well as sets of ordered pairs.
But there is more. A total ordering of a (finite) set can be represented as a list
(without repetitions) of all the members of the set. Notice that this is a more
economical representation of a total order than its representation as a set of
ordered pairs: the representation of a total ordering of a finite set X is of length
| X | whereas its representation as a set of ordered pairs has. .. You tell me!

EXERCISE 33. How many ordered pairs are there in a total ordering of a set
with n elements?



3.2. RELATIONS AND FUNCTIONS 63

This trick doesn’t work for an arbitrary partial order that isn’t total. We
can code a partial ordering as the set of its initial or terminal segments—as a
set of sets. Think of the knot of people round an airplane lavatory on a long-
haul flight at dawn. Each person knows only the set of people who were there
before they were. (And it is a set that each knows not a list, co’s they don’t
know what order the people ahead of them arrived). This way of representing
a total order—as a nest of subsets—is sometimes called an ordernesting. (In
fact, if you think of it, you will see that the usual Wiener-Kuratowski pailﬁ is
an ordernesting!). This serves to point the useful moral that many objects of
interest to us can be coded or represented in more than one way. (This point
was made also in connection with the matrix representation of binary relations

in section )

Transitive closure

For any binary relation-in-extension R whatever, the relation RU1 (remember 1
is the identity relation) is a reflexive relation. By now you will have noticed also
that for any binary relation R whatever, the relation RU R™! is a symmetrical
relation. R U1 is the reflexive closure of R, and is sometime written r(R)
to commemorate this fact. Similarly R U R~! is the symmetric closure of R
and written ‘s(R)’ similarly. The work being done by the word ‘closure’ here is
not psychobabble: you should use it to remind yourself that what you are doing
in these two cases is adding to R precisely the ordered pairs needed to make
it reflexive, or symmetric. (Of course you can add more still: the idea here is
to add the minimum necessary). An important feature of this idea is that this
process is deterministic: there is a unique minimal way to add ordered pairs to
R to obtain a reflexive relation, or a symmetric relation. In contrast if you want
to add ordered pairs to a partial order to obtain a total order there is no obvious
right way to do it. If the partial order is indifferent between Tweedledum and
Tweedledee there is nothing about the partial order to tell you what to do.
Whereas if a relation that isn’t transitive relates a to b and b to ¢ then we know
to relate a to ¢ in the transitive closure.
To be formal about it

DEFINITION 3.

e The reflexive closure of a binary relation-in-extension R is the least (with
respect to C) set of ordered pairs that is both a reflexive relation and a
superset of R:

r(R):=({S:RCSAL1CS}
and

o The symmetric closure of a binary relation-in-extension R is the least

8which you may not have met yet. . .
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(with respect to C) set of ordered pairs that is both a symmetric relation
and a superset of R:

s(R):=([{S:RCSAS=5"}
and finally

e The transitive closure of a binary relation-in-extension R is the least (with
respect to C) set of ordered pairs that is both a transitive relation and a
superset of R:

t(R):=(){S: RCSAS*C S}

It occurs to me that it just might be a good idea to check at this juncture that
the intersection of two transitive relations-(in-extension) is another transitive
relation. Here goes:

If R and S are transitive relations, so is RN S.
I take it we are all agreed that if X CY and X’ CY’ then Xo X' CY oY’
Applying this to RNS C Rand RN S C S gives us the two inclusions

(RNS)o(RNS) C RoR CR
(RNS)o(RNS) C SoS CS

whence

(RNS)o(RNS) € RNS

as desired.
| |

Notice that the same argument shows that the intersection of any
number of transitive relations is a transitive relation: i.e., transitivity
is an intersection-closed property of relations.

Relational algebra in this style goes back to Russell and Whitehead (1919).

Symmetric and reflexive closures of relations one can build in one hit, as
above, since they are RU 1 and RU R™! respectively. Transitive closures are a
bit more of a mouthful, which is why we left them until last.

We will show that ¢(R) is in fact U R™; something slightly easier to un-

nelN
derstand.

To do this it will be sufficient to show
1. U R"™ is transitive;
nelN

2. If S is a transitive relation O R then U R™CS.
nelN
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For (1) we need to show that if (x,y) and (y, z) are both in U R"™ then
nelN
(x,2) € U R™. TIf (z,y) € U R" then (z,y) € RF for some k, and if (y,2) €
nelN nelN
U R™ then (y, z) € R’ for some j. Then (z,z) € RITF C U R".
n€IN neIN

For (2) let S D R be a transitive relation. So R C .S. We prove by induction
on IN that for all n € IN, R™ C S. Suppose R™ C S. Then

R = R"oR C@ SoR Cc® §08 C@ g.

Inclusions (a) and (b) hold because o is monotone: if X CY then XoZ CYoZ.
Inclusion (¢) holds because S is transitive. (See the first two parts of exercise

)

A picture that might help

Several levels:

At the bottom level we have objects: things that have properties.
These might be numbers, sets, people, tadpoles, booleans . ..

Then, sitting above them, we have the properties that those things
might have, and the relations that might hold between them. Being
even, being-divisible-by, being green, being a parent-of, and so on.

Above them are the properties those relations (and properties) and
operations have: being transitive, symmetrical, reflexive .... And
operations on those relations: converse, transitive closure etc.

Above them are properties of properties of properties of things:
intersection-closed ... F() is an intersection-closed property of re-
lations if an intersection of any number of relations that have prop-
erty F' also has property F. Transitivity is an intersection-closed
property of a relation, because an arbitary intersection of transitive
relations is a transitive relation.

display properly the defini-
tioin of intersection-closed
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intersection-closed

transitive, symmetric . ..

green, square, parent

numbers, sets, tadpoles

Hasse diagrams

12

1

The poset of the factors of 12 under divisibility - a Hasse diagram

The digraph picture gives rise to Hasse diagrams.

He’s German, pronounced ‘Husser’ (unless you are from North of the river
Trent!) And it’s definitely two syllables not one. German ‘Hass’ with one
syllable means hatred.

When drawing a digraph of a transitive relation R [at least on a finite set—
let’s not worry about Hasse diagrams for infinite relations!] one can safely leave
out a lot of arrows and still display the same information: all one has to draw
is the arrows for a relation whose transitive closure is R. One could restore all
the missing arrows (should one wish to) because transitivity tells one where to
put them in. Thus the relation represented by a lot of dots joined by arrows is
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the relation “I can get from x to y by following the arrows”.

To be slightly more formal about it one can say that one obtains the Hasse
diagram for a transitive relation R by first drawing a digraph with one directed
edge for each pair in R. One then leaves out the loops at each vertex and—
further—whenever one has both an edge from a to b and an edge from b to ¢
one can delete the edge from a to ¢. The result is a digraph picture of a relation
whose transitive closure in R. Thus it comes to pass that if R is a partial order
on a finite set then there is a minimal relation whose transitive closure is R.
For each x in the domain of R put an edge from z to each of its immediate
successors—but put in no other edges! (This will even work for IN...one can
draw a Hasse diagram for IN—yes i know i said we wouldn’t consider infinite
relationsl—but not for Q.)

In fact we can even leave out the heads on the arrows (so we draw in edges
rather than arrows) by adopting the convention that the end of the edge on
which the arrowhead belongs is the end that is further up the page. The result
of doing this is the Hasse diagram of that transitive relation. [one effect of this
is that no Hasse diagram ever has a horizontal line anywhere!] The appeal of
Hasse diagrams relies on and to some extent reinforces an unspoken (and false!)
assumption that every partial order can be embedded somehow in the plane.
Related to this is the weaker (but nevertheless still nontrivial) assumption that
all total orders can be embedded in the real line, as instance, the image of
Justice, blindfolded with a pair of weighing scales.

Although this is clearly a false assumption that might perhaps push our
intuitions in wrong directions, it is not such a crazy idea in computer science,
where linearity of time and of machine addresses compel us to assume that all
partial orders can be refined to total orders. Any representation of a set in the
bowels of a computer must always be as a list!

Chains

The restriction of a relation R to a carrier set X (which is RN X", where n
is the arity of R) is denoted by ‘R [X’. (We saw restrictions of functions on
page restrictions of relations is a natural generalisation.) A chain in a poset
(X, <x), is a total ordering (X', <x]X’), where X' C X. In words: a chain in
a poset is a subset totally ordered by the restriction of the order relation. An
antichain in a poset is a subset of the carrier set such that the restriction of
the order relation to it is the identity relation.

“carrier set”
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The subset {A, B,G, H} (in green, equipped with the obvious restriction of
the partial order) is a chain, as is {4, C, E, H} similarly equipped. {B,C, D} is
Dilworth’s theorem? an antichain.

3.2.7 Products of orders

There is a general notion of product of structures, and you may well need to
learn it eventually. However for the moment we will restrict ourselves to the
ordered pair notation for case of most immediate interest: the products of two partial orderings.
structures If (X,<x) and (Y,<y) are two partial orders, then we can define par-
tial orders on X X Y in several ways. The product defined above is called
Ollie Black tells me i should the pointwise product. In the lexicographic order of the product we set
say more about pointwise (x,y) <jer (¢/,y) if 2z <x 2’ or z = 2’ and y <y y’. Although straightforward
product here examples of lexicographic products are scarce, there are a number of combina-
torial devices that have the flavour of a lexicographic product. The intuition
behind lexicographic product is that you are trying to order things by looking
at the values they take under certain parameters, and that some parameters are
more important than others for this purpose. The expression ‘tie-breaker’ can
be helpfully evocative here. You are trying to choose between two things on the
basis of the values they get with respect to some parameter. If two things get
the same value, what do you do? You look at their value under some other (less
important!) parameter. For example: the Olympic league table: one grades
nations in the first instance by the number of gold medals their athletes have
won, then by the number of silvers and only if these fail to discriminate between
them does one count the number of bronzes. To be a bit more formal about it:
we associate to each country an ordered triple (g, s,b) and we then order these
triples lexicographically. We then copy the ordering on the triples back to the
countries.

Other examples include the devices used to determine which team goes for-
ward from a qualifying group in world cup football. Prima facie this should be
the team with the largest number of points, but if two teams have the same
number of points, one looks at the number of goals the two teams have scored,
and so on, examining the values the two teams take under a sequence of pa-
rameters of dwindling importance until we find one with respect to which they
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differ. In cricket the analysis of a bowler who takes x wickets while conceding
y runs is preferred to that of a bowler who takes x’ wickets while conceding 7/’
runs as long as x > x’ or z = 2’ Ay < 3y'. However, in none of these naturally
occurring cases is one ordering tuples of things: rather, one is trying to order
things by combining in various ways various preorders of the things. However,
the underlying intuition is the same.

Notice that the lexicographic product is a superset of the pointwise product.
If we have two partial orders with the same carrier set and (the graph of, or
extension of) one is a superset of (the graph of, or extension of) the other, we
say the first extends or refines the second.

A total or linear order is one that has no proper refinement (Can’t add any
ordered pairs to obtain a partial ordering of the same domain).

The colex ordering of X x Y orders pairs according to last difference. The
colex ordering too is a superset (extension, refinement) of the pointwise product
ordering.

EXERCISE 34. Check that the pointwise product ordering is the intersection
of the lexicographic ordering and the colex ordering.

One naturally tends to think of preorders as preference orders, as the pre-
orders in the illustrations above of course are. Although naturally not all pre-
orders are preference orders, thinking of them as preference orders enables us to
motivate the distinction between the pointwise product of P x Q of two prefer-
ence orderings P and Q (which corresponds to impartiality between parameters
P and Q) and the lexicographic product (according to which any increase in
P is more important than any increase in Q). Naturally occurring preference
orderings on products of posets tend to be complicated. Lexicographic products
are extremely unlikely to represent your views on baskets of apples and oranges
because even if you prefer apples to oranges, you would be unlikely to prefer
any increase (however small) in the number of apples you are offered to any
increase (however large) in the number of oranges—unless, that is, you had no
use for oranges in the first place. And in those circumstances you would hardly
bother to express a preference for an-apple-and-two-oranges over an-apple-and-
one-orange. (You would probably describe your tastes by giving apples more
utility. Interesting stuff no doubt, but no concern of us in first-year Discrete
Mathematics.)

On the other hand, your preference ordering is likely nevertheless to be
finer than the pointwise product ordering: according to the pointwise product
ordering, you would be unable to decide between a single orange-with-a-pound-
of-apples and two-oranges-with-one-apple. You would have to be very blasé
indeed not to prefer the first. After all, to a certain extent apples and oranges
are interchangeable: realistic product (preference) orders refine the product
order but are typically not as refined as a lexicographic order. (We must not
get too deeply into utility theory!) Note merely that it is a sensible motivation
for the study of orderings and products of orderings.

But before leaving preference orderings altogether the reader should notice
at least that preference orders have a rather odd feature not shared by partial

carrier set?
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orders in general. A £ B £ A and B > C does not imply A > C', though one
expects it to if the ordering is a preference ordering. This makes a nice exercise.

EXERCISE 35. Are the two following conditions on partial orders equivalent?

Veyz)(z<axLyLz—z<y),
Vayz)(z>ax Ly Lx—z>y).

(This exercise uses four common conventions that it takes a logician to spell
out.

(i) When ‘<’ and <’ appear in the same formula they denote a partial
ordering and its strict part, respectively;

(ii) The relations < and > are converses of each other;

(iil) that ‘@ < y < 2’ is short for ‘(x < y) A (y < 2)’;

(iv) putting a slash through a symbol (as in “£”) negates it.)

EXERCISE 36. Define x Ry on natural numbers by x Ry iff ¢ <y + 1.
What are the following relations?ﬂ

(1) RNR™L;
(2) R\ R™;
(8) The transitive closure of the relation in (1);
(4) The transitive closure of the relation in (2).

Pareto

Given a subset X C (P x @), the points in X that are maximal in the pointwise
product P X, Q are called “Pareto-efficient points” (of X) by economists.
They are sometimes called “Pareto-optimal” because if X is the set of points
that are in some sense accessible, or possible, or something of that nature,
then a Pareto-efficient point in X is one that, once one has reached it, one
cannot find another point in X that makes one of the coordinates better without
simultaneously making another one worse. Pareto was an Italian economist.
Natural illustrations are defective in the way that we have seen that natural
illustrations of lexicographic products are defective, but they might still help.
Here are some.

(i) The critical point of a substance is that temperature and pressure at
which the difference between liquid and gas disappears. When the substance is
at a higher temperature and higher pressure than this it is said to be supercrit-
ical. Methane is the compound most easily put into a supercritical state: all
other compounds require either a more extreme temperature or a more extreme
pressure or both. Methane is a Pareto-efficient point.

(ii) Each of the isotopes in the table below is a Pareto-efficient point if you
plot atomic weight against half-life. For each of these isotopes it is the case that
every heavier isotope has shorter half-life, and everything with a longer half-life
has lower atomic weight.

9The structure (IN, R) is known to students of modal logic as the Recession Frame.
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Isotope  Half-life (years)
PH208 ;

Bi2%? 4 x 10;

Th?32 1.405 x 1010,
U238 4.468 x 10°;
P24 8.08 x 107;
Cm?*  1.56 x 107.

Pareto-Optimal Isotopes

(Why is U?3% not in this list?)

EXERCISE 37. Go to
http: //nucleardata. nuclear. lu. se/nucleardata/tot/perchart. htm

to see if you can find a Pareto-optimal isotope with greater atomic weight than
Cm?47.

(iii) No portrait survives of the mathematician Green—after whom Green
Street in Cambridge is named, and who invented Green functions. There are
more famous people than Green of whom no portrait survives, but they are all
of them more recent. There are more recent people than Green of whom no
portrait survives, but they are all of them less famous than he is.

(iv) Robert Browning is buried in Westminster Abbey. This prompted Henry
James to observe that “A good many oddities and a good many great writers
have been entombed in the Abbey; but none of the odd ones have been so great
and none of the great ones so odd.”

(v) The airport at Christchurch in New Zealand is Pareto-efficient with re-
spect to size and southerlyness. There are airports to the south of it, but they
are all smaller. There are larger airports, but they are all north of Christchurch.

However, we will not develop these ideas here, as they find their most natural
expression in connection with convex optimisation rather than logic. We touch
briefly on convex optimisation in chapter

Once one has explained Pareto-efficiency one can make the point that if
the values taken by your parameters are infinitely divisible then you can have
infinitely many pareto-efficient points. If they are discrete (like IN) then you
can’t. A sleeper for WQO theory. Don’t ask. No, really.

EXERCISE 38. Match up the properties in the left column with those in the
right.

(i) R* C R; (a) R is symmetrical
(ii) RO R~ =0; (b) R is antisymmetric
(iii) ROR™1 =1; (c) R is asymmetrical
(iv) R=R™; (d) R is a permutation
(v) RoR™! =1; (e) R is connected

(vi) RUR™' =U; (f) R is transitive


http://nucleardata.nuclear.lu.se/nucleardata/toi/perchart.htm
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3.2.8 Functions

(One should start a section on functions by defining injective and surjective, but
i'm guessing you know those expressions already. You can always ask Wikipae-
dia, which knows everything. I might supply some definitions later, if only for
the sake of completeness)

The annoying feature of reflexivity we saw on page [5]—that you cannot
tell by looking at the graph of a relation whether it is reflexive or not, because
you need to know the intended domain—(which irreflexivity does not share)
is also exhibited by surjectivity, which is a property not of a function but a
function-with-a-range. A function is surjective if every element of the range is a
value. Totality likewise is a property of a function-and-an-intended-domain. A
function f on a set X is total if it is defined for every argument in X. Normally
we will assume that our functions are total unless the possibility of their being
partial is explicitly flagged. (This is not so in all CS cultures. For example
in the theory of computable functions it is always assumed—unless the word

rewrite this para ‘total” is there in black and white—that our functions need not be total.)

Some mathematical cultures make this explicit, saying that a function is an
ordered triple of domain, range and a set of ordered pairs. This notation has
the advantage of clarity, but it has not yet won the day.

In contrast, injectivity of a function-in-extension is a property solely of the
function-in-extension and not of the intended domain or range. A function
is injective iff it never sends distinct arguments to the same value. You can
tell whether or not a function-in-extension is injective simply by examining the
ordered pairs within it. No such examination can ever tell you whether or not
it is surjective: you have to know additionally what the intended range of the
function is.

Functions of more than one variable are usually written in the style ‘ f(z1 ... z,)’
but some functions (such as + and x) traditionally are written in the infix style
that we saw earlier (page .

The properties of associativity, commutativity and distributivity that I am
about to explain seem always to be stated for functions that are written in infix
notation—like + and x on numbers (of all kinds). You know the equations

(Vz)(Vy)(z +y =y +x)
(Vo) (Vy)(z x y =y x z).
Those said that multiplication and addition are commutative. These two:
(Vz)(Vy)(V2)(z + (y + 2) = (z +y) + 2)
(Vz)(Vy)(V2)(z x (y x 2) = (z X y) X 2)

say that multiplication and addition are associative. Finally

(V) (Vy) (Vz)(z X (y + 2) = (z X y) + (z x 2)))
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says that multiplication distributes over addition. Observe that A distributes
over V.

An operation * is said to be idempotent if

(Vo) (zxz =)

A and V are idempotent operations on propositions. 4+ and x are not idem-
potent on numbers (of any kind). HCF is idempotent, though we will not make
much use of this fact.

Be aware that there is another use of this word ‘idempotent’. We also say
that a function f is idempotent if f(f(z)) = f(x) for all . Constant functions
are the most straightforward example of idempotent functions. Other impor-
tant examples are the operations of transitive closure, of symmetric closure and
reflexive closure all of which are idempotent, and which we saw in section [3.2.6
The word ‘closure’ is the clue here. In all these cases you are doing something
(adding ordered pairs as it happens) until some condition is satisfied. And once
it’s satisfied ... well, it’s satisfied.

We now need the concept of a unit for a binary operation. Notice that—for
example, the following hold for natural numbers, reals etc:

(Vz)(x -1 =2) and (Va)(z + 0 = z).

We express this by saying that 1 is a unit for multiplication (a “multiplicative
unit”) and 0 is a unit for addition (an “additive unit”). In general a constant
c is a unit for a commutative operation * if (Vz)(z * ¢ = ). For example (),
the empty set, is a unit for U: (Vz)(z U@ = z), and V, the universal set, is a
unit for N. The propositional constants true and false are units for A and V
respectively.

Along with units come inverses—sometimes! 0 is a unit for +, and —z is
the additive inverse of x, in the sense that z + (—z) = 0. Similarly 1/x is the
multiplicative inverse of x (unless x = 0!). In general we say that f(x) is the
inverse of = from the point of view of x if (Vz)(x * f(z) = ¢). (Remember that
¢ was the unit for *.) Sometimes but not always. Notice that U and N do not
have inverse functions: there is no function f such that (Vz)(zU f(z) = 0). And
A and V do not have inverses either.

If the binary relation on widgets has nice properties it can be extended to
a binary relations on datatypes constructed out of widgets:

e A binary operation on widgets that is associative can be naturally ex-
tended to a function widget-list -> widget.

e If the function is also commutative then it can be naturally extended to
a function from multisets-of-widgets to widgets.

e If it is (associative and) commutative and also idempotent then it can be
naturally extended to a function from sets-of-widgets to widgets, as in
the illustrations below.
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For example both addition and multiplication of numbers are associative and
commutative (but not idempotent) so

e You can add two numbers together to get a number, so you can add
together all the numbers in a (multi)-set X of numbers to get a number.

e You can multiply together all the numbers in a multiset of numbers. (We
write the sum of all numbers in X as ‘XX’ and the product as ‘T1X".)

e The operations N and U are associative, commutative and idempotent, so
you can form (X and |J X if X is a set of sets.

e The operations A and V are associative commutative and idempotent, so
you can form the compound propositions /A P and \/ P when P is a set of
propositions.

This raises an obvious question, or family of questions.

What happens if we apply X or Il to the empty set of numbers?
What happens if we apply \/ or A to the empty set of propositions?
What happens if we apply (] or |J to the empty set of sets?

It’s not hard to see that, for all these questions, the answer must be the unit
for the operation in question: \/ ) = false, A0 = true, X0 = 0 and 1)) = 1,
U® = 0 and @ = V. The correctness of these last two equalities can be
checked by literal-mindedly unravelling the set abstracts.

Y (X U{y}) is obviously 2(X) +y. So (@) had better be 0.
II(X U{y}) is obviously II(X) - y. So II(P) had better be 1.

If you are still not convinced, consider the situation where you are trying to
calculate the sum of the first n elements of a list. At each stage you append an
element to the list of things you have added up. Initially you have added up no
items. And what is the sum? Clearly it must be 0. Now think about taking the
product of a list of terms. Again, you start with the empty list. What is the
product of the empty list of terms? Clearly it must be 1.

This matters, and for two reasons. The first is that by forcing yourself to
think about what happens when you do these operations to the empty set you
will make progress on the issues discussed in section 2.5.1] The second is that
at least one of these facts—mnamely the fact that the disjunction of the empty
set of propositions is the false—has genuine computational significance (in
connection with resolution which you may encounter later when you do more
Logid™).

What follows now is a worked example. The exercise is to show that re-
lational composition is associative. I am writing it out in some considerable
detail because altho’ the result is pretty obvious it’s not at all clear to first year
students what a proof must look like.

10Cambridge CS students: you will encounter resolution in Ib Logic and Proof
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We write ‘z Ty’ for “z is related to y by T”. We saw how to define compo-
sition of relations around p [51] and we recap:

x(ToS)yiff (F2)(xTzNzSy)
We will show that Ro (SoT) = (RoS)oT.

That is to say, for all z and y, t Ro (SoT)y iff x (RoS)o Ty
(T am using capital Roman letters both as relation symbols and as variables
in an algebra.)

Now, by definition of relational composition,
xRo(SoT)y

(Fz)(xRzANz(SoT)y)

and expand the second ‘o’ to get
(F2)(zRzA (Fw)(zSw AwTy))

We can pull the quantifiers to the front because—at least as long as ‘u’ is
not free in A—*(Ju)(AA¢(u)) is the same as ‘AA (Ju)p(u)’. (You haven'’t seen
a proof of this but we assume that you can see that it’s true.)

This gives us

(F)(Fw)(z Rz A (zSw ANwTy)))

and
(F2)Fw)(x Rz A (zSwAwTy))

and we can certainly permute the two quantifiers ‘Jz’ and ‘Jw’ getting
(Fw)(3z)(x Rz A (zSwAwTy)).

We can permute the brackets in the matrix of the formula because ‘A’ is asso- ‘matrix’?
ciative getting
(Fw)3z)((x Rz AzSw) AwTy).

We can import the existential quantifier again getting
Fw)((3z)(x Rz A zSw) AN wTy)
and reverse the first few steps by using the definition of o to get
(Fw)(x(Ro S)w AN wTy)

and
x(RoS)oTy

as desired.
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\begin{grumble} This is an old example sheet question. However, the more
I think about it the odder it seems. Is this a proof? Is there really no more
to the associativity of o than the fact that A is associative? The proof above
is certainly correct, but does it enlighten? What did the person who set this
question expect by way of an answer? Did they think about it at all? I bet they
didn’t ...I think what happened is that the author thought it was a trivial fact
which should accordingly be given to beginners to chew over—perhaps as part
of a rite of passage. The pictures one draws of circles with dots inside them that
are joined to dots in adjacent circles by lines corresponding to ordered pairs in
S and T looks like the kind of notation that conceals a logical truth. Or is the
associativity of relational composition something even more banal than a logical
truth? Is it actually a good thing to have a notation that conceals it??

This example serves to remind me of how important it is for researchers to
do some teaching. There are some things about your subject that you won’t
really understand properly until you have to think about how to explain them.
The above is a case in point.

\end{grumble}

Indicator functions

Each set A has an indicator or characteristic function, written I4 or x4 (‘x’is
the first letter of the Greek word whence we obtained our word ‘characteristic’).
This is the function that, on being given an object, returns true if the object
is in A and false otherwise. In lambda notation it is:

Ax. if x € A then true else false.

Characteristic functions make it slightly easier (very slightly!) to explain
why a set with n members has 2™ subsets. To notate the same fact a different
way, using the vertical bars and the curly P we have just learned, |P(X)| = 211,
Indicator functions make it clear that |P(X)| = |X — {0,1}].

You will need to know about them for a variety of reasons, for example
in section [3.3.5] They will also crop up in second year computation theory,
where they are invariably called characteristic functions rather than indicator
functions. Yet another example of diverse cultures being interested in the same
material.

Inverses of functions

If f: A— B is a function from A to B, and g : B — A is a function such
that (Va € A)(go f(a) = a) we say that g is a right inverse of f. If (Vb €
B)(f o g(b) =b) we say that f is a left inverse of g.

Warning: this is a completely different use of the word ‘inverse’ from the one
in play when we were talking about additive and multiplicative inverse earlier.

While on the subject of functions, a last notational point. In most math-
ematical usage the terminology ‘f(z)’ is overloaded: it can denote either the
value that the function f allocates to the argument x or the set of values that
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f gives to the arguments in the set z. Normally this overloading does not cause
any confusion, because typically it is clear from the context which is meant.
f(m) is clearly a number and f(IR) a set of numbers. The give-away here is in
the style of letter used for the argument. The font reveals to the user the ADT
of the things the variable ranges over. As you can probably guess by now, I am
a purist who doesn’t like relying on contextual cues in this way, it prolongs our
bad habit of fault-tolerant pattern-matching, and it can be avoided—because
there is a notation that disambiguates these two styles of functional application
without using information about the variable. f“z is the set of values that f
allocates to the arguments in the set x:

“v={f(y):y€x}

and f(z) will continuﬂ to be the value that f assigns to the argument z. This
double apostrophe notation is used for relations as well: R“X is

{y: Gr € X)(R(y,2))}-

This is why it’s OK to write ‘f~1“X" for {y : f(y) € X} even though f~! might
not be a function. Some people write z.R for R“{x}. My first thought is that
they should be shot, but there are excuse:

For us the commonest use of this notation is in settings like “ f“X C X 7,
which says that x is closed under f. Of course we can talk about sets being
closed under n-ary functions with n > 1, and if f is an n-ary function (“a
function of n variables”), then g“(X™) C X says that X is closed under g.

We have to use this move-to-the left trick to have a sensible notation for
A x B as a set abstract. The usual answer is

AxB:={(z,y):x € ANy € B}

although both
{u: (3 € A)(Fy € B)(u=(z,9))}

and
{u: fst(u) € A Asnd(u) € B}

are of course correct too.

3.2.9 Some Exercises

In the following questions assume the carrier set is a fixed set X, let 1x be the
identity relation restricted to X and let U be the universal (binary) relation on
X, namely, X x X. The relations here are all relations-in-extension.

1You need to be warned that the ambiguous use of the “f(A)” notation to mean both f(A)
and f“A is widespread and you should expect to see it. Whether or not you propose to use it
yourself is a matter between you and your conscience; i shall not pry.

12Not many, and certainly no good one. The root of the problem is that these ideas get
used by lots of different communities each of which would rather reinvent the wheel than read
a textbook written by a different community. It’s all very annoying for the student.

work these last two para-
graphs in carefully. “move
to the left” is a hangover
from when this material was
placed earlier
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EXERBISE 3%ntisymmetric? Asymmetric?

(b) Is R XOR R~ symmetrical? Antisymmetric? Asymmetric?
(¢) Is the composition of two symmetrical relations symmetrical?
(d) Is the composition of two transitive relations transitive?

(e) Is the converse of a symmetrical relation symmetrical?

(f) Is the converse of a transitive relation transitive?

EXERCISE 40. Can there be a function f: X — X whose graph is
(i) a reflexive relation? or
(i) a transitive relation? or
(iti) a symmetrical relation?

EXERCISE 41. How many binary relations are there on a set of size n?

How many of them are (a) reflexive? (b) fuzzies? (c) symmetrical? (d)
antisymmetric? (e) total orders? (f) trichotomous? (g) antisymmetric and
trichotomous? (h) extensional? (i) partial orders? Do not answer part (i); (7)
strict partial orders? Do not answer part (j); (k) permutations? (1) Circular
orders (as in exercise|31|)?

Without actually calculating the answers to (c), (d), (f), (9), (j) or (i) ...

(m) Explain why are the answers to (d) and (f) are the same;

(n) Ezplain why are the answers to (g) and (c) are the same;

(o) Ezplain why are the answers to (j) and (i) are the same.

EXERCISE 42.
If I give you a set of ordered pairs and tell you it is (A x B) U (B x A) can you
tell what A and B were?

This question is not particularly hard, but it might be a good idea to write
out a very rigorous answer, even if only just to check that you are in complete
control of the notation.

EXERCISE 43. Let us assume the following:

The enemy of my enemy is my friend
The friend of my enemy is my enemy
The enemy of my friend is my enemy.
The friend of my friend is my friend.

You might like to express these observations in first-order logic, using binary
relation symbols like F(, ) and E( , ).

1. If you have an enemy must you have a friend? If you have a friend are
you friends with yourself?

2. Can you infer from the foregoing that two things cannot be simultaneously
friends and enemies? Prove or find a countermodel.

8. Explain “congruence relation for ....”7 Assume ‘friend-of’ to be reflexive,
so it is an equivalence relation. Think about the equivalence-classes-under-
friendship. Let’s also assume that—the expression “he’s his own worst
enemy” notwithstanding— ‘enemy-of ’ is irreflexive.
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(i) How does ‘enemy-of’ “lift” to these equivalence classes? Is
‘friend-of ” a congruence relation for ‘enemy-of’?

(i1) How many equivalence classes can an equivalence class be
hostile to?

(iii) Explain how your answer to (i) partitions the domain.

4. Clearly ‘enemy-of’ is not transitive, but it does have a property that is
rather like transitivity. Can you describe this feature exactly, and state it
for a binary relation R in the style in which you know how to state that
R is transitive? Look at the footnote if you need a hinﬂ but try hard to
do it without.

5. Does the feature (analogous to transitivity) from the previous part admit a
notion of closure analogous to transitive closure, symmetric closure, etc.?

3.3 Cardinals

We will say that two sets have the same cardinality (= number of elements)
if and only if (“iff”) there is a bijection between them. We take this as the
definition of cardinality. Cardinality is what two sets have in common iff there
is a bijection between them.

Why do we use the fancy word ‘cardinal’ instead of ‘number’? (I'm not
doing it just to be difficult). There are different sorts of number (something
that probably was never spelled out properly to you when you were little) and
emphatically not all numbers are cardinals. There are all sorts of questions to
which the answer is a number. For example:

(1) How many apples have you got in that basket?

(2) How much money have you got in your bank account?

(3) What is your resting pulse rate?

(4) What is your diastolic blood pressure?

(5) How long is the hypotenuse of a right-angled isoceles triangle whose
other sides are of length 17

The answer to (1) is a cardinal number. The answer to “How many ...?” is

always a cardinal—even if it’s infinite: that’s what cardinals are. The answer
to (2) is an integer. (An integer number of pennies: it might be negative!) We
write the set of integers as Z. The answer to (3) and (4) are real numbers,
probably given to single precision. There are purists (and I am one of them)
who insist that the complex number 1, the real number 1, the cardinal number
1 and the integer 1 are all in some sense different objects. You might not be
a purist, but you’d better learn how purists think, for this distinction between
(for example) the real number 1 and the cardinal number 1 is made by plenty
of modern programming languages.

13 A binary relation R is transitive iff R? C R.
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(I've left complex numbers out of this discussion not because they aren’t
important—they’re extremely important—but because they are part of con-
tinuous mathematics not discrete mathematics.)

Rationals are so called because they are ratios, and in fact not just any ratios
but ratios of integers. They are answers to questions of the kind “How much
bigger/nicer /higher is A than B?” (at least if niceness, size etc is measured by
an integer!). We write the set of rationals as Q.

Real numbers measure lengths of line segments, or areas, volumes; that sort
of thing. You buy potatoes by real numbers not by cardinal number. Avocados
you buy by cardinal number. (You buy potatoes by the kilo whereas avocados
are so much each.) We write the set of reals as IR.

The Greeks discovered early on that not every real number is a ratio; specif-
ically they showed quite early on that v/2 is not rational. (You will have heard
of e and 7 and they aren’t rationals either. But proving that is harder than
proving than v/2 is irrationall)

THEOREM 1. v/2 is not a rational.

We first assume that it can be expressed as a rational number (the opposite
of what we believe), therefore:

V2=a/b (3.14)

with a and b reduced to their lowest terms (no common factors)
We now square both sides of the equation to get:

2 =a’/b? (3.15)
We now multiply both sides by b? to get:

202 = a? (3.16)

From this we can see that a? must be an even number because it is equal to
something multiplied by 2, and an even number multiplied by 2 is still even, as
is an odd number multiplied by 2. Indeed: «a is even since the square of an odd
number is odd.

Even numbers are divisible by 2 so a = 2 - ¢, for some other natural number
c. Therefore a? = 4c?, and we can substitute 4c? for a? in[3.16)) to get:

202 = 4c? (3.17)

The two sides of [3.I7 have 2 as a common factor so we can divide through
by 2:

b? = 2c2 (3.18)

But using the same deduction for b as we used for a in equation in we
can show that b is even, too!
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And this is our contradiction: if @ and b are both even then they share at
least one common factor (namely 2), but we said that a/b had been simplified so
that a and b had no common factors). This means that our original assumption
must be wrong, and that the square root of 2 cannot be expressed as a ratio of
two whole numbers.

|

Just to check that you understand this proof, do a similar proof that v/3 is
irrational.

There are other kinds of numbers that we haven’t seen yet. Ordinals and
integers mod p. Quaternions. You definitely do not need to know about quater-
nions, and you definitely do need to know about integers mod p. You may
manage to get away without knowing about ordinals for quite a long while yet.

There are now some trivial observations we can make about cardinality. The
relation “X and Y have the same cardinality” is an equivalence relation. Most
textbooks leave this as an exercise but in my experience this is something that
needs to be aired.

1. Transitivity. If X and Y have the same cardinal it is because there is
a bijection between them, say f : X — Y. Similarly if Y and Z have
the same cardinal it is because there is a bijection between them, say
g:Y — Z. But then go f : X — Z is a bijection between X and Z.

2. Symmetry. If X and Y have the same cardinal it is because there is a
bijection between them, say f : X — Y. But then f~' : ¥ — X is a
bijection in virtue of which Y has the same cardinal as X.

3. Reflexivity. The identity map X — X certifies that X is the same size as
X.

Notice that all we have defined is what it is for two sets to have-the-same-
cardinality; we haven’t said what cardinalities are. And what’s more, we won’t!
And it doesn’t matter! All you need to know about cardinality is that two sets
have the same cardinal iff there is a bijection between them.

I think you can safely assume that the words ‘cardinal” and ‘cardinality’ are
Synonymous.

So what are cardinals? You probably never worried about what the number
1 was, since all the things you wanted to do with it or to it you could do
without worrying about what it actually was. Perhaps you are expecting—now
that you are doing rather more proper maths than hitherto—that you have to
start worrying about these things. Interestingly you don’t. You can think of
cardinals as equivalence classes of sets under the equivalence relation of having-
the-same-cardinal if you want to; but you don’t have to. It’s not a good idea
to start worrying about what cardinals are, it can do your head in. Incredibly,
there is a community of people who worry about whether or not the number 1

Must establish that a compo-
sition of two injections is an
injection, and of two surjec-
tions is a surjection
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might be Julius Caesar. (I'm not making this up.) You don’t want to end up
like therm™]

Not all cardinals are finite

Remember, all sets have cardinals, and not all sets are finite, so not all cardinals
are finite. The finite cardinals are the natural numbers, IN, but we have to
remember that there are other cardinals as well. Some sets are infinite (IN is an
infinite set) and some of these sets are of concern to you as computer scientists.
You’ve never had to think about infinite sets before and all your reasoning about
sets has relied on the tacit assumption that all sets are finite. If some of what
follows in the coming sections seems too obvious to be worth stating, it may be
that you are still making the tacit assumption that all sets are finite.

There are infinite cardinals: that was the surprise of this section. But there
are no infinite reals, rationals or complexes, I can promise you that! (There are
infinite ordinals, and they will matter, but we are not going to deal with them
here)

The Order Relation on Cardinals

We can define a partial order on cardinals. We write ‘| X| < |Y|” to mean that
there is an injection from a set of size | X| (as it might be, X!) into a set of size
|Y| (as it might be, Y! It won’t make any difference which sets of size | X| or
|Y| you choose).

Did I say ‘partial order’? Obvious that it’s transitive and reflexive. (Look
back at the demonstration on page that the relation of “having the same
cardinal” is an equivalence relation). How about antisymmetrical? You are
tempted to say that if there is an injection from A into B and an injection from
B into A then both injections must actually be surjections, so we are done.
(Beware! Merely finding an injection A — B that is not a surjection does NOT
show that |A| < |B|.) This argument certainly works if A and B are finite sets,
and at this stage your intuition probably doesn’t work freely with infinite sets
so finite sets are likely to be the only kind you consider, so you think that it’s
obvious that < is antisymmetrical. But actually it isn’t obvious at all. Let me
illustrate. Consider the two sets IN (of natural numbers) and Q (of rational
numbers). It is easy to describe injections from Q into IN and from IN into Q,
as follows:

1. The function that sends the natural number n to the rational number n
clearly is an injection from IN into Q.

2. Every rational can be expressed as a ratio of two naturals with no common
factor, associated with a plus or minus sign. This means we can send the
rational number +(n/m) to the natural number 2-3™-5™, and we can send
the rational number —(n/m) to the natural number 3™ - 5. (Negative

14Do not, under any circumstances, google The Czsar Problem. No, really.



3.3. CARDINALS 83

rationals go to even naturals and positive rationals go to odd naturals.
And we can send the rational number 0 to the natural number 0). It’s
easy to check that this is an injection. (I know it looks fiddly: all injections
from Q into IN do!)

However it is not at all obvious that there is a bijection between IN and Q!

This is why we need the Cantor-Bernstein theorem, which tells us that <
on cardinals really is antusymmetrical as we expected. To put it another way:
if we have injections fX < Y and ¢ : Y — X then there really is a bijection
between X and Y.

This rather odd feature exhibited by IN and Q, namely that there are injec-
tions going both ways neither of which is a bijection, could only happen because
these two sets are infinite. If A and B are finite then if there is an injection
f: A — B and an injection g : B — A then f (and g too for that matter)
must be a surjection. More arrestingly, consider the map An.2n : IN — IN. It’s
an injection from a set to itself that is not a surjection! Strange but true....
Actually we can exploit this strangeness to obtain a definition of infinite set:

An infinite set is one that is in bijection with a proper subset of itself.

In our present case, IN qualifies as infinite because it is in bjiection with
{2n : n € IN}—the evens.

Nevertheless it is true: < on cardinals really is antisymmetrical. The theo-
rem that states this is the Cantor-Bernstein theorem. We won’t prove it!

With a little bit of finagling (by means of an assumption called the axiom of
choice which you will not need to know about) we can tidy cardinals up so that
every cardinal is either infinite (in the above sense) or is a natural numberE

The name for the cardinal that the set of naturals and the set of rationals
share is ‘Vo’. (‘N’ is the first letter of the Hebrew alphabet and Cantor was
Jewish). It is the smallest infinite cardinal, in the sense that any set that is
smaller than IN is finite.

EXERCISE 44. Look again at the box of isotopes on page [T0
Why was I right to write the half-life of Pb?*°% as ‘co’ rather than Ny’ ?

You will need to know a bit about infinite cardinals, but not much. P(IN)
is of course of size 2%° and there are 2% real numbers. (This is because every
real number can be represented as a sequence of Os and 1s, one for each natural
number. So there are ¥ independent choices from {0, 1}, making 2% possible
outcomes. There is a certain amount of tidying up because some reals (those
rational numbers whose denominators are powers of 2) have two representations
as infinite binary numbers, but we won’t go into that). Cantor’s theorem (which
we will see in section tells you that infinite sets come in infinitely many
different sizes: Ng < 280 < 22" after all but despite this it’s a fairly safe
prediction that every infinite set you meet will be of size Xy or 2%0.

15Q: “What about rationals and negative numbers? They’re not infinite!”
A They’re numbers all right, but they’re not cardinals: see the digression above.
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You may be wondering: is there an X;? There is—and an N, N3 and so
on—but you don’t need to worry about them until further notice. The file
www . dpmms . cam. ac.uk/~tf/countability.pdf tells you a bit more about some
of this material (though not about ®;) . It’s designed for la maths students
and so goes slightly beyond what you are going to need immediately. However
it is probably quite digestible.

3.3.1 Stuff to fit in—message to self

Once you have introduced cardinals and have shown that equinumerosity is a
congruence relation for disjoint union, product etc you exhibit a natural bijection
between A — (B — C) and (A x B) — C. What you do is exhibit two lambda
terms and show that they are mutually inverse. Do this calculation explicitly.

3.3.2 Operations on Cardinals, and Curry-Howard

There are various natural operations on cardinals, and you encountered them
long ago: multiplication, addition and exponentiation. These operations on car-
dinals correspond to operations on sets: multiplication corresponds to cartesian
product and addition to disjoint union. You know about cartesian product but
perhaps not disjoint union.. Refer back to page[2I] ‘Disjoint union’ is an impor-
tant construct, and to understand it we have to recall the inclusion-exclusion
principle and the idea of multisets, if only to draw contrasts. How many things
in AU B? Well, as we have seen, |A| + |B| — |A N B, because we don’t want
to count things in AN B twice. But what if we do want to count things twice?
We might want a sort of union of A and B where we want to know, in this
union, which elements came from A and which came from B. In this setting, if
something appears in AN B we want it to appear twice in the new union. This
new kind of union is called the disjoint union of A and B and is written AL B
(sometimes also ‘A + B’ using overloading of ‘+’ because |AU B| = |A| 4+ |B|.).
You can think of ALl B as “Take everything in A, put a pink dot of paint on it,
and take everything in B and put a blue dot of paint on it; the set of all painted
things is the disjoint union ALl B.” Or, using slightly more words, but bringing
to life the talk of copies from section “For each a in A, make a copy of it
and put a pink dot of paint on the copy; and for each b in B make a copy of it
and put a blue dot of paint on the copy; the set of all things thus painted is the
disjoint union A LI B.”

Notice that this set isn’t the same as the multiset that is the union of A and
B, because in the multiset union you can’t tell which of A and B was the original
home of any element of the new union multiset. You have two copies of things
that were in AN B but you can’t tell them apart and you don’t know which came
from A and which from B. For example the union of the two multisets {2, 2, 3}
(the factors of 12) and {3,5,5} (the factors of 75) is of course {2,2,3,3,5,5}.
But this is the same as the union of the two multisets {2,2,5} and {3,3,5}:
you can’t tell which 3 came from the 12 and which came from the 75. This is
because there is no way of distinguishing the two 3s in the factorisation of 900.
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3.3.3 Natural bijections and Elementary Cardinal Arith-
metic

Commutativity of Cardinal Multiplication

Some things are important and hard, and some things are important and easy.
One important and easy observation is the fact that A x B is the same size as
B x A. You may be saying to yourself that it’s obvious, because if |A| = n and
|B| = m then |A x B| = n-m, but that’s arguing back-to-front. The real reason
is that there is a bijection between A x B and B x A, and—if you think about
it—it’s pretty obvious what that bijection is.

A brief reality check before we go any further.

EXERCISE 45. Write out a formal declaration of the obvious bijection between
A X B and B x A, using A notation and £st and snd.

The interesting thing about this bijection is that we don’t need to know
anything about A or B to specify it. This means that it’s not merely a bijection,
it’s what we call a natural bijection.

What would a bijection be that wasn’t natural? Well, there are bijections
between the two sets {a,b,c} and {1,2,3} (Miniexercise: how many??) One
particularly obvious one is the bijection @ — 1, b — 2, ¢ — 3. This is not
“natural”, because in order to specify it we need access to specific information
about those two sets, in particular that the first set comes equipped with an
alphabetical order and that members of the second are numbers and are ordered
by magnitude. Another example of a non-natural bijection is the bijection
between the set of all permutations of a set and the set of total orders of that
set. See exercise 39 If I give you two three-membered sets and no further
information beyond the fact that they are three-membered, then there is no
obvious bijection for you to point to: no natural bijection. For example, no
natural bijection between the two sets {&, %,L} and {~, @, $}. You might think,
Dear Reader, that it would be natural to pair the symbols off using the order in
which they appear in this paragraph, but that isn’t natural in terms of the two
sets; it natural only in terms of the (ordered!) representation of the two sets on
the page.

Is the natural bijection between A x B and B x A prompting your fault-
tolerant pattern-matching to make you think of the tautology AN B +— BA A
at this point ...? If it does, then for once it is not leading you astray, though
it may be a little while before the connection beomes clear.

The point that I want to hang on this natural bijection is the point that
the commutativity of cardinal multiplication (which is something you learned
at Primary School) relies on this natural bijection.

Associativity of Cardinal Multiplication

Another fact you know about cardinal multiplication is that it is associative:
(Vn,m,k)(n-(m-k) = (n-m)-k). (It’s also true for multiplication of other kinds
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of numbers too, but those other multiplications mean something different). This

fact too, relies on the existence of a natural bijection, this time on one between
Ax(BxC)and (Ax B)xC.

EXERCISE 46. Write down a Lambda term (or, if you prefer, an ML program,)
for this bijection.

It’s a bit fiddly to write down, but you should be able to explain what it
does.

Again, if you free associate from this to the fact that AA (B AC) is logically
equivalent to (A A B) A C you will still be on the straight and narrow.

Associativity and Commutativity of Addition

Clearly A U B is the same size as B U A (The lambda term says: “Swap pink
and blue spots”). And AU(BUC) is the same size as (AU B)UC. It can do no
harm to spell out the bijection. In A LI (B U C) there are things with only pink
spots on them. (They were all in A). Then there are things that have both a
pink spot and a blue spot (they started off in B) and finally there are things
with two blue spots on them, and they had started off in C.

The bijection now does the following:

Anything with two blue spots has one blue spot removed;
Anything with just a pink spot is given an extra pink spot.

Notice that it doesn’t seem to matter if this respotting is done simultaneously
or in sequence, and if it is done in sequence it doesn’t seem to matter which is
done first. I don’t know how significant this is. Check my working to make sure
you understand what is going on, and that I haven’t made a mistake. Respotting
is confluent (see chapter @

Distributivity

There is a distributivity law for addition and multiplication of natural numbers,
which you know:

(Vabe)(a(b + ¢) = ab + ac) (3.19)

This assertion boils down to the fact that there is a bijection between A x
(BUC) and (A x B) U (A x C). There is a lambda term and again it’s a bit
fiddly to give it but if you remember your pink dots and blue dots you should
be able to describe its action in words.

This corresponds—as you are probably by now willing to predict—to the
propositional tautology. ..

EXERCISE 47.
Well, which propositional tautology does equation[3.19 correspond to?
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Exponentiation and Currying

The time has now come to consider not only multiplication and addition, but
also exponentiation. You may have seen the notation ‘A — B’ for the set of all
functions from A to B. You may also know that there are | B|l4! functions from
A to B. (Do you remember Why?)lE

You will remember some equations connecting exponentiation and multipli-
cation. We are now going to check to see if they correspond to natural bijections.
A good place to start is with

a® =1 (3.20)

0 is the cardinality of the empty set, so what equation [3.20]is trying to tell
us is that there is precisely one function from a set A to the empty set. And
that is true whatever A is! Miniexercise: What is this function?

That was a bit of a cheat, you may feel. (You shouldn’t feel cheated if you
took to heart my strictures about null objects in section. But this second
one isn’t. No doubt you remember:

(a")" =a" (3.21)

This means we should be looking for a bijection between (B x C) — A and
C— (B—A).

If this is your first encounter with this bijection you might find it hard to
describe, so I'll give you a lambda term, or rather two.

o If f: Bx C — A then AeAb.f((b,c)) is a map from C to B — A and
so is a member of C' — (B — A). So Af.Ac.Ab.f((b,c)) is a member of
(BxC)— A) — (C — (B — A)). (Remember that most people will
write this last term as Afcb. f((b, c))).

e If g: C — (B — A) then Ap.g(snd(p))(£st(p)) is a map from C x B to A
and so is in (B x C) — A. So A\g.Ap.(g(snd(p))(fst(p)) isin (C — (B —
A) = ((B x C) — A))).

The second one is a bit hard to read. The lambda term Ap.(g(snd(p))(fst(p)))
indicates the function that, when you give it a pair p from B x C, cracks it open
to get the two components snd(p) and £st(p), then applies g to snd(p) to obtain
a function from B to A, to which it then feeds fst(p). Some people put sub-
scripts on the variables in contexts like this so you can tell where the arguments
are coming from. So they would write

ApBxa-(9(snd(p))(fst(p)))

for this, and
MexBy—a-Acc.Abp.f({(b, c))

16Well, for each thing in A we have a choice of | B| things to send it to, as we can send it to
anything in B. These choices are independent—and we multiply independent choices (as we
reminded ourselves in exercise |16| part 2)—so the answer is |B|l4!.
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for the lambda term of the previous item.

If you find that a bit of a mouthful, try this special case. We can think of
a binary relation R C X x Y as a matrix—as we saw earlier (section [3.2.3).
This makes it quite easy to see such a binary relation as a function defined on
members of X. Simply send each z € X to the set of things in Y to which it is
related by R. (as it were, the set of places in its row where you find a 1 rather
than a 0). A miniexercise:

EXERCISE 48. Write down a lambda term for this function. (This is actually
the same representation as the way the queue for the airplane loo is represented
i section . You may wish to use the double apostrophe notation here . ..

Curry-Howard

It’s not only natural bijections that concern us in the long term, but natural
maps that aren’t necessarily bijections. For example, there is a natural map
from A to B — A, namely Aaas.\bg.a. After what you have been reading you
will no doubt free-associate from this to the fact that A — (B — A) is a truth-
table tautology. So you can see that the connection that we have been looking at
above—between tautologies and the existence of lambda terms—doesn’t require
the lambda terms in question to denote bijections.

This connection has subtleties that we cannot go into here. If you are intru-
iged by this, you might try to following exercise:

EXERCISE 49. Find a lambda term for a function from A — (B — C) to
(A— B) - (A= C).

Yes, (A— (B—C)) = ((A— B) = (A — (C)) is a truth-table tautology!

This dual use of ‘—’ is no mere coincidence: it is a divine ambiguity, known as
the Curry-Howard correspondence, on which a wealth of ink has been spilt. You
will learn more about it when you study foundations of functional programming.
Try, for example, [7] but not just yet!

EXERCISE 50. You know that |A — B| is |B|lAl. How many partial functions
are there from A to B? (If you find you are heading towards a complicated
answer, you are wrong: the answer is very simple, but most people find it hard

to find)

3.3.4 Cantor’s Theorem

We’ve proved lots of equations, and they are all easy. There is one major theorem
in the form of an inequation, and it is easy too. It is Cantor’s Theorem.
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Before we get stuck into the proof I want to identify a wee, wee assumption
that we have to make. It is this: if there is a surjection from A onto B then
there is an injection from B into A. This is another of those things (like the
Cantor-Bernstein theorem) that is obvious when A and B are finite, but not This is unnneccessary
obvious otherwise. (It’s the axiom of choice again!)

Cantor’s theorem says that that n < 2". Now if n = | X| then 2" = |P(X)|.
Clearly there is an injection X — P(X): the singleton map Az € X.{z} is one.
So: to prove the inequality all we have to do is prove that there is no injection
P(X) — X. In fact it’s slightly easier to prove that there is no surjection
X —» P(X) (which by assumption is the same thing) and that is what we will
do. (I could have left out the bit about injections from A to B and surjections
from B to A, and given instead a slightly more complicated proof that there is
no injection from P(X) to X, but that proof is displeasingly messy. If you like,
you can check and see how to do it for yourself. Determining which is easier is
a delicate calculation)

The proof is now a doddle. Suppose f were a surjection from X onto P(X).
Think about

{reX: xd&f(x)}. (3.22)

This is the set of those things in X that are not members of what f sends them
to. Since f sends members of X to subsets of X, asking of a member z of
X whether or not it is a member of what f sends it to is a perfectly sensible
question, since x is a member of X and f(z) is a subset of X.

If f is a surjection, this subset—3.22}—of X must be f of something, = say.
Now (and I want you to work this out for yourselves) ask whether or not xq is
a member of {z € X : z ¢ f(x)}. Think about this a bit before proceeding to
the next paragraph.

If it is, it isn’t, and if it isn’t, it is. Clearly this is an impossible situation.
How did we get into it? By assuming that f was a surjection; that ensured that
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was f of something. Evidently it wasn’t! [ |

Time invested in understanding this proof is time well spent. The same
argument is used to great effect in complexity theory, and in (for example) the
proof of the unsolvability of the Halting problem for Turing machines, which
you will see in a later course.

You Absolutely Must Understand This Proof.

Notice that nowhere in the proof of Cantor’s theorem do we assume that X
is finite. Indeed we don’t even assume that it is nonempty!

3.3.5 Inclusion-Exclusion

If A and B are multisets then the number of things in AU B is the number of
things in A plus the number of things in B. Things are a bit more complicated
with sets, since we don’t want to count twice those things that appear in both
A and B: we want to count everything only once even if it appears twice: once
in A and once in B. We have the following equation:

|AUB| =|A|+|B| - |ANB.

Obvious, isn’t it? To get the number of things in AU B you have to subtract
from |A| + |B| the number of things in AN B co’s the members of AN B are
the things that get counted twice. In some sense equally obvious (but ever so
slightly harder to compute) is:

[AUBUC|=|A|+|B|+|C|—-|ANnB|—|ANC|—|BNC|+|ANnBNC|.

(We subtract the number of things in AN B because they get counted twice, and
similarly AN C and BN C. But then anything in A N B N C has been counted
three times and taken away three times, so it has to be put back!)

Think a bit about you might generalise this to the case where you are taking
the union of several sets.

Here is a bald statement of the general principle that I found in the notes of
one of my colleagues:

JAl=—- > 0T Al (3.23)

s€S P£TCS teT

This looks extremely scary, but it’s actually nothing more than the obvious
generalisation of the equations we have just seen. Let’s decode this assertion
carefully and without panicking.

The thing on the left hand side of is the number of things that belong
to the union of the A;. The family of A, is indexed: each A has a pointer
pointing at it from an index set—which in this case is called ‘S’. See page [44]

So, in English, reads something like
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“The number of things in the union of the As is minus the sum—
over nonempty subsets T of S—of minus-one-to-the-power-of-the-
number-of-things-in-7" times the number of things in the intersection
of all those As whose subscripts are in T.”

Or—plainer still—

”For each nonempty T' C S, take the intersection of all the As whose
subscripts are in T' (those As pointed to by elements of T') take its
cardinality and take it negative or positive depending on whether T'
has an odd or even number of elements. Add them all together, for
all such T', and make the answer positive.”

The first thing to take note of is a bit of overloading. Primarily we write
‘As’ to denote one of the As, and the subscript is a member of the index set
S. However we are now going to write ‘Ap’, where T is a subset of S not a
member, and this expression will denote the intersection (. A; of all the As
whose subscripts are in 7. It’s easy to detect which of these two usages are
in play at any one time, because the indices themselves are lower-case Roman
letters and the sets of indices are upper-case Roman letters. This is a common
use of the difference between upper and lower case Roman letters. Notice that
Ay is the whole universe of discourse—V'.

Now recall indicator functions from section [3:2.8] Let Ip be the indicator
function for B. Normally Ip is the function which (on being given z € V)
returns true or false depending on whether or not x € B. However in this
case we want to modify the indicator functions so that they return 0 and 1
instead of false and true. This piece of casting is in order that we can
use arithmetic operations on the values of the indicator functions instead of
boolean operations. It’s universal practice in machine code. Hacky but clever.
This ensures that

o [5(z) =1—Ip(x); and
e Ipnc(z) = Ia(x) - Ip(x).
This second assertion generalises to
Tainas..na, (@) =14, () - La,(2) -+ 14, (@)
so, in particular (remember that A, is the complement of A,):

i, (@) = Ig (2) - I (@) - I () (3.24)
Now I;—(z) =1~ Ia,(x) so becomes

Iz, (@) = (1= 14, (2) - (1 = Lay (2)) -+ - (1 = 1a, (7)) (3.25)

For the next line consider what happens when you multiply out things like
(I=a)(1=0)(1—c¢)(1—d): you get 1— lots of things like —abc and +bd which
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are positive if the number of factors is odd and negative if the number of factors
is even. “But shouldn’t it start with a ‘1—’ before the big 7" I hear you cry.
It should indeed, but that ‘1—’ is in fact included because one of the T's you
sum over is the empty set! Very cunning.

Liiry @) = Y (D) (] 2a, (@) (3.26)
TCS teT
Notice now that Is(z) - I;(z) = Ifs4(x), and in general H Li(x) = Ir(x)
teT
giving
iy (@) = D (D) (Tag (2))) (3.27)

TCS

Now A1 NAy...NAy is ,eq As

In_ a @)=Y (=1 (La () (3.28)

seS s
TCS

Now, for any set X whatever, the number of things in X is simply the
number of things x in V' such that I'x(x) = 1; this number is just the sum of all

Ix(x), so the number of things in ﬂ A, is simply the number of z € V such

seS
that Iﬂ,gesfs(x) = 1. This gives us

() Al =D (=) Ag)) (3.29)

seS TCS

Applying a minus sign to both sides gets us back to equation [3.23

3.4 Recursive Datatypes

We start this section with some revision of Mathematical Induction. You prob-
ably think you understand it already, but I want you to be Born Again!

3.4.1 Induction: revision

Induction can only be understood backwards, but it must be lived
forwards.

Kierkegaard

Finite cardinals are called Natural Numbers, and the set of natural num-
bers is denoted with a special kind of boldface ‘IN’. Natural numbers obey
a wonderful principle called Mathematical Induction which you have certainly
heard of. Mathematical induction is not a pleasant extra but a core skill, and
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one you must have; do not even think about skipping this section. Unfortu-

nately it is also a well-known problem for beginners. There are several causes of

this, and life becomes easier once they are teased apart and tackled separately.
I can think of three off the top of my head:

1. One is the old problem with fault-tolerant pattern-matching, which makes
the average punter so imprecise in expressing their workings that they lose
track of what they are doing. Unless you are extremely precise you won’t
have a hope.

2. Hypothetical reasoning is the process by which we prove A — B by assum-
ing A and deducing B. In modern formal logic we call it “—-introduction”.
Lots of people find this hard. There is even a tradition in the battier parts
of Western Philosophy that it cannot be done at all (or at least that ar-
gument by reductio ad absurdum is impossible). If you have done any
Logic you will probably not have nightmares about this, but others may
be spooked. Seek help if need be.

3. A lot of students are unnerved by having to think about a conditional
whose antecedent is a conditional.

However, for the moment I'll address the issue about notation, because it
often ensnares even students who are fairly happy about hypothetical reasoning.

Explain ‘antecedent’

Need to find something more
to say about this

F, say. We will succeed if we can do two things:

1. We establish that F(0);

Summary: we are trying to prove that every natural number has a property,

2. We establish that, whatever natural number n is, F(n) implies F'(n+1).

Step 1 is the base case, and step 2 is the induction step. The base case
doesn’t always have to be 0; sometimes (and the example we are about to work
through is a case in point) the zero case is exceptional and we don’t worry about
it. In this case we will start at 1.

A simple illustration

Let’s take a simple example. It’s simple in that the proposition we are trying to
prove can be easily understood and looks fairly obvious, but the proof is difficult
enough to exhibit all the standard problematic features.

Let us prove by induction that—for all n—the sum of the first n odd numbers
is n2. That is to say F(n) is the assertion that the sum of the first n odd numbers
is n2.

Formula says that the sum of the first n odd numbers is n2. The nth
odd number is of course 2n — 1.
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n

> (@r—1)=n? (3.30)

r=1
‘n’ is the eigenvariable: we are doing “induction on n”.
Base case, n = 1 is easy.

We want to prove the induction step: if it holds for k it holds for k + 1.
What we are actually doing is a proof by Universal Generalisation (AKA V-
introduction), with ‘&’ being the eigenvariable.

We are going to assume it true “for k” as we say, and hope to be able to
deduce it for k£ + 1. Notice that in this expression ‘r’ is bound and ‘k’ is free.
(This terminology of free and bound variables wasn’t chucked at you merely to
annoy you: it’s needed to properly understand stuff like this!). Do you know
what I mean by this last remark? Make sure that you do before reading further!

The assumption that we have just made, that the assertion we are trying to
prove does at least hold for k& (and from which we intend to deduce that it holds
for k+ 1) is called the induction hypothesis.

So you add the k£ + 1th odd number to both sides, getting

k
O @r—1)+2k+1=k +2k+1 (3.31)

r=1

So far so good. You now have to do quite a lot of rearranging, and it may
be that it helps if this is done in excruciating detail. Let’s tackle the left-hand

side first
k

O 2r—1)+2k+1 (3.32)
r=1
is just
k+1

> -1 (3.33)

This is because they are both the sum of the first k41 odd numbers. Formula
3.32| says “the sum-of-the-first-k-odd-numbers—with 2k + 1 added on” (and
2k 4 1 just happens to be the (k 4+ 1)th odd number). Formula says “the
sum-of-the-first-k 4+ 1-odd-numbers”.

So formula [3.37] has become

k+1
dor—1=k+2k+1 (3.34)
r=1

and now we can turn our attention to the RHS.

As any fule kno, the RHS of this is equal to (k + 1)2, so we get
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k+1
> —1=(k+1)? (3.35)
r=1

But now notice that this formula is exactly the result of taking formula
3.30| and replacing ‘k’ (the eigenvariable) by ‘k + 1’ throughout. Check this
by hand so you understand it.

And—just as formula said that the sum of the first & odd numbers is
k?, formula says that the sum of the first k¥ + 1 odd numbers is (k + 1)2.
So we have taken an assertion about k, and deduced from it the corresponding
assertion about k + 1.

This concludes the proof of the induction step

This is something you will see in all the standard cases of proof-by-induction
that the sum of the first k perfect squares, or cubes, or odd numbers, or trian-
gular numbers, or whatever it is, is some expression in ‘k’. In all these cases

k
you will see a LHS that looks like (Y. something-or-other) and an RHS that

=1

is some complex expression with ‘k’rfree. Formula is our example above.
When proving the induction you infer from (as it were) formula the result
of substituting ‘k+ 1’ for ‘k’ in (as it were) formula You add the kth term
to both sides, which makes the LHS the sum of the first k£ terms plus the £+ 1th
term—which is of course the sum of the first £ + 1 terms. And you add the
k + 1th term to the RHS as well and hope that you will be able to rearrange it
into the result of substituting ‘k 4+ 1’ for ‘k’ in the RHS.

A stylistic detail at this point. There is something rather special about the
operation of adding 1 to a number (as opposed to the operation of adding 2, or 3,
for example). This is because it is this operation-of-adding-1 that generates all
the natural numbers, starting from 0. A natural number is either 0 or something
one can obtain from 0 by adding 1 lots of times. For this reason we have a special
notation for it: “S’, so we write ‘S(z)’ instead of ‘z + 1’ [we don’t think of S
as a special case of addition but as something prior to addition] and (and this
is the important part) express the inductive step in mathematical induction as
“if it holds for n, it holds for S(n)”. The point is that this special notation
highlights the role of the operation of addition-of-1 in the genesis of the set of
natural numbers.

EXERCISE 51. Suppose f and g obey the declarations:

f(0):=1; (Vn)(f(n+1):=(n+1)- f(n))
9(0) :=1; (Vn)(g(n +1) := (n +1) - g(n))

Prove that (Vn € IN)(f(n) = g(n)).

This shows we can use induction to prove the uniqueness of the function
being defined.

“free’ 77!

Perhaps work this paragraph
into the next section
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3.4.2 Definition

‘Recursive datatype’ is the sexy, postmodern, techno-friendly way to talk about
things that mathematicians used to call ‘inductively defined sets’. I shall ab-
breviate these two words to the neologism ‘rectype’.

The standard definition of the naturals is as the least (with respect to C)
set containing zero and closed under successor, or, using some notation we have
just acquired:

N=(|{Y:0e€YASYCY}

Of course IN is merely the simplest example, but its definition exhibits the
central features of a declaration of a rectype. In general, a rectype is a set
defined as the smallest (C-least) set containing some founders |Z| and closed
under certain functions, commonly called constructors. (This is standard
terminology.) IN has only one founder, namely, 0, and only one constructor,
namely, successor (often written ‘S’ or ‘succ’ S(z) is « + 1). For the record, a
founder is of course a nullary (0-place) constructor.

3.4.3 Structural Induction

This definition of IN justifies induction over it. If F(0) and F(n) — F(S(n))
both hold, then {n : F((n)} is one of these Y that contains 0 and is closed under
S, and therefore it is a superset of IN, from which it follows that every natural
number is F. It is a bit like original sin: if F' is a property that holds of 0, and
holds of n + 1 whenever it holds of n, then each natural number is innoculated
with it as it is born. As you are born, you arrive with a ready-minted certificate
saying that you are F. Hence induction.

3.4.4 Generalise from IN

IN is of course the simplest example of a rectype: it has only one founder and
only one constructor, and that constructor is unary.

My first encounter with rectypes was when I was exposed to compound past
tenses in Latin, when I was about eight. I pointed out to my Latin teacher
that the construction that gives rise to the future perfect tense from the perfect
could be applied to the pluperfect tense as well, and what was the resulting
tense called, please? Maybe the reader has had similar experiences. In UK law,
if it is a crime to do X, it is also a crime to attempt to do X or to conspire to
do X. So presumably it is a crime to attempt to conspire to do X? Crimes and
tenses form recursive datatypes.

The examples that will concern us here will be less bizarre. An X-list is
either the empty object or the result of consing a member of X onto the front
of an X-list. Thus a list can be thought of as a function from an initial segment
of N to X. Thought of as a rectype, the family of X-lists has a founder (the

17This is not standard terminology, but I like it and will use it.
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empty list) and a single binary constructor: cons. In ML the notation ‘h::t’
denotes the list obtained by consing the object h onto the front of the list t. t
is the tail of h: :t, and h is its head.

EXERCISE 52. You can also think of the transitive closure t(R) of a binary
relation-in-extension as a rectype. What are the founders and the operations?

We can develop analogues of mathematical induction for any recursive data-
type, and I shall not spell out the details here, as we shall develop them in each
case as we need them. This kind of induction over a rectype is nowadays called
structural induction[]

This is an old example sheet question. You should definitely attempt it.

EXERCISE 53.
“We define the length of a Boolean proposition by recursion as follows:

la| =1,
|T| =1,
|L| =1,

|[AAB|=|A|l+|B|+1,
|[Av B|=|A|+ |B|+1,
|-Al =|A|+1.
We define a translation which eliminates disjunction from Boolean expres-
sions by the following recursion:

tr(a)=a, tr(T)=T, tr(L) =1,
tr(AA B) =tr(A) Ar(B),
tr(AV B) = —(-tr(A4) A —tr(B)),
tr(—A) = —tr(A).

Prove by structural induction on Boolean propositions that
tr(A)| < 3|A[ -1,

for all Boolean propositions A.”

3.4.5 An Induction Exercise Concerning Evaluation

This section isn’t actually difficult, but it relies on truth-tables, and it might
look a bit scary, so don’t feel guilty if you want to postpone it and come back
to it later. Confident students should be fine.

18Historical note: Russell and Whitehead called it ancestral induction because they
called the transitive closure of a relation the ancestral of the relation. (This is because of the
canonical example: the transitive closure of the parent-of relation is the ancestor-of relation.)
I used their terminology for years—and I still think it is superior—but the battle for it has
been lost; readers should not expect the word ‘ancestral’ to be widely understood any longer,
though they may see it in the older literature.
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I’'m assuming that you are happy with truth-table definitions of the opera-
tions A and V on booleans (perhaps you prefer the notations ‘AND’ and ‘OR’). A
valuation is a function from propositional letters to booleans. You can think of
a valuation as a row of a truth-table, an assignment of boolean values to every
propositional letter in sight. Given a complex formula A and a valuation v, one
can evaluate A according to v and obtain a truth-value.

Clearly there is a function E: formulee x valuations — booleans.

EXERCISE 54. Write code for such a function E in your favourite functional
programming language@

The recursion you have written does not contain any instruction as to the
mechanics of calculating the answer. One can evaluate lazily or strictly. For
example: suppose that at some point in the computation-of-the-truth-values-
of-A-according-to-v you have determined, for some subformula A’ of A, that
A’ is false according to v. Suppose A’ A B is the next subformula for us to
tackle. If we are evaluating “lazily” we can get clever and say “Ah! Since A’
has evaluated to false we know already that A’ A B must evaluate to false,
so we don’t need to compute the truth-value of B!” This (clever) strategy is
called “lazy evaluation”. In contrast, the strategy of strict evaluation requires
us to compute the truth value of all subformule of an input before we try to
compute the truth-value of the input. Strict is bottom-up.

Thus there are two functions Fy and E; (strict evaluation and lazy evalu-
ation ...) but these two functions have three arguments not two. Their three
arguments are: a formula, a valuation, and a time; and the recursive declaration
for F; will have base clauses like

If A is atomic, then (Vn € IN)(Es(A,v,n) = Ei(A,v,n) :=v(A4)).
and
E;(A,v,0) = E;(A,v,0) :=v(A),

and recursive clauses like (for example)
Ei(AV B,v,t+1) =1if Ej(A,v,t) = true then true else...

EXERCISE 55. Write code for E; and Es in your favourite functional pro-
gramming language.

It’s probably obvious to you that Fs and E; will give the same end result.
Perhaps it even looks so obvious that you think it’s not actually worth proving.
However, this fact is worth proving, and for two reasons. One is that it is a
useful exercise in induction, and the other is that if our valuations are allowed
to be partial functions it ceases to be true!

EXERCISE 56. (Easy)
Find A and v to illustrate how (Yt > 0)(E4(A,v,t) # Ej(A,v,t)) can happen
if v is not total.

191n case you were wondering, your favourite functional programming language is ML!
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However, things are better behaved if we assume that all our valuations are
total functions. So, let’s make this assumption pro tem. Then, as we observed
above, E; and E; will give the same end result. It’s worth thinking about how
one would state this last fact properly. So shield the rest of this pdf from your
eyes for the moment and give the matter some thought. The next exercise sets
out my attempt at formulating this obvious fact in a way that one might prove.

Then we want to

EXERCISE 57. Show that:
For all valuations v and all formule A and all but finitely many t,

Ei(A,v,t) = E(A,v) and Es;(A,v,t) = E(A,v).

This is pretty obvious, but it’s not totally straightforward to prove. It’s
certainly obvious that you are going to have to do some induction...but an
induction on what? On ‘¢’? Or a structural induction on the subformula rela-
tion? This exercise is an object lesson in getting straight quite what it is you
are proving by induction, stating the induction hypothesis carefully and being
clear in your own mind what kind of induction you are doing.

3.4.6 Well-founded induction
Well-founded relations and induction

Suppose we have a set with a binary relation R on it, and we want to be able
to infer

Va (z)
from

(V) [(Vy) (R(y, x) = P(y)) = ()]

In words, we want to be able to infer that everything is ¢ from the news that
you are v as long as all your R-predecessors are i. y is an R-predecessor of x
if R(y,z). Notice that there is no “case n = 0” clause in this more general form
of induction: the premiss we are going to use implies immediately that a thing
with no R-predecessors must have . The expression “(Vy)(R(y,z) — ¥(y))”
is called the induction hypothesis. The first line says that if the induction
hypothesis is satisfied, then x is ¥ too. Finally, the inference we are trying to
draw is this: if = has @ whenever the induction hypothesis is satisfied, then
everything has ). When can we do this? We must try to identify some condition
on R that is equivalent to the assertion that this is a legitimate inference to draw
in general (i.e., for any predicate ).

Why should anyone want to draw such an inference? The antecedent says
“r is 1 as long as all the immediate R-predecessors of x are v”, and there are
plenty of situations where we wish to be able to argue in this way. Take R(x,y)
to be “z is a parent of y”, and then the inference from “children of blue-eyed
parents have blue eyes” to “everyone has blue eyes” is an instance of the rule
schematised above. As it happens, this is a case where the relation R in question
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does not satisfy the necessary condition, for it is in fact the case that children
of blue-eyed parents have blue eyes and yet not everyone is blue-eyed.

To find what the magic ingredient is, let us fix the relation R that we are
interested in and suppose that the inference

(Vy) (R(y, ©) = ¥(y)) = ¢(x)
(V) (¢ (x))

has failed for some choice 9 of predicatem Then we will see what this tells us
about R. To say that R has the magic ingredient all we have to do is stipulate
that this failure (whatever it is) cannot happen for any choice of .

Let 1 be some predicate for which the inference fails. Consider the set of
all things that are not ¥. Let z be something with no R-predecessors. Then
all R-predecessors of x are 1 (vacuously!) and therefore z is ¢ too. This tells
us that if y is something that is not 1), then there must be some y’ such that
R(y',y) and y' is not v either. If there were not, y would be . This tells us
that the collection of things that are not ¢ “has no R-least member” in the
sense that everything in that collection has an R-predecessor in that collection.

Thus we can see that if induction fails over R, then there is a subset X of
the carrier set (to wit, the extension of the predicate for which induction fails)
such that every member of X has an R-predecessor in X.

One might have expected that for the inference to be good one would have
had to impose conditions on both R and . It is very striking that there should
be a condition on R alone that is enough by itself for this inference to be good
for all . All we have to do is exclude the possibility of the domain of R
having any such pathological subsets and we will have justified induction over
R. Accordingly, we will attach great importance to the following condition on
R:

DEFINITION 4. R is well-founded iff every nonempty subset X of the do-
main of R has an element x such that all the R-predecessors of x lie outside X .
(x is an “R-minimal” element of X.)

This definition comes with a health warning: it is easy to misremember.
The only reliable way to remember it correctly is to rerun in your mind the
discussion we have gone through: well-foundedness is precisely what one needs
a relation R to have if one is to be able to do induction over R. No more and
no less. The definition is not memorable, but it is reconstructible.

A well-ordering is a well-founded strict total order. (No well-founded re-
lation can be reflexive, so well-founded orders have to be of the strict flavour).
Perhaps we should have some examples of well-orderings. Obviously any fi-
nite total order will be a well-order! What about infinite well-orderings? The
only natural example of an infinite well-ordering is one we have already seen—
(IN, <i). Notice that the real line (IR, <) is not a well-ordering, for it is a
simple matter to find sets of real numbers with no least element, for example,

20This is a common way of representing arguments in logic: premisses above and conclusions
below the line.
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the set of all real numbers strictly greater than 0. This set has a lower bound all
right, namely 0, but this lower bound is not a member of the set and so cannot
be the least member of it 2]

EXERCISE 58. One can define well-orderings as relations that are trichoto-
mous and well-founded.

EXERCISE 59.

A pointwise product of two well-founded (strict) partial orders is a well-founded
(strict) partial order.

A lexicographic product of two well-founded (strict) partial orders is a well-
founded (strict) partial order.

It is not hard to see that for a finite binary structure to be well-founded it
is neccessary and sufficient for it to have no loops.

It’s clearly necessary that there should be no loops, since a loop is manifestly
a subset with no least element! Sufficiency is slightly harder, but you should
have no difficulty persuading yourself that if you have a subset with no least
element, then you can use it to build a loop.

With infinite structures, absence of loops remains a necessary condition of
course, but it is no longer sufficient: the negative integers with the relation
{{n,n—1) : n € Z~} has no loops, but it is still not well-founded. With
the help of an apparently minor assumption we can show that this is the only
badness that can happen in infinite ill-founded structures.

This means that one can safely think of a wellfounded relation R as a relation
that “has no infinite descending chains”. That is to say, there is no sequence
Z1,%9, T3, ... where, for all n € IN, R(xy41,Zn)-

The official definition of well-foundedness is a lot more unwieldy than the
definition in terms of descending sequences. In consequence, it is very easy to
misremember it. A common mistake is to think that a relation is well-founded
as long as its domain has a minimal element, and to forget that every nonempty
subset must have a minimal element. The only context in which this definition
makes any sense at all is induction, and the only way to understand the definition
or to reconstruct it is to remember that it is cooked up precisely to justify
induction; it serves no other purpose.

THEOREM 2. R is a well-founded relation iff we can do well-founded induction
over the domain of R.

Proof: The left-to-right inference is immediate: the right-to-left inference is
rather more interesting.

What we have to do is use R-induction to prove that every subset of the
domain of R has an R-minimal element. But how can we do this by R-induction?
The trick is to prove by R-induction (“on z”) that every subset of the domain

211t is important not to get confused (as many people do) by the fact that every set of reals
has a greatest lower bound. For example, {x € IR : > 0} has no least member, but it does
have a greatest lower bound, which is of course 0. Notice that 0 ¢ {x € R : = > 0}!!
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of R to which x belongs contains an R-minimal element. Let us abbreviate this
to “x is R-regular”.

Now let 2y be such that every R-predecessor of it is R-regular, but such that
it itself is not R-regular. We will derive a contradiction. Then there is some
X C dom(R) such that xp € X and X has no R-minimal element. In particular,
xo is not an R-minimal element of X. So there must be z1 s.t. R(xz1,zo) and
x1 € X. But then z; is likewise not R-regular. But by hypothesis everything
R-related to zy was R-regular, which is a contradiction.

Therefore everything in dom(R) is R-regular. Now to show that any subset
X of dom(R) is either empty or has an R-minimal element. If X is empty,
we are all right. If it is not, it has a member x. Now we have just shown by
R-induction that z is R-regular, so X has an R-minimal element as desired. B

Well-foundedness is a very important concept throughout Mathematics, but
it is usually spelled out only by logicians. (That is why you read it here first.)
Although the rhetoric of Mathematics usually presents Mathematics as a static
edifice, mathematicians do in fact think dynamically, and this becomes apparent
in mathematical slang. Mathematicians often speak of constructions underlying
proofs, and typically for a proof to succeed it is necessary for the construction
in question to terminate. This need is most obvious in computer science, where
one routinely has the task of showing that a program is well-behaved in the
sense that every run of it halts. Typically a program has a main loop that it
goes through a number (which one hopes will be finite!) of times. The way to
prove that it eventually halts is to find a parameter changed by passage through
the loop. There are various sorts of parameters that can play this role:

e The simplest illustration is the count variable to be found in many pro-
grams. A count variable is not affected by any of the code within the loop
other than the decrement command that decrements it at the start (or on
the end) of each pass.

e Sometimes the role is played by a program variable that is not explicitly
decremented at the start of each pass in the way a count variable, but is
decremented as a side-effect of what happens on each pass.

e In general we look for a parameter that need not be a program variable
at all, but merely some construct put together from program variables.

In all cases we want the parameter of interest to take values in a set X with
a binary relation R on it such that

1. at each pass through the loop the value of the parameter changes from its
old value v to a new value v’ such that (v,v’) € R and

2. any sequence v, v ...where for all n, (v,,v,+1) € R, is finite.

(If you were expecting this sentence to end “is eventually constant”, look

ahead to section [3.4.7] p. )
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If we can do this, then we know that we can only make finitely many passes
through the loop, so the program will halt. Condition (2) is of course the
descending-sequence version of well-foundedness.

EXERCISE 60. Go back and look at exercise[9 again. This time do the fol-
lowing:

1. Show that the colour of the ball that remains is determined by b and w
alone and hence the algorithm determines a function of b and w.

2. * How can you be sure that the algorithm always terminates whatever you
pluck out of the bag at each stage? hint: think about the lexicographic
order of IN?.

As we saw in section we can think of binary relations as digraphs,
where there is a vertex for each element of the domain and an edge from a to
b if a is related to b. This is a very natural thing to do in the present context,
since we can also think of the arrows as representing a possible step taken by
the program in question. It also gives us a convenient way of thinking about
composition and transitive closures. a is related to b by R™ if there is a path of
length n from a to b in the digraph picture of R, and a is related to b by the
transitive closure of R if there is a path from a to b at all. It also makes it very
easy to see that the transitive closure of a symmetric relation is symmetric, and
makes it obvious that every subset of a well-founded relation is well-founded.
This makes it easy to explain why pointwise products of well-founded relations
are well-founded.

Recursion on a well-founded relation

THEOREM 3. Let (X, R) be a well-founded structure and g : X x V. — V be
an arbitrary (total) function. Then there is a unique total function f: X —V

satisfying (Vz € X)(f(z) = g(z, f*“{y : R(y,2)}))

Here V is the universe, so that when we say “g: X x V — V” we mean only
that we are not putting any constraints on what the values of ¢ (or its second
inputs) are to be.

Let us have a brief cogitate about what this says, before we start trying to
prove it. It says that if R is wellfounded, then if we try to define a function
f by saying “take the set of all the values of f for arguments R-related to =z,
and do g to that set and z; call the result f(z)”, then we succeed in defining f
uniquely.

Proof: The idea is very simple. We prove by R-induction that for every z € X
there is a unique function f, satisfying (Vy)(*R(y,z) — f.(y) = g9(y, f=“{z :
R(z,y)})). We then argue that, if we take the union of the f,, the result will
be a function, and this function is the function we want.

|

The following commutative diagram might help.

They haven’t been

about
grams

commutative

told
dia-
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v

X x P(X)

A Iy x f~

X xV

]lXxR

X » V

The function corresponding to the top left-right arrow, written “lx x f* is
Aa.(fst a, f“(snd a))” means “leave the first component alone and translate the
second under f”. It may be that you won’t understand until you have finished
digesting section how R can be thought of as a map. The map R is not
the map from X into P(X) corresponding to R (we saw in section how
every subset of X x X corresponds to a map X — P(X)) but instead the map
that sends a pair (z,y) to (x,{z: R(z,y)}). (V contains everything: not just
junk but sets of junk as well, so you don’t have to worry about whether values
of g are sets or junk.)

The reason this crops up here is that all rectypes—since they are generated
by functions—will have a sort of engendering relatior@ that is related to
the functions that generate the recursive datatype rather in the way that <
is related to the successor function. The engendering relation is that binary
relation that holds between an object x in the rectype and those objects “earlier”
in the rectype out of which z was built. Thus it holds between a formula and
its subformulae, between a natural number and its predecessors and so on. Put
formally, the (graph of the) engendering relation is the transitive closure of the
union of the (graphs of the) constructors.

The (graph of, extension of) the engendering relation is itself a rectype. For
example, < is the smallest set of ordered pairs containing all pairs (0, n) with
n > 0 and closed under the function that applies S to both elements of a pair

(i.e., Ap.(S(fst p), S(snd p))).
The following triviality is important.

THEOREM 4. The engendering relation of a rectype is well-founded.

Proof: Let X be a subset of the rectype that has no minimal element in the
sense of <, the engendering relation. We then prove by structural induction
(“on 2”) that (Vy)(y <z —y ¢ X). ]

Theorem [4] means that we can always do well-founded induction over the
engendering relation. In this simplest case, IN, this well-founded induction is

22This is not standard terminology.
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often called strong induction or sometimes course of values induction. Quite
often arguments by well-founded induction are presented in contrapositive form.
We first establish that, if there is a counterexample to what we are trying to
prove, then there is an earlier counterexample. So the set of counterexamples
has no least element and so by well-foundedness must be empty. The standard
example of this style of proof is due to Fermat, who proved that z* + y* = 22
has no nontrivial solutions in IN. It uses the fact that all pythagorean triples
are of the form a2 — b2, 2ab, a® +b? to show that for any solution to 2* 4 y* = 22
there is one with smaller z. This gives us a proof by well-founded induction on
< that there are no solutions at all. The details are fiddly, which is why it is
not an exercise. The examples which follow are more straightforward, and the
example with which we start is the most natural use of this technique known to
me.

EXERCISE 61. A square can be dissected into finitely many squares all of
different sizes (see Gardner, [3]). Why can a cube not be dissected into finitely
many cubes all of different sizes?

EXERCISE 62. Define a binary relation < on IN by n <m iff n < m < 100.
Show that < is well-founded.
Consider the two functions f and g defined thus:
f(z) =1if 2 > 100 then (x —10) else f(f(x +11));
g(x) =if x > 100 then (x —10) else 91.

Prove that f and g are the same functions-in-extension.

You might like to google ‘McCarthy’s 91 function’.

3.4.7 An Illustration from Game Theory

Before we leave recursion on a well-founded relation it might be helpful to have
an illustration. Discrete games in which all plays are finite and no draws are
allowed always have a winning strategy for one player or another. Let us prove
this.

First we’'d better say what a discrete game is. Let X be an arbitrary set.
(X is intended to be the set of moves.) lists(X) is the set of (finite) lists
of members of X. lists(X) has a natural tree structure, and indeed it is
usually thought of as a tree. Let G be a subset of lists(X) that is closed
under shortening (i.e., initial segments [sometimes called prefixes] of lists in
G are also in ). Naturally ‘G’ is intended to suggest ‘Game’. G is a subset
of 1ists(X) rather than the whole of it because some moves might not always
be legal: P-K4 isn’t legal if there is a piece on K3! There is a map v defined
on the endpoints of G (sequences in G with no proper end-extensions in G)
taking values in the set {I,II}.

define contrapositive
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Players I and II play a game by picking elements of X alternately, with
I playing first, with their choices constrained so that at each finite stage they
have built a finite sequence in G.

The game ends when they reach an endpoint of GG, at which point v tells
them who has won. For the purposes of illustration we will assume that all plays
in G are finite.

EXERCISE 63. How many (binary) games of length n are there? (Easy)
Show that, for every n € IN, and for every game of length n, one of the two
players I and II must have a winning strategy.
Let I1,, be the proportion of these games for which player IT has a winning
strategy: what is the limit of 11, as n gets large?

The connection with well-foundedness is that this condition is captured by
saying that the relation “s € G At € G and s is an end-extension of ¢” is well-
founded. (If you cannot work out which way round to read this, just note: one
way round it is obviously well-founded: what we mean is that it is well-founded
the other way round too.)

Next we need the notion of even and odd positions. A sequence from X of
even length is a position when it is I’s turn to move; a sequence from X of odd
length is a position when it is II’s turn to move. Clearly, if s is an even position
and even one of its children (positions to which I can move at his next move) is
labelled ‘I’, then we can label s ‘I’ too, since I can win from there. Similarly, if
s is an odd position and all its children (positions to which IT can move at his
next move) are labelled ‘I’, then s can be labelled ‘I’ too. This ratcheting up the
upside-down tree of lists that comprise G is a recursive definition of a labelling
extending v that—because of well-foundedness—is defined on the whole of G.
Thus the empty sequence ends up being labelled, and the lucky owner of the
label has a winning strategy.

It is very important that no assumption has been made that X is finite, nor
that there is a finite bound on the length of lists in G. Notice also that these
games are nothing to do with the games of chapter [7]



3.4. RECURSIVE DATATYPES 107

Other definitions of well-foundedness

It is clearly an immediate consequence of our definition of well-foundedness
that any well-founded relation must be irreflexive. Nevertheless, one could de-
fine a relation R C X x X to be well-founded if (VX' C X)(3z € X') (V' €
X')(R(2',x) — x = «’). This definition of well-foundedness has a “descending
chain” version too: “every R-chain is eventually constant”. This definition is
more appealing to some tastes. It has the added advantage over the other defi-
nition that it distinguishes between a well-ordering of the empty set (which will
be the empty relation) and a well-ordering of the singleton {x}, which will be
the relation {(x,x)}. In contrast, according to the other definition, the empty
relation is not only a well-ordering of the empty set, but it is also a well-ordering
of the singleton {z}!

It is a miniexercise to verify that each concept of well-foundedness is definable
in terms of the other. The situation is rather like that with regard to strict and
nonstrict partial orders.

Structural induction again

We know that structural induction holds for rectypes, but we could deduce it
from the well-foundedness of the engendering relation if we wished. Take the
example of IN. Suppose we know that 0 has property F', and that whenever n
has property F' so does S(n). Then the set of naturals that are not F' (if there
are any) will have no least member and therefore, by well-foundedness of <,
will be empty.

This holds in general: we can deduce structural induction from the well-
foundedness of the engendering relation. For example, if we can prove (Vn)(®(n))
by a well-founded induction over <, then we can prove (¥n)(Vm <x n)(®(m))
by structural induction.

Other uses of well-foundedness

Intuitions of well-foundedness and failure of well-foundedness are deeply rooted
in common understandings of impossibilities. For example: it is probably not
unduly fanciful to claim that the song “There’s a hole in my bucket, dear Liza”
captures the important triviality that a process that eventually calls itself with
its original parameters will never terminate. The attraction of tricks like the
ship-in-a-bottle seems to depend on the illusion that two processes, each of
which (apparently) cannot run until it has successfully called the other, have
nevertheless been successfully run. A similar intuition is at work in the argument
sometimes used by radical feminists to argue that they can have no (nonsexist)
surnames, because if they try to take their mother’s surname instead of their
fathers, then they are merely taking their grandfather’s surname, and so on.
Similarly one hears it argued that, since one cannot blame the person from
whom one catches a cold for being the agent of infection (for if one could, they
in turn would be able to pass the blame on to whoever infected them, and
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the process would be ill—foundeﬂ, so one cannot blame anyone at all. This
argument is used by staff in STD clinics to help their patients overcome guilt
feelings about their afflictions.

The reader is invited to consider and discuss the following examples from
the philosophical literature.

1.

“In every judgement, which we can form concerning probability, as well
as concerning knowledge, we ought always to correct the first judgement,
deriv’d from the nature of the object, by another judgement, deriv’d from
the nature of the understanding. ’Tis certain a man of solid sense and
long experience ought to have, and usually has, a greater assurance in his
opinions, than one who is foolish and ignorant, and that our sentiments
have different degrees of authority, even with ourselves, in proportion to
the degrees of our reason and experience. In the man of the best sense
and longest experience, this authority is never entire; since even such-a-
one must be conscious of many errors in the past, and must still dread
the like for the future. Here then arises a new species of probability to
correct and regulate the first, and fix its just standard and proportion.
As demonstration is subject to the control of probability, so is probability
liable to a new correction by a reflex act of the mind, wherein the nature
of our understanding, and our reasoning from the first probability become
our subjects.

“Having thus found in every probability, beside the original uncertainty
inherent in the subject, a new uncertainty deriv’d from the weakness of
that faculty, which judges, and having adjusted these two together, we are
oblig’d by our reason to add a new doubt deriv’d from the possibility of
error in the estimation we make of the truth and fidelity of our faculties.
This is a doubt, which immediately occurs to us, and of which, if we wou’d
closely pursue our reason, we cannot avoid giving a decision. But this
decision, though it shou’d be favourable to our preceding judgement, being
founded only on probability, must weaken still further our first evidence,
and must itself be weaken’d by a fourth doubt of the same kind and so
ad infinitum; till at last there remain nothing of the original probability,
however great we may suppose it to have been, and however small the
diminution by every new uncertainty. No finite object can subsist under
a decrease repeated in infinitum; and even the vastest quantity, which
can enter into human imagination, must in this manner be reduc’d to
nothing.”

Hume (1739) Book I Part IV, Section 1, pp 5-6.

. “Volitions we postulated to be that which makes actions voluntary, reso-

lute [etc.]. But .. .a thinker may ratiocinate resolutely, or imagine wickedly
.... Some mental processes then can, according to the theory, issue from
volitions. So what of the volitions themselves? Are they voluntary or

23Unless one can blame Eve!
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involuntary acts of mind? Clearly either answer leads to absurdities. If 1
cannot help willing to pull the trigger, it would be absurd to describe my
pulling it as voluntary. But if my volition to pull the trigger is voluntary,
in the sense assumed by the theory, then it must issue from a prior volition
and from that another ad infinitum.”

Ryle (1983) pp. 65-6.

EXERCISE 64. Hume seems to be saying that if we multiply together infinitely
many numbers all between 0 and 1 then the product must be zero, but this is
incorrect. Prove Hume wrong by considering the product

I @-v/

1<i<jeN

(of 3/4, 8/9, 15/16 ... ).
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Chapter 4

Some Elementary Number
Theory

Number Theory is a relatively recent development in Discrete Mathematics
courses. It became important because it’s the mathematics that underlies cryp-
tography, and cryptography became a Hot Topic for Computer Science really
only with the advent of the internet and the consequent urgent need for secure
secret communication between computers.

The usual ambition for a number theory slot in a level one Discrete Math-
ematics course is coverage of the RSA algorithm for public-key cryptography.
That is what we shall aim for here!

But we’ll start with something a bit more basic and familiar which will
launch us in the right direction.

4.1 Different bases

Q: What goes “Pieces of nine! Pieces of nine!”?

A: A Parroty error.

Binary, octal, decimal and hexadecimal. They are all positional notations
(polynomial notations). The only difference between them is the base. “Posi-
tional”? The meaning of a symbol depends very sensitively on where it appears
in the formula. Does ‘1’ mean one or ten or one hundred? It depends where
it is. We take the positional nature of our decimal system for granted but we
shouldn’t. Roman numerals are not positional, or at least not in the same way
(the ‘T’ in ‘IX’ doesn’t mean the same as the ‘I’ in ‘XI’).

Familiarity with bases other than decimal and binary is not as important as
it used to be, because familiarity with octal and hexadecimal is useful primarily
to assembly language programmers, and the proportion of computer users who
need skill in writing assembly languages is shrinking all the time. (One of my
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students said to me “Assembly language programmers are the proletariat of the
information age”.)

EXERCISE 65. There are tests for divisibility by 3, by 9, and by 11 in base
10; tests for divisibility by 7 and by 9 in base 8, and tests for divisibility by 15
and by 17 in hexadecimal. Do you know these tests? If you do know them, can
you explain why they work?

Euclid’s Proof that there are Infinitely many Primes

We start with an old chestnut. A prime number is a natural number with no
factors other than itself and 1. Euclid proved that there are infinitely many
primes. His proof is simplicity itself.

Suppose there are only finitely many primes, so that P, the set of all primes,
is a finite set. Then we can multiply them all together to get ITP, which will be
a natural number. Add 1 to obtain (ITP) 4 1. This is a natural number too. Is
it prime? It might be, but even if it isn’t we know that none of its prime factors
can belong to P. (After all, no number can divide into both n and n + 1, can
it!). Either way we know we have a prime that is not in P. This contradiction
proves that P wasn’t finite. [ |

A historical subtlety: Euclid would not have described this line of reasoning
as showing that there are infinitely many primes; Greek mathematics did not
see infinite quantities in the same way we did. The Greeks would have taken
this as a proof that there is no largest prime.

4.2 Euclid’s Algorithm

The idea is to find the highest common factor of two natural numbers = and
y. The key fact is that anything that divides x and y divides  — y. This tells
us that the HCF of  and y is the same as the HCF of z and z — y (assuming
x > y—otherwise it’s y and y — z.) So, if I want to find HCF(z,y), I should
start with two natural numbers x and y and then, at each stage, subtract the
smaller of the two numbers that I have from the larger and replace the larger
number with the result of that subtraction. For example, the HCF of 39 and
231 is the same as the HCF of 39 and 231 — 39 = 192. So if I start with 39 and
231, at the next stage I have 39 and 192. The HCF of 39 and 192 is the same
as the HCF of 39 and 192 — 39 = 153. And so on.

The HCF of the pair-of-numbers-in-hand is a loop invariant, and
when the process stops with the two elements of the pair equal then
we have found the HCF.

For example if we start with the pair (12,18) we obtain (12,6) and then
(6,6). If we start with the pair (7,25) we obtain (7,18), then (7,11), then
(7,4), (3,4), (1,3) and finally (1,1).

If the bigger number is much bigger than the smaller one then we could
end up subtracting the smaller one many times, and we would be able to save
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ourselves time by conflating lots of these subtractions together by dividing the
bigger number by the smaller and keeping only the remainder. For example,
that way—to take our (7,25) example, we would have missed out (7,18) and
(7,11), and gone straight to (7,4).

If we keep track of what we are doing when we run Euclid’s algorithm on
two natural numbers a and b (by keeping an eye on the remainders at each
division, among other things) we can not only find HCF(a,b) (hereafter (a,b)
as promised on page but we can even find two integers x and y such that

ax — by = (a,b) (4.1)

I shall not explain how this can be done (since we don’t need it for our
narrow task of climbing Mount RSA) but I can give you material on this if you
wish.

4.3 Modular Arithmetic

I mentioned earlier that there is another kind of number: integers mod p. It’s
easy to check that, for any natural number n, the equivalence relation “x and y
have the same remainder on division by n” is a congruence relation for + and
X.

That is to say since (if we care only about the remainder mod n of the
answer) the + and x operation don’t notice if we replace an argument by some
thing with the same remainder mod n, we can think of + and x as taking
for their arguments the equivalence classes under this relation, rather than the
numbers themselves.

This gives us the integers mod n. How is it best to think of these numbers?
Let’s illustrate with integers mod 5. The equivalence classes are {0,5,10,...},
{1,6,11,...}, {2,7,12,...}, {3,8,13,...} and {4,9,14,...}. Usually it’s easier
to identify these equivalence classes with their smallest members, so that—
for example—the integers mod 5 is the set {0,1,2,3,4}, equipped with the
multiplication and addition tables

x|0 1 2 3 4 +10 1 2 3 4
00 0 0 0 O 0/{0 1 2 3 4
170 1 2 3 4 111 2 3 4 0
210 2 41 3 212 3 4 01
310 3 1 4 2 313 4 01 2
410 4 3 2 1 414 0 1 2 3

What sort of arithmetic do these numbers obey? It’s easy to check that
addition and multiplication are commutative as before, and that addition dis-
tributes over multiplication as usual. There is an additive unit, which is of
course (the equivalence class of) 0. Of course (the equivalence class of) 1 is a
multiplicative unit. What equation tells us now is that if n is a prime, then
the integers mod n have multiplicative inverses. Consider equation again,
this time where a is a prime p

rephrase this
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br —py =1 (4.2)

(The RHS is 1, because—since p is a prime—(p, b) = 1.)
But then we have

bx =py+1 (4.3)

This says that bx is one more than a multiple of p. But this says precisely
that (the equivalence class of) x is a multiplicative inverse of (the equivalence
class of) b mod p.

Actually we didn’t need p to be prime: all we really needed was that the
right-hand side of equation the HCF, should be 1. So we can say:

Euclid’s algorithm tells us that a has a multiplicative inverse mod n
as long as n and a are coprime.

These are called integers mod n. One disconcerting difference between
them and all the other kinds of number you know is that they have no natural
order to them: no sense of magnitude. No “greater than”. However they do
have a circular order, like the numbers of a clock face: 1 comes after 12. (recall

exercise

4.3.1 Euler’s theorem

Euler’s totient function: ¢(n) is the size of the set
{m < n:m and n have no factors in common}.

Slightly more formally (remembering that we were warned on page[50|that (z, y)
would sometimes mean “the highest common factor of m and n”):

o(n):=[{m <n:(m,n) =1} (4.4)

This set is sometimes called U,,, and its members are sometimes called units.
The important point for us at the moment is that members of U,, are precisely
the numbers that have multiplicative inverses mod n.

Euler’s theorem says that ...

THEOREM 5. If (a,n) =1 (which is to say that a and n are co-prime) then
a®™ =1 (mod n)

So what happens if I multiply a by a member u of U,? w and a are both
prime to n so their product a-n is also prime to n and will be in U,, (or at least
its remainder mod n will be). So multiplying members of U,, by a simply moves
them around. Indeed we can say more that that. If v and v are two distinct
members of U,, then au and av are also members of U,, (we’ve seen this already)
and are distinct. Let’s prove this.
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Suppose
au = av (4.5)

a and n are coprime so a has a multiplicative inverse mod n, which we will
write a~!. Multiply both sides of equation [4.5| by a~! to obtain
Suppose
alau = a tav (4.6)
which gives u = v.
So multiplication-by-a is just a permutation of U,,. So

[Hon=]]ai (4.7)

€Uy

because the two sets over which we are taking the products are one and the
same set!
Now

H a-i= (H Uy) - a®™ (4.8)

icUy,

We get this by collecting all the a’s together, and noting that there are ¢(n)
of them.

But what do we get if we multiply together all the units in U,,? They all
have multiplicative inverses, and the multiplicative inverses are also in U,, so
they all cancel, giving 1.

Modular exponentiation is easy

There is one consequence of this that we may as well minute now. FEuler’s
theorem means that modular exponentiation is easy to calculate. What is
31,000,000,000 yy6d 2577 Well, ¢(257) = 256 so Euler’s theorem tells us that
3256 = 1 mod 257. So any power of 3256 is likewise equivalent to 1 mod 257.
But 1,000, 000,000 is a multiple of 256 so 31:000,000,000 j5 5 power of 3256 and
therefore 31,000,000,000 y6q 257 must be 1!

That looks like a special case, because 256 divides into 1,000, 000, 000.

But, had we wanted 31:000:000.007 yn6d 257 instead, we would only have had
to calculate 37 mod 257.

So, in general, how do we compute a® mod n when (a,n) = 17 Well, as the
above illustration shows, all we need to worry about is the remainder of b on
division by ¢(n). So, no matter how huge b is, we never have to calculate a to
the power of anything bigger than ¢(n).

This tells us that modular exponentiation is no more difficult than division.

More detail needed here?

Use inclusion-exclusion
show ¢ is multiplicative.

EXERCISE 66. The game of Sylver Coinage was invented by Conway, Berlekamp

and Guy. See [5]. It is played by two players, I and II, who move alternately,
with I starting. They choose natural numbers greater than 1 and at each stage
the player whose turn it is to play must play a number that is not a sum of
multiples of any of the numbers chosen so far. The last player loses.

to
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Notice that by ‘sum of multiples’ we mean ‘sum of positive multiples’. The
give-away 1s in the name: ‘Sylver Coinage’. What the players are doing is trying
at each stage to invent a new denomination of coin, one that is of a value that
cannot be represented by assembling coins of the denominations invented so far.
(There is a significance to the spelling of ‘silver’, but I do not think we need to
concern ourselves with that.)

Prove that no play of this game can go on forever.

The way to do this is to identify a parameter which is altered somehow by
each move. The set of values that this parameter can take is to have a well-
founded relation defined on it, and each move changes the value of the parameter
to a new value related to the old by the well-founded relation. The question for
you is, what is this parameter? and what is the well-founded relation?

(You should give a much more rigorous proof of this than of your answer to
ezercise [61] below: it is quite easy to persuade oneself that all plays are indeed
finite as claimed, but rather harder to present this intuition as reasoning about
a well-founded relation.)

4.4 The RSA algorithm

Let p and ¢ be two primes. Let m be p-q. ¢(m) will be (p —1)(q — 1).

Alice (for some reason she is always called ‘Alice’) wishes to arrange matters
so that people can send her messages that only she and the other party can read.
She arms herself with p, ¢ and m as above, and calculates ¢(m). Now comes the
clever bit. Alice chooses a number e (the ‘e’ is intended to suggest encryption
exponent). This encryption exponent must be prime to ¢(m); this is to ensure
that it has a multiplicative inverse mod ¢(m). This multiplicative inverse mod
¢(m) is the decryption exponent and is written ‘d’.

Alice announces m and e to the world. (She does not divulge p or ¢ or
¢(m)!). Anyone who tries to calculate p or g or ¢(m) apparently has only one
way in: to factorise m. This seems to be very hard.

Now, if you wish to send Alice a message, you do the following

1. You code up your message as a natural number somehow, using ASCII
perhaps. Let a be this number. You want a to be less than m, so you
might have to chop up your message into blocks.

2. You then calculate a® (mod m), (this is why you want a < m!) and you
send it to Alice in clear as the spies say: in an open way that everyone
can see.

(It’s worth remembering that (2) can be done quite easily: we established
in section that modular exponentiation can be done quickly.)

Alice receives the message. She decrypts it as follows. Let ¢ (for Thomas)
be the number she receives. She can calculate t¢ (mod m), since modular
exponentiation is easy.
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What is t¢ (mod m)? Well, ¢t is a® (mod m) so

t% (mod m) (4.9)
(a®)® (mod m) (4.10)

which is
a®® (mod m). (4.11)

Now a®™) is 1 (mod m), by Euler’s theorem. We know that d and e are
multiplicative inverses mod ¢(m) so we can think of de (mod ¢(m)) as c-¢(m)+1
for some number ¢. This makes a®® (mod m) the same as

a®?™*1 (mod m) (4.12)
which is

a®?™) . g (mod m) (4.13)

(a®™)¢ . a (mod m) (4.14)

which simplifies, since a®(™ is 1 mod m, to
1¢-a (mod m) (4.15)

which is of course
a (mod m) (4.16)

which is the ASCII code for my message

Do we want to use Inclusion-
exclusion to show that Eu-
ler’s totient function is mul-
tiplicative...?
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Chapter 5

Graph theory

The word ‘graph’ has many uses: there is the graph of a relation or function (a
relation-in-extension or function-in-extension) which is a set. There is also the
graph of a function, which is a picture (the graph of Az.z? is a parabola drawn
in the plane). If you stop and think about this, you will see that these are really
the same thing: the second is merely a depiction—a visualisatioin—of the first.
However, here we are going to use the word in a different way.

A graph is a set of points (known as “vertices”) with lines joining them. Each
pair of vertices in the graph either has a line joining its two members together
or it doesn’t. The line between a and b (that might or might not be there) is
called an edge. Normally we don’t think of there being an edge joining a vertex
to itelf. So a graph is a set of vertices with a set of edges, each edge joining
distinct vertices. Or it can be thought of as a set of vertices with a symmetrical
irreflexive relation. People in graph theory usually think of a graph as a pair
(V,E) of a set V of vertices and a set F of edges.

Graphs and digraphs are very useful data structures: lots of things can be
represented using them. For example, binary relations can be represented by
digraphs. (Well, digraphs with loops). Decorated graphs are very useful not
only for displaying information but also for reasoning about it. For example we
can represent a network of depots with pipelines between them by a decorated
graph. Vertices represent depots and directed edges represent the pipelines. We
can decorate the vertices with numbers indicating the amount of stuff they can
store, and decorate the edges with numbers indicating the rate at which they can
deliver stuff. Of course if the dep6ts store more than one commodity (and the
pipelines correspondingly transmit more than one commodity) then the vertices
and edges will be decorated by more than one number. Or we might prefer to
have multisets of edges between vertices (one edge for each commodity). Graphs
with multiple edges in this manner are called multigraphs.

A complete graph on a set V' of vertices is the graph containing all the
possible edges. The complement G of a graph G is the graph containing
precisely the edges missing from G. A graph is connected if for any two
vertices in the graph there is a path between them. If it’s not connected it is
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disconnected

EXERCISE 67. Prove that a graph and its complement cannot both be discon-
nected.

If you have already done some Logic and are happy with the method of
resolution you may wish to try proving this using resolution. Hint: If G and G
are both disconnected then there are vertices a and b that are disconnected in
G and vertices ¢ and d that are disconnected in G. Invent propositional letters
ac, bd and so on, which say that there is an edge between a and c, between b
and d and so on.

A decoration of a graph is a function from edges (or vertices) of the graph
to things.

We have only one section on Graph theory, so we haven’t got time or space
do anything in depth. The two results we do cover give a flavour of the kind of
thing that we prove and a taste of the methods of proof.

5.1 Menger’s theorem

We illustrate this kind of application of graph theory by exhibiting Menger’s
“Min cut max flow” theorem.

Menger’s theorem applies to directed graphs with a source and a sink, and
which have their edges decorated with whole numbers (“capacities”). These
things are also called networks.

In the picture below A is the source and J is the sink

(Don’t worry about the numbers on the edges for the moment).

A cut in a digraph G = (V| E) is a set of edges which disconnects the graph.
(“No path from the source to the sink”) For example, the set {(K,J), (H,J)}
containing the two edges K — J and H — J is a cu

1Yet ANOTHER use of round brackets! But this one isn’t standard.



5.1. MENGER’S THEOREM 121

Alternatively a cut is a partition of the set of vertices into two pieces, one
of which contains the source and the other contains the sink. These two ways
of thinking about cuts are related: If {4, B} is a partition of the set of vertices
into two pieces, then the edges of G that join things in A to things in B form a
cut (in the other sense). Similarly if we have a set of edges that disconnect the
graph we can define a partition of the set of vertices into two pieces. One piece
contains those vertices you can reach from the source without traversing any of
the edges in the cut, and the other is the set of those vertices from which you
can reach the sink without traversing any of the edges in the cut.

A graph might have its edges decorated with quantities. .. that could in prin-
ciple be anything. (That is why the datatype of graphs is so useful). The di-
graph above has had its edges decorated by natural numbers, and it’s the kind
of picture one would dream up if one were trying to represent a network of oil
pipelines: each edge is a pipeline from one pumping station to the next, and the
decoration of each edge (pipeline) tells you the capacity of that edge.

Now a flow is an allocation of numbers to edges, where the number allocated
to an edge is no more than its decoration (can’t pump more oil than the pipeline
will carry) and the sum of the allocations to the edges going into a node equals
the sum of the allocations to the edges leaving the node. (oil doesn’t get lost
or created at nodes). There is an obvious notion of the value of a flow, namely
the sum of the decorations on the edges leaving the source (or, equivalently) the
sum of the decorations on the edges entering the sink.

The value of a cut in a decorated graph is the sum of the numbers in its
decorations.

Menger’s “Max flow min cut” theorem says that: in any network, the largest
value that a flow can have is the same as the smallest value of a cut. It’s obvious
that any flow must be less than the value of any cut. (Every flow must go
through every cut). It’s not at all obvious that the maximum flow you can
propel through a network is the same as the cheapest cut.

Let’s see what we can do. Suppose we are given a flow.

We are going to colour some vertices blue. (“Blue vertices are those you can
increase the flow to”.) We rule that the source is blue. Thereafter if x is blue
and there is an edge * — y used to less than its capacity then y is blue. It’s
obvious what this condition is doing, but there is a second clause which will
require a bit of thought. If x is blue and there is an edge y — = which is used
more than 0 then y is blue.

Ask: is the sink blue?

If yes, then there is a path source — sink on which you can increase the
flow. If the only way in which we made a vertex blue was by finding that it was
downstream from a blue vertex along an underused edge it would be obvious
that we would improve the flow: just pump more along the trail of blue vertices
joining the source to the sink. But what is the second clause doing? What is
the significance of the “backward” edges?

Suppose we have—in addition to the source and the sink—two vertices a, b
both blue. a is blue because there is an underused edge from the source — a; b
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is blue because there is an edge b — a which is used (it doesn’t matter whether
partially or to full capacity), and the sink is blue because there is an underused
edge to it from b. How does this help? Easy! we can take some of the flow
currently going from b to a and divert it so that it goes to the sink instead.
That way we have increased the flow. This illustrates what we are supposed to
do at each “backwards” edge. ]

If the sink is blue, we can increase the flow. So if we can’t increase the
flow, the sink is not blue. Let us consider this case. Think about the two-piece
partition of the set of vertices into {{v : blue(v)},{v : —blue(v)}}. The piece
containing all the blue vertices contains the source and the piece containing the
non-blue vertices contains the sink, so this partition is a cut within the meaning
of the act. It is now quite easy to see that the capacity of this cut is precisely
the capacity of the flow we started with. Every molecule of oil starts at a blue
vertex (namely, the source) and visits blue vertices until it reaches a non-blue
vertex, and once having reached a non-blue vertex it never looks back: it never
sees a blue vertex again. (say more about this?) So at some point it traverses
an edge from a blue vertex to a non-blue vertex—which is to say, it crosses one
of the edges of the cut.

5.2 Euler’s Theorem on graphs

An Eulerian circuit in a graph is a tour round the graph (a walk that takes you
back to where you started) that visits every vertex (possibly several times) but
traverses each edge precisely once. This is in contrast to a Hamiltonian circuit
which visits each vertex once. You will need to know about Hamiltonian circuits
later when you do complexity theory, but we will not go into any detail about
them now, as they are quite hard.

In contrast, there is a rather nice theorem about Eulerian circuits which
we will prove. Actually, before we jump in let’s decide to restrict ourselves to
(finite) connected graphs only, just to keep things simple. Something similar is
true for arbitrary graphs but we don’t care.

We first need the concept of the degree of a vertex. The degree of a vertex
v is the number of edges that meet at v.

THEOREM 6. A (finite) graph has an Eulerian circuit if and only if every
vertex has even degree.

One direction is fairly easy. Suppose there is such a circuit. Follow it round
the graph. If you are walking round the graph, and are not to get trapped at
any vertex v, then there must be a way out of v as well as a way in. (So you can,
unlike Omar Khayyam, always go out from a different door from that through
which you came 1rﬂ) Now—since you can only use each edge once—the edges

2 “Myself when young did eagerly frequent
doctor and saint, and heard great argument
about it and about: but evermore
came out by the same door as in I went”. Khayyam tr. Fitzgerald.
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at each vertex come in pairs, from the point of view of your circuit. Each time
you come in on an edge, you must come out on a different edge, and this pairs
up the edges that meet at v. Since you were travelling on an Eulerian circuit,
you have used up all the vertices, so every vertex is of even degree.

The other direction is harder.

We are going to do a proof by wellfounded induction, and the wellfounded
relation we exploit is the subgraph relation. We say G; < G» if G is obtained
from G2 by deleting edges and/or deleting disconnected vertices. We claim that
< is wellfounded.

We will prove by induction on < that every graph all of whose vertices have
even degree has an Eulerian circuit.

So let G be a finite graph all of whose vertices have even degree, and assume
that, for all G’ < G, if all vertices of G’ have even degree, then G’ has an
Eulerian circuit. We will establish that G has an Eulerian circuit too.

We will try to build a circuit. Start at any vertex, and walk around it as
we did in the other direction of the proof, in no particular order. (Caminante,
no hay camino. El camino se hace al andar said Antonio Machado). The only
place at which you can ever get stuck is the vertex where you started, and that
is, indeed, where you will eventually get stuck. You might of course be lucky
and have visited all the vertices, in which case we have an Eulerian circuit as
desired. But suppose we don’t.

You do at least have a circuit, C. It might not visit all vertices. Now we
delete from G all the edges that belong to C. The graph G’ that remains is a
proper subgraph G all of whose vertices have even degree. G’ might actually
be a union of disconnected subgraphs (the components of G’) rather than one
single subgraph, but this doesn’t make much difference. By induction hypothesis
this subgraph (or these subgraphs) have Eulerian circuits.

What happens next is a bit hand-wavy, and you will have to draw some
pictures. Equip G’ (or each of its components) with an Eulerian circuit. Then
you join up these Eulerian circuits with the circuit C' that we found in the
previous paragraph to obtain an Eulerian circuit for G. Hint: think about the
vertices that lie both on the Eulerian circuits for G’ (or its components) and on
the circuit C'. We start off by trying to think of C' as an Eulerian circuit for G,
but we find that each of these vertices is an invitation to take a détour round
G or one of its components.
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Chapter 6

Confluence

A computer scientist’s life is well-supplied with situations in which there is an
object that has to be processed into a particular form, or turned into some-
thing else. The processing involves performing certain actions, probably several
different actions, and each of them potentially more than once. For example
when trying to convert a propositional formula into disjunctive normal form one
exploits the identity

ANBVC)+— (ANB)V(ANQD))
every time one wants to “push” a ‘v’ “inside” a ‘A’.
For example, suppose one is trying to obtain a disjunctive normal form for
pA(gV(rA(sVi))) (6.1)

This formula has two ‘A’s in it and they both have to be processed. One can
attack either of them first and it’s not going to make any difference to the
formula one finally obtains which way round one does it. If you attack the top
(leftmost) ‘A’ first you get

(PAQV((pAT)A(sVT))).
after which you attack the third ‘A’ to get

AV ((pATrAS)V(pATAL)) (6.2)
Alternatively you could first attack the second ‘A’ in and get

pA(gV (rAs)V(rAt)).

Now you can distribute the first ‘A’ over the two ‘V’s that follow it and end
up with as before.

A reduction or simplification process that sometimes allows you a choice of
ways to reduce the object-in-hand but which nevertheless guarantees that, when

125
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the music stops and you have no more reductions to perform, then you will have
the same thing in your hand whichever choices you made en route, is said to be
confluent. Clearly, when you are given a bundle of operations which you use
for processing an input, it does matter greatly whether or not these operations
are confluent. Not all processes are confluent and even when they are it can be
hard to prove.

Let’s have some examples.

e There is another confluent process one can do to propositional formulae like
You might have a valuation in mind—a row of the truth-table—and have
to decide whether [6.1] comes out true or false under this valuation. Suppose we
consider the row of the truth-table in which p comes out false and all the others
come out true. One might notice that p being false makes the whole thing false,
and that it makes no difference in what order one computes the truth-values
of other subformulese. This is lazy evaluation of which you will hear more. As
long as your valuations are total functions then your process of evaluating [the
truth-value of] a complex formula will be confluent.

e Another example with which you will have recently (page become
acquainted is the process of adding ordered pairs to a relation R to obtain t(R)
the transitive closure of R. You roll up your sleeves, and stick your hands into
R and pull out two ordered pairs p and p’. You put them both back of course,
but if p happens to be (z,y) and p’ happens to be (y, z) you also add the pair
(x, z)—unless it’s already there of course. Clearly the order in which you pull
the various pairs out of R and put them back makes no difference to the end
result, the stage at which there are no further pairs to add co’s they’re all there.
This process of adding pairs to R to obtain t(R) is confluent.

e Notice that the ball-extraction process in Exercises [9] and [60] is confluent.

e Here is another pertinant example that I found on an example sheet. It’s
actually an exercise on Rule Induction but it serves to make other points as well
(as good example sheet questions often do!)

Consider the set X of strings inductively defined over the alphabet {a,b} as
the least set which contain the string ab and

(i) whenever X contains a string au (u a string) also contains auu
(so you can double the number of bs that follow the a); and

(ii) whenever X contains a string abbbu (u a string) it also contains
au (so you can subtract 3 from the number of bs that follow the a).

It’s not hard to persuade yourself that the set of strings obtainable in this
manner consists precisely of those strings that are of the form a followed by
n bs where n is of the form 2¥ — 3m. Indeed that is what the exercise invites
you to do. For example if you want abbbbb you start with ab, double to obtain
abb and again (and again) to get abbbbbbbb and then subtract 3 to get abbbbb.
But if i’d doubled a fourth time to get ab'®—thereby overshooting you might
think—i could still get to abbbbb in the end. How? I subtract 3 twice to get
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ab'®, double again to get ab® then subtract 3 five times to get abbbbb. The
process of obtaining a 2F — 3m string of bs by doubling the number of bs and
subtracting 3 from the number of bs is confluent. You might like to try, Dear
Reader, to show that

EXERCISE 68. One can obtain any number of the form 2F — 3m from any
other number of that form by repeatedly doubling and subtracting 3.

It might feed usefully into your learning about Number Theory from earlier
chapters.

Among other examples of confluent phenomena that you will encounter later
are:

e the sequent rules for classical propositional logic are confluent, and

e [-reduction in A-calculus is confluent.

But those are for later.

I would love to fit some of that “for later” material in here (as you can see,
the judgement was that confluence in worth a chapter all to itself) but I haven’t
found a way of making it into first-year material.

But we could end with a non-example. The process of compiling a guest
list for a party is not reliably confluent. At any stage in the compilation you
may add to the growing list anyone who is on speaking terms with everyone on
the list so far. But Arthur and Bertha might both be on speaking terms with
everyone on the list-so-far but not with each other! So you can invite either, but
once you’ve invited one you cannot then invite the other as well. No confluence.

This non-confluence of the process that adds invitees to obtain a party is
related to the fact that there is no notion of party closure the way there is of
symmetric closure and transitive closure. You can obtain the transitive closure
of a relation by adding ordered pairs to it according to an obvious rule, and this
process is confluent. See section [3.2.6



128 CHAPTER 6. CONFLUENCE



Chapter 7

A Bit of Game Theory

Game theory is a huge ramshackle area of Mathematics. There are discrete

games (e.g. chess), continuous games (lion vs antelope) among others. The only

kind of game we are going to be concerned with here is the kind represented by

a matrix. There are two players, called I (who picks rows) and II (who picks

columns)—mneither knowing the other’s choice at the time they make their own.
In the game corresponding to the matrix

ap,0 ao,1
aio 4

when I has picked the ith row and II the jth column, IT must pay I the
sum of £a; ;. (a;; is of course the entry in the ith row and the jth column).

Games represented like this are zero-sum games. That is to say that the
sum of the payoffs to the two players is 0.

[This jargon “zero-sum” tells us at least that the payoffs take values in a
structure with an additive inverse. In what follows it’s clear that the values are
ordered, and I think that we can take them to be an ordered abelian group, or
perhaps a module over an ordered field. Don’t worry if you don’t yet know the
meanings of these expressions.|

(Nonzero sum games are represented by matrices where each entry is a pair
of numbers, being the payoffs to the two players. We will see those in section
)

We start with zero-sum games. There is a theorem due to von Neumann and
Morgenstern that says that there is an optimal strategy for both players. This
theorem is known as the Von Neumann and Morgenstern minimax theorem; see

[
What do we mean by an optimal strategy?

First let’s get the concept of dominance out of the way. (The following
example is from []])
Consider the following matrix.

129
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N & M e}
N O -
W O =
N W N

Compare the first and third rows. Notice that whatever II does, I is always
better off playing the third row than playing the first: in each column the entry
in the third row is bigger than the entry in the first row. We say the third row
dominates the first row. If I is playing sensibly he will never play the first
row, so we can delete it. So we can assume they are playing this next matrix.

== N

0 1
2 5
1 3

N WO

The second column—ifrom II’s point of view—dominates the fourth, so we delete
the fourth, since IT will never play it.

=N
_= N O
W Ut =

Then—from I'’s point of view—the third row of the result dominates the first
row, so we can delete the first row, since I will never play it.

1 2 5

4 1 3

Finally the third column—from II’s point of view—is dominated by the

second. Thus I is never going to play either of the first two rows of the originL

display, and II is never going to play either column 3 or column 4, in effect
leaving us with

1 2
4 1

Something to think about.... In the sequence we ran through above, the
commentator (us) acting on assumptions about the rationality of the two play-
ers, deleted rows and columns alternately. That’s just the way it happened in
this case; there could have been a stage at which we could have deleted two
(or more) rows (or columns). Suppose now we are at a stage at which there is
both a row and a column that can be deleted ...might it make any difference
which one we delete first? This brings up the question of of confluence from
chapter [} How confident can you be that we will always end up with the same
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matrix once we have run out of rows and columns to delete? In general proving
confluence can be hard, but in this case it’s easy ...so easy, in fact, that I am
going to leave it to you to deal with.

EXERCISE 69.
Prove that the process of deleting dominated rows and columns is confluent.

You should be prepared to spend some time on this exercise, and really get
it to come out. (It took me a while!)

By this process of weeding we end up with a matrix in which no row domi-
nates any other row and no column dominates any other column.

What is the sensible thing to do? The maximin strategy is to choose that
course of action which give you the best result if things go well. For player I
this strategy tells him to play that row whose greatest element is the greatest
among all the rows available. That is to say: he is considering, for each row
7, the best case b, that can happen if he plays r. (b, is the biggest number in
row r.) He then chooses r so as to optimize (= maximise) b,. The trouble is,
II might not oblige by picking the column in which that number appears! In
contrast the minimax strategy is the strategy of minimising the disasters that
can befall you: acting so as to ensure that the worst-case scenario in the course
of action you have embarked on is less dire than the worst-case scenarios that
would have awaited you down other paths.

For player I this strategy tells him to play that row whose least element is
the greatest among all the rows available. That is to say: he is considering, for
each row r, the worst case w, that can happen if he plays r. (w, is the smallest
number in row 7.) He then chooses 7 so as to optimize (= maximise) w,. That
way he can be sure of compelling IT to pay him at least the largest number
that is a w, for some row r. Let us call this value I*. II has a corresponding
(“dual”) strategy which is to consider, for each column ¢, the largest number
ge in that column. She then chooses ¢ so as to optimise (= minimise) g.. That
way she can be sure that she doesn’t have to pay out more than the smallest
number that is a g, for some column c. Let us call this quantity IT*.

We will minute the following fundamental fact:

Proof:

Let A be the set {z : for some row r, x is the smallest thing in r} and let
B be the set {y : for some column ¢, y is the largest thing in ¢}. We want to
show that everything in A is less than everything in B. Let x be an arbitrary
member of A and y an arbitrary member of B. x belongs to row r, for some
r, and y belongs to some column c. Clearly at the point where r and ¢ meet
we will find a number that is as big as the smallest thing in r (namely x) but
no bigger than the biggest thing in ¢ (namely y). So  <y. But z and y were
arbitrary, so this tells us that everything in A is less than or equal to everything
in B. So the biggest thing in A (which is I*) can be no bigger than the smallest
thing in B (namely IT*). [
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So “The sup of the infs is less than or equal to the inf of the sups.” The
point is often made that this inequality is the same fact as the implication
(Fz) (YY) (F(z,y)) = (Vy)(3x)(F(x,y)). What is going on? If you think of the
truth-values true and false as ordered false < true then you will think that
the truth-value of (3x)(F(x,y)) is the sup of the truth values of F(z,y) for all
z, and the truth-value of (Vz)(F(x,y)) is the inf of the truth values of F(z,y)
for all z. So the truth-value of (3z)(Vy)(F(x,y)) is the sup of the infs, and the
truth-value of (Vy)(3z)(F(x,y)) is the inf of the sups. You may recall the same
ideas cropping up in connection with Menger’s theorem.

The cases where I* = II* are games with saddle points. This is because
such a game has an element which is the largest in its column and the smallest
in its row, and we say of such an element that it is a saddle point.

Figure 7.1: A saddle

However there are lots of games—even 2 x 2 games—without saddle points,
like
4 2
1 3

In this game I will play safe and choose the first row (the row with the
largest minimum), giving I* = 2 and IT will pick column 2 (with the smallest
maximum) giving II* = 3.

Games lacking saddle points merit further analysis. It’s not clear what is
the best thing to do. We can make progress in understanding this situation if
we ask instead a different question. Instead of asking “What is the best thing
to do in (a single play of) this game?”, one asks: “If one is going to play a lot of
plays of this game, what is the best way to maximise your aggregate payoff?”
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This leads us to the notion of a mixed strategy. A mixed strategy gives you
an assignmnent of probabilities to rows (if you are I) or columns (if you are II)
and you toss a suitably biased coin or roll a suitably biased die to decide which
to choose at each play of the game.

It is in this sense of best that the Minimax theorem tells us that both players
have a best strategy. For each player there is an optimal mixed strategy.

One way of thinking of this is to fill out the four points in the matrix above
into a surface, as in the picture. This surface is saddle-shaped, and has a saddle
point. It is this saddle point that will be the solution to the game—in a sense
which we must now make clear.

THEOREM 7. In any n x m matriz game there is a (Punique?) mized strategy
for I (and II) which is optimal in the sense that no other strategy guarantees
as good an average payoff.

For simplicity’s sake let us restrict ourselves to the case where the matrix is
a two-by-two matrix. We are also going to assume that neither row dominates
the other and neither column dominates the other. This not only restricts our
analysis to the cases we have not yet covered, but also coincidentally excludes
from application of this analysis cases that would cause it to do stupid things
like divide by 0. So we are looking at
a b
c d
and let us assume without loss of generality that both a and d are bigger than
both ¢ and b.
I and IT use mixed strategies, so that I picks row 1 with probability x and

IT picks column 1 with probability y. We can represent this by decorating the
matrix thus:

ly 1—y
T a b
l-2)|c d

Let P be the expected payoff for the pair of mixed strategies. That is to say,
P is the number of £ that IT will be paying I per game on average. (Remember
P may be negative!) P is the average of the matrix entries weighted in the
proportion of the time that I and II choose each entry. To be precise, P is

axy +b(l —y)x +cy(l —z) +d(1 —y)(1 — x) (P)

Thus on average, if I picks row 1 a proportion x of the time and II picks column
1 a proportion y of the time, on average IT will pay I £P. We can rearrange
this expression to

zyla—b—c+d) +ylc—d)+z(b—d) +d. (7.1)
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Now once we have fixed on constant values of a, b, ¢ and d the formula P above
gives us a function of two variables x and y. What we want is to find a value of
x that makes the dependence of P on y disappear. The coefficient of y in P is

z((a+d)—(c+b)+ (c—d) (7.2)

For what value of x does equation take the value 07 Clearly we must
have
z((a+d)—(c+b))=(d—c) (7.3)

So if x takes the value

d—c (%)
r=-——"—"— x
(a+d)—(b+¢)
then P takes a value from which y has disappeared. This means that if I and
IT play repeatedly, with = playing row one with probability x*, it makes no
difference what player IT does.

This probably looks horrible, but it makes good sense. We are in a situation
where the two rows slope in different ways: row 1 slopes down (going from left
to right) and row 2 slopes upward. (d — ¢) is a measure of the slope of row 2. If
it’s very nearly zero then—if you want a strategy that produces the same result
(on average) whatever II is doing—then you want to be playing row 2 most of
the time. So you want x to be very small. And it’s simple to check that the top
line of z* is positive and smaller than the bottom line (which is also positive)
so x* is between 0 and 1.

Similarly we want to find a value for y that will make P’s dependency on z
disappear. You might like to try this by hand, pursuing calculations analogous
to equations and But we don’t actually need to. Substituting z* into
P we get

(d—c)(d—1b)
T latd-0ra (4

which simplifies (try it!) to

(ad — cb)
(a+d)—(b+c¢)

Which we call the value of the game.

Finally we need to check that

EXERCISE 70.
I*"<vyp<II*

(Remember that I* is the larger of b and ¢, and that II* is the smaller of a
and d).
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This resolves the unsatisfactory situation where there was a gap between the
best I could get for himself and the worst that II had to endure. Using the
mixed strategy II can ensure that nothing worse than v happens, and I can
ensure that he does at least do as well as v. v is, in some sense, a solution to
the game.

It is possible to find an optimal mixed strategy even if there are more than
two rows or columns, but we have to use some slightly trickier mathematics to
do it, and we have no space for that here. Instead we close with a brief glimpse
of some very mysterious and complex generalisations, which are susceptible of
wide application.

7.1 Bimatrix games

In these games the second components are the payoffs to the player picking the
columns (player II); the first components are the payoffs to the player picking
the rows (player I).

These games are deep and important objects, and there is a huge literature
on them. The most famous game of this kind is:

Figure 7.2: The Prisoners’ Dilemma

cooperate defect
(3,3) (1,4)  cooperate
(4,1) (2,2)*  defect

The Prisoners’ Dilemma is a game played by two players, both of them
prisoners at the mercy of the Evil Gaoler. You have to choose between shopping
your accomplice (the other player) and staying solid. The game is symmetrical:
the options open to the two players are the same. If you shop your accomplice
you get a new identity and a case of whisky (that’s 4) and your accomplice is
fed to crocodiles (that’s 1). If you both shop each other, your gaolers treat you
with contempt and merely shoot you (that’s 2). If you both stand firm and
loyal you escape with your lives and your freedom (that’s 3).

It is almost impossible to overestimate the importance of this discovery of the
Prisoners’ Dilemma. The number of real-life situations of which it is a plausible
formalisation is astonishing. This makes it not merely intruiging but important.
However, since the fundamental concepts of game theory are not entirely clear,
our analysis of the Prisoners’ Dilemma game is not as applicable as one would
like. An old problem in Ethics (I think the Greeks wrote about it) is the problem
of inferring individual obligation from collective obligation. Clearly all nations
are under a collective obligation to disarm themselves of their nuclear weapons.
But—equally clearly—one does not infer from this that each and every nation is
obliged to disarm unilaterally. In contrast, in the logically very similar situation
of the problem posed by global warming and the need to cut carbon emissions,
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there is a much stronger inclination to argue that individual countries are under
individual obligations to cut their emissions. This discrepancy arises because
it is not entirely clear how to draw correctly the parallel between the real-life
situation and the formal version.

A subtly different game is Chicken:

Figure 7.3: Chicken

blink  don’t blink
(3,3)  (2,4)" blink
(4,2 (1,1) don’t blink

Chicken is played by two car drivers approaching each other at high speed on
a single carriageway. The one who veers off the road to avoid getting killed loses
a lot of cred and probably writes off the car (that’s 2). Still, it beats getting
killed (that’s 1). If you both veer off the road you still write off the car but you
don’t lose as much cred (that’s 3). If you stay on the road and the other player
veers off, then you gain a great deal of cred—and you keep the car (that’s 4).

Can one say anything sensible about these games? Well, there are always
these things called Nash equilibria. (The Nash equilibria are the starred
entries above). What is a Nash equilibrium? It’s a pair of a row R and a
column C such that I cannot do better than R—given that II is going to play
C—and II cannot do better than C—given that I is going to choose R.

On the face of it there may be lots of Nash equilibria. We can use a fixed
point theorem to show that—if we allow mixed strategies—there must be at least
one. I'm not planning to prove that all bimatrix games have Nash equilibria.

And yes, it is the Nash of the Beautiful Mind, who died in a car crash on
the fourth day of the ENG v NZ Lord’s Test 2015.

7.1.1 Symmetrical Bimatrix Games

Consider bimatrix games where the ordered pair at a; ; is the flip of the ordered
pair at a;; and the ordered pairs on the main diagonal have two identical om-
ponents. What’s this ‘main diagonal’ 7—doesn’t make sense! After all, we could
have written the columns in any order and we could have written the rows in
any order, and that would jumble things up terribly. Well, it does if there is a
way of identifying rows with columns: and this will happen if, for example, the
options available to I are the same as those available to II. This is the case
in the prisoners’ dilemma for example—where we can name one row (column)
‘cooperate’ and the other ‘defect’ and in chicken, where one row (column) is
‘blink” and the other is ‘don’t blink’.

In these circumstances one can once again represent the game by a matrix
(not a bimatrix, two superimposed matrices)—even though the game is not
zerosum—but in this case the entry in a; ; represents that payoff to strategy ¢
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played against strategy j and the payoff to strategy j played against strategy i
is to be found in a; ;.

It turns out that this special case has a biological motivation. (I think this
is right) an evolutionarily stable strategy is a (possibly mixed) strategy o
such that (o, 0) is an equilibrium pair.

They write E(p,q) for the payoff to someone playing p against someone
playing q.

The Bishop-Cannings theorem states that if I is a mixed strategy then
E(p,I) = E(I,I) for all p in the support of I.
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Chapter 8

More Exercises

Starred exercises have model answers. The following relevant tripos questions
also have model answers in the chapter of answers.
Maths tripos questions: 1995:5:4X]

EXERCISE 71. An old examination question
Let R be a relation on a set X. Define the reflexive, symmetric and transitive
closures r(R), s(R) and t(R) of R. Prove that

1. Rol=R

2. (RUD)" =1U ([ J R") for n > 1
i<n

3. tr(R) = rt(R).

Show also that st(R) C ts(R).

If X =IN and R =1U{{(z,y) : y = px for some prime p} describe st(R)
and ts(R).

Comp Sci tripos questions: 1990:1:9, 1990:1:11, 1993:11:11, 1994:10:11, 1996:1:R0cal info: delete

8.1 Exercises on (binary) relations

1. (Do not do more than a sample of the bits of this question: if you are
making any mistakes they will always be the same mistakes, and there is
no point in making the discovery more than once!)

(a) Given the operations of composition and union, express the following
relations in terms of brother-of, sister-of, father-of, mother-of, son-
of, daughter-of. (You may use your answers to earlier questions in
answering later questions.)

139



probably need to incorporate
this into Exercise

140

CHAPTER 8. MORE EXERCISES

parent-of
uncle-of
aunt-of
nephew-of
niece-of
grandmother-of
grandfather-of
first-cousin-of

You can also express some of the relations in the original list in terms
of others by means of composition and union. Do so.

(b) Do the same to include all the in-law and step relations, by adding
spouse-of to the original list. This time you may use intersection and
complement as well.

(c) If the formalisation of “x is a parent of y” is
“father-of(z,y) V mother-of(z,y)”

(i.e., use logical connectives not U and N...you will also need to use
quantifiers) what are the formalisations of the other relations in the
preceding list? And for a bonus point, formalise “z is the double
cousin of y”EI Hint: might need new variables!

(d) Using the above gadgetry, plus set inclusion (“C”) formalise

Every mother is a parent;

The enemy of [my] enemy is [my] friend;
The enemy of my friend is my enemy;
The friend of my enemy is my enemys;
No friend is an enemy.

2. * Let R be a relation on A. Recall that r(R), s(R) and t(R) are the

reflexive, symmetric and transitive closure operations respectively.

(a) Prove that rs(R) = sr(R);

(b) Does R transitive imply s(R) transitive?

(c) Prove that rt(R) = tr(R) and st(R) C ts(R);

(d) If R is symmetrical must the transitive closure of R be symmetrical?
Prove or give a counterexample.

Think of a binary relation R, and of its graph, which will be a directed
graph (V, E). On any directed graph we can define a relation “I can get
from vertex x to vertex y by following directed edges” which is certainly
transitive, and we can pretend it is reflexive because after all we can get
from a vertex to itself by just doing nothing at all. Do this to our graph
(V,E), and call the resulting relation S. How do we describe S in terms
of R?

1Fred and Bert are double cousins if they are first-cousins in two different ways.
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. * Show that—at least if (Vz)(Jy)((z,y) € R)—Ro R™! is a fuzzy. What

about RN R~1? What about RU R~1?

. * Given any relation R there is a least T 2 R such that T is transitive,

and a least S DO R such that S is symmetrical, namely the transitive
and symmetric closures of R. Must there also be a unique maximal (aka
maximum) S C R such that S is transitive? And must there be a unique
maximal (maximum) S C R such that S is symmetrical? The answer to
one of these last two questions is ‘yes’: find a cute formulation.

. What are the transitive closures of the following relations on IN?

(a) {(0,1),(1,2),(2,3),...}: i.e., {(n,n+ 1) : n € IN},
(b) {(n,2n):n € IN}.

. What is an antichain? Let D,, be the poset whose elements are the divisors

of n, with <y if z]y. Find a maximum antichain in Dag.

. Consider the set [1,n] C IN of natural numbers from 1 up to n inclusive.

How many partial orders < are there on this set with the property that

(Vayz)(z <z Ly Lo —z<y)?

. * Show that R C S implies R~! C S~!

(a) The purpose of this question was to make a point about lexicographic
orders: in this case, about the order on IN x IN. Check that you have
really understood what is going on by rewriting the question for the
scenario in which the balls come in three colours ...k colours.

(b) (abstruse: not for a first pass) Extend the product order of IN x IN by
stipulating that (z,y) < (y, S(z)) and taking the reflexive transitive
closure. Write the result <. Is <g a total order? Define < between
finite subsets of N x N by X <Y iff (Vz € X)(By € Y)(x <py). Is
< wellfounded?

Let K = Ax.(Ay.z). Evaluate K8, K(K8) and (KK)8.

What is a wellordering? What is an initial segment of an ordering? (If you
don’t know what a chain in a poset is you probably won’t know what an
initial segment in a total ordering is either.) If (X, <) is a total order, then
a suborder of it is a subset X’ C X ordered by the obvious restriction of
<. Prove that (X, <) is a wellordering if every suborder of it is isomorphic
to an initial segment of it. (The converse is also true but involves more
work.)

* Show that U R™ is the smallest transitive relation extending R.
nelN

‘monotone’ re-used
There’s a question missing
here
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14. t(R) is the transitive closure of RE|

(a) * Give an example of a relation R on a set of size n for which t(R) #
R'UR?U...UR" L.

(b) Give an example of a set and a relation on that set for which ¢t(R) #
R'UR?U...UR" for any finite n.

(¢) If R is reflexive then t(R) is clearly the reflexive transitive closure
of R (often called just the transitive closure): if you are not happy
about this, attempt to write out a proof.

(d) Find an example of an irreflexive relation R on a set such that t(R)
is indeed the reflexive transitive closure of R.

15. Think about IN and S (the successor function on IN).
What is the transitive closure of S?
For n,m € IN when do we have (§™)* C (S™)*?
When do we have (S™ U (S™)"tUuS™ U (™)~ 1)* = (SUS~1H)*?

16. * Show that the smallest equivalence relation containing the two equiva-
lence relations R and S is t(RU S).

17. If R C X x X is a fuzzy on X, is there a largest equivalence relation on
X that C R? Is there a smallest equivalence relation on X that O R?

18. (a) Suppose that for each n € IN, R,, is a transitive relation on a (pre-
sumably infinite) set X. Suppose further that for all n, R, C R, 1.
Let Ry be U R,,, the union of all the R,,.
nelN
Prove that R, is also transitive.

(b) Give an example to show that the union of two transitive relations is
not always transitive.

19. For all the following choices of allegations, prove the strongest of the cor-
rect options; explain why the other correct options are not best possible
and find counterexample to the incorrect ones. If you find you are doing
them with consummate ease, break off and do something else instead.

(a) An intersection of a fuzzy and an equivalence relation is (i) an equiv-
alence relation (ii) a fuzzy (ii) neither

(b) A union of a fuzzy and an equivalence relation is (i) an equivalence
relation (ii) a fuzzy (iii) neither

(c) An intersection of two fuzzies is (i) an equivalence relation (ii) a fuzzy
(iil) neither

2Misleadingly people often use the expression “transitive closure of R” to mean the tran-
sitive reflexive closure of R.
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(d) An intersection of the complement of a fuzzy and an equivalence
relation is (i) an equivalence relation (ii) a fuzzy (iii) neither

(e) An intersection of a fuzzy and the complement of an equivalence
relation is (i) an equivalence relation (ii) a fuzzy (iii) neither

union of a fuzzy and the complement of an equivalence relation is
f) A union of a f d th 1 t of ival lation i
(i) an equivalence relation (ii) a fuzzy (iii) neither

(g) An intersection of a fuzzy and the complement of a fuzzy is (i) an
equivalence relation (ii) a fuzzy (iii) neither

(h) An intersection of the complement of a fuzzy and the complement of
an equivalence relation is (i) an equivalence relation (ii) a fuzzy (iii)
neither

(i) A union of two fuzzies is (i) an equivalence relation (ii) a fuzzy (iii)
neither.

A PER (‘Partial Equivalence Relation’) is a binary relation that is sym-
metrical and transitive. Is the complement of a PER a fuzzy? Is the
complement of a fuzzy a PER? In each case, if it is false, find sensible
conditions to put on the antecedents that would make it true.

Let < be a transitive relation on a set X. Consider the two relations
1) {{z,y) : (e X)N(ye X)A (z <y) A (y <z)} and
(ii) {(z,y): (€ X)A(y € X) A (z £ y) A (y £ )}

(a) Are either of these fuzzies, or equivalence relations?

(b) If one of these isn’t a fuzzy, but “ought to be”, what was the correct
definition?

(c) If the relation in (i) was an equivalence relation, what sort of relation
does < induce on the equivalence classes? Why is the result a mess?
What extra condition or conditions should i have put on < to start
with to prevent this mess occurring?

(d) If (the correct definition of) relation (ii) is an equivalence relation,
what can we say about the quotient?

Explain how to find the two greatest numbers from a set of n numbers
by making at most n + |log,n| — 2 comparisons. Can it be done with
fewer? How about the 3 biggest numbers? The k biggest numbers, for
other values of k7 What happens to your answer as k gets bigger and
bigger and approaches n?

* Show that the largest and smallest elements of a totally ordered set
with n elements can be found with [3n/2] — 1 comparisons if n is odd, and
3n/2 — 2 comparisons if n is even.
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Construct natural bijections between the following pairs of sets. (For
the purposes of this exercise a natural map is (expressed by) a closed A-
term; a natural bijection is (expressed by) a closed A term (L, say) with
an inverse L. That is to say, both compose(L,L’) and compose(L’, L)
simplify to Az.z. Alternatively, a natural function is one you can write
an ML program for. If you want to think more about what a natural
bijection is, look at your earlier answers to the questions: If A is a set
with n members, how many symmetrical relations are there on A, and
how many antisymmetrical trichotomous relations are there on A7 The
answers to these two questions are the same, but there doesn’t seem to be
any ‘obvious’ or ‘natural’ bijection between the set of symmetrical relations
on A and the set of antisymmetrical trichotomous relations on A. You will
need to assume the existence of primitive pairing and unpairing functions
which you might want to write as ‘fst’, ‘snd’ and (z,y).)

A— (B—C)and B— (A— C);

A x B and B x A;

A— (Bx(C)and (A— B) x (A— C);
(AxB)— Cand A — (B— ()

You may wish to try the following pairs too, but only once you have done
the ML machinery for disjoint unions of types:

(A= C)x(B—C)and (A+ B) = C;
A+ (B+C)and (A+ B) +C;
Ax (B+C)and (Ax B)+ (AxC).

Let Z be a set with only one element. Find a natural bijection between
(Y + Z)X and the set of partial functions from X to Y.

Find natural functiond]

(i) from A into B — A;

(ii) from A into (A — B) — B;

(iii) from A — (B — C) into (A — B) —» (A — C);

(iv) from (((A — B) — B) — B) into A — B. (This one is
hard: you will need your answer to (ii))

(v) from (A — B) — A into (A — B) — B.

(it might help to think of these as invitations to write ML code of types
’a => ’b -> ’a, ’a -> (’a -> ’b) -> ’aetc.)

)

What is a fixed point? What is a fixpoint combinator? Let T be your
answer to the last bit of the preceding question. (So T is a natural function
from (A — B) — A into (A — B) — B.) Show that something is a
fixpoint combinator iff it is a fixed point for 7.

3These do not have to be either injective or surjective. They only have to be (total)
functions.
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Let P = AG.(A\g.G(g9))(Ag.G(gg)). Show that P is a fixpoint combinator.
Why is it not typed? After all, T" was typed!

Give ML code for a higher-order function metafact such that any fixed
point for metafact will turn out to be good old fact. Do the same for
something tedious like fibo. Delight your class tutor by finding, for other
recursively defined functions, higher-order functions for which they are
fixed points.

Prove that 2™ —1 moves are sufficient to solve the Towers of Hanoi problem.

The fellows of Porterhouse ring each other up every sunday to catch up
on the last week’s gossip. Each fellow passes on (in all subsequent calls
that morning) all the gossip (s)he has picked up, so there is no need for
each fellow to ring every other fellow directly. How many calls are needed
for every fellow to have acquired every other fellow’s gossip?

A triomino is an L-shaped pattern made from three square tiles. A 2% x 2%
chessboard, whose squares are the same size as the tiles, has one of its
squares painted puce. Show that the chessboard can be covered with
triominoes so that only the puce square is exposed.

Is it possible to tile a standard (8 x 8) chessboard with thirty-one 2 x
1 rectangles (dominoes) to leave two diagonally opposite corner squares
uncovered?

* Let k € IN and let F be a family of finite sets closed under symmetric
difference, such that each set in F has at most k elements. How big is
JF? How big is F?

Fix a set X. If m and mo are partitions of it, we say m; refines moy if
every piece of 7 is a subset of a piece of 3. What properties from the
usual catalogue (transitivity, symmetry, etc.) does this relation between
partitions of X have?

Let X be a set, and R the refinement relation on partitions of X. Let II(X)
be the set of partitions. Why is it obvious that in general the structure
(II(X), R) is not a boolean algebra?

Boolean Algebra

1.

2.

Write down the truth tables for the 16 functions {7, 1}? — {T, L}, and
give them sensible names (such as A,V,—, NOR, NAND). Which of these
functions splat that you have identified have the feature that if p splat
q and p both hold, then so does ¢q7 Why are we interested in only one of
them?

(a) Show that NAND and NOR cannot be constructed by using A and Vv
and — alone



146

CHAPTER 8. MORE EXERCISES

(b) Show that none of NAND, NOR, —, A, V can be constructed by using
XOR alone. (hard)

(¢) Show that XOR and «— and — cannot be defined from V and A alone.

(d) (for enthusiasts only) Can A and V be defined in terms of +— and
—7

(e) (for enthusiasts only) Show that all connectives can be defined in
terms of XOR and —.

(f) A monotone propositional function is one that will output 1 if all its
inputs are 1. Show that no nonmonotone function can be defined in
terms of any number of monotone functions. (easy)

What is a boolean algebra? Find a natural partial order on the set of
functions from question that makes them into a boolean algebra.

How many truth-functions of three propositional letters are there? Of
four? Of n?

Prove that P([0,2]) and {T, L}3 are isomorphic posets.

Generating functions etc.

1.

Let uy, be the number of strings in {0, 1,2}"™ with no two consecutive 1’s.
Show wu, = 2u,_1 + 2u,_o, and deduce u,, = 4—\1/3[(1 +V3)" 2 — (1 -

Va2

Let m, be the number of ways to obtain the product of m numbers
by bracketing. (For example, ((ab)c)d, (ab)(cd), (a(bc))d, a((bc)d) and
1

a(b(cd)) show my = 5.) Prove m, = = ::12 .

Prove that IN x IN, with the lexicographical order, is well-ordered, and
that IN x IN with the product order has no infinite antichain.

Say n € m (where n,m € IN) if the nth bit of m is 1. n C m is defined in
terms of this in the obvious way. Apparently n C m iff (Z’Z) is odd, but i
have forgotten how to prove it!

Let p,, be the number of ways to add n — 3 non-crossing diagonals to a
polygon with n sides, thus splitting it into n — 2 triangles. So ps = 1,
ps = 2, ps = 5, and we define p; = 1. Show that

Dn = P2Pn—1 +D3Pp—2 + ... +Dp_1p2 for n >3,

and hence evaluate p,,.

A question on generating functions which will keep you out of mischief
for an entire afternoonﬁ Let A, be the number of ways of ordering the

4This is problem 16 on p 64. of [6].
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numbers 1 to n such that each number is either bigger than (or smaller
than) both its neighbours. (“zigzag permutations”). Find a recurrence
relation for (A4,/2). (Hint: Think about how many zigzag permutations
of [1, n] there are where n appears in the rth place.) Further hints: you will
have to divide the nth term by n! and solve a (fairly simple) differential
equation.

8. What can you say about
q:=1 qgupy1:=1—€e""7

Truth-definitions

An ML question which will prepare you for the 1b courses entitled “Logic and

Proof” and “Semantics”. You should make a serious attempt at—at the very Cambridge references
least—the first part of this question. The fourth part is the hardest part and

provides a serious work-out to prepare you for the semantics course. Parts 2

and 3 are less central, but are educational. If you are a 1b student treating this

as revision you should be able to do all these questions.

Propositional Logic Predicate (first-order) Logic

A recursive datatype of formulae | A recursive datatype of formulae

An interpretation Z is a domain D with: for
each n-place predicate letter F' a subset Z‘F
of D"; for each n-ary function letter f a
function Z*f from D™ — D. (Also constants).
states: literals — bool. A (Fix Z then) states: vbls — D; a
(recursively defined) satisfaction | recursively defined satisfaction function: satz:
relation SAT:statesxfmla—bool | formule X states — bool

¢ is true in an interpretation Z iff for all

A formula ¢ is valid iff for all states v, satz(¢,v) =true.

states v, SAT(v, ¢) =true. ¢ is valid iff it is true in all interpretations.

1. Write ML code to implement the left-hand column. If you are completely
happy with your answer to this you should skip the next two questions of
this section.

2. (For enthusiasts). Expand the propositional language by adding a new
unary connective, written ‘0’. The recursive definition of SAT for the
language with this extra constructor has the following additional clause:

if s is a formula of the extended language and v is a state then
SAT(v,Os) = 1 iff for all states v' we have SAT(v',s) =1

Then redo the first question with this added complication.

3. (For enthusiasts). Complicate further the construction of the preceding
question by altering the recursive step for O as follows. Accept as a new
input a (binary) relation R between states (presumably presented as a list
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of pairs, tho’ there may be prettier ways of doing it). The new clause is
then:

if t is a formula of the form Os and v is a state then SAT(v,t) = 1
iff for all states v' such that v" R v we have SAT(v',s) =1

Declare a recursive datatype which is the language of partial order. That
is to say you have a set of variables, quantifiers, connectives etc., and two
predicate letters ‘< and ‘=’. Fix an interpretation of it, possibly the ML
type int. Implement as much as you can of the apparatus of states, truth

etc.

Declare a recursive datatype which is the language of fields. That is to say
you have a set of variables, quantifiers, connectives etc.; two constants ‘0’
and ‘1’; a binary predicate letter ‘=" and two function symbols, ‘+’ and
‘x’. Fix an interpretation of it, for example the natural numbers below
17. Implement as much as you can of the apparatus of states, truth etc.
You should be able to write code that will accept as input a formula in
the language of fields and evaluate to true or false depending on what

happens in the naturals mod 17

In the last two questions you could make life easier for yourself (but less nat-
ural) by assuming that the language has only finitely many individual variables.
This would enable you, for example (by somehow generating all the possible
states, since there are now only finitely many of them) to verify that the nat-
urals as an ordered set are a model for the theory of total order, and that the
naturals mod 17 are a model for the theory of fields.

When you have done this ask the system minders or any member of the hvg

group about how to run HOL on the machines available to you. In HOL is a
dialect of ML in which all the needed datatypes are predefined.

Other logic: for 1b revision, mainly

1. m and e are transcendental. By considering the equation

? —(r+e)r+me=0

prove a trivial but amusing fact. (If you cannot see what to do, read the
footnote for a mint ). HWhat have you proved? Is your proof constructive?
If not, does this give rise to a constructive proof of something else?

The uniqueness quantifier 3la’ is read as “There is precisely one z such
that ...”. Show how to express the uniqueness quantifier in terms of the
old quantifiers 3 and V (and =).

(a) Find an example to show that (3lz3ly)o(x,y) is not always the same
as (Ay3z)o(z,y)

51t won’t run very fast!
6 At least one of ™ + e and we must be transcendental.
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(b) Is the conjunction of lx¢(x) and Iy (y) equivalent to something of
the form lz3Aly...7

Horn clauses They haven’t been told what
Horn clauses are
1. What is a Horn clause? What is an intersection-closed property of rela-
tions?"| Let ¢(&) be a Horn clause (in which ‘R’ appears and the & range
over the domain of R). Show that the property VZ(¢(Z)) is intersection-
closed. (The converse is also true but do not attempt to prove it!)

2. Let I be an index set, and for each ¢ € I, P; is a person, with an associated
set of beliefs, B;. We assume (unrealistically) that each B; is deductively
closed and consistent. Show that (,.; B; is deductively closed and con-
sistent. What about the set of all propositions p such that p is believed
by a majority of people? (You may assume I is finite in this case, other-
wise it doesn’t make sense). What about the set of things believed by all
but finitely many of the P;? (You may assume I is infinite in this case,
otherwise it doesn’t make sense)ﬁ

3. We are given a set L of literals. We are also given a subset Kq C L. (‘K’
for ‘Known’.) Also a set Cy (‘C” for ‘Conditionals) of formulaze of the
kind

(pl Apa A... /\pn) —q

If we are given two such sets, of literals and of conditionals, we can get a
new set of Known literals by adding to Ky any ¢ that is the consequent of
a conditional all of whose antecedents are in Ky. Of course we can then
throw away that conditional.

(a) Turn this into a precise algorithm that will tell us, given Ky, Cy and
a candidate literal ¢, whether or not ¢ can be deduced from K, and
Cy. By coding this algorithm in ML, or by otherwise concentrating
the mind, determine how efficient it is.

(b) What difference does it make to the implementation of your algorithm
if the conditionals are of the form

p1—> P2 — (3 —...q)...)7

(¢) What happens to your algorithm if Conditionals are allowed to be of
the (more complicated) form:

(PrAP2A . ADR) = (1 Vq2)?

Can anything be saved?

7A horn clause is a formula of the kind Nicr ¥i — ¢ where ¢ and all the ¢; are atomic.
8What about the set of propositions believed by an even number of people?
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(d) Define a quasi-order (remember what a quasi-order is?E[) on L by
setting p R ¢ if there is a conditional in Cj which has ¢ as its conse-
quent and p as one of its antecedents, and letting < be the transitive
closure of R. Is < reflexive? Irreflexive? Antisymmetrical? What
happens if p < p? What happens if (p < ¢) A (¢ < p)?

9And don’t lose sleep over the reflexivity condition: we can add lots of silly clauses like
p — p at no cost!



Chapter 9

Answers to Exercises

I am trying to adhere to a policy of reprinting the questions in italic and the
answers/discussions in ordinary type.

Exercise 111

Hilary and Jocelyn are married. One evening they invite Alex and Chris (also
married) to dinner, and there is a certain amount of handshaking, tho’ naturally
nobody shakes hands with themselves or their spouse. Later, Jocelyn asks the
other three how many hands they have shaken and gets three different answers.

How many hands has Hilary shaken? How many hands has Jocelyn shaken?

The next day Hilary and Jocelyn invite Chris and Alex again. This time
they also invite Nicki and Kim (also married). Again Jocelyn asks everyone how
many hands they have shaken and again they all give different answers.

How many hands has Hilary shaken this time? How many has Jocelyn
shaken?

Answer

In the general case Jocelyn asks 2n 4+ 1 people and gets 2n + 1 different
answers. Since the largest possible answer is 2n and the smallest is 0, there are
in fact precisely 2n + 1 possible answers and that means Jocelyn has got every
possible answer from 0 up to 2n inclusive.

Think about the person who shook 2n hands. This person shook hands with
everyone that they possibly could shake hands with : that is to say everyone
except their spouse. So everybody except their spouse shook at least one hand.
So their spouse shook no hands at all. Thus the person who shook 2n hands
and the person who shook 0 hands are married. Henceforth disregard these
two people and their handshakes and run the same argument to show that the
person who shook 2n — 1 hands and the person who shook 1 hands are married.
And so on.

Where does this get us? It tells us, after n iterations, that the person who
shook n + 1 hands and the person who shook n — 1 hands are married. So
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what about the person who shook n hands, the odd man out? Well, the only
person of whom Jocelyn asks this question who isn’t married to another person
of whom Jocelyn asks this question is Jocelyn’s spouse.

Let’s name people (other than Jocelyn) with the number of hands they shook.
(This is ok since they all shook different numbers of hands.) 2n didn’t shake
hands with its spouse, or itself, and there are only 2n people left, so it must have
shaken hands with all of them, in particular with Jocelyn. Correspondingly 0
didn’t shake hands with anyone at all, so it certainly didn’t shake hands with
Jocelyn. We continue reasoning in this way, about 2n — 1 and 1. 2n — 1 didn’t
shake hands with itself or its spouse or with 0, and that leaves only 2n—1 people
for it to shake hands with and since it shook 2n — 1 hands it must have shaken
all of them, so in particular it must have shaken hands with Jocelyn. Did 1
shake hands with Jocelyn? No, because 1 shook only one hand, and that must
have been 2n — 1’s. And so on. The people who shook Jocelyn’s hand were 2n,
2n—1,2n — 2 ...n+ 1 and the people who didn’t were 1, 2, 3, ...n — 1. And
of course, Jocelyn’s other half. So Jocelyn shook n hands.

Exercise [19]
{n?:neWN}and {n: (3m)(m e N An=m?)}

Exercise [T1]

Let R be a relation on a set X. Define the reflexive, symmetric and
transitive closures r(R), s(R) and t(R) of R. Prove that

1. Rol=R
2. (RUD"=1U(|JR") forn>1

i<n

3. tr(R) = rt(R).
Show also that st(R) C ts(R).

If X =N and R =1U{(z,y) : y = px for some prime p} describe st(R)
and ts(R).

Answer:

The reflexive (symmetric, transitive) closure of R is the intersection of all
reflexive (symmetric, transitive) relations of which R is a subset.

1. Ro1lis R composed with the identity relation. z is related to y by R-
composed-with-S if there is z such that x is related to z by R, and z is
related to y by S. Thus Rol = R.

2. It is probably easiest to do this by induction on n. Clearly this is true for
n =1, since the two sides are identical in that case. Suppose it is true for
n =k.
(RuDP=10( | RY

1<i<k
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(RUDM = (RUD)* o (RUT).

By induction hypothesis this is

1u( | BY)e(ruU1)

1<i<k

Now (AUB)o (CUD,)is clearly (Ao C)U(AoD)U(BoC)U (BoD)
and applying this here we get

(LoR) U (1o1) U (| BYoR) U ((|J R)o1)

1<i<k 1<i<k

Now loRis R; 101 is 1;

(U RYolis U R’ and

1<i<k 1<i<k
(U RYoRis( |J R)
1<i<k 1<i<k+1

so we get

rulu( | BHU(JRY

1<i<k+1 i<k

which is

v | &

1<i<k+1

3. The transitive closure of the reflexive closure of R is the transitive clo-
sure of RU1 which is U (RU1)"™ which (as we have—more-or-less—just
n€N
proved) is 1 U ( U R") which is the reflexive closure of the transitive clo-
i€IN
sure of R.

s is increasing so R C s(R). t is monotone, so t(R) C t(s(R)). But the
transitive closure of a symmetrical relation is symmetrical so ¢(R) C t(s(R))
implies s(t(R)) C t(s(R)) as desired.

Finally if X = IN and R = 1U {{(z,y) : y = px for some prime p} then st(R)
is the relation that holds between two numbers when they are identical or one
is a multiple of the other, and ¢s(R) is the universal relation IN x IN.
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Exercise 25|

List all partitions of {a,b,c}. (You might find it helpful to draw a picture of
each—a kind of Venn Diagram.)

Why the two concentric circles on the bottom left?
A: That partition has only one piece. The partition is a singleton!

Exercise 29|

Look up ‘monophyletic’. Using only the auxilliary relation “is descended from”
give a definition in first-order logic of what is is for a monadic predicate of
lifeforms to be monophyletic.

F' is monophyletic iff both

(Vay)((F(x) A F(y)) = B2)(F(2) AD(z,2) A D(z,9)))

and
(Vo) (Vy) (F(2) = (D(z,y) = F(y)))
hold.
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On finite domains this is equivalent to (3z)(Vy)(D(x,y) <— F(y)) which
we should probably accept.

You may many years later need the concept of a directed subset. X is a
directed subset of a poset (P, <) if (Va,y € X)(Fz € X)(x < zAy < 2).

Exercise 311

The graph of the three-place order relation on the four positions on the face is
{(XII, 11, VT), (I11, VI, IX), (VI, IX, XII), (IX, XII, IIT),
(X11, VI, IX), (III, IX, XII), (VI, XII, III), (IX, III, VI),
(XTI, 111, IX), (III, VI, XII), (VI, IX, III), (IX, XII, VI)}.

Exercise [35]
They are equivalent. I shall deduce the second from the first. (The implication
in the other direction is analogous.) Assume label ‘first’
twice
(Vezyz)(z <z LyLax—2z<y) (9.1

and let a, b and ¢ be such that a > b £ ¢ £ b. We seek to infer a > c.

Suppose not. Then we have a ¥ ¢, which is =(a > ¢ A a # ¢) which is
a=cVa } c c=a contradicts our assumption that a > b but b incomparable
with ¢, so we must have a 2 ¢. We can’t have ¢ > a beco’s a > b and the
conjunction would give us ¢ > b contradicting the assumption that {b, ¢} are an
incomparable pair. So {a,c} are an incomparable pair. But now b is strictly
below one member of an incomparable pair and so, by must be below the
other member of the pair—mamely c. But {b,c} are an incomparable pair. So
our assumption must have been wrong, and we must have a > ¢ after all.

Exercise [39]

(a) Is R\ R™! antisymmetric? Asymmetric?
(b) Is R XOR R~! symmetrical? Antisymmetric? Asymmetric?
(c) Is the composition of two symmetrical relations symmetrical?
(d) Is the composition of two transitive relations transitive?
(e) Is the converse of a symmetrical relation symmetrical?
(f) Is the converse of a transitive relation transitive?
Answer
(b) is the only one that requires much thought. (R XOR S)~! must be
R~ X0R S~! so the converse of R XOR R~ must be R~! XOR R which is the
same thing. So it’s symmetrical.

(a) Asymmetric, so both; (¢) Yes; (d) No; (e) Yes; (f) Yes.

has been used
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Exercise

Can there be a function f: X — X whose graph is
(i) a reflexive relation? or
(ii) a transitive relation? or
(iii) a symmetrical relation?
Answers

(i) Obviously 1x, the identity relation on X. And it’s the only one!

(ii) This is precisely the condition for f to be idempotent, as on p.

(iii) If it’s symmetrical then it must be surjective. And it must be injective,
since if it sends a and b both to ¢, then by symmetry it must send ¢ to both
a and b. So a = b. So it’s a permutation of X, and a permutation of order 2.
Such permutations are called involutions.

Exercise [41]

This exercise is partly about brute calculation of certain quantities, but also an
excuse to think a bit about natural bijections.
How many binary relations are there on a set of size n?

This is not a difficult question at all, but 99% of beginners get it wrong simply
because they expect to be able to2 wing it, and they won’t think it through.
The answer—of course—is 2" .

How many of them are ...?7 Answer
(a) reflexive? gn’—n
(b) fuzzies? 2(3)

(c) symmetrical? 2("2")
(d) antisymmetric? on . 3(3)
(e) total orders? n!

(f) trichotomous? on . 3(3)
(g) antisymmetric and trichotomous? 2("")

(h) extensional?

(i) partial orders

(j) strict partial orders
(k) permutations?

(1) circular orders?

(%)

n

Do not answer this question
Do not answer this question
n!

(n—1)!

Without actually calculating the answers to (c), (d), (f), (g), (j) or (i) ...
(m) Explain why are the answers to (d) and (f) are the same

(n) Explain why are the answers to (g) and (c) are the same;

(o) [41| Explain why are the answers to (j) and (i) are the same.

Answer:

For (m) To get a bijection you need a choice function on the set of pairs of
elements of the underlying set: take the matrix for a symmetrical relation, and
flip all the bits in the upper right triangle. This is just XOR-ing with the graph of
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a total order. Thus every total order naturally gives rise to a bijection between
the set of symmetrical relations and the set of antisymmetrical trichotomous
relations.

For (n). For both symmetrical relations and antisymmetrical trichotomous
relations you have n independent choice of whether or not to put in the “diago-
nal” orderedd pairs (x,x). Now consider the pair (z,y) with z # y and its mate
(y,x). A symmetrical relation either has both these pairs or neither (two pos-
sibilities); an antisymmetrical trichotomous relation has precisely one of them
(again, two possibilities). So, either way you have (g) choices of two outcomes.
So the two answers are the same. How are we to find a bijection between the
set of symmetrical relatiions and gthe set of antisymmetrical trichotomous re-
lations? It’s pretty clear that there is no natural way of doing it. However, if
we arm ourselves with a total order < of our set we can do something. If R
is antisymmetrical and trichotomous we want to obtain a symmetrical relation
R’ from it. Put into R’ all (and only) the “diagonal” pairs in R. Then if R
contains (z,y) where z < y, then put into R’ both the pairs (z,y) and (y, z). If
instead it contains (y,z) then put neither pair into R’. It should now be clear
how to go in the opposite direction.

The answers to (k) and (e) are of course the same, as we all know. There
doesn’t seem to be any natural bijection between the set of all permutations of
a set A (also known as the symmetric group on a set and notated X(A)) and
the set of total orders of it. However, if we fix a total order of a set A, any
other total order of A can be thought of as the application of a permutation of
A to that fixed total order. So there is a natural bijection between the set of
total orders of A and the set of bijections between 3(A) and the set of total
orderings of A. I think the bijection induced by the permutation = is precisely
the operation “conjugate with 7”.

Ad (h); if R is an extensional relation on a set A then the function a
{d’ : {d/,a) € R} is extensional, so the set of extensional relations on A is natu-
rally bijected with the set of injective functions A < P(A) and that is obviously
of size (2:)

Exercise [42]

Let X be our set of pairs. Consider dom(X N1) (in full: {z : (z,z) € X}). f X
is of the form (A x B)U (B x A) then dom(X N1) is clearly going to be AN B.
We can get AU B because it is {z : (3y)((z,y) € X)}. Then A XOR B can be
obtained as (AUB)\ (ANB). Then A\ B and B\ A are the two crescents in the
following picture. How do we characterise them? This is the hard part. The two
crescents are the two equivalence classes of an equivalence relation of index 2.

Expand on this; draw some
pictures.

Edit this answer properly
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This is not obvious! When do x; and x5 belong to the same crescent? When
they both belong to A (but not to B) or both belong to B (but not to A).
Notice that in those circumstances the pair (x1,z2) ¢ X! The relation x1 ~ x5
defined by (x1,x2) € X is an equivalence relation on A X0R B!!

Exercise 43|

The enemy of my enemy is my friend
The friend of my enemy is my enemy
The enemy of my friend is my enemy.
The friend of my friend is my friend.

You might like to express these observations in first-order logic, using binary
relation symbols like F'(, ) and E( , ).

Answer:

(Veyz)(E(x,y) A E(y, z) = F(x, 2))

(Veyz)(E(z,y) A F(y, 2) = E(z, 2))

(Voyz)(F(z,y) A E(y, 2) = E(x, 2))

(Voyz)(F(z,y) A F(y, 2) = F(x,2))

1. If you have an enemy must you have a friend? If you have a friend are

you friends with yourself?

We aren’t actually told that E(, ) and F(, ) are commutative but most
readers will probably assume they are. If they are, then if i have (even
one) enemy then there is an enemy of that enemy who is my friend. T am
one such friend. The second half is similar.

Can you infer from the foregoing that two things cannot be simultaneously
friends and enemies? Prove or find a countermodel.

Not really. That picture is quite consistent with there being lots of people
all of whom are simultaneously friends and enemies of all the others—and
even themselves. We are missing the two assumptions of commutativity
and the irreflexivity of E( , )

Explain “congruence relation for ....” Assume ‘friend-of’ to be reflexive,
so it is an equivalence relation. Think about the equivalence-classes-under-
friendship. Let’s also assume that—the expression “he’s his own worst
enemy” notwithstanding—‘enemy-of” is irreflexive.
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(i) How does ‘enemy-of” “lift” to these equivalence classes? Is
‘friend-of” a congruence relation for ‘enemy-of’?

‘Congruence relation for’ is bookwork. And yes, if F(, ) is an
equivalence relation then it is certainly a congruence relation for
E(,).

(ii) How many equivalence classes can an equivalence class be
hostile to?

Only one. If you are at war with two alliances then, because
the enemy of your enemy is your friend, the two alliances would
coalesce into one.

(iii) Explain how your answer to (ii) partitions the domain.

4. Clearly ‘enemy-of’ is not transitive, but it does have a property that is
rather like transitivity. Can you describe this feature exactly, and state it
for a binary relation R in the style in which you know how to state that
R is transitive?

Answer:

R3 C R. There is no word standardly used to describe this property.

5. Does the feature (analogous to transitivity) from the previous part admit
a notion of closure analogous to transitive closure, symmetric closure etc.?
Give a proof or a counterexample.

Answer

Yes. Whenever you find the pairs (x,y), (y,z) and (z,w) in R, add the
pair (z,w). Keep doing this until you can add no more pairs. The thingie-
closure of Ris ({S 2 R: 5% C S} by analogy with definition of transitive
closure etc.

Exercise [44]

Look again at the box of isotopes on page[70

Why was I right to write the half-life of Pb?*® as ‘co’ rather than g’ ?”

Answer

There is no number « such that after a years half the atoms in a sample of
Pb2% have decayed. Indeed the function half-life-of is defined only for radioac-
tive species, and Pb2%® is not radioactive: the half life of Pb?%® is not defined.
In particular it isn’t Xg. What symbol do we use for undefined quantities that
seem to be infinite, such as ‘1/0’? Yes, ‘co’. Thus you sometimes see peo-
ple writing ‘¢ < oo’ where ‘¢’ is a term (sometimes undefined) of type real or
natural number to mean that ¢ is defined.

Exercise 53|

[statement of exercise omitted to save space]

Need an answer to (iii)
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Discussion

This is a beautiful question, co’s it touches several important points. It tests
your understanding of structural induction; it tests your ability to do the fiddly
manipulation necessary to perform the inductive step; it underlines the impor-
tance of having a sufficiently strong induction hypothesis, and finally it makes
a point about dereferencing.

So: we have a propositional language—a recursive datatype of formulsee—
which starts off with three propositional letters (“literals”) ‘a’, ‘T’ and ‘L’. We
then build up compound formulae by means of the constructors ‘A’, ‘v’ and ‘—’.
We have a length function defined on objects in the datatype of formulee, written
with two vertical bars as in the question, which is roughly what you think it
is—so that the length of a literal is 1, and the length of a conjunction (or a
disjunction) of two formulee is one plus the sum of their lengths, and the length
of the negation of a formula is one plus the length of the formula. Evidently the

question-designer thought that the length of a ‘(’ or a ‘)’ is zero!

One tends naturally to write the second half of the preceding paragraph with
expressions like

|AAB|=|A| + |B| +1.

This looks fair enough, and in some sense it is, but we need to be clear about
the conventions we are using. The letter ‘A’ by itself is a single symbol, so a
pedant might insist that |A| = 1. This is wrong of course: the letter ‘A’ is not a
formula, but a variable ranging over formule. .. when looking for the length |A|
of A we have to see througfﬂ the variable all the way to the value it takes—and
that value is a formula. All this is well and good, but it can cause some confusion
when we start thinking about expressions like: |A V B|. The constructor ‘V’ is
something we put between two formule to make a new formula; we don’t put
it between two names of formule or between two pointers to formulae! Until
we have a convention to make our practice OK, writing things like ‘|A V B|’
should generate a syntax error warning. If you look back to page [97) where
this exercise first appears you will find that I wrote

“ ..length of a literal is 1, and the length of a conjunction (or a
disjunction) of two formule is one plus the sum of their lengths. . .”

...and this is syntactically correct. When we wrote |AA B|’ we should really
have written ‘| the conjunction of A and BJ’.

There are two ways of dealing with this. One is to have explicit names for the
constructors, as it might be ‘conjunction of ...’ and ‘disjunction of ...’ and
‘negation of ...” This makes huge demands on our supply of alphanumerics.
The other solution is to have a kind of environment command that creates an
environment within which [deep breath]

T have italicised this word because the metaphor is a good one: google referential trans-
parency.
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Contructors applied to pointers-to-objects
construct
pointers to the objects thereby constructed.

Inside such a context things like ‘| AV B|” have the meaning we intend here. There
is a culture within which this environment is created by the ‘™ symbol (IATEX:
\ulcorner) and closed by the ‘7 symbol (I#TEX: \urcorner). In practice
people tend to leave these things out. The fact that this is—apparently—a safe
strategy tells us quite a lot about the skills of our language module: it’s very
good at dereferencing (among other things)

Thus we should/should-have posed the question as:

“Define the length of a Boolean proposition by structural induction as fol-
lows:

|a| =1,
|T| =1,
|L| =1,

|"AANB| = |A| +|B|"+1,
|"AV B| = |A| + |B|" + 1,
TAl= AT+ 1

[or something like that, with the corners placed correctly!]
And the remainder of the question:

“Define a translation which eliminates disjunction from Boolean expressions
by the following recursion:

tr(a)=a,tr(T)=T, tr(L) =1,
“tr(ANAB) =tr(A) ANtr(B),
tr(AV B) = —(—tr(A) A —tr(B)),
tr(-A) = —tr(A4)™.

Prove by structural induction on Boolean propositions that
"tr(A)| < 3[A] - 17,
for all Boolean propositions A.”

The above use of corner quotes illustrates how there is no restriction that
says that the scope of the corner quotes has to live entirely inside a single
formula. I use corner quotes in what follows, but (although—i think—i have
put them in correctly) they can be inserted correctly in more than one way.

The Proof by Structural Induction

We aspire to prove by structural induction on the recursive datatype of formulae
that
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(VA)([tr(A)] < 3-|A] 1)
The base case we verify easily. The induction step has three cases
- If [tr(A)] < 3-|A| what is |"tr(—A)7|? Ttr(=A) = —tr(A) so "tr(-A)| =
|[=tr(A)|7, and |"—tr(A)7 is [tr(A)] + 1 which is certainly < 3-|[7=A7|.
N If [tr(A)] < 3-|A| and |tr(B)| < 3-|B| what is |"tr(AA B)7|?
Ttr(AAB)is Ttr(A)Atr(B) ™. By induction hypothesis |tr(A4)] < 3-]A|—1
and [tr(B)| < 3:|B|-1so"|tr(A)Atr(B)|" < (3-]4]—1)+(3+|B|—1)+1.
The final ‘+1’ is for the ‘A’. This rearranges to
Ftr(A) Atr(B)| < 3- (1] + |B])— 1
but |A| +|B|] < |"AA B7| whence
Tler(A) Atr(B)] < 3-(|JAA B|)— 17 and finally
Ttr(AAB)| < 3-(|JAAB|)—1"

\ If |tr(A)| < 3-|A] and |tr(B)| < 3-|B| what is |tr(AV B)|? "tr(AV B)~
is "= (=tr(A) A =(¢tr(B)))". What is the length of this last expression?
Clearly it’s going to be [tr(A)| + |tr(B)| + one for the outermost ‘= +
one for the ‘= attached to ¢r(A) + one for the ‘=’ attached to tr(B) +
one for the ‘A’ ...giving |tr(A)| + |tr(B)| + 4. By induction hypothesis
[tr(A)] < 3-|A| -1 and [¢tr(B)] < 3-|B|—1 so we have

Tler(Av B)] < (3-]4]—1)4 (3-|B|—1)+4". We can rearrange this to
Tltr(Av B)] < 3-(|A|4+|B|) —1—1) 447 and further to
Tltr(Av B)| < 3-(JAl+|B|) + 2™

Now |A| +|B| =T]AV B|™" — 1 so we can substitute getting

“|tr(AV B)
“|tr(AV B)

-(|JAV B| —1)) + 27 and rearrange again to get
-|AV B| — 17 as desired.

w w

| <
| <

A final thought ...I wouldn’t mind betting that quite a lot of thought went
into this question. We've proved |tr(A)] < 3-|A| — 1 so we’ve certainly also
proved the weaker claim |tr(A4)| < 3-]A|. However wouldn’t stake my life on
our ability to prove the weaker claim by induction. You might like to try ...i'm
not going to!

Exercise 67
Show that:

For all valuations v and all formulee A and all but finitely many t,

E;(A,v,t) = E(A,v) and Es;(A,v,t) = E(4,v).
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In the classical setting one takes a propositional valuation—that is to say,
a [total!] function atoms — :bool—and “extends” it (“by abuse of notation”)
to a function defined on complex expressions. This is all right because—if the
valuation is total-—one can safely conceal the evaluation process. If the valuation
is total then the process of evaluation is confluent. If the functions are partial
then one needs to make explicit the recursion that takes a time t and returns
the estimate-at-time-t of the truth-value.

Let v be a valuation, a function with values in :bool defined only on atomics.
We define

E;(A,v,0) = E;(A,v,0) =v(A)

and thereafter

EJ((AAB),v,t+1) =
E((AV B),v,t+1)
B ((=A),v,t +1)

s((A),8) A (B v, 1)
((A),v,t) vV Es(B,v,t)

E
E,
—Es(A,t)

where the connectives in the definiens are interpreted strictly, more explic-

itly:
E;((AAB),v,t+1)=1if Es(A,v,t) = false then if F,(B,v,t) = false then false else

if Eg(A,v,t) = false then if FE,(B,v,t) = true then false else

if E (A,v,t) = true then if F (B,v,t) = false then false else

if Fy(A,v,t) = true then if F (B,v,t) = true then true else undefined
E;((AV B),v,t+1)= if E (A,v,t) = true then if F,(B,v,t) = false then true else

if Es(A,v,t) = true then if FE (B,v,t) = true then true else

if F4(A,v,t) = false then if FE,(B,v,t) = false then false else

if Fs(A,v,t) = false then if FE,(B,v,t) = true then true else undefined

In contrast, when the functions are partial and we evaluate lazily

E((AAB),v,t+1)=if Ej(A,v,t) = false then false else
if El(B v,t) = false then false else
if Ej(A,v,t) = true then Ei(B,v,t) else
if Ey(B,v,t) = true then Ej(A,v,t) else
Ei((AAB),v,t)

((AV B),v,t+1) = if E;(A,v,t) = true then true else
if Ey(B,v,t) = true then true else
if Ej(A,v,t) = false then E;(B,v,t) else
if E;(B,v,t) = false then Fj(A,v,t) else
El((A\/ )’U’ )

E((-A),v,t+1) = if E;(A,v,t) = true then false else

= if Ej(A,v,t) = false then true else

El((_‘A)’ v, t)
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Exercise [58|

A wellordering of a set of X is a wellfounded relation, whatever else it is. In
fact its (graph is) a C-maximal wellfounded relation on X. Is that a sufficient
condition? Probably need transitivity too.

We aspire to prove that any C-maximal wellfounded relation is a wellorder-
ing. We prove two factoids:

(i) a C-maximal wellfounded relation will be transitive.

(ii) a C-maximal wellfounded relation will be trichotomous.

For (i) recall that the transitive closure of a wellfounded relation is wellfounded,
so a C-maximal wellfounded relation must be equal to its transitive closure.

For (ii) suppose R is maximal wellfounded, with (a,b) € R (where a # b) so
that RU{(a, b)} is not wellfounded. That means there is some subset X’ C X s.t.
X’ has an R-minimal element but no minimal element according to RU{{a, b)}.
This must mean that b was that R-minimal element and that a € X'. But that
means that we could add the pair (b, a) to R without violating wellfoundedness
and that means—by maximality of R—that (b, a) was already in R.

This means that the following are equivalent, for R C X x X:

(i) R is a wellordering of X
(ii) R is maximal wellfounded
(iii) R is wellfounded and trichotomous.

Exercise

Part 2

The lexicographic order on IN? is wellfounded, so we can do wellfounded
induction on it. This means that if we can prove that, if every ordered pair
below p has some property ¢ then the pair p has property ¢ as well, then every
ordered pair in IN? has that property.

Now let ¢({z,y)) say that if the bag is started with x black balls and y white
balls in it the process will eventually halt with only one ball in the bag. Suppose
#((x',y/)) holds for every (z',y’) below (z,) in the lexicographic product IN?.
We want to be sure that if the bag is started with a black balls and y white
balls in it the process will eventually halt with only one ball in the bag. The
first thing that happens is that we pick two balls out of the bag and the result
is that at the next stage we have either z — 2 black balls and an unknown
number of white balls, or we have x black balls and y — 1 white balls. But both
these situations are described by ordered pairs below (x,y) in the lexicographic
product IN?, so by induction hypothesis we infer that if the bag is started with
x black balls and y white balls in it the process will eventually halt with only
one ball in the bag, as desired.
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Exercise

Suppose we are given n; and no, both of them numbers of the form 2* — 3m.
(This is simply to say that neither ny nor mnsy is divisible by 3). We wish to
obtain ng from ny by repeatedly doubling and subtracting 3.

If the two numbers have the same residue mod 3 and n; > ng then subtract
3 from ny the appropriate number of times. If n; < mny or they have different
residues mod 3 then procede along the sequence 2 - nq, 4 - n1, 8 - ny until you
reach a multiple which is both bigger than no and congruent to no mod 3. Then
subtract 3 the correct number of times.

Exercise

We (the match referee) start with a matrix, and delete rows or columns when
dominance allows us to, and we continue until no more deletions are possible. It
might be that at some stage(s) there is more than one row (or column) that can
be deleted, or perhaps a stage at which both a row and a column are delete-able.
Is the outcome affected by the order in which we perform these deletions?

One column dominates a second column iff at every row the entry in the
first column is at least as big as the entry in the second column. (And of
course the same goes for two rows mutatis mutandis ...). This means that if
one column dominates another it will continue to do so even if some rows are
deleted. This means that if a chance ever arises to delete a particular column
then that chance remains on the table whatever else we do. So we can postpone
any deletion for as long as we like. (This is helpful because of course there
are occasions where a chance to delete a particular column cannot arise until
a particular row has been deleted.) This means that, should we ever reach a
stage where no more deletions can be performed, this can only be because all
deletions that ever became possible have been performed. And that uniquely
characterises our destination ]

It is the fact that deletion-possibilities remain permanently open that en-
sures confluence. Your sequence-of-deletion strategies might diverge, but the
permanent-possibility feature ensure that all such strategies can rejoin.

But wait! How can we be sure that a deletion possibility that arises down
one path will also arise down any other? This isn’t a problem: think about the
possibilities in front of your eyes at the stage where the two paths part company.
[should probably say a bit more about this]

What happens if your matrix has infinitely many rows and columns? In those
circumstances you have the possibility that your dependency relation between
deletions (“I can’t delete column ¢ until i have deleted row r; I can’t delete row
r until I have deleted column ¢’; I can’t delete column ¢ until I have deleted
row r'; I can’t delete row ' until I have deleted column ¢” ...”) might not be

2But we should probably Say something about why any given deletion always has the
same effect (whatever that means) irrespective of when we do it. Can we find a situation
where this doesn’t hold? It would be useful
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wellfounded. Can you cook up an infinite matrix where—for all i—you can’t
delete row ¢ until you have deleted column ¢ and can’t delete column ¢ until you
have deleted row ¢ + 17

Question [§2]

Let R be a relation on A. Recall that r(R), s(R) and t(R) are the reflexive,
symmetric and transitive closure operations respectively.

(a) Prove that rs(R) = sr(R);

(b) Does R transitive imply s(R) transitive?

(c) Prove that rt(R) = tr(R) and st(R) C ts(R);

(d) If R is symmetrical must the transitive closure of R be symmetrical?
Prove or give a counterexample.

Think of a binary relation R, and of its graph, which will be a directed graph
(V,E). On any directed graph we can define a relation “I can get from vertex
x to vertex y by following directed edges” which is certainly transitive, and we
can pretend it is reflexive because after all we can get from a vertex to itself by
just doing nothing at all. Do this to our graph (V, E), and call the resulting
relation S. How do we describe S in terms of R?

Answer
(a) Prove that rs(R) = sr(R):

r(s(R)) =s(R)U1
=(RURHuU1
=(RUU(RtU)

=(RUHU(RtUul™
= (

)u
RUL)U(RUI)™!
= s(r(R))

(b) The symmetric closure of a transitive relation is not automatically tran-
sitive: take R to be set inclusion on a power set.

(c) Prove that rt(R) = tr(R):

r(t(R)) = t(R)U T
=RUR?U...R"...UI
= (RUIU(R*UI)U(R"UI)...

At this point it would be nice to be able to say (R"UI) = (RUI)"™ but that
isn’t true. (RUI)™ is actually RUR?... R®UI. But it is enough to rewrite the
last line as

(RUNU(RUND*U(RUI)?. ..

which is of course t(r(R)) as desired.

(d) The transitive closure of a symmetrical relation is also symmetrical.
First we show by induction on n that R™ is symmetrical as long as R is. Easy
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when n = 1. Suppose R" is symmetrical. R"*! = Ro R™. The inverse of this
is (R71)" o R~! which by induction hypothesis is R™ o R which is of course
R™*1. Then the union of a lot of symmetrical relations is symmetrical, so the
transitive closure (which is the union of all the (symmetrical) iterates of R) is
likewise symetrical.

Question

Show that—at least if (Va)(3y)((z,y) € R)—R o R~ is a fuzzy.
What about RN R™1? What about RUR™1?

If (z,y) € R then (y,z) € R so (z,2) € Ro R™%.

That takes care of reflexivity. Suppose (x,z) € Ro R™!. Then there is a y
such that (z,y) € R and (y,2) € R~!. But then (z,y) € R. So (z,z) € RoR™!
is the same as (Jy)((z,y) € R A (z,y) € R). But this is clearly symmetric in
x and z, so we can rearrange it to get (Jy)(({(y,x) € R™1) A ({z,y) € R)) which
is (z,2) € Ro R™! as desired.

RUR™! is the symmetric closure of R and is of course symmetric, but there
is no reason to expect it to be reflexive: it’ll be reflexive iff R is reflexive.

Question

“Given any relation R there is a least T O R such that T is transitive,
and a least S O R such that S is symmetrical, namely the transitive and
symmetric closures of R. Must there also be a maximal S C R such that
S is transitive? And must there be a maximal S C R such that S is
symmetrical? The answer to one of these last two questions is ‘yes’: find
a cute formulation.”

RN R is the largest symmetrical relation included in R. The unwary
sometimes think that it is this that is the symmetric closure of R. The point is
that altho’ being-the-complement-of-a-transitive-relation is not an intersection-
closed property, nevertheless being-the-complement-of-a-symmetric-relation is
intersection-closed, since it is the same as being symmetric. RN R~! is the
complement of the symmetric closure of the complement of R. Do not confuse
complements with converses!!

Question [8|[9]

Show that R C S implies R~! C §~!

The way to do this is to assume that R C S and let (z,y) be an arbitrary
ordered pair in R~1. We then want to infer that (x,y) is in S~1.

If (x,y) is in R~! then (y,z) is in R, because R~! is precisely the set of
ordered pairs (x,y) such that (y,z) is in R. (We would write this formally as:
Rt = {(z,y): (y,2) € R}.) But R C S, so (y,) is in S, and so (flip things
round again) (z,y) is in S~1.
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Question [8|[13]

Show that U R™ is the smallest transitive relation extending R.
nelN

To do this it will be sufficient to show

1. | J R" is transitive;
nelN

2. If S is a transitive relation D R then U R" CS.
nelN

(1)
We need to show that if (x, y) and (y, z) are both in U R" then (z,z) € U R™.
nelN nelN
If (z,y) € U R" then (z,y) € RF for some k and if (y,z) € U R" then
nelN n€lN
(y,z) € R’ for some j.
Then (z,z) € Rk C U R™.
ne€lN
For (2) Let S D R be a transitive relation. So R C S. We prove by induction
on IN that for all n € IN, R™ C S. Suppose R™ C S. Then

R =R"'oR C@ SoRr Cc® §08 C© g.

(a) and (b) hold because o is monotone: if X CY then X oZ CY o Z.
(c) holds because S is transitive. )

Question [8|[16]

Let R and S be equivalence relations. We seek the smallest equivalence relation
that is a superset of R U S. We'd better note first that this really is well
defined, and it is, because being-an-equivalence-relation is the conjunction of
three properties all of them intersection-closed, so it is itself intersection-closed.

This least equivalence relation extending R U S is at least transitive, so it
must be a superset of t(RUS), the transitive closure of RUS. Wouldn’t it be nice
if it actually were t(RUS)? In fact it is, and to show this it will be sufficient to
show that ¢(RUS) is an equivalence relation. Must check: transitivity, reflexivity
and symmetry. Naturally t(R U .S) is transitive by construction. R and S are
reflexive so RU S is reflexive. In constructing the transitive closure we add new
ordered pairs but we never add ordered pairs with components we haven’t seen
before. This means that we never have to add any ordered pairs (x, z) because
they’re all already there. Therefore t(RU.S) is reflexive as long as R and S are.
Finally we need to check that ¢(R U .S) is symmetrical. The transitive closure
of a symmetrical relation is also symmetrical. First we show by induction on
n that R™ is symmetrical as long as R is. Easy when n = 1. Suppose R" is
symmetrical: i.e., R* = (R")~!. R"*! = Ro R" anyway. The inverse of this
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is (R71)" o R71. (R71)" is of course R™™, so (R")" o R71is (R™") o R™L.
R~ = R" by induction hypothesis so (R~!)" o R~! is R" o R which is of course
R™*1. Then the union of a lot of symmetrical relations is symmetrical, so the
transitive closure (which is the union of all the (symmetrical) iterates of R) is
likewise symmetrical.

Actually we can give another—perhaps simpler—proof of this. ¢(R) =
N{S:RCSAS2C S} or X for short. Notice that if R is symmetrical,
then X is closed under taking inverses (the inverse of anything in X is also
in X). And clearly the intersection of a class closed under taking inverses is
symmetrical.

Question

Are the two following conditions on partial orders equivalent?

1. Vayz)(z>x LyLae—z2<y)
2. Vzyz)(z>zLyLax—2z>y).

Assume (1) (Vzyz)(z < 2 € y £ © = z < y) and aim to deduce (2)
(Vayz)(z > x £y £ x — z > y). To this end assume z > z, 2 € y and y £ x
and hope to deduce z > y.

x < z tells us that z £ y for otherwise x < y by transitivity, contradicting
hypothesis. Next, assume the negation of what we are trying to prove. This
gives us y £ z. But then we have y £ z £ y and < z so by (i) we can infer
x <y, contradicting assumption.

The proof in the other direction is analogous.

Question

If x < S(y) and y < S(x) then = and y are neighbouring naturals. This is
RN R x and y are related by the transitive closure of this relation iff there
is a finite sequence xg, 1,3 ...z, = y such that each x; is adjacent to ;1.
But clearly any two naturals are connected by such a chain, so the transitive
closure is the universal relation. For part 2, remember that z is related to y
by R\ R™! if it is related to y by R but not by R~!. In this case that means
< S(y)Ay £ S(z). Thisis x < S(y) AS(z) < y. The second conjunct implies
the first so we can drop the first, getting S(z) < y. Getting the transitive
closure of this is easy, ‘cos it’s transitive already!

Question [§.77

Everybody loves my baby, so in particular my baby loves my baby. My
baby loves nobody but me. That is to say, if z is loved by my baby, then
x = me. So my baby = me.
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Question ?7[14a

The answer is the relation that holds between k and k + 1 for 0 < k < n and
between n and 0.

Question 7724

- fun f gba=gab;

val f = fn : (Ca => ’b -> ’¢c) -> ’b -> ’a -> ’c

- fun ff g = let fun fa a = let val (b,c) = g a in b end;
= fun fe a = let val (b,c) = g a in ¢ end;

= in (fa, fe) end;

val ff = fn : (Ca -> ’b * ’¢c) -> (Pa => ’b) * (Pa -> ’c)

Question 7723

Show that the largest and smallest elements of a totally ordered set with n
elements can be found with [3n/2] — 1 comparisons if n is odd, and 3n/2 — 2
comparisons if n is even.

First check this for a few small values. If n = 2 we need 1, for n = 3 we need
3, for n = 4 we need 4.

The induction step requires us to show that adding two more elements to a
set requires us to perform no more than three extra comparisons.

So suppose we have a set X with n members, and we have found the top
and bottom elements in 3n/2 — 1 comparisons. Call them ¢ and b. Let the two
new elements be x and y. With one comparison we can find out which is bigger.
Without loss of generality suppose it is . Compare x with ¢ to find the biggest
element of X U{z,y}, and compare y with b to find the smallest. This has used
three extra comparisons.

Question ?7[32]

Let m =|F|and p=||JF|. Let C = {(z,A):z € A€ F}.

Given x € |JF, pick B€ Fwithz € B. Let Y, = {A € F: 2z € A} and
N, ={Ae€ F:x¢ A}. The map AA.(AAB) permutes F' and swaps Y, and
N,. Hence |Y,| = |N,| = m/2.

So |C] = (1/2)mp, as each x is in exactly m/2 A’s. But each A contains < k
things, and one A contains none at all, so |C] < (m—1)k whence p < %-21@‘ <

k.
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Indexes

10.1 Index of Definitions
10.2 General Index
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