Machines and Their Languages

GbHIMAL

Dick Crouch

Semester 2, 1997/98

Contents

1 Introduction

1.1
1.2

1.3

1.4

What this course isabout
Some Fundamental Concepts
1.2.1 Formal Languages
1.2.2 The Language of Arithmetic
1.2.3 Rules for Formal Languages
1.24 Grammars.
1.25 Automata
1.2.6 The Chomsky Hierarchy
Mathematical Preliminaries
1.3.1 Sets . . . o .
1.3.2 Relations o
1.3.3 Functions
1.3.4 Cardinality and Countability
1.3.5 Recursion
1.3.6 Inductive Proofs,
1.3.7 Directed Graphs L.

Summary: strings, languages, grammars and machines

I Regular Languages

2 Finite State Automata

2.1

2.2

Deterministic Finite State Automata
2.1.1 Examples of (Deterministic) Finite State Automata

2.1.2 Formal Definitions
Non-Deterministic FSAs

10
11
11
12
14
14
16
17
18
19

21

2.2.1 Non-Determinism and Backtracking
2.2.2 Formal Definitions
2.3 Machines with Empty (e) Transitions
2.4 Machines with Error States
2.5 Eliminating Non-Determinism

2.5.1 NFA—DFA Conversion Algorithm

2.5.2 Formal Proof of NFA / DFA Equivalence
2.5.3 Comments on NFA / DFA Equivalence

2.6 Finite State Transducers
2.6.1 Moore=Mealy

2.7 Summary

Regular Expressions and Grammars

3.1 Regular Sets and Expressions
3.1.1 Regular Sets
3.1.2 Regular Expressions

3.2 Regular Expressions in Unix
321 regexo
3.2.2 1ex ...

3.3 Kleene’s Theorem: Regkxps <+ FSAs
3.3.1 Mapping FSAs to Regular Expressions
3.3.2 Mapping Regular Expressions to FSAs
3.3.3 Formal Proofs of Kleene’s Theorem

3.4 Regular Grammars

3.5 Kleene’s Theorem: RegGrams < FSAs.

3.6 Summary

Closure Properties of Regular Languages

4.1 Pumping Lemma for Regular Languages
4.1.1 FSAs Have no Memory
4.1.2 Statement of Pumping Lemma
4.1.3 Negative Form of Pumping Lemma
4.1.4 Examples of Using Pumping Lemma
4.1.5 Proof of Pumping Lemma

4.2 Closure Properties of Regular Languages

CONTENTS

CONTENTS 3

4.2.1 Closure Properties 77
4.2.2 Equivalence between FSAs 78

II Context Free Languages 80
5 Context Free Grammars 82
5.1 CF Grammars e 82
5.1.1 Example CF Grammars 83

5.2 Derivations and Trees oL 86
5.2.1 Derivability oL 86
5.2.2 Sentential Forms L. 87
5.2.3 Left- and Rightmost Derivations 87
5.2.4 Derivation Trees 89

5.3 Ambiguity 92
5.4 Recursion in Grammars 93
5.4.1 Left- and Right-Recursion 94
5.4.2 Indirect Recursion, 94

5.5 Normal Forms for CFGs 95
5.5.1 Backus-Naur Form 95
5.5.2 Chomsky Normal Form 96
5.5.3 Greibach Normal Form 106

5.6 Summary e 108
6 Push-Down Stack Automata 110
6.1 Push-Down Stack Automata 110
6.1.1 Two Examples, 111
6.1.2 PDAs: Formal Definition 112
6.1.3 Languages Accepted by PDAs. 114
6.1.4 Variationson PDAs 115
6.1.5 Determinism and PDAs 116

6.2 From CFGsto PDAs 117
6.2.1 Conversion from Grammars in GNF 117
6.2.2 Example: PDA for ™6™ 118
6.2.3 Conversion from Grammars not in GNF 119

6.3 From PDAsto CFGs 120

CONTENTS

6.4 Summary 122
Parsing 123
7.1 Derivation and Meaning Lo 123
7.1.1 The Meaning of Arithmetic Expressions 124
7.1.2 Parsing and Meaning 126
7.2 Top-Down Parsing 127
7.2.1 Top-Down Parsing Ignoring Non-Determinism 127
7.2.2 Non-Deterministic Top-Down Parsing 129
7.3 Bottom-Up Parsing 135
7.3.1 Shift-Reduce Parsing 136
7.3.2 Non-Deterministic Shift-Reduce Parsing 137
7.4 LL(k) Parsing 138
7.4.1 Lookahead 138
7.4.2 Lookahead Sets 140
7.4.3 Strong LL(k) Grammars and Parsers 141
7.4.4 LL(k) Grammars and Parsers 142
7.4.5 Local Lookahead and Parsing 144
74.6 FIRST and FOLLOW Sets 145
75 LR(k) Parsing. 148
7.5.1 LR(0) Contexts and Viable Prefixes 148
7.5.2 Definition of LR(0) Grammar 150
7.5.3 LR(0) Machines 150
7.5.4 Deterministic Parsing with LR(0) Machines 157
7.5.5 LR(k) (k>1) Grammars 158
7.6 SUMMATY o e e 160
Pumping Lemma & Closure Properties 161
8.1 The Pumping Lemma 161
8.1.1 Statement of Pumping Lemma 161
8.1.2 Applying the Pumping Lemma 162
8.1.3 Proving the Pumping Lemma 163
8.2 Closure Properties of Context Free Languages 165
8.3 Summary 166

CONTENTS

IIT Turing Machines

9 Turing Machines

9.1 The Standard Turing Machine
9.1.1 Formal Definition of Standard TMs
9.2 Variants on Turing Machines
9.2.1 TMs Accepting by Final State
9.2.2 Multi-Track TMs
9.23 Two-Way Tapes
9.2.4 Multi-Tape TMs
9.2.,5 Non-Deterministic TMs
9.2.6 Post Machines
9.2.7 Two Stack PDAs,

9.3 Summary

10 Context Sensitive & Recursively Enumerable Languages

10.1 Recursive and Recursively Enumerable Languages
10.1.1 Unrestricted Rewrite Grammars
10.1.2 TMs < Unrestricted Rewrite Grammar

10.2 Context Sensitive Languages & Linear Bounded Automata
10.2.1 Context Sensitive Grammars
10.2.2 Linear Bounded Automata

10.3 The Chomsky Hierarchy

11 Decidability & Computability

11.1 Church-Turing Thesis
11.1.1 Decision Problems & Effective Procedures
11.1.2 Termination & Loops

11.2 The Halting Problem
11.2.1 Encoding TMs
11.2.2 Loops and Duplication

11.3 Undecidable Problems
11.3.1 Semi-Thue Systems,
11.3.2 The Post Correspondence Problem
11.3.3 (Un)Decidability Results for CFGs
11.3.4 Decidability Results for CFGs

167

168
168
172
172
173
173
174
175
175
175
177
178

179
179
180
181

. 183

184
185
185

CONTENTS

11.3.5 Another Undecidable Problem 195
11.4 Computability 195
11.4.1 Turing Computability 196
11.4.2 Uncomputable Functions 196
11.4.3 Recursive Functions 197

11.5 Summaryo 199

Chapter 1

Introduction

1.1 What this course is about

Applications of Formal Language Theory

The manipulation and processing of formal languages is a central part of com-
puter science. Programming languages, like C++4 or Java, are formal languages.
Compilation of these languages into machine code relies heavily on concepts and
techniques developed in formal language and automata theory.

Work in computational linguistics and natural language processing has also
borrowed heavily from formal language theory. Although there is room for
doubt about whether natural languages like English are formal (in the sense
of the term that will shortly be defined), many techniques can usefully be
adopted. Indeed, some of the theory was developed by linguists rather than
mathematicians or computer scientists.

At a more abstract level, one can view computers as devices for manipulating
expressions in a language whose sentences consist of sequences of zeroes and
ones. In this setting, formal language theory can be used to establish some
theoretical limits on what can and cannot be done with computers.

Warnings

Although formal language and automata theory has a range of practical applica-
tions, this course aims primarily at setting out the underlying theory. Because
of this, a few health warnings are advisable.

First, this course will not teach you how to write better programs or explain
how computers work. It will not enable you to write fancy graphical interfaces
or web applications to amaze and impress your friends. Some software tools
will be made available to demonstrate certain aspects of the subject, but the
course is theoretical rather than practical.

Second, the subject matter is unavoidably mathematical. The level of mathe-

8 CHAPTER 1. INTRODUCTION

matics required is not that deep: the first year courses on maths for computer
science will provide you with all you need to know. However, the mathematics
crops up all the time — what it lacks in complexity it makes up for in quantity.

As far as possible I will avoid unnecessary mathematical clutter, and separate
descriptions of concepts and techniques from their mathematical justifications.
However, you will be expected to look at formal definitions, proofs and lemmas
and be able to make intuitive sense of them. This is a skill that has to be
learned, and is a pre-requisite for picking up any text-book on the subject to
supplement the lectures and notes.

Third, this is a subject that is hard to learn passively: you will need to do lots
of exercises if you want to do well in the exams. There will be weekly problem
classes in addition to the lectures, and attendance while optional is strongly
advised.

You will probably find that the course introduces you to plethora of new terms
and concepts. Beneath this variety there are a number of basic unifying themes.
The subject is a fundamentally quite simple one. However, the simplicity is not
immediately apparent: you need to put some hard work in before things start
to drop into place. And if you don’t put the initial work in, the subject will
remain bewildering.

If this list of warnings has not completely put you off, read on ...

Reading List

There are a number of textbooks covering most of the material in this course.
You will need to consult at least one of these as an adjunct to the notes and
the lectures. Some of these texts, in a rough preference order (best first) are:

1. D. Kelley, 1995, Automata and Formal Languages, Prentice Hall
Compact, but with lots of examples and exercises. Does not cover every-
thing in the course, e.g. nothing on parsing, but includes most of what
you need to know

2. T.A. Sudkamp, 1997, Languages and Machines, Addison Wesley.

Longer than Kelley, but covers everything in the lectures and more. Also
contains lots of examples and exercises

3. V.J. Rayward-Smith, 1983, A First Course in Formal Language Theory,
Blackwell.

Short and relatively accessible, but rather compactly laid out and does not
cover Turing machines.

4. D.I.A. Cohen, 1997, Introduction to Computer Theory (2nd edition), John
Wiley.

Chatty and relatively non-mathematical (hence, too long)

1.1. WHAT THIS COURSE IS ABOUT

5. J.E. Hopcroft & J.D. Ullman, 1979, Introduction to Automata Theory,
Languages, and Computation, Addison Wesley.

Closer to a standard reference than an introduction: heavy going

10 CHAPTER 1. INTRODUCTION

1.2 Some Fundamental Concepts

1.2.1 Formal Languages

What is a formal language? Here are some technical definitions:

1. A language is a set of sentences

2. A sentence is an ordered sequence of words, taken from a specified (and
finite) vocabulary.

3. A vocabulary is a finite set of symbols, where the symbols are known as
words.

(N.b. some texts use the term alphabet instead of vocabulary, letter instead
of word, and word instead of sentence.)

4. A string is any ordered sequence of words taken from a specified vocab-
ulary.

Thus all the sentences of a language are strings over the vocabulary of
the language. But usually, not all possible strings are sentences of the
language

5. A formal language is a language for which there is a precise and finitely
specifiable set of rules for identifying all and only the sentences of the
language

Before giving examples, note that these are narrow, technical definitions of lan-
guages and sentences, and are not intended to capture all of what we intuitively
understand by these terms.!

Consider the English language. This has a finite (though large) vocabulary of
individual words. These words can be put together in the right order to form
sentences belonging to the English language, e.g

The cat sat on the mat

They can also be put together in the wrong order to produce strings of words
that are not English sentences and do not belong to the language, e.g.

The on cat mat sat

The cat sat on the

From a finite vocabulary, English generates an infinite set of sentences. In-
finitely large languages are the rule rather than the exception, though finite
languages do also exist.

1For example, the definitions so far say nothing about what sentences mean, or how they
might be used for communication or other purposes.

1.2. SOME FUNDAMENTAL CONCEPTS 11

It is unclear whether English is a formal language. There are some sequences
of words where it is unclear if they are proper English sentences or not. And
even if precise decisions can be made in all cases, no one has yet succeeded in
stating a finite and precise set of rules for mechanically deciding every issue.

Programming languages like C++ definitely are formal languages. Anyone who
has ever struggled with a C++4 compiler will know that there are quite rigid
rules about what do and do not count as valid programs. It is the existence
of these rules that makes the language a formal one. The role of sentences in
C++ is played by complete programs, and the language is infinite since there
are an infinite number of different programs.

Another example of a formal language is the language of arithmetic, and we
will look at this one in more detail:

1.2.2 The Language of Arithmetic

First, some examples of sentences in the language of arithmetic

242=4
242="5
2+ (5%8)/4 =22

and a non-sentence
+x2=)2(1

The vocabulary of this language is the set of symbols
Vocabulary = {0,1,2,3,4,5,6,7,8,9, 4+, —, %, /,=,), (A}

(Note that A is used to explicitly represent white space. Although in written
English there is a convention that white space separates individual words, in
other languages the space may be a word in itself).

We can form numbers as sequences of words. The number 23 is the word 2
followed by the word 3, with no intervening space.

The sentences of the language are two arithmetic expressions (expressions that
evaluate to numbers) separated by the equals sign, =. Note that the sentences
of the language do not have to be true. Thus 2 4+ 2 = 5 is a sentence of the
language; unlike 2 + 2 = 4, it happens to be a false sentence.

It should be obvious that the language of arithmetic comprises an infinite num-
ber of sentences. But not all strings of words are sentences of the language.

Within the language of arithmetic, we can identify a more specialised sub-
language: the language of (integer) numbers. The vocabulary of this language is
{0,1,2,3,4,5,6,7,8,9}, and it is the numbers themselves that are the sentences
of this language. (Note that numbers are not sentences in the language of

12 CHAPTER 1. INTRODUCTION

arithmetic, and so the two languages are non-overlapping even though there is
an overlap in the vocabulary)

The language of arithmetic, and the language of numbers, is formal because
precise rules can be given to determine which strings of words are and are not
sentences of the language. We now turn to how these rules are stated.

1.2.3 Rules for Formal Languages

There are two main ways of giving rules for determining whether a string of
words is a sentence of a formal language or not. One is by specifying a grammar
for the language. The other is by specifying an automaton (or machine) for
the language. One of the main results of formal language and automata theory
is establishing the equivalence between different classes of grammar on the one
hand and automata on the other.

But before turning to grammars and automata, we should first consider a less
widely applicable way of defining membership of a language. Recall that a
language is simply a set of sentences. We might therefore write out all the
sentences in the language, and check whether or not a given string is a member
of that set. But this will only do for finite languages. Recall that the rules
defining a formal language must be finitely specifiable. We cannot give a finite
specification by writing down an infinite set of sentences.

This is why grammars and automata are so useful. They give a finitely specifi-
able way of generating an infinite set of sentences.

1.2.4 Grammars

A grammar consists of a finite set of rules, each having the form
(left hand side) — (right hand side)
The following is a grammar for defining the language of binary numbers:

1. Bin — 0

2. Bin —» 1

3. Bin — 1 ZBin
4. ZBin — 0

5. ZBin — 1

6. ZBin — 0 ZBin

7. ZBin — 1 ZBin

1.2. SOME FUNDAMENTAL CONCEPTS 13

The rules say that a binary number, Bin, can be either a zero (rule 1), a one
(rule 2), or (rule 3) a one followed another binary number ZBin (which may
have leading zeroes). A binary number with leading zeroes, ZBin, may be a
zero (rule 4), a one (rule 5), or a zero or one followed by another number with
leading zeroes (rules 6 & 7).

The arrow — in the rules says that the symbol on the left hand side of the
rule may be rewritten, or replaced by the symbols on the right hand side. The
symbols 0 and 1 are the words of the language being defined. The symbols Bin
and Z Bin are variables that can be replaced, through applying the rule, by
sequences of words.

To show that 101 is a sentence in the language of binary numbers, we carry out a
derivation. This involves first writing down the symbol Bin, and successively
applying the grammar rules until we obtain the string we are looking for:

String Rule

Bin Bin — 1 ZBin
1ZBin ZBin — 0 ZBin
10ZBin ZBin — 1

101 Done

At each step, we pick a rule to replace one of the variables in the string by
whatever occurs on the right hand side of the rule. The derivation stops when
we have a string consisting entirely of words, to which no further rules can be
applied.

Exercise Find a derivation for the number 1100. Satisfy yourself that there is
no derivation for 010

Terminology For Grammars

Grammars operate with two disjoint sets of symbols

1. Words (also known as terminal symbols)

These are the words that actually occur in the sentences of the language

2. Variables (also known as non-terminal symbols)

These never occur in sentences of the language, and grammar rules are
used to rewrite them to strings of words

Amongst the variable (non-terminal) symbols, there is one distinguished symbol
known as the start symbol. Derivations of sentences in the language always
begin by writing down a string consisting of a single occurrence of the start
symbol, and then repeatedly applying rules until a string is obtained consisting
purely of words (terminal symbols).

All grammar rules have the form

14 CHAPTER 1. INTRODUCTION

LHS-String — RHS-String

where the LHS and RHS are string of variables and words. Different classes
of grammar emerge from applying different restrictions on what kinds of string
can occur on the left and right hand sides of the rules. In the grammar above,
the left hand string always consists of a single variable symbol (Bin or ZBin).
The right hand string consists of a mixture of variables and words.

1.2.5 Automata

Automata, or state machines, provide an alternative way of specifying the rules
defining formal languages. A state machine consists of a number of states
connected by labelled arrows. These arrows denote ways of making transitions
from one state to another.

Here is a state machine defining the language of binary numbers:

1 ¢
«—

This consists of three states (labelled A, B and C) and four transitions. State A
is the start state, as indicated by the unlabelled transition arrow coming into
it. States B and C are accepting states, as indicated by the double circles.
The transitions between states are labelled, in this case with the words 1 or 0.

To use the automaton to show that the string 1010 is a sentence of the language,
begin in the start state. Look at the first word in the string, which is 1. Take
the transition labelled with a 1 to the next state (i.e. state B). Look at the
next word in the string, which is 0. Take the transition from state B labelled
with a 0. This loops back to state B. Look at the next word (1) and take
the 1-transition from B to B. Look at the next (and final) word, 0. Take the
O-transition from B to B. We have now got to the end of the string, and we are
in an accepting state. This means that the string is a sentence in the language
defined by the automaton.

To show that 011 is not a string in the language, again begin in the start state
A. The first word is 0, so we have to take the O-transition to state C. The next
word is 1, but there are no 1-transitions leaving state C. In other words, we
cannot read through to the end of the string to arrive in an accepting state,
and so the string is not a sentence of the language.

1.2. SOME FUNDAMENTAL CONCEPTS 15

The machine shown above, known as a finite state automaton, has no mem-
ory. It can keep no track of which states it has been through in the past. More
powerful state machines can be formed by adding different levels of memory to
the machine (e.g. a stack-like memory, a limited size random access memory,
and unlimuited size random access memory). These different types of machine
can be used to define different classes of language.

1.2.6 The Chomsky Hierarchy

There are different classes of grammars and different classes of automaton, defin-
ing different classes of language. In fact, there is a strong parallelism between
classes of grammar and classes of automaton. For the classes of language we
will be looking at in this course, there will be parallel grammars and automata
defining them.

The different classes of grammar arise from imposing different restrictions on
the strings of symbols that can occur on the left and right hand sides of rules.
The different classes of machine are reflected by different types of labelling on
the transitions, which indicate different types of memory associated with the
machine. The following hierarchy emerges:

Language Grammar Automaton
Type Restriction (& memory)
Regular LHS single variable Finite state
RHS either automata
(a) a single word, or
(b) a single word plus (No memory)
single variable
Context LHS single variable Pushdown stack
Free RHS can be anything automata
(Stack memory)
Context RHS no shorter than LHS | Linear bounded
Sensitive automata
(Limited RAM)
Recursively | No restrictions Turing machines
Enumerable (Unlimited RAM)

The further up the hierarchy (towards recursively enumerable languages and
Turing machines), the more control can be exercised over including and exclud-
ing different types of string in the language.

Regular languages, grammars and finite state machines can be very efficiently
processed. They form the basis for a number of unix tools (e.g. regular ex-
pressions in grep). A lot of speech and natural language processing nowadays
attempts to improve processing times by approximating natural languages to
regular languages (unfortunately, this is an approximation — natural languages
are at least context free).

16 CHAPTER 1. INTRODUCTION

Context free languages are very widespread. Most programming languages are
context free, and natural languages are more or less context free. Techniques
for defining and analysing sentences in context free languages form the basis of
compiler theory.

Context sensitive languages are of comparatively little practical or theoretical
interest (though it was once though that all natural languages must be at least
context sensitive: this now seems unlikely).

Turing machines are of interest because they provide a simple but powerful
way of modelling the functionality of digital computers. Turing machines can
be used to establish a number of theoretical results about limits on what is com-
putable. However, the languages they define tend not to be of much practical
interest.

There are also other classes of language, grammar and automaton lying between
these main points on the Chomsky hierarchy. Some of them will be mentioned
in passing later on. The course is structured around an ascent through the
hierarchy, starting with regular languages and finite state automata, and ending
at Turing machines.

1.3 Mathematical Preliminaries

The following should all be familiar, so only brief notes will be given

1.3.1 Sets

Languages are sets of sentences. Operations on languages are therefore primar-
ily set operations, of which the main ones are:

o S={ei,ea,...,en}

S=A{z|f(x)}

e Membership, €
el € {61,62, . ,en}

e € {x| f(x)}if f(e)

e Subset, C
S1 C 52 if every member of S1 is also a member of S2

e Union, U
S1US2={x|xe€SlorxeS2}

e Intersection, N
S1NS2={x|xe€S1land x € 52}

e Complement, -

Sl={z|z¢gS1}

1.3. MATHEMATICAL PRELIMINARIES 17

e Difference, —
S1—-82={x|xe€S1lbutx¢gS2}

e Powerset, P

P(S)={S'| 8 C S}

e ‘Big’ Union, Ui,
?zlsi:51US2U...USn

e ‘Big’ Intersection, (i,
?:lsi:SlﬂSgﬂ...ﬂSn

e U, the universe — the set of all elements
e {}, the empty set

Some important properties of these operations are

Associativity (AUB)UC =AU (BUC)
(ANB)NC =ANn(BNC)

Commutativity AUB=BUA

ANB=BnNA

Complement AUA=U
ANA={}

Idempotency AUA=A
ANA=A

Identity Au{}=4
AnU=A

Zero AuU=U
An{}={}

Involution @:A

De Morgan (AUB)=ANB
(ANB)=AUB

Distributivity AU(BNC)=(AUB)N(AUC)
AN(BUC)=(ANB)U(ANC)

Note also that the empty set is a subset of every set

1.3.2 Relations

Relations can be defined in terms of sets. In particular, sets of n-tuples (a 2-
tuple is called an ordered pair). N-tuples are defined in terms of the Cartesian
product of sets.

e Cartesian product:
Ax B={(a,b) |ac A,be B}

18 CHAPTER 1. INTRODUCTION

Le. the set of all ordered pairs (or 2-tuples), (a,b) where a is from set A
and b from set B.

Can also have n-tuples: Ax Bx...x N

Any binary relation R on the members two sets A and B is some subset of
their Cartesian product:

RCcAxB

(n.b. A and B can be the same set)

That is, a binary relation is a set of ordered pairs For example:

A = people, B = newspapers, R = reads

R = {(smith, independent), (smith, guardian), (jones, telegraph) }
R(smith,telegraph) iff (smith, telegraph) € R

N-ary (or N-place) relations are generalisations of binary relations — sets of
n-tuples

If we consider a binary relation R on a single set S, R C S x S, there are a
number of important properties that the relation may or may not exhibit. As
exemplars, consider the binary relations defined on the set of numbers: >, >, <,
< and =.

e R is reflexive iff
R(Si, Si) for all S; € S

>, < and = are reflexive
< and > are not
e R is symmetric iff
R(sj, si) implies R(sy, s;)
= is symmetric
>, <, < and > are not
e R is transitive iff
R(sj,si) and R(sg,spm) implies R(s;, sm)
>, >,<, < and = are all transitive

e If a relation is transitive, reflexive and symmetric
it is an equivalence relation (like =)

e Transitive/reflexive/symmetric closures:
Add just as many new ordered pairs to the relation as are needed to make
it transitive/reflexive/symmetric

e.g. R={{a,b),(b,c)}

1.3. MATHEMATICAL PRELIMINARIES 19

Transitive closure: {(a,b), (b,c), (a,c)}
Reflexive closure: {(a,b), (b, ¢}, (a,a), (b,b),
Symmetric closure: {(a,b), (b, c), (b,a), {c,b)}

1.3.3 Functions

Functions are a special type of relation. Consider the one-place function age-
in-years, Age

Age: People — Numpbers

This is a function from the set of people into the set of numbers. The one place
function is a two-place relation

Age C People x Numbers
e.g. Age = {(tom,18), (dick, 35), (harry,21)}

Not any type of relation will do. Every person p € People must occur in exactly
one ordered pair in Age i.e. each person is paired with exactly one age (though
there may be several different people paired to the same age)

In Age, the set People is the domain of the function (the argument) and
Number the range (result)

More generally, an N-place function is an N+1-ary relation
Domy x ... x Dom, — Range

where Every n-tuple of arguments occurs in just one n+1-tuple of the relation.

A total n-place function is one which pairs every possible domain n-tuple with
an element in the range (i.e. it returns a value for all possible arguments). A
partial function may fail to return a value for some combination of arguments:

Dom;y X ... x Dom,, — Range

Not every domain tuple of arguments occurs in the function. But those that
do occur, occur just once

1.3.4 Cardinality and Countability

The size (cardinality) of a set is given by putting the members of the set into
one-to-one correspondence with the set of natural numbers, {1,2,3,...}.

Languages often comprise infinitely large sets of sentences. It turns out that not
all infinite sets are the same size. Some can have their elements put into one-to-
one correspondence with the natural numbers — countably or denumerably
infinite sets. Others have more members than there are natural numbers —
uncountable sets.

20 CHAPTER 1. INTRODUCTION

For example, the set of rational numbers (fractions) is countably infinite. There
are as many fractions as there are whole numbers. This may seem surprising,
since between any two integers there are a infinte number of fractions. Never-
theless, the fractions can all be counted. We can enumerate them in s specific
order that doesn’t miss any out, and ensure that for any given fraction we will
reach it in the order within a finite amount of time.

Here is a way of enumerating the fractions that goes through at each rational
number at least once. We count the numbers by following the arrows

1 2 3 4
1]1/1 — 1/2 1/3 — 1/4
/ / e
2| 2/1 2/2 2/3 2/4
I/ / /
3| 3/1 3/2 3/3 3/4
/ /
4| 4/1 4/2 4/3 4/4
IS

Since we can regard fractions as pairs of numbers, this shows that the set of all
pairs of elements taken from a countably infinite set is also countably infinite.
The same holds of n-tuples.

However, the set of real numbers is not countable — there are more real numbers
than integers or fractions. The proof of this is due to Cantor. Suppose that we
do have some enumeration of the real numbers: we can show that whatever the
enumeration there will always be at least one number it leaves out. Let us just
consider some enumeration of the reals between zero and one:

1 0.n1,1n172n1,3n174 e
2 0.n2,1n2,2n2,3n274 PN
3 0.n31n32n33N34. ..
4 0.714,172472714’3?7,474 PN

where n; ; is a digit in the decimal representation.

From this enumeration we can generate a diagonal number:

0.711,17%2’2713,3?7,474 RN (TR

Thus, if our enumeration is

0.1567...
0.5267...
0.5637...
0.5674...

N R

1.3. MATHEMATICAL PRELIMINARIES 21

the diagonal number will be 0.1234. ..

Create a new number from the diagonal number by altering each digit n;; as
follows

o If n;; <9, then n; =n;; +1
o If n;; =9, then nj; =0

For example, this turns the diagonal number above into 0.2345. ...

Whatever the enumeration we had, we can be sure that the number

/ / !/ / /
0.”17171272”373”4’4 PN ni,i e

did not occur in it. For any position ¢ in the enumeration, the ¢th number
differs from the new number in at least the digit n; ;.

This means that we cannot hope to enumerate all the real numbers, and hence
we cannot pair them one-to-one with the natural numbers.

1.3.5 Recursion

Recursive definitions are a very useful way of specifying infinite sets. A recursive
definition always has:

1. one (or more) base cases,
2. one (or more) recursive steps,

3. and an exclusion condition (often implicit)

Here is an example of a recursive definition that will be significant later. We
define a string of words over some vocabulary W

1. Base case:
If wis aword in W (i.e. w € W), then w is a string over W

2. Base case:

The empty string, €, is a string over W

(The empty string is just a string containing no words)
3. Recursive step:

If s is a string and w is a word in W,
then ws is a string over W

4. Exclusion:

Nothing else is a string over W, except through this definition

For example, with a vocabulary W = {0, 1,2,3,4,5,6,7,8,9}, the following can
be shown to be strings over W:

22 CHAPTER 1. INTRODUCTION

1 is a string (base case)

e 21 is a string (one recursion)

321 is a string (two recursions)

1.3.6 Inductive Proofs

Inductive proofs are closely related to recursion. They are used to show that
some property P holds of elements in some ordered set of objects (e.g. the set
of integers).

Inductive proofs always consist of a base case showing that P holds of the first
element in the ordering; an inductive hypothesis stating the assumption that
P holds of every element up to the kth one in the ordering; and an inductive
step proving that if P holds for the first k elements, then it also holds for the
first k£ + 1 elements.

That is:

e Base case:
Prove P holds of first element (e.g. 0 if we are looking integers)

e Inductive Hypothesis:
Assume P holds of the first k elements

e Inductive Step:
Given that P holds of the first k& elements, show it also holds for the
k + 1th element

Taking an inductive proof where P is some property of the integers, the base
case shows that that P(0) is true. The inductive step allows us to show from
this that P(1) is true. Applying the inductive step again allows us to show that
P(2) is true, and so on.

Here is an example of a (numerical inductive proof:

ProveO+1+4...4n=n(n+1)/2

e Base: 0=0(0+1)/2

e Hyp: Assume 0+...+n =n(n+1)/2 for all values of n up to
k

e Ind: Prove inductive hypothesis holds for m = k + 1
O+...+k+(k+1)=[k(k+1)/2] 4+ (k+ 1)] by ind. hyp
= (k+1[(k/2) +1)]
=(k+1)(k+2)/2
=m(m+1)/2

1.3. MATHEMATICAL PRELIMINARIES 23

1.3.7 Directed Graphs

Directed graphs are important here (a) for formal analysis of state-transition
machines, and (b) for representing trees showing how sentences may be derived
from a grammar.

A directed graph is essentially a set of states (or nodes), N, and a set of
arcs (or arrows, transitions) connecting them. The arcs are represented as
a binary relation over N. Thus:

A directed graph consists of

(a) Set N of nodes

(b) A binary relation, 6 C N x N
— the transition relation

There is an arc going from node ny to ny iff 6(nq, n9)

For example:

N = {a,b,cd}

o= {<avc>7<b’a>’
(c,a), (c,b), (c,d),
(d,b),(d,c)}

Some more terminology to do with graphs:

e A path is a sequence of nodes where each is connected to the next by a
transition

e A null path is a path of length zero connecting a node to itself
e A cycle is a path of length one or more that connects a node to itself

e Directed graphs with no cyclic paths are called Directed Acyclic Graphs
(DAGS).

24 CHAPTER 1. INTRODUCTION

Trees
A tree is a directed acyclic graph, where

(a) Each node (except for the root node) has exactly one transition coming
into it.

(b) The root node of the tree has no transitions coming into it

(¢) For each node, there is a unique path going from the root to the node.

An example of a tree is
x1
x3

| T |

x9 x10 x11 x12

N

x13 x14

Note that the arrow head on the transitions are omitted — they would point
downwards. The root node of this tree is x1

e Leaf nodes are the ones with no transitions (branches) coming out of
them
ie. 9,210,211, 26,213,214, 28

e x4, x5 and 26 are daughters of their mother z2,
and are sisters of each other

e 22 is the root of a subtree of x1, where the subtree contains 22 and all
the nodes below it — the descendants of z2

e Likewise, x5 is the root of a subtree of x2

1.4 Summary: strings, languages, grammars and ma-
chines

A vocabulary W is a finite set of words. A string over W is an ordered sequence
of words taken from W. It can include the empty string €, and may repeat
words.

The set of all strings over a vocabulary W is written as W*, and is an infinite
set. W* may be defined recursively as

1.4. SUMMARY: STRINGS, LANGUAGES, GRAMMARS AND MACHINES25

e ceW*
o If we W, then w e W*

If se W* and w € W, then ws € W*

Nothing else is a string over W, except through this definition

A language L over vocabulary W is a set of strings, such that L C W*. The
members of L are known as sentences of the language.

A formal language is one for which there is a finitely specifiable set of rules for
deciding which strings are and are not sentences of the language. The rules are
usually given by means of either a grammar or an automaton.

A grammar is a finite set of rules operating on two disjoint sets of symbols: the
variables (or non-terminal symbols), V, and the words (or terminal symbols)
W. Rules take the form

LHS — RHS
where LHS € (W UV)* and RHS € (W UV)*

Different classes of grammar emerge from imposing varying restrictions on the
strings of symbols that occur on the left and right hand sides of rules. A gram-
mar always has a distinguished variables symbol, known as the start symbol.

Notational Convention

When writing abstract grammars down, there is a general conven-
tion that variable symbols begin with or are an upper case letter,
words begin with or are a lower case letter, and that the start symbol
is S.

Sentences are derived from a grammar by writing down a string consisting solely
of the start symbol. Grammar rules are repeatedly applied to rewrite portions
of the string until one finally obtains a string containing just words.

An automaton is a state-transition machine. It must have a finite number of
states and transitions, with a single deisgnated start state and one or more des-
ignated accepting states. Strings are accepted by the automaton if they trigger
a series of transitions from the start state and ending in an accepting state. Dif-
ferent classes of automaton have different degrees of memory associated with
them.

Part 1

Regular Languages

26

27

In the following three chapters we will begin at the bottom of the Chomsky
hierarchy, looking at regular languages. Regular languages can be defined either
by means of regular grammars and expressions, or by finite state automata.
Chapter 2 introduces finite state automata, and shows how they can be used
to define languages. Chapter 3 introduces regular grammars and expressions,
and shows how they too can be used to define languages. More specifically, we
will see how finite state automata and regular grammars can be used to specify
the same languages. The final chapter in this part demonstrates that not all
languages are regular, and hence cannot all be defined either by finite state
automata or regular grammars.

Regular languages have one main advantage, and one main disadvantage. The
advantage is that the question of whether a particular string belongs to a given
regular language can be computed very efficiently indeed. This makes regular
languages very useful in applications such as pattern matching. The grep utility
in Unix, for example, searches for strings belonging to a user-defined regular
language (specified by means of a regular expression).

The disadvantage of regular languages is that they are not very expressive. They
are not expressive enough to serve as programming languages, for example;
context free languages are used for this.

Chapter 2

Finite State Automata

This chapter is organised as follows. Section 2.1 introduces the simplest type
of finite state automaton, known as a deterministic finite state automaton
(DFA). Section 2.2 introduces a more complex type of automaton, known as a
non-deterministic finite state automaton (NFA). Section 2.5 shows that
NFAs and DFAs are equivalent: from any NFA you can derive a DFA that
accepts exactly the same language.

2.1 Deterministic Finite State Automata

A finite state automaton consists of a finite set of states, with arrows or tran-
sitions connecting the states. The transitions are labelled with words from a
given vocabulary. The automaton must have a single designated start state,
and a designated set of one or more accepting states.

This characterisation is true both of the deterministic finite state automata
(DFAs) described in this section, and of the non-determininstic finite state
automata (DFAs) described in section 2.2

2.1.1 Examples of (Deterministic) Finite State Automata

Repeated below is a detreministic finite state automaton for accepting binary
numbers without leading zeroes.

28

2.1. DETERMINISTIC FINITE STATE AUTOMATA 29

1 ——
-~ -
—

It comprises three states, A, B and C, of which A is the designated start
state, and B and C are the accepting states. In diagrams like this, the start
state is always indicated by having a short unlabelled incoming transition. The
accepting states are represented as double circles.

The transitions between states can usefully represented as a transition table:

W Qe

1
B
B

QW=

The first line says that there is a O-transition from state A to state C, and
a l-transition from state A to state B. The second line says that 0- and 1-
transitions loop from state B back onto state B. The third line says that there
are no transitions out of state C.

Accepting Sentences of the Language

To use the automaton to show that the string 1010 is a sentence of the language,
begin in the start state. Look at the first word in the string, which is 1. Take
the transition labelled with a 1 to the next state (i.e. state B). Look at the
next word in the string, which is 0. Take the transition from state B labelled
with a 0. This loops back to state B. Look at the next word (1) and take
the 1-transition from B to B. Look at the next (and final) word, 0. Take the
O-transition from B to B. We have now got to the end of the string, and we are
in an accepting state. This means that the string is a sentence in the language
defined by the automaton.

To show that 011 is not a string in the language, again begin in the start state
A. The first word is 0, so we have to take the O-transition to state C. The next
word is 1, but there are no 1-transitions leaving state C. In other words, we
cannot read through to the end of the string to arrive in an accepting state,
and so the string is not a sentence of the language.

This procedure for accepting (or rejecting) strings as being sentences of the
language defined by the machine can be presented algorithmically as follows.

DFA Acceptance:

30 CHAPTER 2. FINITE STATE AUTOMATA

1. Set current state, curr, to start state,
and input inp to string to be accepted

2. If curr is an accepting state
and input inp is empty
ACCEPT (and exit)

3. If input is empty and curr is not an accepting state
REJECT (and exit)

4. Let inp be word + inp’, where word is the first word of the input, and
inp’ the remainder.

5. If there is no transition from curr using word

REJECT (and exit)

6. Else
Set curr = the state reached by taking the word transition from curr
Set inp = inp’
Repeat from step 2

The algorithm for generating a sentence is similar to the above, except that we
pick an arbitrary path from start to finish, taking the sequence of labels on the
transitions as the sentence generated.

Another DFA

Here is another finite state automaton, this time to recognise valid sequences
of coin insertions totalling 25p for a vending machine (early vending machines
really did implement mechanical finite state automata like this).

NN Y
)

10 N— /I’OL\

Y 5

/

J

)
©
J

The ‘words’ we use to communicate with the vending machine are 5p, 10p and
20p coins. ‘Sentences’ in the vending machine language are any sequence of
coins whose value totals 25p. To make the diagram clearer, the states of the
machine have been labelled with the total amount of money that needs to have
been inserted to reach that state.

2.1. DETERMINISTIC FINITE STATE AUTOMATA 31

Determinism

Both the machines we have described here are deterministic. That is, if you
are sitting in a given state looking at a given word, there will be at most one
transition out of the state for that word. That is, the transitions that can be
taken are fully determined; there is never a choice of two equally legitimate
transitions at any point. The significance of this determinism will become
clearer when we consider non-deterministic FSAs in section 2.2.

2.1.2 Formal Definitions

Rather than draw diagrams of finite state automata, it is more convenient to
define them mathematically. A (deterministic) finite state machine, DF' A, is a
5-tuple

Definition of Deterministic FSA, DFA
DFA = (N,V,4,s,F)
where

e N is a set of states (or nodes)

e V is a set of labels — the input vocabulary of the DFA

J is a (labelled) transition function, 6 : N x V +— N

s € N is the start state

e ' C N is a set of final states

That is, we have a set of states NV, which contains a single starting state s and
one or more accepting states contained in F'. The transitions between states
are represented by the transition function d. Given a state n and a word w, the
transition function will return a new state n’ = d(n,w). This is the state you
can move to from n when the next word is w.

The transition function § is partial. This means that there can be some
state/word combinations that have no transitions defined. If you find your-
self in a state looking at a word for which no transition is defined, you cannot
move any further through the automaton: you are stuck.

Formal Example

If we were to give a formal definition of the vending machine FSA, it would be
Vend = (N,V,d,s, F)

where

32 CHAPTER 2. FINITE STATE AUTOMATA

N = {s0, s5, s10, s15, 20, s25}

e V ={5,10,20}
e s=350
o = {s25}

d = {(s0,5,5), (50,10, s10), ..., (s5,5,510) ... (s20,5, s25)}
We could also represent the transition function as a transition table

1) 5 10 20
sO sh s10 s20
sHh | s10 sl15 25

s10 | s15 s20 —
slo | s20 256 —
s20 | 826 — —
s25 | — — —

Extended Transition Function

Having stated how a deterministic FSA is formally defined, we now want to
move towards a formal definition of the language accepted by the FSA. Recall
that sentences of the language will be any sequence of words that allows you
to make transitions from the start state to an accepting state, and where the
transitions consume all the words in the process.

As a first step towards a formal definition of this, we need to define an extended
transition function, written as 6*. The extended transition function allows you
to take several transitions in one go, consuming a string of words as you do so.
That is, it is a function that takes a state and a string of words, and returns a
state:
0" :NxV*— N

(Recall that V* denotes the set of all strings that can be constructed from the
vocabulary V)

For example, we might have:
5*(TLO, wiwy . .. wl-) =Ny

where ng is some initial state, and wiws ... w; a sequence of words. The result-
ing state n; is the one reached by taking one transition after another, consuming
a word at each go. That is

d(no,w1) = ny
d(n1, w2) = no
.. .(5(ni_1,wi) =Ny

2.2. NON-DETERMINISTIC FSAS 33

In other words, extended transitions just compose individual transitions to-
gether.

The extended transition function may be derived recursively from the basic
transition function as follows:

Definition of extended transition function, §*

1. Base case
If 6(nq1,w) = ng)
then 0*(ny,w) = ngy)

2. Recursion
If 6*(n1,v) = n; and 6(n;, w) = n;
then 6*(n1, vw) = n;

Here, we use v to indicate a string of words (which can include strings of just
one word). We use w to indicate single words.

Language Accepted by a DFA

Having defined the extended transition function for DFAs, it is straightforward
to define the language accepted by a DFA. The language is going to be the set
of strings (sentences) accepted by the machine. A string v is accepted by the
machine if

0 (s,v) C F

That is, you can take an extended transition from the start state s, consuming
the whole of the string v, and land up in one of the final accepting states
contained in F.

More formally

Language accepted by machine DFA M, L(M)

L(M) = {v | 6*(s,v) € F}

where F' is the set of final accepting states, and s the start state.

Note how we write L(M) for the language defined by a machine M.

2.2 Non-Deterministic FSAs

We now turn to non-deterministic FSAs, or NFAs. The following is the diagram
for an NFA that accepts strings consisting of one or more a’s:

34 CHAPTER 2. FINITE STATE AUTOMATA

sO a =@
/

Note how there are two transitions labelled a coming out of state s0. This
means that if you are sitting in state s0, with a as the next word in the input,
you have a choice of two possible transitions to take. This is what makes the
automaton non-deterministic.

Consider what happens when you run this machine on the string aaa. Starting
in state sO and looking at the first a, we have a choice of either taking the
transition that loops back onto s0, or the one that goes to s1. Suppose we take
the transition to s1. We are now sitting in s1 with aa remaining in the input.
But there are no a-transitions out of s1, so we are stuck.

But suppose instead we had looped back onto sO with the transition on the first
a. Then there would still be an a-transition to consume the second a. Suppose
we take the transition that loops back to state s0. Then we have a choice of
two transitions out of s0 for consuming the final a in the input. Suppose this
time we take the a-transition to state s1. After this, we find ourselves in an
accepting state with no remaining input: the string has been accepted.

To summarise, for a string to be accepted by an NFA, there must be at least
one sequence of transitions from the start state that leads to a final state and
no remaining input. A string is rejected only if there is no such sequence. The
fact that there may be other sequences of transitions that do not lead to a
terminating condition does not mean that the string is rejected.

2.2.1 Non-Determinism and Backtracking

The algorithm for deciding whether an NFA accepts a string involves backtrack-
ing. At any point where more than one transition is possible, the algorithm has
to make a blind choice about which transition to take. Some choices may lead
to successful termination and acceptance, others not. If the algorithm makes
the wrong choice, it needs to be able to retrace its steps to the point where
the wrong choice was made, and instead try an alternative transition. This
retracing of steps and then trying again is known as backtracking.

To see how backtracking works, we need to define some subsidiary notions.
A machine configuration is a pair consisting of (a) the state the machine is
currently in, and (b) the input remaining.

To implement backtracking, the algorithm needs to maintain a stack! of choice
points. Whenever more than one transition is possible, one of them is chosen,

1Stacks are a commonly occurring data structure in computer science. The stock example
of a stack is the spring loaded stack of plates you get in some cafeterias. Plates can only be

2.2. NON-DETERMINISTIC FSAS 35

and the remaining alternatives are pushed onto the stack.

Whenever the machine gets stuck, instead of rejecting the string outright, the
algorithm does the following. It pops the previous choice point off the stack,
and starts to explore alternative transitions. A string is only rejected when

(a) the stack is empty and

(b) the machine is unable to make a transition out of a non-accepting state,
or unable to make a transition from an accepting state with input still to
process

The following is an algorithm? for accepting strings using an NFA. Note that
it is somewhat more complex than the equivalent algorithm for deterministic
automata.

Acceptance with an NFA

1. INIT: set current state curr to the start state s
set input inp to string to recognise
set stack to empty

2. ACCEPT if in a final state with no remaining input,

3. else REJECT: if stack is empty, there are no possible transitions, and we
are not in a final state with no remaining input

4. else TRANSITION:
if inp is word + inp’
and S = {s | 0(curr,word, s)} # {}
then

(a) select a state s from S, and set S’ =S — {s}
(b) PUSH configuration (curr, S’,inp’) onto stack
(c) set curr = s and inp = inp/
(d) repeat from step 2
5. else BACKTRACK: if non-empty stack, but no possible transitions and
not in final state with no input, then
(a) POP configuration (old, oldS, oldinp) from stack

(b) select state s from oldS, and set oldS" = oldS — {s}

pushed onto the top of the stack, and can only be popped off the top of the stack. You cannot
remove plates from the middle of the stack. Popping and pushing only on the top of the stack
means that it is a Last-In-First-Out (LIFO) data structure: You always pop off the last item
that was pushed in.

Information only

36 CHAPTER 2. FINITE STATE AUTOMATA

(c) if oldS" # {}
PUSH (old, 0ldS’, oldinp) onto stack

(d) set curr = s’ and inp = oldinp

(e) repeat from step 2
(Note that we are treating J as a transition relation rather than a transition
function. Hence d(curr,word, s) expresses that fact that you can make a tran-

sition from curr to s via word. But there may be other states, s’, for which the
same holds: §(curr,word, s’). See below.)

2.2.2 Formal Definitions

Definition of Non-deterministic FSA, NFA
NFA=(N,V,é,s, F)
where
e N is a set of states (or nodes)
e V is a set of labels — the input vocabulary of the NFA
e 0 is a (labelled) transition relation, d C N x V x N
e s & N is the start state

e [C N is a set of final states

This is identical to the formal definition of a deterministic FSA, except that 0
is a transition relation rather than a transition function. Consider once again
the NFA accepting strings of one or more a’s

a

0 a @

/

The transition relation for this machine is

5 = {(s0, a, s0), (s0,a, s1)}

Given a relation like this, we can always recast it as a function onto sets of
state. In tabular form:

2.2. NON-DETERMINISTIC FSAS 37

Or put another way:

9(s0,a) = {s0,s1}
9(10,a) = {}

Extended Transitions, §*

Just as for DFAs, we can construct an extended version of §. Taking the non-
deterministic version of § to be a function from states and words to sets of
states, 6* will be a function from states and strings of words to sets of states:

0" N xV*— P(N)
That is, if
0*(s1,v) = {8,8j,...,5n}

then by taking a sequence of transitions starting at s; and consuming the words
in v, you can end up in any one of the states {s;,sj,...,sp}

The extended (non-deterministic) transition function 6* can be recursively de-
fined in terms of d:

Definition of extended non-deterministic transition function, 6*

1. Base case
5*(n,w) = d(n,w)

2. Recursion
If *(n,v) =S
then 6*(n,vw) = J{S" | In' € S and 6(n',w) = 5’}

Here again, we use v to indicate a string of words (which can include strings of
just one word). We use w to indicate single words.

With this definition in place we can give the define the language accepted by a
NFA M, L(M) in analagous way to deterministic automata:

Language accepted by NFA M, L(M)

L(M) = {v[d"(s,v) N F #{}}

where F' is the set of final states, and s the start state.

Note that here we are interested in strings v where there is at least one sequence
of transitions from the start to a finish state.

38 CHAPTER 2. FINITE STATE AUTOMATA

2.3 Machines with Empty (¢) Transitions

So far we gave assumed that all transitions are labelled with words from the
input vocabulary. However, another kind of transition is possible. This is an
empty-, or e-transition. You can take an empty transition from one state to
another without consuming a word from the input.

Here, for example is a machine to accept even length strings of a’s and b’s:
f a a
- 4
/ % b 5

There is an empty transition from state s to s3. This means that you can get
from the start state to a final accepting state without consuming any input.
This means that the machine will accept the zero length empyt string, €. There
is also an empty transition from s3 back to s. This means that having consumed
an even length sequence of a’s and b’s to get to state s3, you can go back to
state s, and add two more words to the string.

€

The presence of the empty transition from state s in the machine above is
enough to make it non-deterministic. To see why, suppose we are sitting in
state s, with b as the next word on the input. There are two transitions one
can take. Either the b-transition to state s2, removing the b from the input.
Or the empty transition to state s3, leaving the b on the input.

So, for example, to accept the string ab, we could make an a-transition to s2
followed by a b-transition to s3. Or we could make an empty transition to s3,
another empty transistion back to s, then take an a- and a b-transition.

More generally, if a machine contains any state that has more than one tran-
sition coming out of it, and where one of the transitions is empty, then the
machine is non-deterministic.

But the bare presence of empty transitions is not on its own sufficient to make
a machine non-deterministic. Consider the following:

o o -

€

2.4. MACHINES WITH ERROR STATES 39

This has an empty transition out of s3. But this is the only transition out of s3,
and the machine is deterministic. The machine accepts even length sequences
of a’s and b’s, but does not accept the empty string.

At a formal level, to permit empty transitions, we do the following. We add
€ as an additional symbol that can label transitions. The transition functions
d (for non-deterministic machines) becomes a function from states and words
plus € to sets of states:

0: N xVU{e} — P(N)

2.4 Machines with Error States

An error condition arises in an FSA if we find ourselves sitting in a state s,
looking at the next word of the input, a, and with no a-transitions coming out
of s. If the machine is deterministic, this means that whatever string brought
about this condition is rejected. If the machine is non-deterministic, we have to
backtrack tom some earlier configuration to see if the string can be accepted.

There is an alternative way of dealing with error conditions. The machine pro-
vides an a-transition to a single error state. This error state, s, has transitions
for each word in the vocabulary that loops from s, back to s.. But it contains
no transitions back to any other state in the machine. Once we reach an er-
ror state, the machine loops round consuming the rest of the input, but never
leaving the error state. The error condition now becomes that we find ourselves
sitting in the error state with no remaining input.

For example, consider the following machine:

a

sl a ;@
/

What happens if the input string is ba? (Note: assume that the input vocabu-
lary is {a, b}, but we wish to reject any strings containing a b.) We get stuck
in state sl and an error condition arises.

The following is equivalent to the above in terms of the strings it accepts and
rejects, but contains an error state:

40 CHAPTER 2. FINITE STATE AUTOMATA

0

%O

With input ba, we make a b-transition to the error state se, and consume the
remaining a by looping back to the error state.

It is easy to convert any FSA without an error state into one that has an error
state. For every state / word pair, (s, w) for which no transition is defined, add
a w-transition to the error state. Add looping transitions on the error state for
every word in the input vocabulary.

2.5 Eliminating Non-Determinism

In the preceding sections we have looked at a variety of different types of finite
state automata

e Deterministic FSAs
e Non-deterministic FSAs
e 'SAs with e-transitions

e 'SAs with error states

Perhaps surprisingly, all these different types of FSA turn out to be equivalent,
in the following sense. For any machine M of one type accepting a language
L(M), one can construct a machine M’ of another types that accepts exactly
the same language.

In the case of machines with and without error states, it is relatively easy to see
that this is so. We have slready shown how to add an error state to a machine
that lacks one. And removing an error state from a machine is a simple inverse
of this.

But in the case of deterministic and non-deterministic FSAs, the equivalence
is a little harder to establish, and also rather more surprising. At first sight,
one would have thought that non-deterministic FSAs are more complex. They

2.5. ELIMINATING NON-DETERMINISM 41

certainly have a more complicated algorithm defining acceptance of a string.
Therefore, one might have thought that NFAs are more expressive in terms of
the class of languages they can define. But this turns out not to be so.

The equivalence between DFAs and NFAs is established by defining an algo-
rithm that can convert any NFA into a DFA accepting the same language.
(Converting a DFA to an equivalent NFA is trivial: just add some e-transitions
that loop back onto the state they started from).

We will first present the conversion algorithm. Having done this, we will prove
that the algorithm really does ensure that the two machines accept the same
language.

2.5.1 NFA—DFA Conversion Algorithm

The algorithm for converting a non-deterministic FSA to a deterministic one
proceeds by creating DFA states out of sets of NFA states. In outline it proceeds
as follows:

1 Start state in DFA = set containing (i) start state of NFA plus (ii) all
states reachable from it by e-transitions.
Name this state by the set of NFA states it contains

2 For each DFA state, S created
for each input symbol, a,
— collect the set of all states a-reachable from a state in S

— if such a state S’ has not already been created, create it, and name
it by the set of NFA states it contains

— add a single a-transition from S to S’ (if there is not one already
there)

3 Repeat (2) until no more new states or transitions can be added.

4 Any DFA state containing an NFA final state is to be counted as a DFA
final state.

The operation of this algorithm can be illustrated with the following NFA:

42 CHAPTER 2. FINITE STATE AUTOMATA

We start by creating the start state for the DFA. We form a set consisting
of the DFA start state, s1, and all states reachable from it by following only
e-transitions. It turns out that both states s2 and s3 can be reached from sl
by taking only e-transitions. Therefore, the start state of the DFA is (labelled(
{s1, 2, s3}.

Having identified the start state, we need to identify which NFA states are a-, b-,
and c-reachable out of any of the NFA states in {s1, s2, s3}. Note that one state,
sj is a-reachable from a state s; if you can take any number of empty transitions
from s;, leading to an intermediate state sy, followed by an a-transition from
s to sp41, followed by any number of empty transitions to reach s;.

Consider first the NFA states that are a-reachable from any state in {s1, s2, s3}.
From state s1, we can take a single a-transition to get any one of sl1, s2 or s3.
We can also take an atransition to s3 followed by an empty transition to ss.
But from s, and s3, no states are a-reachable. Therefore, the set of all states
a-reachable from any state in {s1,s2,s3} is in fact {s1, s2, s3}.

Now consider the states that are b-reachable from any state in {sl,s2,s3}.
From state s1 we can take two empty transitions, from sl to s3 and then from
s3 to s2, and then take a b-transition looping back to s2. From state s2, we
can take a single b-transition looping back to s2. And from s3 we can take an
empty transition to s2, followed by a b-transition looping back to s2. No other
states are b-reachable, so the set of NFA states b-reachable from any NFA state
in {s1, 2,53} is {s2}.

Now consider the c-reachable states from {s1, s2,s3}. From sl we can take an
empty transition to s3, followed by a c-transition looping back to s3. We can
also take an empty transition to s3 and then a c-transition to s2. No state is
c-reachable from s2. From state s3 we can take a c-transition looping back to
s3, or a c-transition to s2, or a c-transition looping back to s3 followed by an
empty transition to s2. Hence the set of NFA states c-reachable from any NFA
state in {s1,s2,s3} is {s2, s3}.

2.5. ELIMINATING NON-DETERMINISM

We can enter this in a transition table as follows

DFA State

Transition DFA State

{s1, 52, s3}

a

— {s1, 52, s3}
LI {s2}
— {s2,s3}

43

Looking at this table, we can see that we have constructed two new DFA states,
{s2} and {s2,s3}. We therefore need to determine the sets of a-, b- and c-
reachable states from these two new states.

Taking {s2} first, no states are a- or c-reachable from s2. And only s2 is

b-reachable from s2. Thus we add another line to the transition table:

DFA State

Transition DFA State

{s1, s2, 53}

{s2}

This constructs one new state, {} (which will be an error state).

— {s1, 2, s3}
LI {s2}
—= {s2,s3}

— {
— {s2}
— {

Now taking the state {s2, s3}, we can determine the third line of the transition

table:

DFA State

Transition DFA State

{s1, s2, 53}

{s2}

{s2,s3}

This adds no further new states.

— {s1, 2, s3}
LI {s2}
= {s2, s3}

— {
— {s2}
— {

— {}
— {s2}
— {52, s3}

Finally, we have to consider transitions out of the state {}. Since this contains
no NFA states, no NFA states are reachable from any state within it, and so
the last line of the transition table can be added:

44

DFA State

CHAPTER 2. FINITE STATE AUTOMATA

Transition DFA State

{s1, 52, s3}

{s2}

{s2,s3}

= {s1, 52,53}
LN {s2}
= {52, s3}
— {}

N {s2}
— {}

— {}

LN {s2}
— {s2,s3}
— {}

o {

— {}

This now takes care of all transitions out of the DFA states we have created. It
remains only to identify the final accepting states in the DFA. This will be any
state containing an NFA final state. i.e s2.

We can therefore draw the DFA derived from our original NFA as follows

)

m c

{s1,s2,83}
b

c
> {s2,s3}

:

Y

a,b,c

2.5.2 Formal Proof of NFA / DFA Equivalence

The last section illustrated how to determinise an NFA. However, we have not

established that this procedure

actually produces a DFA accepting the same

2.5. ELIMINATING NON-DETERMINISM 45

language as the NFA. The proof that follows is not something you will be
expected to regurgitate in an exam, but you should convince yourself that you
are able to follow it.

Conversion Process

We start by giving a more formal description of the procedure described above
for determinising an NFA.

We start with a non-deterministic FSM
N =(S,V,0,s,F)
and we want to create a deterministic machine
D= (SV,§, s F)

1. First build up the states, S’, in the new machine D

We do this recursively, starting with the construction of the new initial
state, s’.

Base Case:

s’ is the set of states in N that can be reached from s without
consuming any input.

s'={s;| s € (s,€)}
Add s’ to S, so that
ses

Recursion:

Suppose S}, is a state in 5.
This means that S, will consist of a set of states from N:

Sk = {sk1, Sk2s - Skn}

For each word in the vocabulary, a, collect the set of states Sj,,
where

Sia ={s1 € S| s; € 6" (s, a) for some sy; € Sy}

That is, the set of states that can be reached in N starting from
some state in sg; € S and consuming just one word of input.
(Note that there may be some empty transitions taken in going
from a state s; to a state ;).

Ensure S), € S’ by adding it to S’ if it is not already there.
Repeat for the new state S; added, and carry on until no more
new states can be added.

46 CHAPTER 2. FINITE STATE AUTOMATA

2. Now we build up the transitions.
Let S be a state in S’, where Sy = {Sk1, Sk2, - - -, Skn }
Let Sj, be the state previously constructed by gathering together all the

states that are a-reachable in N from some state si; € Sk

Sl ={s1 €S| s1 € 6" sy, a for some sp; € S}

Then add a transition:
(5,(Sk, a) = Sla

3. Now pick out the final states
S;, € F' iff there is some s; € S, and s; € F

Proving Equivalence

Having constructed D from N, we now need to show that it accepts the same
language, L(D) = L(M)

We first of all need to show

Theorem 1

(a) If processing a string u in N can lead to any one of the states
Sul, Su2s -+ Sun
(b) Then processing u in D will lead to the single state {Sy1, Su2, - - -, Sun }

(¢) And vice versa
Having done this, we can then reason as follows.

1. Show that any string accepted by NN is accepted by D
Suppose that a string v is accepted by N. Processing it will lead to any

one of the states sy1, ..., Syn, at least one of which will be a final state in
N.
Processing v in D will lead to the state S, = {sy1,...,Sun}. Since this

contains at least one final state from N, S, is a final state in D.

Thus v will also be accepted by D.

2. Show that any string accepted by D is accepted by N.

Processing v in D will lead to the state S, = {Sy1,. .., Syn}. Since this is
a final state, it will contain at least one final state from N.

Processing v in N can lead to any one of s,1,...,Sy,. Since at least one
of these is a final state in N, v is accepted by N.

To prove theorem 1, we use an inductive proof.

2.5. ELIMINATING NON-DETERMINISM 47

Base: Suppose u is the empty string, e.

Then the states that can be reached by processing u in N is

{si|si€0”s, e}

By the construction of D, the initial state is also

s'={si|s; €s,¢}

Since D is deterministic (contains no e-transitions), s’ is the only state
that can be reached in D by processing u = e.

Induction: Let u = va, where v is a string of length n.

By the inductive hypothesis, if processing v in N can lead to any one of
Sul,- -, Sun, then processing v in D leads to the state S, = {sy1,. .., Sun}-

Processing va in N leads to the set of states that are a-reachable from
any of the s,;.

Let Sya = {s | s € §*(syi,a) for some s,;}

By the construction of D, S,, is precisely the state that is reached by

processing an a from S,.

Hence the hypothesis holds for u = va if it holds for v.

Proof of converse is similar

2.5.3 Comments on NFA / DFA Equivalence

For the exams, you will need to now how to determinise an NFA using the
procedure in section 2.5.1, but will not need to remember the details of the
proof of its correctness.

As mentioned, the equivalence is an initially surprising result: non-deterministic
FSAs are no more powerful than deterministic FSAs, despite the much simpler
acceptance algorithm for the deterministic case. However, all we have really
done is shifted the complexity about. This is because in general determinis-
ing an NFA will produce a more complex DFA, with more states, and more
transitions.

In the worst case, starting with a set of states, S, and a vocabulary V', we can
create

1. card(P(S)) states, and
2. card(P(S))card(V') transitions

If S and V are finite, then we can however be sure that we will only create a
finite number of new states and transitions. Hence, algorithm for converting
NFSMs to DFSMs is guaranteed to terminate.

48 CHAPTER 2. FINITE STATE AUTOMATA

2.6 Finite State Transducers

So far we have considered FSAs that accept (or generate) languages. Here we
consider finite state transducers, which can convert strings of one language to
strings of another. Finite state transducers are finite state machines where
the by-product of accepting a string in one language is to produce a string in
another language.

Here is a finite state transducer that will accept strings consisting of any number
of as, and produce an output string that replaces every second a with a ¢, and
every first a with a b:

Mealy Transducer

/

a/c

The transitions are labelled a/b and a/c. This means that to take a transition
one has to consume an a from the input, and produce a b (or ¢) as output. Note
that although a start state is indicated, no final accepting state need be shown.

The transducer above is known as a Mealy machine: output is produced by
transitions. An alternative style of transducer is a Moore machine: ooutput is
produced by states:

2.6. FINITE STATE TRANSDUCERS 49

Moore Transducer

/

In a Moore machine, an output symbol is produced whenever you enter a state
(rather than whenever you take a transition). The Moore machine above will
always produce an extra initial ¢ (on entering the start state), but otherwise
will exchange every first a for a b, and every second a for a c.

2.6.1 Moore = Mealy

Moore and Mealy transducers are inter-convertible, subject to one slight differ-
ence between them: The output on the initial state of a Moore machine means
that the length of the output of a Moore machine is always 1 plus the length
of the input. But for a Mealy machine, the length of the output is equal to the
length of the input. To convert between the two types of transducer, we need
to assume that the initial word of output in a Moore machine is a dummy that
can be ignored.

Moore to Mealy

To convert a Moore to a Mealy machine, move the output produced by a state
to the output on all the arcs coming into the state.
a/o

() ©

b b/o

a

Mealy to Moore

To convert a Mealy to a Moore machine, make a new copy of each state for
each diffent output symbol on its incoming transitions.

50 CHAPTER 2. FINITE STATE AUTOMATA

a/l

b/1

2.7 Summary

In this chapter, we have introduced several types of finite state automata:

1. Deterministic FSAs
2. Non-deterministic FSAs
3. FSAs with e-transitions

4. FSAs with error states

These all consist of a finite number of states, with a finite number of labelled
transitions between them, a designated start state, and a designated set of final
accepting states. We have shown how these various machine define languages:
the set of strings that will take you from the start state to a final accepting
state.

One of the main results is that all the machines above are equivalent: language
defined by one type of machine can be defined by a machine of any other
type. In particular, non-deterministic FSAs are no more expressive than their
deterministic counterparts. This equivalence between deterministic and non-
deterministic machines will not hold when we come to look at more complex
machines, such as push-down stack automata.

2.7. SUMMARY o1

The chapter also introduced the idea of finite state transducers, that convert
strings in one language to strings in another. Two broadly equivalent classes of
finite state transducer were introduced: Moore machines and Mealy machines.

In the next two chapters, we turn to a deeper discussion of the kinds of languages
accepted by finite state automata. In chapter 3 we look at alternate ways of
defining the same languages, either in terms of regular expressions or regular
grammars. And in chapter 4 we look at what kinds of language can and cannot
be defined by these means.

Chapter 3

Regular Expressions and
Grammars

In the last chapter we introduced various superficially different types of finite
state automata, and how these define languages in terms of the set of strings
that can take you from a start state to a finish state. We also showed that
all the types of finite state automata were equivalent in that one could convert
from one type to any other type, while still defining the same language.

In this chapter, we turn to two alternative ways of characterising the languages
defined by finite state machines. These are (i) regular expressions, and (ii)
regular grammars.

3.1 Regular Sets and Expressions

3.1.1 Regular Sets

Recall that a language is just a set of strings. This means that we can combine
languages to form new ones using standard set-theoretic operations: union,
intersection, complement, subset, etc.

Regular sets are sets of strings that can be built up using a limited range of
set-theoretic operations, starting from a basic stock of languages.

The basic stock of languages comprise

1. The empty set of strings, {}

2. All singleton sets of one word strings
{a},{b},..., for all words a,b,... in a given vocabulary V'
3. The language consisting of just the empty string, {¢}

(Note: {} and {e} are distinct.
{€} is the language containing just the empty string
{} is a language containing nothing, not even the empty string)

52

3.1. REGULAR SETS AND EXPRESSIONS 93

From these, we can construct new languages using just the following operations

1. Union of languages, L1 U Loy
2. Concatentation of languages, Li.La

3. Kleene star, L*

The concatenation of two languages, Li.Lo, is the set of strings that you can
obtain by taking one string from L;, and joining a string from Lo onto the end
of it.

Concatenation of languages, Ly.Lo

L1.Ly = {8182 ‘ $1 € L1 and s9 € LQ}

Examples:

{a}{b} = {ab}

{aa,bb} {cc,dd} = {aacc, aadd, bbec, bbdd}

The Kleene star of language is what you obtain by concatenating a language
with itself zero, one, two, three etc times, and taking the union of the results

Kleene star of a language, L*

L*={e¢uLuULLU(LL).LU(LL).L).LU...

Example
{a}* = {€,a,aa,aaa,aaaaq,...}

More formally, we can give a recursive definition of a regular set over a vocab-
ulary V as follows

Regular sets over a vocabulary V

1. Basis: {}, {¢} and {w} (for every w € V') are regular sets over V

2. Recursion: Let X and Y be regular sets over V
Then the following are also regular sets over V:
X UY — union/disjunction/or
XY — concatenation/conjunction/and
X* — iteration/Kleene star

54 CHAPTER 3. REGULAR EXPRESSIONS AND GRAMMARS

Here are some examples of regular sets over the vocabulary {a, b}:

Some regular sets over {a, b}

Regular Set Equivalent to

{a} {a}

{a}{a} {aa}

({a}{a})U{b} | {aa,b}

{a}.({a} U{b}) | {aa,ab}

({a} U {b}){a}* | {a,b,aa,ba,aaa,baa,...}

Note that each regular set defines a language over the vocabulary. Thus the
regular set {a}.{a} defines the language {aa} Note also that infinite languages
can be defined by means of the Kleene star operation.

In due course we will establish that for every regular set over a vocabulary V,
there is a corresponding finite state automaton defining the same language, and
vice versa.

3.1.2 Regular Expressions

Fach regular set defines a language. However, it rapidly gets to be quite tiring
writing down all the curly brackets. Regular expressions are an alternative
notation for describing regular sets, but without the curly brackets.

To begin with, we write the regular set {a} is written a, {} as 0, and {e}
as €. We represent the set operation of union as alternation, | between two
regular expressions. Concatenation is represented by just concatenating two
regular expressions together. Kleene star is written the same way, but applies
to regular expressions rather than sets.

We can thus recast the recursive definition of a regular set to give a definition
of regular expressions over some vocabulary V:

Regular expressions over a vocabulary V

1. Basis: 0,¢ and w (for every w € V') are regular expressions over V'

2. Recursion: Let X and Y be regular expressions over V'
Then the following are also regular expressions over V:

X |Y — union/disjunction/or
XY — concatenation/conjunction/and
X* — iteration/Kleene star

Taking the previous examples of regular sets over {a, b} the corresponding reg-
ular expressions are shown below:

3.1. REGULAR SETS AND EXPRESSIONS 95

Regular Expression | Regular Set

a {a}

ab {a}{b} = {ab}

alb {a} U{b} = {a,b}

a* {a}* ={€,a,aa,...}

(alb)* ({{a} U {b}})* ={e€ a,b,aa,ab,ba,bb, ...}
(ab)* ({a}.{b})* = {¢, ab, abab, ababab, ...}

One further bit of commonly used notation in regular expressions is the +
operator, indicating one or more concatentations of a regular expression with
itself (cf *, which is zero, one or more concatentations). This operation can be
defined as follows

ut = uu®

Regular Expression Identities

Just as every regular set defines a language, so does every regular expressions.
However, two different regular expressions can sometimes represent the same
language.

There are a number of standard identities between regular expressions (showing
when to expressions represent the same language), some of which are shown
below:

1. Ou=u0=0 8 ul|v =v|u

2. eu=ue=u 9. u(v|w) =uv|uw

3. 0*=0 10. (u|v)w =uw|vw

4. e =¢ 11. (uv)*u =u(vu)*

5. u* = (u*)* 12. (u]v)* = (u*|v)*

6. u|0=u =u*(u|v)" = (u]| vu")*
7. ulu=nu = (u*v*)* = u*(vu*)*

These identities, plus a certain amount of common sense, can be used to simplify
regular expressions. For instance

Simplify the regular expression a(aa)*(e |a)b | b

Note that a(aa)* corresponds to any odd number of a’s
Then a(aa)*(e | a) corresponds to any odd number of a’s
followed by another a or nothing. That is, any number of a’s
greater than one

That is a(aa)*(e | a) = a™
Hence a(aa)*(e |a)b | b = a*b | b
But atb | b = a*b

Simplifications like this are a common exam question.

56 CHAPTER 3. REGULAR EXPRESSIONS AND GRAMMARS

3.2 Regular Expressions in Unix

Regular expressions are widely used in Unix, in particular for pattern mapping
operations. For example, the grep facility can be used to search for strings
matching a specified regular expression. However, the syntax used for regular
expressions in Unix differs in some small respects from the mathematical nota-
tion used above. Unix regular expressions also allow some constructs that go
slightly beyond what is strictly allowed by regular expressions.

3.2.1 regex

A full description of Unix regular expressions may be obtained by looking up
the relevant man page:

unix-prompt¥% man -s 5 regex

Here we just review some of the salient points.

Single Character Matches

e Most characters match themelves
e . matches any single character

e Exceptions: special characters * [[\ = $
— need to be preceded by a backslash

e Bracket expressions — enclosed between [1:

— Matching list
[abc] — matches a, b or ¢

Non-matching list
["abc] — matches any chcracter but a, b or ¢

— Collating sequence (only works in bracket exprs)
[abc[.ch.]] — matches a, b, c or ch
ch is collated into a single character

— Ranges
[0-9] — matches 0, 1,2, ..., 9

Multiple Character Matches

e Concatenation of regular expressions
e Subexpressions enclosed by \(...\)

e Backreference: \n backreference to nth subexpression

e.g. \(a.c\)d\1 — two occurrences of a something ¢ with an intervening
d

3.2. REGULAR EXPRESSIONS IN UNIX o7

e Repetitions, may follow single characters, subexpressions or backrefer-
ences

— * zero or more repetitions
— \{m\} exactly m repetitions
— \{m, \} at least m repetitions

— \{m,n\} between m and n repetitions

e Example: \ (abc\)\{2,3\} — two or three repetitions of abc

Anchors

e ~: anchors string to start of line
e $: anchors string to end of line

e Example: "\ (.*\)\1$ — matches any line consisting of identical first and
second halves

The facility to match on backreferences takes Unix regular expressions beyond
what can be done according to the strict mathematical definition of regular
expressions. However, the significance of this comment will only become clear
in the next chapter.

3.2.2 lex

Unix also provides the lex facility. This is a facility that generates programs for
the lexical processing of input streams. Lex allows you to pair regular expres-
sions with programs written in C. One reading an input expression, whenever
part of it matches against one of the regular expressions, the corresponding
program is called.

The general format of a lex source file is

Definitions
Toths

Rules

Yot

User Subroutines

Rules consist of a regular expression on the left hand side, and program frag-
ments on the right hand side e.g.

%%

color printf(“colour”);

This will print ‘colour’ whenever input contains ‘color’ (all other input is copied
directly to ouput). The program fragments are written in C, but lex makes a
few special variables and constructs available

58 CHAPTER 3. REGULAR EXPRESSIONS AND GRAMMARS

The string variable yytext will contain the input that has been matched
by the regular expression

Variable yyleng gives length of matched input

Default action: copy input to output

e To ignore input, just use statement delimiter, ;

To print matched input, call ECHO

The user defined subroutines following following the rules provide (a) any extra
subroiutines required, and (b) a main procedure to tie everything together.

Here for example is a lex version of a rudimentary scanner for pascal-like syntax,
which prints out a commentary on what is being scanned:

3

#include <math.h>

#include <stdio.h>

h}

/* definitions for digits and identifiers */
DIGIT [0-9]

1D [a-z] [a-z0-9] *

hto

/* example of definition expansion */

{DIGIT}+ {
printf("An integer: %s (%d)\n", yytext,
atoi(yytext));
}
{DIGIT}+"."{DIGIT}* {
printf ("A float: %s (%g)\n", yytext,
atof (yytext));
}
if |then|begin|end|procedure|function {
printf ("A keyword: %s\n", yytext);
}
{ID} printf("An identifier: %s\n", yytext);
B N L L VA printf ("An operator: %s\n", yytext);
"{"["F\nl*"}" /* eat up one-line comments */
[\t\nl+ /* eat up white space */

. printf ("Unrecognized char: %s\n", yytext);
oo

int main(int argc, char *argvl[])
{
++argv, --argc; /* skip over program name */
if (argc > 0)

3.3. KLEENE’S THEOREM: REGEXPS < FSAS 99

yyin = fopen(argv[0], "r");
else

yyin = stdin;
yylex();
}

Note that this consists of a number of regular expressions paired with program
fragments. At the end is the definition of the main procedure, which gets hold
of its input either from some named file or standard input, and then call the
program yylex.

The program yylex is generated by lex. It is basically a collection of finite
state machines — one for each regular expression in the lex file. The machines
are run in parallel on the input stream. Whenever a machine reaches a final
state, the code associated with it is executed.

A major use for lex is as a lexical preprocessor for constructing compilers.

3.3 Kleene’s Theorem: RegExps < FSAs

We now turn to the equivalence between regular expressions and finite state
automata. Kleene’s Theorem states that

(a) For every regular expression, there is a finite state machine accepting
exactly the same language, and

(b) For every finite state machine, there is a regular expression specifying the
language accepted by the machine

First we will show the procedure foring covert FSAs to regular expressions,
and regular expressions to FSAs. This is the basis of Kleene’s theorem. We
will then formally show that these procedures establish the equivalence between
FSAs and regular expressions.

3.3.1 Mapping FSAs to Regular Expressions

The alogorithm for converting a finite state automaton to a regular expression
is as follows:

1. Add a new start state to the FSM that has no transitions coming into it

2. Similarly, add a new, unique finish state that has no transitions coming
out of it

3. (1) and (2) are acheived by having a single e-transition from the new start
state to the old one, and e-transitions from all the old finish states to the
new one

60 CHAPTER 3. REGULAR EXPRESSIONS AND GRAMMARS

4. First, remove multiple arcs connecting the same two states, leaving just
one labelled with a regular expression.

The rules for removing arcs are shown pictorially:
rl
- Q) rl|r2
2
rl
m %
_—

r2

5. Then, pick on a state s, (other than the start and finish state) to remove.
To remove s,., consider all pairs of states s; and s;, and all two transition
paths connecting them that pass through s,. For every such path, add a
new arc from s; directly to s;, labelled with a regular expression as shown

below:
rl r2 O rlr2 ()
D

12
— >
When new arcs have been added for all paths passing through s,, the

state s, can be removed along with all arcs into and out of it.

6. Removing a state may have added some new arcs in such a way that there
are now multiple arcs directly connecting two states. Therefore, continue
performing steps (4) and (5) until there is just one start state, one final
state and one arc, labelled with a regular expression.

The regular expression on the final remaining arc defines the same lan-
guage as the original FSA

Example

As an example, we will derive a regular expression from the following FSA

3.3. KLEENE’S THEOREM: REGEXPS < FSAS 61

o
pyo'd J\

First, we need to add a new start and finish state:
¢

a

) b O
B NAEgN
@\ @)
o J @/

/@\
Y

There are two transitions connecting state 1 to state 2, and these can be col-
lapsed into one, as follows:

62 CHAPTER 3. REGULAR EXPRESSIONS AND GRAMMARS

C

m
'\ﬂ/\
J\/

We can now remove state 2. There is just one path passing through it, going

from state 1 to state 3. Hence we get:
C

i ﬂ/m\
I
o

There are now two arcs going from state 1 to state 3, so we collapse these into
one:

3.3. KLEENE’S THEOREM: REGEXPS < FSAS 63

((alc)a)[b
MO O

We can now eliminate state 5, which has one path through it from state 3 to
the final state:

: @\6\
((afcla)lb \'(C;;/be O

This does not introduce any multiple arcs between states, so we proceed directly
to removing state 4. Here there is just one path from state 3 to the final state.
But note that there a a transition looping on state 4. Hence we get:

64 CHAPTER 3. REGULAR EXPRESSIONS AND GRAMMARS

cC

alc)a)|b
((alc)a) NO .

This introduces a second arc going from state 3 to the final state, so we collapse
it into one

b

((alc)a)[b

Y

MO
cc¥e | be

We can now remove state 3. There is one path going from state 1 back to itself,
and one path going from state 1 to the final state. There is also a looping
transition on state 3. Thus we add two new arcs:

3.3. KLEENE’S THEOREM: REGEXPS < FSAS 65

(((alc)a)[b)b*e @

(((alc)a)[b) b* (cc*e | be)

We can now eliminate state 1, to give a single arc connecting the start and the
finish state:

¢ [(((ale)a)b)b*el* [(((alc)a) [b)b*(cce | be)]

— O

The resulting regular expression is that derived from the machine. Eliminating
the € concatenations, we get

[(((ale)a)[b)b¥e]* [(((alc)a)|b)b*(cc* | b)]

Other orders of removing states would have been possible, and would have led
to different but equivalent regular expressions.

3.3.2 Mapping Regular Expressions to FSAs

We now present the procedure for going back in the other direction: construct-
ing a finite state automaton from a regular expression. The idea is to start off
with mini-FSAs for each atomic expression in the regular expression. We then
define operations for joining together FSAs, one for each of the concatenation,
alternation and star operations joining together regular expressions.

These rules can be represented pictorially as follows:

1. Atomic FSA accepting: a

CHAPTER 3. REGULAR EXPRESSIONS AND GRAMMARS

a @

An FSA to accept a consists of a single start state and a single final state
with an a-transition between them.

. Atomic FSA accepting: €

: @

. Atomic FSA accepting: 0

O

An FSA that accepts nothing at all is just a single start state. (Nb. this
rule rarely used).

3.3. KLEENE’S THEOREM: REGEXPS < FSAS 67

4. Compound FSA accepting: rirs

€

Y

—> rl

r2 —

Assuming that we have already constructed an FSA to accept r1 and one
to accept ra: join the end state of the machine for r; to the start state
of the machine for ro with an empty transition. The start state of ry
becomes the start state of the compound machine and the end state of ro
becomes its end state.

5. Compound FSA accepting: rq | ra

/E/ rl ¢

€ €

\rZ

Assuming machines for r; and ra: create a new start state with empty
transitions to start states of ry and ra, and e new final state with empty
transitions from the final states of r1 and rs.

6. Compound FSA accepting: r*

NPRL

Given a machine for r: Create a new state that is the start and finish
state of the compound machine, and add an empty transition from it to
the start of r, and and empty transition from the final state of r to it.

Example
To see how these rules work, we will construct an FSA from the regular expres-
sion

(ab | c*)*a

First we construct FSAs for the atomic components, a, b, c and a:

68 CHAPTER 3. REGULAR EXPRESSIONS AND GRAMMARS
a
Jose
Josc
_
C
Jose
a
0@

To form the FSA corresponding to the regular expression ab, we join the end
state of a’s machine to the start state of b’s machine, using an empty transition:

a € b
O 0O0—0——0©
We also construct a machine for ¢* from that for ¢
C
_
c €

We then join these two machines together, according to the rule for alternation:

3.3. KLEENE’S THEOREM: REGEXPS < FSAS 69

pZ

€ b

O——0O O—0O

To keep things simple, we can remove some of the excess empty transitions, to
get the following machine also equivalent to ab | c*:

Y

We now have to apply the Kleene star to this machine, to get:

70 CHAPTER 3. REGULAR EXPRESSIONS AND GRAMMARS

10 .

a b

We finish by concatenating this to the machine for a:

10 .

a b

To recapitulate: to build an FSA from a regular expression, we start by building
the atomic FSAs corresponding the atomic expressions in the regular expression.
We then build the machine up from it atomic machines, in the same order that
the regular expression is built up from its atomic expressions, using the rules
shown previously.

3.3. KLEENE’S THEOREM: REGEXPS < FSAS 71

3.3.3 Formal Proofs of Kleene’s Theorem

The last two sections showed how to convert between FSAs and regular expres-
sions, but without proving that the conversion preserves the language being
defined. We now turn to this.

a) From FSAs to RegExps

Suppose we start with machine M:
M = <57K67507F>

where S = {so,s1,...,5,}. That is, the states have an arbitrary (numerical)
ordering imposed on them.
Define a set of strings, ij, taking you from state s; to state sj, and passing
only through intermediate states s; where | < k

w E ij iff

s = 0%(si,w),

and for all proper prefixes, u, of w,
0 (si,u) € {s1 |l <k}
For0<k<n 1<ij<n

Claim: ij is denoted by a regular expression for all ¢, j

Proof by induction on k

Base case k£ =0 (a) No arcs connecting s; directly to s;:
L?j is empty, hence re=0

(b) Arcs connecting s; directly to s;:
L?j is a set of atomic words, {a1,a2,...,a,},
hencere = aj |az|...| ar

Induction Assume ij is denoted by an re for all 4, j, and show the same is
true for k + 1
Note that
Lf,j'l = L?,j U Lf,(k—&-l)(L](Ck+1),(k+1))*Ll(€k+l)7j
(Strings from i to j not passing through k£ + 1, plus strings from i to k+ 1

concatenated with strings from k + 1 to itself, finished off by strings from
k+1toj.)

By induction hypothesis, all sub-terms are regular expressions, and hence
ijl is a regular expression.

Given the proof of this claim, we now reason as follows. Suppose the final
accepting states in the machine M are

F={sn,- - Sn,}

72 CHAPTER 3. REGULAR EXPRESSIONS AND GRAMMARS

Then the language accepted by M is

L(M) = U...ULg,.

n
;11

This corresponds to a disjunction of regular expressions, which is itself a reg-
ular expression. So for any finite state automaton, a corresponding regular
expression exists.

b) From RegEexps to FSAs

The proof is by induction on the structure of the regular expression. The base
case involves constructing FSAs for atomic regular expressions (e,€,a). The
induction shows how to combine FSAs for sub-expressions in alternations (|),
concatenations, and Kleene star (*).

Base Case: Construct FSAs for null language and atomic sentences as shown
in section 3.3.2.

Recursion

1. Alternation (]):
Given FSAs M; and Ms, construct NFA N with L(N) = L(M;) U L(Ma):

Ml = <Sl>vy 6173017F1> M2 = <S25V)527802)F2> N = <Su V>67 505F>

where

S = Sl X 52

6({s1,82),a) = (01(s1,a),02(s2,a))

S0 = <5017502>

F = {<81,82> |81€F1 or SQEFQ}
Note that:

w € L(N) iff 5((301,502>,w) eF
iff (51(801,10) e Fy or 52(802,71}) e Fy
iff we L(Ml) U L(Mg)

2. Concatenation:
Given DFAs M; and My, construct NFA N with L(N) = L(M;)L(M):

N =(S,V,0,s0, F)

= S1US,
S0 = 501
= Fy (if S02 & Fg), otherwise F} U Fh
(s,a,s")y€d iff
(i) s € S and ¢’ = d;(s,a), or
(ii) s € So and s’ = d2(s,a), or
(iii) s € F1 and s’ = d2(s02,)
We need to prove that L(M;)L(Msz) C L(N):

Let w = wyws, where wy € L(Mj),wq € L(Ma)

3.4. REGULAR GRAMMARS 73

Case 1 wy =€ (i.e. € € L(M?))
Since € € L(Ms), so2 € Fy, hence F = Fy U Fy
Also 85 (so1,w1) € F1 C F
Hence w € L(N)

Case 2 wy = aw;
Let 07 (so1,w1) = s15 € Fy
There is a type (iii) transition, da(sp2,a) = S24
Followed by a type (ii) transition, 63 (saq, ws)
Combining these two, 85 (so2, aws) € Fy C F
Hence w € L(N)

Proof that L(N) C L(M;)L(Ms) is similar

3. Kleene star:
Given FSA M, construct a NFA, N with L(N) = L(M)*:

M =(S,V,8,s0,F) N=(S",V,d, s, F')

where
50 = an entirely new state
S = Su{sy}
F' = FuU{sy}

8 (s,a,s) iff
(i) s € S and s’ = 4(s,a), or
(ii) s € F and s’ = §(so,a), or
(iii) s = s(and " = d(sp, a)
Suppose w € L(N), so that 6 (sh,w) =q € F' = F U {s)}
Suppose ¢ = s(: it must be that w = ¢, hence w € L(M)*
Suppose g € F: The will be a sequence of transitions
type (iii) (type(i) type(ii))”
such that w = ajwiagws . .. ay,wy, where a; give the initial type(iii) tran-
sition, and a; the type(ii) transitions.
The states resulting after the type(ii), a;, transitions are by definition
d(s0,a;).
Hence 6(so, ajw;) € F, ie. ajw; € L(M)
Hence (ajwl)(agws) ... (aywy) € L(M)*

3.4 Regular Grammars

As Kleene’s theorem shows, regular expressions are one way of defining the kind
of languages accepted by finite state automata. Another way of defining these
languages is by means of a regular grammar.

74 CHAPTER 3. REGULAR EXPRESSIONS AND GRAMMARS

A grammar is a tuple

G = (N,V,P,S)

where

N is a set of non-terminal symbols

V is a set of terminal symbols (the vocabulary)
P is a set of productions or rules

S € N is a priviliged non-terminal start symbol

Typically, the terminal and non-terminal symbols are disjoint: N NV = {}
Rules take the form
LHS — LHS

where
LHS is a sequence of terminals and/or non-terminals

RHS is a (possibly empty) sequence of terminals and/or non-terminals

This definition of a grammar covers all the types of grammar that we will
encounter on this course. Different types of grammar are obtained by imposing
different restrictions on what count as allowable grammar rules. For regular
grammars, the restriction on the form of the rules is:

Regular Grammar

This is a grammar where
(a) the LHS must be a single non-terminal
(b) the RHS must either be
(i) a single terminal, or
(ii) a single non-terminal followed by single terminal.

This definition describes a left linear reqular grammar. An alternative and
equally good definition is

(Right Linear) Regular Grammar

This is a grammar where
(a) the LHS must be a single non-terminal
(b) the RHS must either be
(i) a single terminal, or
(ii) a single terminal followed by single non-terminal.

Right linear grammars define the same range of languages as left-linear regular
grammars. However, it is important to note that you cannot mix left- and
right-linear rules in the same grammar, and still get a regular grammar.

An example of a right linear grammar is

3.5. KLEENE’S THEOREM: REGGRAMS «— FSAS 75

S1 — a S2 S1 — the S2

S2 — cat S3 S2 — dog S3

S3 — saw S4 S3 — likes S4
S4 — a Sh S4 — the S5

S5 — cat S5 — dog

An equivalent left linear grammar is

S1 — S2a S1 — S2 the

S2 — S3 cat S2 — S3 dog
S3 — S4 saw S3 — S4 likes
S4 — S5 a S4 — S5 the

S5 — cat S5 — dog

3.5 Kleene’s Theorem: RegGrams < FSAs

We can extend Kleene’s theorem, which makes the connection between finite
state automata and regular expressions to include regular grammars.

Any regular grammar can be converted to a finite state machine,
and vice versa

Example:
a cat saw the cat
the dog likes a dog
Grammar:
S1 — aS2 S1 — the S2

S2 — cat S3 S2 — dog S3
S3 — saw S4 S3 — likes S4
S4 — a Sh S4 — the S5

S5 — cat S5 — dog

In outline form, the conversion is:
e States becomes non-terminals

e Label on transition plus result state becomes RHS of rule rewriting initial
state

e Except for transitions to final states (e.g. S6), where the RHS is just the
label on the transition.

76 CHAPTER 3. REGULAR EXPRESSIONS AND GRAMMARS

Consequently, regular grammars generate/accept the same class of languages
as regular expressions

3.6 Summary

Languages defined by finite state automata are known as reqular languages. In
this chapter, we introduced two further ways of defining regular languages:

e Regular expressions

e Regular grammars

Kleene’s theorem shows how any FSA can be converted to a regular expression,
and how any regular expression can be converted to an FSA. We also showed
how FSAs (without e-transitions) can be converted to regular grammars, and
vice versa.

Not all formal languages are regular. In the next chapter, we establish some
limits on what languages are and are not regular. That is, we establish limits on
what languages can be defined by any (or all) of: finite state automata, regular
expressions, regular grammars

Chapter 4

Closure Properties of Regular
Languages

Not all formal languages are regular. That is, not all formal languages can be
defined by either a finite state automaton, a regular expression, or a regular
grammar. This chapter first looks at a way of determining whether a given
language is regular or not, known as the pumping lemma. It then looks at
various closure properties of regular languages: how one regular lanaguage may
be combined with another to give something that is still regular.

In the next part of these notes, we will look at context free languages, which
are defined by automata somewhat more elaborate than finite state machines,
and grammars somewhat less restricted than regular grammars.

4.1 Pumping Lemma for Regular Languages

4.1.1 FSAs Have no Memory

Before presenting the pumping lemma for regular languages, we will try to get
a grip on the intuition behind it. This is as follows. Finite state automata have
no memory. What transition you take is determined purely by the current state
and the current word of input. No account is taken of how you arrived at that
state to begin with.

Consider an FSA accepting the language a™b™ (that is, n occurrences of the
letter a, followed by m occurences of the letter b, for any n and m)

77

78 CHAPTER 4. CLOSURE PROPERTIES OF REGULAR LANGUAGES

a b

)

When you enter state s2, there is no way of recording how many a-transitions
looping on state s1 were taken beforehand. Therefore, there is no way of limiting
the number b-transitions looping on state s2 according to the number of a-
transitions taken.

Y

This means that the language a"b™ (any number of as followed by the same
number of bs) cannot be defined by a finite state machine. Although the machine
above accepts strings of the form a"b", it does not accept only strings of this
form. To do so, it would need to be able to keep track of the number of
a-transitions taken, and then take exactly the same number of b transitions.
That is, an automaton defining a language like ab™ requires a certain amount
of memory.

The pumping lemma is a way of determining which languages require a degree
of memory in their automata.

4.1.2 Statement of Pumping Lemma

The pumping lemma for regular languages may be stated as follows.

Pumping Lemma for Regular Languages:

length k£ or more can be expressed as
w = U1vuy
where u1,v and uo satisfy

e length(v) >1
e length(ujv) <k

e for all n > 0, uiv"uy € L

For every regular language L, there is a number k£ > 1 such that all strings w € L of

What does this all mean?

First note that all finite state machines have a finite number of states. Suppose
that a given machine M has k states. Consider a string accepted by M of length

4.1. PUMPING LEMMA FOR REGULAR LANGUAGES 79

> k. To accept this string we have to make transitions from the start state to a
final state, and each transition accounts for one word in the string. Since there
are more words in the string than there are states in the machine, this means
that we must have passed through at least one state more than once. Or in
other words, in accepting the string there is at least one extended loop that
starts in some state s’ and ends in it.

We can therefore break the string into three parts. The first part, u; takes you
from the start state to state s’. The second part, v, takes you from state s’ back
to s’. And the final part of the string, uso, takes you from s’ to a final state.

Now, we could have got from the start to the finish state of M without looping
round on state s’: i.e. we could have missed out the v part of the string, so that
uiug is accepted by M. Likewise, we could also go round the loop any number

of times, so that ujv?ug, u1v3us, uivtus, ete., are all accepted by M.

In short, finite state machines have no memory. Thus if a machine allows loops,
we cannot place any restrictions on the number of times the loop may be taken.
If a machine with k states can accept strings ujvug of length greater than k,
then there must be some part of the string, v, corresponding to a loop. This
looping part can be omitted, or repeated as often as one likes. Hence strings
u1v™ug (n > 0) will also be accepted by the machine.

4.1.3 Negative Form of Pumping Lemma

The pumping lemma for regular languages is normally used in its negative form.
Instead of showing that some language is regular, we use it to show that some
language cannot be regular. To do this we first identify some portion of a
string corresponding to a loop, and then show that there are restrictions on
the number of times that the loop can be repeated. The imposition of these
restrictions requires some form of memory, meaning that the machine cannot
be finite state.

The negative form of the pumping lemma is

(Negative) Pumping Lemma for Regular Languages:

To show that some language L is not regular:

Find one string w € L of length greater than k,
such that no matter how you decompose w into ujvus
(where length(u;v) < k and length(v) > 1)

there is some n > 0 such that wiv"us &€ L

That is, to show that a language is not regular, we have to find just one string
in the language over a certain length (k), where no matter how it is decomposed
into three parts (u;,v and ug), there are restrictions on the number of times
that the v part can be repeated.

80 CHAPTER 4. CLOSURE PROPERTIES OF REGULAR LANGUAGES

The one problem with this is that we cannot tell what value should be chosen
for k. (It is the number of the states in the putative FSA for the language,
but we only have access to the language and not its automaton.) We therefore
have to use strings parametrized in some way on k. The following tow examples
should illustrate this.

4.1.4 Examples of Using Pumping Lemma

We give two examples showing how the negative version of the pumping lemma
is used.

a™b" is not Regular

To show that ab" is not regular, consider some string a*b*. We know that this
string is longer than k, whatever the value of k happens to be.

Now consider all ways of decomposing the string such that

kbk

a = U1vU2

(where length(ujv) < k and length(v) > 1).
In fact, there is just one general decomposition:
kbk T=8 8 akabk

a =a

where s > 1 and r < k. ie.

o u; = a8
e v=a’
o Uy = akfrbk

Now consider n = 0:

Ul ’UOUQ = Uju2

— ar—sak—rbk

— ak—sbk

But a*~*b* is not in {a™b" | n > 1}, so the language is not regular.

{a? | p is prime} is not Regular

This is a rather more complex application of the pumping lemma (more involved
than you would find in an exam question). We can show that the language
consisting of the strings aP, where p is a prime number, is not regular.

For some p > k let
w = a? = uijvuy

where

4.1.

PUMPING LEMMA FOR REGULAR LANGUAGES 81

uy = a’ s
v=a’
ug = aP~"

and s>1landr <k

Now consider the string ujv? %us

WP Sy = a" 5P P — (D)

But (s + 1)(p — s) is not prime (it has at least two factors). So, for n =p — s,
urv"ug & L. Hence the language is not regular.

4.1.5 Proof of Pumping Lemma

The formal proof of the pumping lemma for regular languages is as follows.

Take some regular language, L

1.

2.

10.
11.

12.

Since L is regular, let L = L(M) for some DFA M = (s, V.4, s, F)

Let k& be the number of states in M

. Given a string w = a1as2 ... am,, m > k, put

do = So
a1 =06(qo,a1) ... gm = 0(qo, a1a2 ... ay) = 6*(qo,w) € F

. Since there are only k states, k < m, the k + 1 states qq ... g cannot all

be distinct

. Let j be the least number for which there is some ¢ < j with ¢; = g;

. Clearly, 1 <j <k

Put

® u2:aj+1...ak

. v causes a transition from ¢; to itself, and hence so does v" for any n > 0

. Thus 6*(qo, u1v"™u2) = 6*(gi, v"u2) = qx € F

Hence uiv™ug € L for all n >0
Since i < 7, the length of v is at least 1

And the length of ujv is j, j < k by construction

82 CHAPTER 4. CLOSURE PROPERTIES OF REGULAR LANGUAGES

4.2 Closure Properties of Regular Languages

4.2.1 Closure Properties

The following are some closure properties of regular languages:

1.

Any finite language is regular

. The union of two regular languages is regular

. The concatenation of two regular languages is regular
. The Kleene closure of a regular language is regular

. The intersection of two regular languages is regular

. The complement of a regular language (i.e. all the strings not accepted

by the language) is regular

Facts (1)—(4) follow directly from construction of regular expressions, given that
all regular languages have corresponding regular expressions.

1.

For any finite language, we can explicitly enumerate the strings of the
language. Each string can be represented as a regular expression, and the
entire language as a regular expression consisting of a finite disjunction
of these strings:
up |uz |...|un

. Each language has a corresponding regular expression (r; and rz). The

union of the two languages is represented by the regular expression ry | ra.
Since this is a regexp, it too represents a regular language

. Similarly, we can represent the concatenation of two regular languages

as the concatentation of their regular expressions, rirs, which in turn
represents a regular language.

. Again, we represent the Kleene closure of a language as the Kleene star

of its regular expression, r*

The remaining two properties, closure under intersection and complement, are
proved by the construction of FSA, rather than regular expressions.

5 To show that the complement of a regular language L is regular, consider

the FSA M such that L = L(M) (and where M contains an error state).
Form the complement of M, M’ = (S,V,d, so, F'), by setting

F=S-F

4.2. CLOSURE PROPERTIES OF REGULAR LANGUAGES 83

i.e. swap final and non-final states around, but keep everthing else the
same.

Everything that M rejects, i.e. that leads to a non-final state in M, will
lead to a final state in M’

Everything that M accepts, i.e. that leads to a final state in M, will lead
to a non-final state in M’

[Question: why must M include an error state?]

6 To show the intersection of two regular languages is regular, note that
LiNLy= E U fg

I.e. Take the complements of L; and Ly (which are regular)
And then take the union of the complements, which is also regular.

And then take the complement of this, which is also regular

4.2.2 Equivalence between FSAs

How can we tell whether two FSAs accept the same language? If two FSAs are
equivalent (accept the same language), then the intersection of the language of
one with the complement of the other will be empty. That is

LinN E = {}, and
LonLy={}
Hence (L; N La) U (Lo N Ly) = {}
So construct a machine that accepts
(L1 N L2) U (L2 N Ly)
This is done as follows:
e Note that Ly N Ly = Ly ULy = L; U Ly

e So we can construct the machine by forming complements and unions of
the two machines, which we already know how to do

Having constructed this machine, we no need to see whether it accepts any
sentences.

FSA Colouring

An FSA accepts a string if there is some path from the start state to the end
state. The following is an effective procedure for determining whether there is
such a path (an effective procedure is one that produces a result in a finite
number of steps)

84 CHAPTER 4. CLOSURE PROPERTIES OF REGULAR LANGUAGES

1. Mark the start state, e.g. by colouring it blue

2. From every marked state, follow each edge out of it to the next state,
mark the next state, and delete the edge

3. Repeat step 2 until no more new states are marked

4. Look to see if one of the final states is marked (If not, then the FSA
accepts no strings)

Note that step (2) cannot be repeated more then k times, where k is the number
of states in the machine.

We can thus tell if two FSAs are equivalent by (a) forming a new FSA that is
the intersection of one with the complement of the other, and (b) applying the
FSA colouring algorithm to see whether this machine accepts any strings.

Part 11

Context Free Languages

85

86

The following four chapters introduce the next level up in the Chomsky hi-
erarchy: context free languages. In chapter 5 we will cover how context free
languages are defined in terms of context free grammars. In chapter 6 we will
look at how context free languages are defined by a particular kind of automaton
known as a pushdown stack automaton (basically a finite state machine with
an additional stack-like memory). Chapter 7 covers the topic of parsing with
context free grammars, which is particularly important for compiling (context
free) programming languages. Chapter 8 establishes the limits of context free
languages via another version of the pumping lemma, and also discusses some
closure properties of context free languages.

Context free languages are more expressive than regular languages. In partic-
ular, sentences in context free languages can be assigned interesting structures
that can be used to convey meaning. In the case of programming languages,
these meanings can be seen as chunks of machine code associated with program
statements. The disadvantage is that determining whether a string belongs to
a context free language, and what structure should be assigned to it (parsing)
is intrinsically less efficient than the corresponding task for regular languages.

Chapter 5

Context Free Grammars

5.1 CF Grammars

Recall the general definition of a grammar that we gave earlier:

A grammar is a tuple

G = (N,V,P,S)

where

N is a set of non-terminal symbols

V is a set of terminal symbols (the vocabulary)
P is a set of productions or rules

S € N is a priviliged non-terminal start symbol

Rules take the form

LHS — RHS

where
LHS is a sequence of terminals and/or non-terminals

RHS is a (possibly empty) sequence of terminals and/or non-terminals

A context free grammar is a grammar with the following additional restriction
on the form of the rules

Context Free Grammar:
A context free grammar is a grammar where all rules, LHS — RHS, are such
that

e The LHS is a single non-terminal symbol

e The RHS is a (possibly empty) sequence of terminal and/or non-
terminal symbols

87

88 CHAPTER 5. CONTEXT FREE GRAMMARS

Note that the restrictions on the form of the rules is somewhat laxer than for
regular grammars (and that any regular grammar also satisfies the restrictions
for a context free grammar).

The terminal symbols constitute the vocabulary of the language. Non-terminal
symbols do not occur in sentences of the language defined by the grammar.
Instead, their role is to be expanded out into sequences of terminal symbols by
the rules of the grammar.

5.1.1 Example CF Grammars

Grammar for a"™b"

Recall that in chapter 4, we showed that the language a™b™ was not regular.

However, it is context free, and here is the grammar for the language:

1. S — aSb

2. S —ab
The sentence aaabbb can be derived using these two rules as follows.

S

aSbh rule 1
aaSbb rule 1
aaabbb rule 2

Recall (p. 8) that a derivation proceeds by first writing down the start symbol
of the grammar (in this case, the non-terminal S). Then a rule is selected
whose left hand side (LHS) matches the non-terminal symbol. This symbol
is replaced by the right hand side (RHS) of the rule. Then another rule is
selected to expand out a non-terminal in the new string, shown underlined.
This continues until the string contains no more non-terminals to be expanded.

An English-like Grammar

Here is another example of a context free grammar, where S is the start symbol,
the non-terminals begin with capital letters and the rules are as follows:

5.1. CF GRAMMARS 89

S — NounPhrase VerbPhrase
NounPhrase — Name

NounPhrase — Article Noun
VerbPhrase — IntransVerb
VerbPhrase — TransVerb NounPhrase

Name — john

Name — mary
Article — a

Article — the

Noun — cat

Noun — dog
IntransVerb — slept
IntransVerb — snored
TransVerb — likes
TransVerb — saw

This grammar gives rise to sentences such as the following, which are shown
along with derivation trees indicating how the rules of the grammar can be used
to construct the sentences.

90 CHAPTER 5. CONTEXT FREE GRAMMARS

S
NounPhrase VerbPhrase
Name IntransVerb
john snored
S
NounPhrase VerbPhrase
Article Noun TransVerb NounPhrase
the cat saw Article Noun
a og

We will have more to say about derivations and trees in the next section.

Empty Productions

Context free grammars also allow empty productions. These are rules where the
right hand side is the empty string, €. An alternative grammar for the language
a™b™ involving an empty production is as follows:

5.2. DERIVATIONS AND TREES 91

1. S — aSb

2. 8§ —e€
The sentence aaabbb can be derived using these two rules as follows.

S

aSb rule 1
aaSbb rule 1
aaaSbbb rule 1

aaabbb rule 2

In the last step of the derivation, the non-terminal S is replaced by the empty
string.

5.2 Derivations and Trees

We have informally introduced the ideas of a derivation, and of a tree repre-
senting a derivation. Now we will be a little more precise about this. The
notion of a derivation is the fundamental concept; trees are a convenient way
of representing them.

5.2.1 Derivability

In order to define a derivation, we need first to define derivability. Suppose that
we have some string of terminal and non-terminal symbols, e.g.

ulv

where u and v are sequences of terminal and non-terminal symbols, and L is
some sequence of symbols that matches the left hand side of a grammar rule,
L — R. We can replace the L by the R to derive a new sequence uRv. We
write this derivation as

ulv = uRv
It may well be that the string wRv contains another substring matching the
left hand sides of another rule, so that some further string, w is derivable from
uRv. The string, w, is thus derivable from wLv via the application of zero one
or more rules, and we write this as

ulv = w

Turning to the formal definition of the derivability relations, =, this is given
recursively as follows

92 CHAPTER 5. CONTEXT FREE GRAMMARS

Definition of Derivability, =
Base Case v = v, for any string v € (V U N)*

Recursion If uw = zLy, v = u, and L — R is a grammar rule, then
v = xRy

Note: the notation v = v means that v is derivable from u through the applica-
tion of just one grammar rule. © = v means that v is derivable from u through
the application of zero, one or more grammar rules. The notation u =% » means
that v is derivable from u through the application of one or more grammar
rules.

5.2.2 Sentential Forms

A sentential form is any string of terminal and/or non-terminal symbols that
can be derived from the start symbol of the grammar:

Sentential Form:
If S = u, where S is the start symbol of the grammar, then
u (u € (VUN)¥) is a sentential form of the grammar

A sentence of a grammar is a sentential form consisting only of terminal symbols.

5.2.3 Left- and Rightmost Derivations
Derivations

A derivation is sequence of strings of terminal and/or non-terminal symbols,
where each string is derivable from the preceding one by means of one grammar
rule. The first string in the derivation comprises just the start symbol of the
grammar, and the last string must be a sentence of the grammar. Thus

Derivation
A derivation is a sequence of strings in (V U N)*:

S Uty ., Uy Uy,
where
(a) for every i, u;—1 = u;, and
(b) u, € V*

We have been writing down derivations in the following way

5.2. DERIVATIONS AND TREES 93

S

aSbh rule 1
aaSbb rule 1
aaaSbbb rule 1
aaabbb rule 2

Where each line consists of s string of terminals and/or non-terminals deriv-
able from the last, beginning with the start symbol and ending with a string
of terminal. We have also been indicating the rule used at each step of the
derivation, and to which (underlined) part of the string the rule applies.

[Exercise: show that every string in a derivation is a sentential form of the
grammar]

Leftmost Derivations

For a context free grammar, each step in the derivation will expand out just one
non-terminal symbol in the string. (This is because only single non-terminals
may stand on the left hand sides of grammar rules). Sometimes, a string at
an intermediate point in a derivation will contain more than one non-terminal,
meaning that there is a choice about which one to expand.

For example, consider the grammar

S — AB
A—a
B — CD
C—c
D —d

U W

The first step in any derivation will be
S = AB (rule 1)

At this point, we could either expand the A (the leftmost non-terminal) or the
B (the rightmost non-terminal).

Here is a derivation in which we consistently expand the leftmost non-terminal
symbol:

S = AB rulel

= aB rule 2

Leftmost derivation: = aCD rule 3
= acD rule 4

= acd rule 5

And here is a derivation where we consistently expand the rightmost non-
terminal:

94 CHAPTER 5. CONTEXT FREE GRAMMARS

S = AB rule 1

= ACD rule 3

Rightmost derivation: = ACd rule b
= Acd rule 4

= acd rule 2

There is a sense in which these two derivations are the same: the same rules
have been used to expand out the same non-terminals to lead to the same
final terminal string. The only difference is in the relative order in which the
non-terminals have been expanded.

This observation can be generalized:

For any derivation of a string in a context free grammar, there
exists a leftmost derivation of that string.

We will not prove this result here. What it means is that leftmost derivations
can be seen as the canonical form for doing derivations in context free grammars.

5.2.4 Derivation Trees

Derivation trees are another way of representing derivations, and abstract away
from alternative orders in which rules can be applied. For example, the following
tree represents both the leftmost and rightmost derivations of the string acd
shown previously

C d

. . . . * . .
Given some derivation in a grammar, S = w, we can construct a derivation
tree, DT, for it as follows:

1. Initialize DT with the root node S

2. For i =1 to the length of the derivation, do:

5.2. DERIVATIONS AND TREES 95

If A— z1x9...x, is the rule used in the ith step of the deriva-
tion,

and is applied to the sentential form uAv,

add z1,z9,...,x, as children of A in the tree

Derivation trees are a way of grouping derivations together into equivalence
classes, where the only difference between the derivations are the orders in
which the rules are applied.

Below we show how both the rightmost and leftmost derivations for the string
acd give rise to the same derivation tree:

96

”>\> N
) -

>

g\}>ﬁ

CHAPTER 5. CONTEXT FREE GRAMMARS

LEFT RIGHT i=

>m
>m

>
o
>
o

)
)

vy
>

>w

-
=
>Uj

> :

o

-
=
>U:J

> |
ot

o

>w
>w

”— O
p—
@
o

5.3. AMBIGUITY 97

5.3 Ambiguity

A sentence is ambiguous if there is more than one leftmost derivation of the
sentence in the grammar. Or put another way, it is ambiguous if there is more
than one derivation tree. In English, ambiguous sentences typically convey
more than one meaning, e.g.

Women like chocolate more than men
— Either: Women like chocolate more than men like chocolate
— Or: Women like chocolate more than they like men

However, ambiguity is not defined in terms of conveying more than one meaning.
It is defined solely in terms of a sentence having more than one grammatical
derivation:

A sentence is ambiguous in a grammar G
iff there is more than one derivation tree (or leftmost deriva-
tion) for the sentence in G

As an example of ambiguity, consider the following grammar: Consider the
ambiguous grammar

S — AB
A—a
A—ac B —cd
B —d

There are two distinct derivation trees for S = acd
S S
B A B
c c d

|
d a

A

a

This means that the sentence acd is ambiguous in the grammar just given.
However, the same sentence is unambiguous in our earlier grammar:

S — AB
A—a
B—CD
C—c
D —d

where there is only one derivation. Thus, the ambiguity of a sentence is alway
relative to a particular grammar.

Bearing this in mind, we can classify three levels of ambiguity

98 CHAPTER 5. CONTEXT FREE GRAMMARS

1. Sentence:
A sentence is ambiguous in a grammar G iff there is more than one deriva-
tion of the sentence in g

2. Grammar:
A grammar is ambiguous iff there is some sentence in the language it
defines that is ambiguous

3. Language:
A language is ambiguous iff it is not possible to give an unambiguous
grammar for the language.

In connection with unambiguous languages, we should note that the language
comprising the single string acd is unambiguous, even though we managed to
concoct an ambiguous grammar for the language. This is because we can also
give an unambiguous grammar for the language.

As another example of an unambiguous language with at least one ambiguous
grammar, consider the following two grammars for the language a™

Ambiguous Unambiguous
S —aS S —aS

S — Sa

S—a S—a

[Exercise: show that the first grammar is ambiguous]

There are a number of languages that are inherently ambiguous: English is one
of them. But programming languages are deliberately designed to be unam-
biguous.

5.4 Recursion in Grammars

Recursive Rule:
A recursive rule takes the form

A — vAv

(where u and v are any sequence of terminals and non-terminal symbols,
including the empty sequence

A recursive rule in a grammar is one where expanding out the non-terminal on
the left hand side of the rule reintroduces another copy of the same symbol on
the right hand side of the rule.

Just as any recursive definition or program procedure requires as a base case,
so recursive rules in grammars also typically require non-recursive rules. Given
a recursive rule like A — uAw, there ought also to be a non-recursive rule
expanding A, e.g. A — ab. (The absence of base rules for recursive rules does

5.4. RECURSION IN GRAMMARS 99

not stop something from being a grammar, but it does render the recursive
rules both pointless and harmful).

Recursion is the means by which a finite grammar can generate a language
containing an infinite number of strings. Recall the grammar for the language
a™b":

1. S — aSb
2. S —ab

This consists of one recursive rule for S (rule 1) and one non-recursive rule (rule
2). We can use repeated applications of rule 1 to generate strings of as and bs
as long as we like:

S = aSb= aaSbb = ... = aaaa...S...bbbb
This is terminated by using rule 2 to remove the non-terminal S from the string:

S = aaaa...S...bbbb = aaaa...ab...bbbb

5.4.1 Left- and Right-Recursion

A left-recursive rule is one where the symbol on the left hand side is the first to
appear on the right hand side. (Left recursive rules can be problematic for top-
down parsing algorithms — Chapter 7). Right-recursive rules are ones where
the symbol on the left hand side is the last one to appear on the right hand
side. Thus

e Left recursive rule: A — Au

e Right recursive rule: A — uA

5.4.2 Indirect Recursion

Sometimes the recursion in a grammar can be spread across several rules. Con-
sider the grammar for the language a?"b?"

1. S —aTh
2. T — aSb
3. T — ab

None of the rules are individually recursive, but if we trace a derivation for
aaaabbbb through, we get

S = aTb = aaSbb = aaaTbbb = aaaabbbb

In expanding out the symbol S, we do not immediately reintroduce a copy of S
but at some later stage in the derivation a copy of S is reintroduced. Similarly
for T'. This is an example of an indirectly recursive derivation

100 CHAPTER 5. CONTEXT FREE GRAMMARS

Indirectly recursive derivation:

A derivation 4 = w = uwAv, where A is not in w, is indirectly recursive.

It is also helpful to talk about which non-terminal symbols are recursive, as
well as which rules are recursive:

Recursive Symbols:
A non-terminal, A, is recursive, if there is some derivation A = uAv

A symbol A can be recursive, even if there is no directly recursive rule expanding

A.

5.5 Normal Forms for CFGs

In this section we look at three alternative ways of representing context free
grammars:

e Backus-Naur Form (BNF)
e Chomsky Normal Form (CNF)

e Greibach Normal Form (GNF)

Backus-Naur form is merely an alternative notation for writing context free
grammars. Chomsky and Greibach normal forms, by contrast, impose addi-
tional restrictions on the form that the grammar rules must take. However,
any arbitrary context free grammar can be converted to either CNF or GNF.
The converted normal form grammars will define exactly the same language as
the original grammar, but may assign different derivation trees to the sentences
in the language.

5.5.1 Backus-Naur Form

Backus-Naur Form (BNF) is not a normal form. It is just an alternative way of
writing down context free grammars. BNF was devised for the specification of
the programming language ALGOL, and has been widely used in programming
language specifications since.

The main notational changes are:
e Instead of writing —, in BNF you write ::=
e Non-terminal symbols are enclosed in angle brackets, ()

e Different expansions for a given non-terminal are written in one rule, with
the alternatives separated by |

5.5. NORMAL FORMS FOR CFGS 101

To see what these changes mean, consider the following grammar in our original
notation, and the same grammar in BNF

Original Notation

S — AB
S — Ac
S— A
A—a
A—z
B — Bb
B—b

Equivalent in BNF

<> <AT‘<><>|<A>C

 =b | (B)b

Extended BNF
Extended BNF (EBNF) adds another constructs to BNF
e Strings enclosed in braces, {} indicate zero or more repetitions

In EBNF, we can express the previous CFG grammar as

(5) = (AHb} | (A)e
(A) i=a | 2

Note that conversion from CFG to EBNF is somewhat more complex than from
CFG to BNF, but it can always be done.

5.5.2 Chomsky Normal Form

A grammar is in Chomsky Normal Form (CNF) if its rules have the following
forms

102 CHAPTER 5. CONTEXT FREE GRAMMARS

Chomsky Normal Form:
All rules must take one of the following forms:

1. X—-YZ
Where X, Y and Z are all non-terminals, and neither Y nor Z are the
start symbol

2. X —a
Where X is a non-terminal and a is a terminal

3. S—ce¢
Where S is the start symbol
(there will be at most one rule of this form, and only if € € L(G)).

A grammar is in Chomsky Normal Form if every non-terminal expands to either
a pair of non-terminals, or a single terminal. This means that derivation trees
for grammars in CNF will always be binary trees. Moreover, at most one empty
production, S — € is allowed.

We will shortly establish that any CF grammar can be converted to a CNF
grammar defining exactly the same language. Chomsky Normal Form is useful
for establishing certain properties of grammars (see the chapter on the pumping
lemma).

Conversion to CNF

Converting a grammar to Chomsky Normal Form proceeds in a certain number
of steps:

1. Make the start symbol non-recursive
i.e. S does not occur in the RHS of any rules

2. Remove empty productions: X — €
3. Remove chain rules: X — Y

4. Remove useless symbols: useless symbols are ones that do not occur in
any successful derivations of sentences

5. Remove secondary productions: X — RHS where RHS is a mixture of
terminal and non-terminal symbols

6. Remove tertiary productions: X — Y1Y5...Y,,, wherem > 2and Y7, Yo, ...

are non-terminals

These steps should be followed in this order. We now describe each step in
turn. Note that each step preserves the language generated by the transformed
grammar.

[Also note: you may expect exam questions asking you to convert context free
grammars to Chomsky Normal Form.]

5.5. NORMAL FORMS FOR CFGS 103

1. Make Start Symbol Non-Recursive

To make the start symbol, S, non-recursive we have to make sure that it does
not occur on the right hand side of any rule in the grammar. It may be that
this is already the case with the grammar.

However, in the grammar
1. §—alb
2. T — aSh
3. T — ab

the start symbol S is not recursive. We therefore add a new start symbol, S’
and a rule S’ — S, so that the grammar is now

1. 89— 5§
2. S —aTb
3. T — aSb
4. T — ab

The new start symbol does not occur on the right hand side of any rules, and
the new grammar generates the same strings as the old one.

To summarise

To make the start symbol non-recursive:

(a) Create a new start symbol, S’

(b) Add the rule S” — S to the grammar

2. Remove Empty Productions

The next step involves removng all empty productions from the grammar, with
the possible execption of S — €, where S is the start symbol. To do this, we
first have to determine the nullable symbols of the grammar — the non-terminal
symbols from which the empty string can be derived.

Determining the nullable symbols:
The non-terminal A is nullable iff A = ¢
Procedure for building set of nullable symbols, NS

1. Init: Let NS = {A| A — € is a grammar rule}

2. Repeat until no new symbols are added to N.S:

not already there)

For each rule B — a, if all the symbols in « are in NS, add B to NS (if it

104 CHAPTER 5. CONTEXT FREE GRAMMARS

For example, consider the grammar

S— ACA
A—ala | B | C
B—bB | b
C—cC | e

The set of nullable symbols is initialised to {C'}. The rule A — C means that
A is also nullable, and so gets added to the set. This in turns means that the
rule S — AC'A shows S to be a nullable symbol.

Having determined which non-terminal symbols are nullable, we now have to
modify the rules of the grammar. Each rule in the grammar

B—>X1X2Xn

has to be replaced by a set of rules obtained by striking out zero or more of
the nullable symbols from the right hand side, X1 X5 ... X,,. However, if all of
X1Xs ... X, are nullable, and B is not the start symbol, we do not strike out
all of the right hand side to give a rule B — ¢

Example Suppose B is nullable, and we have a production A — BCBd
We strike out the nullable symbols to get the following rules

A — CBd
A — BCd
A—Cd

A — BCBd

These correspond to instances of applying the original rule in derivations where

a) the first occurrence of B derives €

b) the second occurrence of B derives €

c¢) the first and second occurrences of B derive €
d) neither occurrence of B derives €

It should be apparent that the four new rules can be used to derive exactly the
same strings as the original rule: no more and no less.

Moreover, the rules will still generate the same strings, even if there are no
e-rules in the grammar. For in the cases where an e-rule was used in deriving
€ from an occurrence of B in the original rule, the additional rule just missing
that occurrence out can be used to derive the same string

3. Remove Chain Rules

A chain rule takes the form

5.5. NORMAL FORMS FOR CFGS 105

A— B

where both A and B are non-terminals. Given such a rule we may as well skip
out the B, and rewrite A to whatever B rewrites to.

For example, if we have

A— B
B —CD
B—F

why not replace A — B with A — CD and A — E? This introduces a second
chain rule, A — E, so we would also want to replace this.

A derivation A = C consisting solely of chain rules is called a chain. We need an
algorithm to determine all possible non-terminals occurring in chains starting

from A, call this CHAIN(A):

Terminals derivable by chains from A:

1. Init:
CHAIN(A) = {A}, PREV = {}

2. Repeat until CHAIN(A) = PREV:

(a) NEW = CHAIN(A) — PREV
(b) PREV = CHAIN(A)

(c) For each non-terminal, B € NEW, do
If there is a rule B — C, then
CHAIN(A) = CHAIN(A) U {C}

In other words, just follow all possible chains down from A, collecting the non-
terminals C' that occur in them

Having collected CHAIN(A) for every non-terminal A, we update the grammar
rules as follows:

Removing Chain Rules:
1. Remove all chain rules, A — B from the grammar

2. If B € CHAIN(A) and there is a non-chain rule B — «
Add the rule A — « to the grammar

Again it should be possible to see that the new grammar generates exactly the
same set of strings as the old one.

106 CHAPTER 5. CONTEXT FREE GRAMMARS

Example Suppose we have the grammar

S—CA| A|C
A—ala | B | C
B —bB | b
C—cC|c

Then we calculate the following chain sets:

CHAIN(S) = {S, A,C, B}
CHAIN(A) = {A, B,C}
CHAIN(B) = {B}
CHAIN(C) = {C}

These sets are used to generate the rules:

S—CA | ada | BB | b | cC | ¢
A—adAa | bB | b | cC | ¢
B—bB | b

C—cC | c

4. Remove Useless Symbols

A symbol is useful if it takes part in the generation of some sentence in the
language.

A symbol z € (V UN) is useful if there is a derivation

S = urv = w
where u,v € (VUN)* and w € V*

Otherwise, the symbol is useless

Two conditions must be satisfied for a non-terminal to be useful

1. It must occur in a sentential form of the grammar

2. There must be a derivation of a terminal string from the symbol
Rules containing useless symbols can never take part in the derivation of a
sentence, so we want to eliminate them from the grammar.
There are a number of reasons why useless symbols may occur in a grammar

e Sloppiness in writing the grammar or modifying a large grammar over the
course of time, so that it includes redundant rules

e Pathological cases of eliminating e-rules where there are some non-terminals
that only derive €. In a grammar without e-rules, such non-terminals will
be useless.

5.5. NORMAL FORMS FOR CFGS 107

Detecting useless symbols divides into two parts

1. Detecting which symbols can(not) derive terminal strings

2. Detecting which symbols (don’t) occur in sentential forms

Algorithm for collecting non-terminals deriving terminal strings, TERM
1. Init: TERM = {A | there is a rule A — w, where w € V*}
2. repeat:
(a) PREV =TERM

(b) For each non-terminal A, do
If there is a rule A — w and w € (PREV UV)%
then TERM = TERM U {A}

until PREV =TERM

In other words, start by collecting those non-terminals that expand directly to
terminal strings. Then, iteratively, if there is a non-terminal that expands to a
string of terminals plus symbols that in turn expand to terminal strings, add it
to the list TERM

The first stage in removing useless symbols from a grammar is to identify all
those non-terminals not in TERM, i.e. non-terminal symbols from which no
terminal strings can be derived. Any rule containing one of more of these useless
symbols should be removed from the grammar.

Having removed all the useless non-terminals from which no terminal string
can be derived, we now determine which non-terminals occur within sentential
forms of the (revised) grammar.

Algorithm for collecting non-terminals occurring in sentential forms, SFNT
1. Init: SENT = {S}, PREV ={}
2. Repeat until SFNT = PREV

(a) NEW = SENT — PREV
(b) PREV = SFNT

(c) For each A € NEW do
For each rule A — w do
add all non-terminals in w to SFNT

In other words, start by getting sentential forms from one rule application to
S. For each non-terminal A, added to SFNT by this, look at all possible
rules expanding A, and add any new non-terminals to SFNT. PREV is used
to ensure that in each iteration, we only expand the non-terminals added to

108 CHAPTER 5. CONTEXT FREE GRAMMARS

SFNT on the last step. That is, we don’t repeatedly expand all the symbols
in SFNT, only the new ones.

Any non-terminal not occurring in SFNT is useless. Any rule containing such
a useless symbol should be removed from the grammar.

Note: it is important that we first remove rules containing non-terminals that
do not generate terminal strings, and only then remove rule containing non-
terminals not occurring in sentential forms.

Example Consider the grammar

S*)CL‘AB‘CLC
A—b
C — cC

First we look for non-terminals that cannot generate terminal strings. Clearly
B is such a useless symbol, since there is no rule expanding it. Less clearly,
C' is also useless: the only rule expanding it is a recursive one and there is no
further non-recursive rule for C.

Hence, we first change the grammar to

S —a

A—b

Here, it is clear that A does not occur in any sentential form of the grammar,
so we remove any rules containing A to give

S —a

Question: what would we get if we reversed the two stages, and first removed
those symbols not occurring in sentential forms?

5. Remove Secondary Productions
Secondary productions are rules of the form
X — RHS

where RH S is a mixture of terminal and non-terminal symbols For example, a
rule like

A — bDcF

To remove secondary productions, replace the terminal symbols by new non-
terminal symbols (B’ and C”) And add rules rewriting the new non-terminals
to the terminals they replace.

Thus the rule above is expanded to:

5.5. NORMAL FORMS FOR CFGS 109

A— B'DC'F
B —b
C'—c¢c

Again, it should be clear that the new grammar generates the same language
as before.

6. Remove Tertiary Productions

Tertiary productions are rules of the form

X — Y1Y2 .. Ym
where m > 2 and all Y;s are non-terminals

To remove tertiary productions, we again introduce new non-terminal symbols,
and rules rewriting them to successive suffixes of the RHS.

For example
A— B'DC'F
is replaced with
A— B'X’
X' — DY’
Y - C'F

Again, it should be clear that the new grammar generates the same language
as before

Full Example

We now give an example of a full conversion of a context free grammar to
Chomsky Normal Form. Consider the grammar

S — SaB | aB | BC

B —bB | €
C — BC | AD
A—bC | bA
D —d

The conversion proceeds as follows

1. Add new non-recursive start symbols, S’:

S — S
S — SaB | aB | BC

110

CHAPTER 5. CONTEXT FREE GRAMMARS

B —bB | €
C—BC | AD
A—=bC | bA
D—d

2. B is the only nullable symbol. Make extra copies of rules containing B

with the B struck out:

S — S
S—SaB | Sa | aB | a | BC | C
B—bB | b

C—BC | C | AD

A—bC | bA

D —d

. Remove chain rules (8" — S, 5 — C, C — C):

S"—SaB | Sa | aB | a | BC | AD
S—SaB | Sa | aB | a | BC | AD

B—bB | b
C— BC | AD
A—0bC | bA
D —d

. Remove useless symbols

(a) The symbols A and C cannot derive terminal strings: their rules form
a mutually unterminated recursion. Hence remove all rules containing A

or C:

S"— SaB | Sa | aB | a
S—SaB | Sa | aB | a
B—bB | b

D —d

(b) The symbols D and d are now not derivable from S’, so these are
useless and must be removed:

S"— SaB | Sa | aB | a
S—SaB | Sa | aB | a
B—bB | b

5. Remove secondary productions:

S"—SA'B | SA | AB | a
S—SA'B| SA | AB | a
B—BB|b

A —a

B —b

6. Remove tertiary productions:

5.5. NORMAL FORMS FOR CFGS 111

S"—SX | SA | AB | a
S—SX | SA | AB | a
B—BB|b

A —a

B —b

X —- A'B

This grammar is now in CNF

5.5.3 Greibach Normal Form

A grammar is in Greibach Normal Form if it rules have the following forms

Greibach Normal Form
Every rule is in one of the following forms

1. X -ahn... Y,
Where a is a terminal and X, Y,...,Y, are non-terminals, and none
of Y1,...,Y, are the start symbol

2. 8 —€
Where S is the start symbol
(there will be at most one rule of this form, and only if € € L(G)).

For every context free grammar, there is an equivalent grammar in GNF defining
the same language.

Greibach Normal Form eliminates all left recursion from a grammar. (A left
recursive rule is of the form A — Au) Left recursion can cause problems in
top-down parsing, as we will see later, and so eliminating it can be helpful.
GNF is also useful when it comes to showing how any context free grammar
has an equivalent pushdown automaton (chapter 6).

We will not concentrate on the full range of transformations that take you from
a grammar in CNF to one in GNF (for details see Sudkamp 5.5 & 5.6; Hopcroft
& Ullman chap 4.6; or Rayward-Smith chap 5). We will focus on just one of
the steps: removing left-recursion from a grammar

Removing Left-Recursion

A left-recursive rule has the form A — A«

112 CHAPTER 5. CONTEXT FREE GRAMMARS

To eliminate left-recursive rules
1. Let A — A« | Aag | ... | Aa, be all the left-recursive rules for A.
2. Let A— (31| B2 ...0s be the remaining A-rules
3. Add a new non-terminal symbol, B
4. Remove all the A-rules (left-recursive and others)
5. Replace them by

(a) For 1 <i<s
A— B
(b) For1<i<r

B — oy
B—>OéiB

Example Consider the grammar:

A — Aa
A—c

This becomes

A—c
A — cB

B — aB
B —a

Basically, this replaces left-recursion with right-recursion Consider a left-recursive
derivation in the original grammar:

A = Aa = Aaa = caa
Compare this with the right-recursive derivation in the new grammar:

A = ¢B = caB = caa

Example of GNF Conversion

Let us take the grammar that we previously converted to CNF, at the point
just after eliminating useless symbols. That is:

S"— SaB | Sa | aB | a
S—SaB | Sa | aB | a
B—bB | b

5.6. SUMMARY 113

We eliminate the left recursive rules S — SaB | Sa, introducing a new right
recursive symbols Z as follows:

S"— SaB | Sa | aB | a
B—bB | b

S—aBZ | aZ | aB | a
Z —aBZ | aZ | aB | a

(In this particular case, the rules for expanding Z are identical for the rules for
expanding S. We could therefore safely replace all occurrences of Z by S, and
omit the Z rules:

S"— SaB | Sa | aB | a
B—bB | b
S—aBS | aS | aB | a

However, in general eliminating left recursion will not lead to an eliminable
right recursive symbol)

We can remove non-initial terminal symbols from the right hand sides of rules
in the same was as for removing secondary productions:

S"—SAB | SA" | aB | a
B—bB |b
S—aBS | aS | aB | a
A —a

At this point, all the rules except S’ — SA'B | SA’ are in GNF (i.e. right
hand side begins with a terminal followed by zero or more non-terminals). We
can plug in the expansions of S to correct this:

S" — aBSA'B | aSA'B | aBA'B | aA'B
| aBSA" | aSA" | aBA" | aA’
| aB | a

S—aBS | aS | aB | a

A —a

The grammar is now in GNF.

5.6 Summary

This chapter introduced context free languages, as defined in terms of con-
text free grammars (CFGs). Context free languages are one step above regular
languages in the Chomsky hierarchy. They are of considerable practical im-
portance; for example, the syntax of programming languages is context free.
Natural languages like English are also (nearly) context free.

114 CHAPTER 5. CONTEXT FREE GRAMMARS

We first described the restrictions on rules that make them rules of a context-
free grammar. We then introduced the notions of derivations, derivation trees
and ambiguity. Finally we discussed Chomsky and Greibach normal forms for
CFGs, and how to convert any CFG into these normal forms. The conversion
preserves the language generated by the grammar, but may alter the derivations
associated with individual strings within the language.

Chapter 6

Push-Down Stack Automata

Context free language and grammars are associated with a particular kind of
automaton, just as regular languages and grammars are associated with finite
state machines. In the case of context free languages, the corresponding au-
tomaton is a (non-deterministic) push-down stack automaton. This is essentially
a finite state automaton with an additional stack-like memory.

In this chapter, section 6.1 introduces push-down stack automata (PDAs), and
comments on the non-equivalence between deterministic and non-deterministic
PDAs. Section 6.2 shows how any context free grammar can be converted to a
(non-deterministic) PDA accepting the same language, and section 6.3 describes
the conversion in the opposite direction.

6.1 Push-Down Stack Automata

A push-down stack automaton is essentially a finite state machine with an
additional stack like memory. Transitions are dependent on

1. the current state
2. the next word of the input

3. the item at the top of the stack
Taking a transition will

1. Move you to a possibly different state
2. Consume a word of input (unless it is an empty transition)

3. Pop the top item off the stack
(Note: it is permissible to pop an empty item off the top of the stack,
leaving it unchanged)

115

116 CHAPTER 6. PUSH-DOWN STACK AUTOMATA

4. Push a new item onto the top of the stack
(Note: it is permissible to push an empty item onto the top of the stack,
leaving it unchanged)

A string is accepted by a PDA if you can take a sequence of transitions, (a)
beginning at the start state with an empty stack, (b) ending in an accepting
state with an empty stack, and (c) consuming all the words in the string.

6.1.1 Two Examples

PDAs are graphically represented in the same way as finite state automata,
but with somewhat more elaborate labels on the arcs (transitions). Each arc is
labelled with

(i) the word of input to be consumed

(ii) the item that must be popped off the top of the stack

(iii) the item to be pushed onto the top of the stack when the tran-
sition to the next state is made

Here for example is a PDA to accept the language a™b™:

ae/A b A/e

PO ©

The transition looping round on state sl is triggered by having the word a as
input, and being able to pop the empty item, € off the stack. (Note that you
can always pop the empty item off any stack). On consuming the word a and
poppng € off the stack, the transition pushes the symbol A onto the top of the
stack, and moves back to state sl.

That is, every time an a is encountered in state sl, a symbol A is pushed onto
the stack, and we return to the state s1. Thus after comsuming n occurrences
of a in the input string, the stack will contain n instances of the symbol A.

The transition from state sl to s2 is triggered by finding b as the next word
of input, and having an A on the top of the stack. The transition pops off the
topmost A, and does not push anything onto the stack to replace it. Thereafter,
transitions loop around state s2, consuming bs from the input and popping As
off the stack.

The accepting configuration for a PDA is to be in an accepting state (s2)
with no remaining input and nothing on the stack. Therefore, if there were n

6.1. PUSH-DOWN STACK AUTOMATA 117

transitions looping round on state sl cnosuming as and pushing As onto the
stack, these must be followed by n transitions consuming bs and popping the
As off the stack. The stack acts as a memory, keeping track of how many as
occurred in the first half of the string.

Here is another PDA, this time to accept even length palindromes over the
vocabulary {a,b} (a palindrome is a string that reads the same forwards as
backwards).

ae/A aAle

ae€fe

b e/e

b B/e

Consider the palindrome ababaababa. The first part of the string, abab is con-
sumed by looping around on the first state. This will push A, then B then A
and then B onto the stack, so that once the input abab has been consumed,
the stack will contain the symbols BABA. We then consume two as, leaving
the stack unchanged, and move to the final state. We then loop round, first
popping a B off the stack and consuming a b, then an A and an a, then a B
and a b, and finally an A and an a. In other words, this produces the last part
of the string baba, which is the first part in reverse order.

Note that the PDA for a” B™ is deterministic: at no point is there the possibility
for choice about which transition to take next. But the PDA for even length
palindromes is non-deterministic: in the initial state with input a once can
either pop € off the stack and loop pushing A onto the stack; or one can pop €
off the stack, and move to a new state while pushing € onto the stack.

6.1.2 PDAs: Formal Definition
Stacks

First, we will define a stack. For our purposes, a stack is just a string of symbols
taken from some stack vocabulary, I'. For example, if I' = { A, B}, then possible
stack values are

AABA

118 CHAPTER 6. PUSH-DOWN STACK AUTOMATA

BBA

where the first symbol in the string counts as the top of the stack, and € is the
empty stack.

The two main operations on a stack are (i) to pop a symbol off the top of the
stack, returning the symbol and the stack minus the topmost symbol, and (ii)
to push a symbol onto the top of the stack. The transitions in PDAs always
specify which symbol needs to be popped or pushed. Thus, if ¢S is a string
representing a stack where t is the first symbol and S the remainder or the
stack, we have

POP(a,tS) =(a,S) ifa=t
undefined otherwise

PUSH (a,S) =aS
Note that POP returns a pair of values. Note also that since S = €5, it is

always possible to pop the empty string off the top of a stack. Similary, e can
be pushed onto a stack without changing the stack.

PDA Definition

A (deterministic) Push-Down Stack Automaton, PDA
is a 7-tuple

PDA=(S,V,T',6,s,v, F)
where
e S is a set of of states
e V is the input vocabulary
e I' is the stack vocabulary

¢ 1s the transition function

s is the start state

v is the stack start symbol, v € T'U {e}

e [is a set of final / accepting states

d:(Sx (VU{e}) x (TU{e})) — (S x (TU{e})

Note that by convention we will use upper case letters to represent words from
the stack vocabulary, and lower case letters for words from the input vocabulary
(cf. the similar convention for non-terminal and terminal symbols in grammars).

6.1. PUSH-DOWN STACK AUTOMATA 119

Here 0 is a function from states, input symbols and stack symbols, to states
and stack symbols. For example if

d(s1,a,A) = (s2, B)

this means that if you are in state s; looking at input symbol a, and are able to
pop A off the stack, then you can move to state so and push B onto the stack.
In graphical form, this would correspond to

aA/B

Y

As with finite state machines, it is not necessary for § to be a function. It can
be a relation, or equivalently, a function onto sets of state / stack symbol pairs,

e.g.
d(s1,a,A) = {(s2, B), (s3,C), (s2,C), (s3, B)}

In this case, the PDA is non-deterministic: from a single configuration of state,
input symbol and stack top, multiple transitions are possible.

6.1.3 Languages Accepted by PDAs

A PDA Configuration is a triple (s, i,)
where

e s is the current state
e ¢ is the remaining input

e « is the stack

Taking a transition moves you from one configuration to another

<517iaa> t <82ajaﬂ>

— one transition takes you from (si,i,a) to (s2,j,3)

*
<51)i7a> F <827j7/6>
— zero or more transitions take you from (s1,, @) to (sa,j, 3)

(Here we use F to represent transitions between PDA configurations.) Thus,
for example, if we have the transition

oprsa, B € §(s1,a,A)

then the following is a possible transition between configurations:

120 CHAPTER 6. PUSH-DOWN STACK AUTOMATA

<817 au, Aa> - <827 u, BOé>

A string u € V* is accepted by a PDA = (S,V, T, 4, s,v, F) iff

*

<S,U,’Y> l_ <8f767 6)
— where sy € F'

In other words, we have to be able to take a sequence of transitions, beginning
at the start state with the entire string and the stack initialised to contain just
its start symbol, and ending in a final state with no remaining input and an
empty stack.

6.1.4 Variations on PDAs

There are a number of variants on PDAs, all of which can be used to accept
the same class of languages as the kind of machine we have seen above.

Extended PDAs

An extended PDA allows you to push a string of symbols onto the stack, rather
than just a single symbol. For example, one might have an extended transition

a A/BC

Y

One taking a transition from s; to so, this pops the single symbol A from the
stack, but pushes two symbols, BC onto it.

One can readily convert an extended PDA to a non-extended one by adding
extra intermediate states connected by empty transitions that just push one
symbol at a time, e.g.

aA/C EE/B

Acceptance Conditions

Previously we defined acceptance as reaching a final state with no remaining
input and an empty stack. A final state PDA is one that accepts a string if it
reaches a final state with no remaining input, even if there is still something on
the stack. An empty stack PDA is one that accepts if it reaches any state with
no remaining input and an empty stack.

6.1. PUSH-DOWN STACK AUTOMATA 121

An empty stack PDA is just an ordinary PDA where all states are final states. A
final state PDA can be converted to an ordinary one by having empty transitions
looping around on final states that pop off any remaining stack symbols.

One sometimes also finds stacks defined in such a way that stack operations
can only be performed on non-empty stacks (i.e. you can’t even pop € off an
empty stack). Execution halts whenever the stack is emptied. In this case, the
stack start symbol v obviously cannot be e.

6.1.5 Determinism and PDAs

Unlike finite state automata, there is a difference between the class of languages
accepted by deterministic and non-deterministic PDAs. Or put another way,
there is no method for converting any non-deterministic PDA to a deterministic
PDA accepting the same language.

Non-deterministic PDAs define the wider class of languages: the context free
languages. Deterministic PDAs define deterministic languages.

Recall that a PDA is deterministic if for any state / input / stack combination,
more than one transition is possible. Different transitions may move to different
states, or to the same states but pushing different symbols onto the stack. The
presence of an empty transition (one that does not consume any input) does
not necessarily make a PDA non deterministic. For example, the following
(part of a) PDA introduces no non-determinism: the empty transition and the
a-transition are applicable only to distinct stack configurations

aA/C

e B/C

Non-determinism in the algorithm for acceptance by a PDA is handled in the
same way as for a non-deterministic finite state automaton. That is, a stack
is used to record choice points. When execution blocks in a non-terminating
configuration, a choice point is popped from the stack, and the algorithm back-
tracks to that point.

!Deterministic languages are lie between regular and context free languages. However, they
are not an especially important class and are usually lumped under the heading of context
free.

122 CHAPTER 6. PUSH-DOWN STACK AUTOMATA

6.2 From CFGs to PDAs

We now show that context free grammars and non-deterministic PDAs define
the same class of languages. This is done in two parts. In this section we show
how to convert a context free grammar to a PDA. And in the next section we
show how to convert a PDA to a context free grammar.

6.2.1 Conversion from Grammars in GNF

The basic idea behind converting a CFG to a PDA is to equate

e Stack vocabulary = non-terminal symbols

e Input vocabulary = terminal symbols
The idea is that a rule (in Greibach Normal Form) like
A — aBC

should be seen as an instruction to take an a-transition, popping A off the stack,
and pushing BC onto the stack in its place.

More generally, let G be a grammar in Greibach normal form. That is all rules
take either the form

A—aA.. A,

(where A, Ay, ... A, are terminal symbols, n > 0 and «a is a terminal symbol),
or the form

S — €

(where S is the start symbol).

6.2. FROM CFGS TO PDAS 123

(Extended) PDA for GNF grammar, G = (N,V, R, S):

PDA =(Q,V,T,¢,s0,¢ F)

where
Q = {s0,51}
=N -{S}
F={s1}

and with the transitions
L. (s, a,€) = {(s1,U) | (S — aU) € R}
(where U is a possibly empty sequence of non-terminals)

2. §(s1,a,A) ={(s1,U) | (A—aU) € Rand A €T}

(for each non-terminal, A).

3. d(so,€,€) ={(s1,6)} if S —e€R

6.2.2 Example: PDA for a"b"

To illustrate this conversion, consider the GNF grammar for a™b™:

S — aAB | aB
A — aAB |aB
B—b
The PDA corresponding to this, in graphical form, is
a A/AB

ae/AB

) on

e

ae/B
aA/B

To see how the PDA relates to the grammar, consider the leftmost derivation
of the string aaabbb in the grammar:

124 CHAPTER 6. PUSH-DOWN STACK AUTOMATA

Sentential form Rule

S S — aAB
aAB A — aAB
aaABB A — aB
aaaBBB B—b
aaabBB B—b
aaabbB B—b
aaabbb

If you look at the successive sentential forms, they consist of a terminal prefix
and a non-terminal suffix. At any point, the terminal prefix can be viewed
as the input string so far processed, and the non-terminal suffix as a stack
of symbols that need to be popped off. Each rule application pops one stack
symbol off, but may push further stack symbols on.

Compare the derivation in the grammar to the transitions between PDA con-
figurations for the same string:

(s0, aaabbb, €) -
(s1,aabbb, AB) +
(s1,abbb, ABB) F
(1, bbb, BBB) +
(s1,bb, BB) F
<51, b, B>

{

S1, €, €)

Note how at each step, the stack is the same as the non-terminal suffix in the
grammar derivation. And the initial input minus the remaining input is the
same as the terminal prefix.

The similarity between the leftmost derivation and the sequence of transitions
forms the basis for an inductive proof that the conversion procedure generates
the same language. But we will not go into this proof.

6.2.3 Conversion from Grammars not in GNF

It is not necessary to convert a grammar to Greibach normal form before con-
verting it to a PDA. However, in this case, the stack and input vocabulary
overlap. Also, if the grammar contains any left recursion, there is no guarantee
that the PDA will always terminate when trying to accept or reject a string.

6.3. FROM PDAS TO CFGS 125

PDA from grammar G = (N,V, R, S):
PDA: <Q7‘/7F75550777F>

where
Q = {80751a 52}
r=NUVU{y}
F = {s2}

and with the transitions

1. 6(s0,€6,7) = {{s1,97)}
2. §(s1,6,A) = {(s2,U) | (A — aU) € R}
(for each non-terminal, A)

3. d(s1,a,a) = {(s1,€)}

(for each terminal, a)

4. 8(s1,€6,7) = {{s2,€)}

Thus, if we take the grammar
S — aSb | ab
we get the PDA with the transitions

(50763’7) = {<51357>}
(s1,€,8) = {(s1,aSb), (s1,ab)}
(Slva’a) = {<51’€>}

(817b7 b) = {<817€>}

(s1,6,7) = {(s2,€)}

9 S 9 &9 O

6.3 From PDAs to CFGs

The conversion from a PDA to a CFG is fiddly, and is not the sort of thing you
would be expected to do in an exam.

Recall that in converting FSMs to Regular Grammars, the input vocabulary
became the set of terminals, the states became the non-terminals, and the tran-
sitions defined the rules. Similarly with PDAs, except that the non-terminals
are triples (s;, A, s;), where s; and s; are states, and A a stack symbol. There
is in addition a start symbol, S

The triple (s;, A, s;) represents a sequence of transitions starting in state s;
with A on the top of the stack, and ending in state s;, with the stack the same
as before except that A has been popped. Note that the sequence of transitions
may push and pop a number of intermediate values on the stack; but we are only

126 CHAPTER 6. PUSH-DOWN STACK AUTOMATA

concerned with what is on the stack at the start and the end of the transition
sequence.

Assume a PDA = (Q,V,T',4, 59,7, F') Add extra transitions to it as follows

o If (sj,€) € 6(s4,u,€), add
O(si,u, A) ={(s,;,A) | AeT}

o If (sj,B) € 0(s,u,€), add
(s, A) = (55, BA) | A €T}

Derive rules from transitions

1. For each s; € F, there is a rule
S — <507 v, 5j>
2. For each transition (sj, B) € d(s;, z, A) (where A € I'U{e}), and for each
state s € @, there is a rule
<Si7 Av Sk) — T <Sja 37 Sk>
3. For each transition (sj, BA) € §(s;,x,A) (where A € T'), and for each
state s, sp € @, there is a rule
(si, A, sk) — @ (85, B, sp) (Sns A, sk)

4. For each state si € @, there is a rule

<Sk7 €, 3k‘> — €
Explanations of these derived rules are as follows:

. S— <807778j>

This says that to find an S, you must start in the start state, and find
some way to reach a finish state that removes the initial stack symbol
from the top of the stack

2. (sj,B) € 0(s,x, A) gives rise to
(si, A, sk) — @ (85, B, sk)

There is a transition from s; that consumes x, replaces A by B on the top
of the stack, and moves you to state s;.

The rule says, suppose you are in s;, looking to remove A from the stack
(and not replace it with anything else), and want to reach sg.

Then consume an z, replace A on the stack by B, and move to s;.
To reach sj you have to find another rule that will take you from s; to s,

and remove the B (without replacing it by anything else).

3. (sj, BA) € §(s;,x, A) gives rise to
<Si7 Au Sk) — T <Sja Ba 5n> <Sn7 Aa Sk>

6.4. SUMMARY 127

There is a transition from s; that consumes z, replaces A by BA on the
top of the stack, and moves you to s;.

The rule says, suppose you are in s;, looking to remove A from the stack
(and not replace it with anything else), and want to reach sj.

Then consume an z, replace A by BA, and move to s;.

From s;, you then have to find a rule that will move you to some other
state s,, and completely remove the B from the stack.

From s, you have to find another rule that will move you to s; and
completely remove the A from the stack.
4. (s, €,85) — €

Represents a transition from a state to itself that neither consumes input
nor alters the stack.

These rules are used to terminate derivations.

As with the conversion from CFGs to PDAs, the idea is to construct a CFG
whose leftmost derivations simulate the sequence of transitions in the PDA

6.4 Summary

This chapter has introduced push-down stack automata, which are finite state
automata supplemented with a stack like memory.

Unlike finite state automata, deterministic and non-deterministic PDAs de-
fine different classes of languages. Non-deterministic PDAs define context free
languages. This is shown by giving procedures for converting a CFG into a
non-deterministic PDA, and vice versa.

Chapter 7

Parsing

This chapter deals with the parsing of context free languages. This is a topic
of considerable practical importance, since a central part of any compiler for a
(context free) programming language is a parser. A parser takes a string and a
grammar, and returns derivation trees for the string, if any exist. In program
compilation, the derivation tree is used to construct a segment of machine code
corresponding to the meaning of the program parsed.

A parser differs from a recogniser for a language. A recogniser — such as a
finite state automaton for a regular language or a non-deterministic push-down
stack automaton for a context free language — just takes a string and returns a
yes-or-no answer, depending on whether the string is a member of the language
or not. A parser both gives a yes-no-answer, and if the string is a member of
the language gives its derivation within a particular grammar.

The relativisation of a parser to a grammar is important. As we have already
seen (e.g. in converting CFGs to Chomsky or Greibach normal form), the same
language may be defined by a number of different grammars. But these gram-
mars will typically give rise to different derivations for strings in the language.
In other words, derivation trees are relative to grammars, rather than relative
to languages.

The chapter is organised as follows. Section 7.1 explains why derivation trees
are useful, e.g. in program compilation. Section 7.2 discusses non-deterministic
top-down parsing of context free languages, using either depth-first or breadth-
first search. Section 7.3 discusses non-deterministic bottom-up (or shift-reduce)
parsing, again either with depth-first or breadth first search. Section 7.4 dis-
cusses deterministic top-down, or LL(k), parsing. And Section 7.5 discusses
deterministic bottom-up, or LR(k), parsing.

7.1 Derivation and Meaning

By and large in this course we have ignored questions of what sentences in a
formal language might mean. Instead, we have been concerned with rather

128

7.1. DERIVATION AND MEANING 129

narrower issues, such as what strings of words are and are not sentences, and
how this can be decided by grammars or automata. This is about the one place
in the course where we will look at what sentences mean, and how this relates
to other topics covered in formal language theory. This is of relevance not only
to program compilation, but also to computational attempts to process and
understand natural languages.

7.1.1 The Meaning of Arithmetic Expressions

Consider the following grammar for arithmetic expressions, such as as 23 — 2

S—=S+S5| S-S5 85«5 | S/S | Int
Int—11]12|3|4]5]6|7|8]9

Here, S is the start symbol, and the rules allow it to be rewritten to any
arithmetic expression, including single integers.

It is not difficult to show that the grammar given above is ambiguous. There
are two alternative derivation trees for the string 2 x 3 — 2, for example:

e (2%x3)—2:
S
S S
/ \
S S
Int Int Int
2 * 3 - 2

e 2x(3—2):

130 CHAPTER 7. PARSING

N

Int Int Int

w
[\

2 * _

The two derivations correspond to two different meanings of the string: (2 x*
3)—2=4and 2x(3—-2)=1.
We can associate meanings with (derivations) of strings by pairing meaning (or

semantic) rules with the individual grammar rules, e.g.

Grammar Rule Semantic Rule

S—S+S Sozeval(Sl—de)
S—S5-8 So = eval(S; — S3)
S—Sx%xS8 So = eval(Sl Sg)
S—>S/S Sozeval(Sl/Sg)
S — Int So = Int1

Int — 1 Inty = 1

Int — 2 Inty =2

Int — 9 Inty =9

The semantic rule for the first grammar rule
Sy = eval(Sl + Sg)

is to be understood as follows. Suppose that the rule is used iat some point in
a derivation to construct a tree Sg having three subtrees S1, + and S3 as shown

AN

Sl + S3

ANV AN

The meaning of the tree Sy, which we represent in boldface as Sy is obtained
by taking the meanings of its two S subtrees, S; and S3 and evaluating what
you get by adding them together.

7.1. DERIVATION AND MEANING 131

Thus, for example, if S; =4 and S3 = 2, then Sp = eval(4+2) =6

To construct the meaning for a string like 2 x 3 — 2, we take a derivation tree
and build up the meaning of the root node recursively from that of its subtree.
For the first derivation tree for the string, this gives

S = eval(6-2) = 4

S = eval(2*3) =6 S =2
S =2 S =3
Int = Int = Int =2
9 * 3 — 9

where the meanings associated with nodes in the tree are written on the right
hand sides of the equality signs.

Exercise: show how the second derivation tree for 2 x 3 — 2 assigns the string a
meaning of 1.

7.1.2 Parsing and Meaning

The preceding example about arithmetic expressions illustrates how the way
that a string is derived determines its meaning. Indeed, it shows how an am-
biguous string having more than one derivation tree can thereby have more
than one meaning.

In order to determine the meaning of a string, given some grammar for which
semantic rules are defined, it is necessary to determine what the derivation
tree(s) for the string is(are). And this is what parsers are for.

This is why parsing is such an important part of program compilation. Program-
ming languages are defined by (unambiguous) context free grammars, where

132 CHAPTER 7. PARSING

each grammar rule has an associated semantic rule. The semantic rules build
up chunks of machine code for a node in a derivation tree by combining the
machine code of its daughter nodes. But in order to do this, a parser first needs
to construct the derivation tree.

A similar approach is applied in natural language processing. Again there is
a grammar with associated semantic rules, and sentences have to be parsed
before their meanings can be constructed. In the case of language processing,
however, the semantic rules normally assign bits of logical expressions to nodes
in the derivation tree.

(One significant difference between parsing programming languages and natu-
ral languages is that grammars for natural languages are typically highly am-
biguous, whereas grammars for programming are deliberately designed to be
unambiguous. Why are grammars for programming languages unambiguous?)

Having said why parsing is a useful thing to do, we now turn to the question of
how to do it.

7.2 Top-Down Parsing

The simplest way of parsing a string would be to do repeated (leftmost) deriva-
tions in the grammar, until eventually one derives the string that you are trying
to parse. To a first approximation, this is what a top-down parser does.

Top down parsing begins with a sentential form comprising the start sym-
bol of the grammar. Then a grammar rule is chosen to expand the leftmost
non-terminal in the sentential form. This is repeated until the sentential form
is expanded out into the string to be parsed. As the sentential form is ex-
panded, a derivation tree is constructed in parallel: each time a rule expands
a non-terminal, daughters are added to the corresponding non-terminal in the
derivation tree.

7.2.1 Top-Down Parsing Ignoring Non-Determinism

If rules expanding the sentential form are chosen blindly, it will be pure luck
if the first terminal string that the sentential is expanded out to is the string
that we want to parse. We can fudge the issue by assuming the existence of a
procedure choose-correct-rule, which always selects a rule that takes us towards
the required terminal string. (In general it is not possible to define such a
procedure, though it is possible for a special class of context free grammars
discussed in section 7.4).

We can also ensure early failure by checking to see if the terminal prefix of the
expanded sentential form is the same as the prefix of the terminal string to be
parsed. If not, we can stop parsing before going all the way to producing a
complete sentence distinct from the one we want to parse.

An algorithm for top-down parsing, assuming the existence of a procedure

7.2. TOP-DOWN PARSING 133

choose-correct-rule is shown below:

Outline algorithm for top down parsing of a string p:

top-down-parse(p):

1. SentForm := §; Tree := S,
2. REPEAT until SentForm == p

(a) SentForm==uAv, where A is the leftmost non-terminal,

Tree== i 2

(b) If u is not a prefix of p, then RETURN FALSE;

(¢c) If choose-correct-rule(uAv) = A — ri...1y,
Then

SentForm := ury...r,v;

A

rl ... rn

Else RETURN FALSE
3. RETURN Tree

To see how it works, suppose we have the grammar

S — AC
A—aA | b
C—cC|ec

and that we want to parse the string aabc. By choosing the correct rule at each
step (S — AC, A — aA, A — aA, A — b, C — c), the parsing algorithm
expands the sentential form and builds up the tree as shown:

134 CHAPTER 7. PARSING

Sentential Form Tree Sentential Form Tree
S S aabC /K
/\
A C a A
/\
aAC /K a
A C
/\
a A
aabc /K
A
aaAC /K /\

Y
)

o
>

Note, however that if at the second step we had instead used the rule A — b to
expand the A in the sentential form AC, parsing of aabc would have failed. It
would have failed even though there is a derivation of the string aabc

7.2.2 Non-Deterministic Top-Down Parsing

The algorithm just shown is one for deterministic top-down parsing. But in
general parsing is a highly non-deterministic operation: there is usually no way
of telling which is the correct grammar rule to apply at any one point. In other
words, for most (though not all) grammars it is impossible to define a procedure
like choose-correct-rule. Therefore, parsing algorithms have to account for the
fact that the wrong rule may sometimes be chosen (e.g. choosing A — b instead
of A — aA in the example above). When a wrong rule has been chosen, leading

7.2. TOP-DOWN PARSING 135

to a failure to derive the required string, the algorithm must be able to retrace
its steps and try using an alternative rule.

The situation is analagous to that for non-deterministic finite state automata or
push-down stack automata. These use a stack to record previous choice points,
and backtrack by popping choice points off the stack. In parsing, using a stack
to record choice points leads to something known as top-down parsing. An
alternative regime is possible, however. This uses a queue! instead of a stack,
and leads to breadth-first parsing.

The following is an algorithm for non-deterministic top-down parsing. It can be
adapted to give either depth-first or breadth-first parsing, depending on whether
a stack or queue is used to record choice points, (Sentential Form, Tree).

LA queue is a first-in, first-out data structure: new items are added to the end of the queue,
and old items are removed from the front of the queue.

136 CHAPTER 7. PARSING

Non-Deterministic Top-Down Parser:

parse(p)

1. SentForm := S; Tree := S,
StackOrQueue := empty;
ADD((SentForm, Tree), StackOrQueue);

2. REPEAT UNTIL SentForm= p or StackOrQueue is empty

(a) REMOVE((SentForm, Tree), StackOrQueue);

(b) Let SentForm == uAuv,
where A is the leftmost non-terminal;

(¢) IF w is a (terminal) prefix of p
THEN FOR EACH rule A — w
ADD((uwv, (Tree + w)), StackOrQueue);

3. If SentForm= p, then RETURN Tree;

Notes
If StackOrQueue is a stack:
ADD = PUSH, REMOVE = POP,
Gives depth-first search
If StackOrQueue is a queue:
ADD = ENQUEUE, REMOVE = DEQUEUE,
Gives beadth-first search

Tree+w indicates tree with w added as daughters of A

Breadth-First, Depth-First and Graphs of Grammars

The terms depth-first and breadth-first refer to different strategies for handling
search problems. A search problem involves looking through a space of possibili-
ties to find a particular item. The space of possibilities can often be represented
as a search tree. To find a particular item in the search tree, you start at the
root node of the tree, and start descending through the branches of the tree
until find some item you want.

In the case of parsing, we are looking through the space of all possible deriva-
tions in the grammar in order to find one or more derivations of the string to
be parsed. The graph of a grammar shows all possible leftmost derivations, in

7.2. TOP-DOWN PARSING 137

a particular order. Consider the grammar:

S—0bB | aS
B—c | aB
We can draw a graph for the grammar showing all possible (leftmost) derivations:?2.
S
S — bB S —aS
bB aS
B —c B — ab S—b S —aS
be baB abB aad
bac baaB abc abaB aabB aaaS

SN /N /N A

Any path from the root of the graph to a leaf node corresponds to a leftmost
derivation of the string labelling the leaf node.

Depth-first and breadth-first search correspond to different ways of looking
through the search tree (provided by the grammar graph) for terminal strings.
Depth-first search explores each path from the root to a leaf node in turn. It
descends first to the leftmost leaf node, then retraces its steps back a level and
descends to the next leaf node, and so on

2The graph is constructed as follows. First, take the start symbol as the root node. Then
repeatedly expand each node containing a non-terminal symbol as follows:

e Take the leftmost non-terminal in the string written at the node

e For each rule expanding the leftmost non-terminal

— Add a branch beneath the node

— Expand the non-terminal using the rule, and add the resulting sentential form as
a daughter

Repeat for as long as there are nodes containing non-terminal symbols. Obviously, for gram-
mars defining infinite languages, the graph of the grammar is infinite

138 CHAPTER 7. PARSING

AN

Depth-first search

Breadth-first search explore all the paths from root to leaves in parallel. It
hops between branches on the search tree, not descending to the nth level in
the graph until it has looked at all strings at the (n — 1)th level

Breadth-first Search

Breadth-first search can be likened to pouring ink in at the top (root node) of
the search tree, and watching it spread down level by level. Depth-first search
can be likened to turning the search on its side, and pouring ink in through
the root node. Here the ink will spread to the lowest (i.e. leftmost) leaf node
before moving up to the next leaf node.

For top-down parsing, depth-first and breadth-first search have the following
relative advantages and disadvantages:

Depth-First

7.2. TOP-DOWN PARSING 139

Against: Grammars for infinite languages will have some infinitely de-
scending branches in the graph

Depth first search can get stuck in these infinite branches, and never get
back to search the rest of the graph

Against: In other words, depth-first search can (a) fail to terminate, and
(b) is not guaranteed to find a parse even if one exists.

For: Depth first search will usually find an analysis, if there is one, quicker
than breadth-first.

(Unless of course it fails to terminate because of hitting an infinite branch)

Uses: Most useful if you want to find the first (of possibly many) parses
of a sentence

Breadth-First

Against: Because it is building up all analysis in parallel, it can be
computationally more expensive than depth-first

For: Infinite branches do not cause non-termination and failure to explore
all of the search space.

For: In other words, if there is a parse it will (eventually!) find it

Uses: Most useful if you want to find all possible parses for a sentence

The potenital non-termination of top-down depth-first parsing is especially crit-
ical if the grammar contains any left-recursive rules. Consider the graph for the
following grammar for the language a™

S—Sa | a

Graph for grammar:

aaaaad

140 CHAPTER 7. PARSING

Here, the leftmost branch is infinitely descending (the leftmost branch because
of the left recursive rule). Any attempt to search the graph depth-first will
therefore get caught up in trying to pursue the leftmost branch to its end, and
will never backtrack out of this in order to find the terminal strings on other
leaf nodes.

7.3 Bottom-Up Parsing

In top-down parsing, the idea is to begin with the start symbol of the grammar,
and repeatedly apply grammar rules to expand out sentential forms until you
get to the terminal string you want. In bottom-up parsing, the idea is to start
with the terminal string and repeatedly apply grammar rules in the opposite
direction to reduce the string, until eventually it is reduced to the start symbol
of the grammar.

To illustrate the difference, let us look again at the grammar we used to illustrate
top-down parsing:

S — AC
A—aA | b
C—cC | c

and suppose that we want to parse the string aabc.

The top-down parse will apply rules top-down to expand out non-terminal sym-
bols as follows:

Top-Down

String Rule

S S — AC
AC A—aA
aAC A —aA

aaAC A —b
aabC C —c¢
aabc

The bottom-up parse will apply rules in the opposite direction to reduce (sub)sequences
of symbols into single non-terminal symbols:

Bottom-Up

String Rule
aabc C —c
aabC A —b
aaAC A — aA
aAC A —dA
AC S — AC
S

7.3. BOTTOM-UP PARSING 141

7.3.1 Shift-Reduce Parsing

The reverse order, bottom-up derivation for the string aabc shown above does
not quite accurately reflect the way in which bottom-up parsing is normally
carried out. The standard algorithm is shift-reduce parsing. Before formally
describing the algorithm, we will introduce it by means of an example showing
how the two basic operations of reduce and shift work.

Reducing is the process of taking a string of symbols matching the right hand
side of a grammar rule, and reducing them to the single symbol on the left hand
side of the rule. Hence the following is a reduction via the rule A — aA

A—aA
aagA =27 A

The main part of bottom-up parsing is to repeatedly reduce strings of symbols
in this way.

Shifting comes into play as follows. The parser maintains the string to be
parsed in two parts: a reduced part and an unreduced part The first part
only is subject reduce operations. The second, unreduced part consists only of
terminal symbols. A terminal symbol may be shifted, one at a time, from the
start of the undreduced part onto the end of the reduced part.

Shift-reduce parsing starts by placing the entire string to be parsed into the
unreduced part. Terminal symbols are shifted, one at a time, onto the end of
the (initially empty) reduced part. Reductions are carried out only on the final
suffixes of the reduced string.

Here, for example, is a shift reduce parse of the string aabc using the grammar
shown previously, showing the order in which shift and reduce operations are
interleaved.

Reduced Unreduced Operation

€ aabc Shift

a abc Shift

aa be Shift

aab c Reduce: A — b
aaA c Reduce: A — aA
aA c Reduce: A — aA
A c Shift

Ac € Reduce: C — ¢
AC € Reduce: S — AC
S € Parsed

Note how reductions only ever apply to the final part of the reduced string.
Parsing terminates successfully if the reduced string comprises just the start
symbol of the grammar, and the unreduced string is empty.

142 CHAPTER 7. PARSING

7.3.2 Non-Deterministic Shift-Reduce Parsing

As with top-down parsing, bottom-up (shift-reduce) parsing is usually non-
deterministic: it is not normally possible to correctly decide at each point what
should be done — either shift or reduce, and if reduce, with which rule.

This non-determinism manifests itself in two types of conflict

e Shift-reduce conflicts:
These occur when there is a choice between reducing of or shifting the
next non-terminal symbol.

e Reduce-reduce conflicts:
These occur when there is a choice of reducing using two or more different
rules.

The following grammar can be used to illustrate these conflicts:
S—aA | aAA | C
A—b
C — Ab

Consider parsing the string abb:

Reduced Unreduced Operation

€ abb Shift
a bb Shift
ab b Reduce: A — b
shift-reduce conflict
aA b Shift
shift-reduce conflict: S — aA
aAb € Reduce: A — b
reduce-reduce conflict: C — Ab
aAA € Reduce: S — aAA
S € Done

The sequence of operations shown is the one that leads to a successful parse,
but alternative (unsuccessful) sequences are possible at all the points where a
conflict is flagged.

To deal with these conflicts, we again make use of a stack or a queue to record
alternative choice points. Below is the algorithm for shift-reduce parsing (to
minimise clutter, we leave out the part that actually constructs the derivation
tree):

7.4. LL(K) PARSING 143

Shift-Reduce Parsing

parse(p)

1. Reduced := ¢; Unreduced := p;
StackOrQueue := empty;
ADD((Reduced,Unreduced), StackOrQueue);

2. REPEAT UNTIL either (i) Reduced = s and Unreduced = e,
or (ii) StackOrQueue is empty:

(a) REMOVE((Reduced,Unreduced), StackOrQueue);

(b) FOR EACH rule A — r1...7y, such that Reduced = ury ... 7,
ADD((uA, Unreduced), StackOrQueue);
(i.e. do all possible reductions)

(c) IF Unreduced # e,
i.e. Unreduced = av where a is a non-terminal
THEN ADD((Reduceda, v), StackOrQueue);
(i.e. shift)

3. IF Reduced = s and Unreduced = €
RETURN parse tree (constuction of which is not shown)
ELSE FAIL

It is worth noting that depth-first bottom-up parsing does not run into the
same the same termination problems with left recursion that top-down parsing
does. (Why?)

7.4 LL(k) Parsing

In general, context free grammars are not amenable to deterministic top-down
parsing. But a subclass of context free grammars, known as LL(k) grammars?,
can be deterministically parsed. This means that each point in the parse, it
is possible to decide exactly which rule needs to be used to expand out the
leftmost non-terminal symbol. This decision is made on the basis of looking

ahead at the next k terminal symbols in the string to be parsed.

7.4.1 Lookahead

The following grammar illustrates how k-symbol lookahead can be used to select
the correct rule for parsing. In this case, k£ = 1.

S—aS | cA

3The “LL” stands for Left-to-right scanning of the input string to produce a Leftmost
derivation.

144 CHAPTER 7. PARSING

A—DbA | ¢B | €
B—c¢B|alce

Top-down parsing with a one symbol lookahead is deterministic for the string
acbb. Note that at each point in the parse, we will have generated a sentential
form with a terminal prefix occurring before the leftmost non-terminal. Thus
in a sentential form like acA, the terminal prefix is ac. By comparing this to
the string to be parsed (acbb), we can see that the next terminal symbols to
come are bb, and the first of these, b, constitutes the one word lookahead

Prefix Lookahead
Derivation Rule Generated Symbol
S =as S —aS € a
= acA S — cA a C
= acbA A — bA ac b
= acbbA A — bA ach b
= acbb A—¢ acbb €

For example, at the first step of the derivation, the one symbol lookahead allows
us to ignore the rule S — cA for expanding .S. This is because we need to expand
the leftmost non-terminal, S, to a string beginning with an a (the lookahead
symbol). But the rule S — cA will only generate strings beginning with a c.
Similarly at the second step, we can discount the rule S — a.S since the next
lookahead symbol is a ¢, but this rule cannot generate a string beginning with
ac.

Other grammars may require looking ahead by more than one symbol to select
the correct rule. Consider three alternative grammars that generate a’*lbc':

G1, G2 and G3.

Gl: S — aadAc
A — aAc
A—b

G2: S —aA
A — Sc
A — abc

G3: S —aSe

S — aabc

In grammar G1, we need to use lookahead to see which of the two rules expand-
ing A to use. The two rule both introduce terminal symbols on the extreme
lefthand side of of the string the rewrite A to. Moreover, they are distinct
terminal symbols, a and b. Hence for G1 it is only necessary to look ahead by
one symbol to decide which rule to use: G1 is an LL(1) grammar.

In grammar G2 there are again two rules rewriting A. But the first of them,
A — Se, does not directly introduce a leftmost terminal. However, if we look
at the rule expanding S — aA, we see that the S always expands out to have
an initial a. If we look at ways of deriving strings from A we get

7.4. LL(K) PARSING 145

A—S S A A—S S A
1. A=8°89¢ =2 g Ac =8 aSce =%" aaAce = . ..

A—S S A A—ab
2. A =8 Se =X aAc =2 aabec

3. A Agfc abc

This shows that all terminal strings derivable from A begin with an a, whichever
of the rules A — Sc and A — abc are used. However, all derivations that start
by using the rule A — Sc (derivations 1 and 2) generate strings beginning
with aa, whereas derivations using A — abc generate strings beginning with
ab. Hence, by looking two symbols ahead we can determine which of the rules
A — Scand A — abc to use: G2 is an LL(2) grammar.

For grammar G3 we need to lookahead three symbols to decide which of the
rules expanding S to choose. Again, if we look at possible derivations from S
we get

S—aS S S S S

1. S7=ZX° 4S5c¢ "=X° qaScec "==%° aaaSccc = . ..
S S S S S b

2. §7=XaSc "= aaSce " =2"° aaaabcee
S S S b

3. §7=X°aSc "= qaabee

—aab
4. S’S:agcaabc

We can see that all derivations that start by applying the rule S — aSc generate
strings beginning with at least three as. However, derivations with the rule
S — aabc produces strings beginning with aab. Hence looking ahead three
symbols is enough to determine which rule to use: G3 is an LL(3) grammar.

The grammars shown so far are strong LL(k) grammars. This means that we
only need to look at the next k terminal symbols to be derived, in order to
select the correct rule for expanding the leftmost non-terminal. Below we will
introduce a wider class of LL(k) grammars, but first we must be more formal
about the notion of lookahead.

7.4.2 Lookahead Sets

Given some grammar, we can define the lookahead set LA(N) for some non-
terminal symbol N as follows

Lookahead set for non-terminal N: LA(N)
Let Grammar = (NonTerms, Terms, Start, Rules)

LA(N) = {x | Start = uNv = uz, where ux € Terms*}

146 CHAPTER 7. PARSING

In other words, take all the sentential forms of the grammar, u/Nv, where N is
the leftmost non-terminal, and gather together all the terminal strings that Nv
can be expanded out into.

We can give an analogous definition for the lookahead set associated with a
particular grammar rule

Lookahead set for rule: LA(N — w)
Let Grammar = (NonTerms, Terms, Start, Rules)

N—w

LA(N — w) = {z | Start = uNv = uwv = uz, where ux € Terms*}

This is just a subset of the lookahead set for the symbol N, were the first rule
used to generate terminal strings from Nwv is the rule N — w.

It is usual to truncate the lookahead sets associated with non-terminals and
rules. That is, we only want to look at the first & symbols of any terminal
string in the lookahead set. We define a truncation operation on sets of strings
X, truncg(X), as follows:

trunck(X) = {u| u e X & length(u) < k, or
uwv € X & length(u) =k}

We then apply the truncation operation to the lookahead sets defined above to
get k-length lookahead set. That is

LAR(N) = tuncg(LA(N))

LAR(N — w) = tuncg(LA(N — w))

7.4.3 Strong LL(k) Grammars and Parsers

We can now define what it is for a grammar to be stong LL(k). For each non-
terminal symbol IV, the k-length lookahead sets for the different rules expanding
N must be disjoint. That is

Definition of Strong LL(k) Grammar

A grammar is strong LL(k) if for each non-terminal N:
for any pair of rules N — w;, N — wj:

The idea behind this is that you only need to look at the next k£ symbols in the
string to be parsed to uniquely select the correct rule to expand the leftmost
non-terminal N. The top-down parsing alogorithm for strong LL(k) grammars
is thus

7.4. LL(K) PARSING 147

Deterministic parser for strong LL(k) grammars:
parse(p)

1. SentForm := S;

2. REPEAT

(a) Let Sentform == uLv, where L is the leftmost non-terminal;
(b) Let p == ux;

(¢) k-Lookahead := truncg(x);

(d) Find rule L — w such that k-Lookahead € LAg(L — w);

(e) SentForm := wwwv

UNTIL either
(a) Sentform = p, or
(b) k-Lookahead ¢ LA(L)

3. IF Sentform = p SUCCEED
ELSE FAIL

Some useful facts about strong LL(k) grammars are (see if you can work out
why they are true):

1. If G is strong LL(k) for some k, G is unambiguous

2. If G has a left recursive non-terminal, then G is not strong LL(k) for any
k.

3. All LL(1) grammars are strong LL(1)

As stated previously, not all LL(k) grammars are strong LL(k). We now turn
to this wider class of grammar.

7.4.4 LL(k) Grammars and Parsers

Recall that a strong LL(k) grammar is one where the k-length lookahead sets
for all the rules expanding any given non-terminal N are disjoint. With merely
LL(k) grammars, the lookahead sets for some rules expanding the same non-
terminal N may overlap. However, by looking also at the sentential form in
which NV occurs, it is still possible to select a single rule.

148 CHAPTER 7. PARSING

Example Here is an example of an LL(2) grammar that is not strong LL(2):

S — Aabd | cAbcd
A—a | b e

We can construct the length 2 lookahead sets for the rules as follows

o LAy(S — Aabd) = {aa,ab}

— 55242 40bd 422 qabd

— 592495 4 0bd 222 abbd

— 592495 4 ubd A= abd

LAy(S — cAbcd) = {ca, cb}

- S Sﬁﬁmd cAbcd Aéf cabed

— g 9zedbed L aped A=2 chbed

— g5z L Abed A= ched

LA3(A — a) = {aa,ab}

— Aabd 22¢ qabd
— cAbed A28 cabed

LAy(A — b) = {ba, bb}

— Aabd 222 babd

— cAbed A2 cbbed

LAy(A — €) = {ab,bc}

— Aabd =6 abd

— cAbcd ASf cbed

Note that the lookahead sets for the rules A — a and A — € overlap: they both
contain ab. Thus the grammar is not strong LL(2). *

However, if you look more closely at the way the lookahead sets for these two
rules are put together, you will notice the following. The rule A — a only gives
rise to the string ab when it is expanded in the context of the sentential form
cAbcd. The rule A — € only gives rise to the string ab when expanded in the
context of the different sentential form Aabd

Thus provided we also look at the sentential form within which we want to
expand an A to produce an initial ab, we can still pick just one rule to do it.

*As it happens, the grammar s strong LL(3).

7.4. LL(K) PARSING 149

7.4.5 Local Lookahead and Parsing

For LL(k) grammars we need to define lookahead sets for rules that are rel-
ativised to the sentential forms in which the leftmost non-terminal is being
expanded. We will call this relativised lookahead set the local lookahead set

Definition of Local Lookahead

Let N — w be a rule,
and Start = uNv where N is the leftmost non-terminal

LA(N — w, uNv) = {z | uNv = uz, where ux € Term*}

This definition should be compared with the earlier one for (global) lookahead
for a strong LL(k) grammar:

LA(N — w) = {z | Start = uNwv Y= ywo 2 ua, where ux € Terms*}

The global lookahead for a rule is basically the union of all local lookaheads for
different sentential forms uNwv.

A grammar is LL(k) if the local lookaheads for all rules expanding any non-
terminal are disjoint (note that as before, we truncate the lookahead sets to get
k-length sets):

Definition of LL(k) Grammar

A grammar is LL(k) if for each non-terminal N:
For each sentential form Start = uNwv:
For any pair of rules N — w;, N — wj:

LAR(N — w;,uNv) N LAL(N — wj,uNv) = {}

The algorithm for parsing with an LL(k) grammar is exactly like that for parsing
with strong LL(k) grammars, expect that rules are chosen on the basis of both
the lookahead string and the current sentential form:

150 CHAPTER 7. PARSING

Deterministic parser for LL(k) grammars:
parse(p)

1. SentForm := S;

2. REPEAT

(a) Let Sentform == wLv, where L is the leftmost non-terminal;
(b) Let p == ux;

(¢) k-Lookahead := truncg(x);

(d) Find rule L — w such that k-Lookahead € LA (L — w,uLv);

(e) SentForm := wwwv

UNTIL either
(a) Sentform = p, or
(b) k-Lookahead ¢ LA(L)

3. IF Sentform = p SUCCEED
ELSE FAIL

However, one major difference is that while it is feasible to compute in advance
the global lookaheads for all rules in a strong LL(k) grammar, it is not feasible
for local lookaheads in an LL(k) grammar. This is because most grammars
will derive an infinite number of sentential forms uNw, so each rule will have
an infinite number of local lookahead sets. Instead, the lookahead sets are

computed during parsing. We now turn to an efficient way of doing this using
FIRST and FOLLOW sets.

7.4.6 FIRST and FOLLOW Sets

We will first define truncated FIRST and FOLLOW sets

7.4. LL(K) PARSING 151

FIRSTy(N)
set of k-length prefixes of terminal strings derivable from N

FIRST(N) = truncy({z | N = z,z € Term*}
where N is a single non-terminal symbol

FIRSTy(uv)
set of k-length prefixes of terminal strings derivable from wv

FIRST,(w) = truncy({z | uwv = z,z € Term*}
where uv is some string of terminal and/or non-terminal symbols

FOLLOWy(N)
set of k-length prefixes of terminal strings that can follow strings derived
from N in sentential forms.

FOLLOW(N) ={z | S = uNv & 2 € FIRSTy(v)}

We can represent the FIRST and FOLLOW strings for a non-terminal N in an
arbirary derivation as follows:

First —— Follow —

The FIRST string is the first & words derivable from N. The FOLLOW string
is the first £ words following the string derived from N. First and follow sets
gather together these strings for all posssible derivations in the grammar.

Lookahead sets can be defined in terms of first and follow sets:

152 CHAPTER 7. PARSING

LAy(N) = truncy(FIRST,(N)FOLLOW,(N))

LAK(N — w) = truncg(FIRSTy(w)FOLLOW}(N))

LAk (uNv) = FIRSTy(Nv)
where S = uNv and u € Term*

LAg(uNv,N — w) = FIRST}(wv)

Having defined global (strong LL) and local (LL) lookahead sets in terms of
truncated FIRST and FOLLOW sets, it remains to present algorithms for cal-
culating the FIRST and FOLLOW sets. The algorithms are relatively straight-
forward, and the details do not need to be committed to memory

Algorithm for calculating FIRSTy(N)
1. FOR each a € Term DO F'(a) = {a};
2. FOR each N € NonTerm DO

) {e} if N—eisarule
F(N) = { {N} otherwise

3. REPEAT

(a) FOR each N € NT DO F/(N) = F(N);

(b) FOR each rule N — wju2...u, with n > 0 DO
F(N) = F(N) U truncg(F'(u1)F'(uz2) ... F'(uy));

UNTIL F(N) = F'(N) for all N € NT

4. FIRST,(N) = F(A)

7.5. LR(K) PARSING

153

Algorithm for calculating FOLLOW},(N)
Assume that we have the FIRST)(N) sets for every N € NonTerm

1. INIT: FL(S) = {e}; FOR each N € (NT — {S}), DO FL(N) = {};
2. REPEAT

(a) FOR each N € NT, DO FL'(N) = FL(N)

(b) FOR each rule N — w, where w = ujusy...u, € V*, DO
o L=FL'(N);
o IF u, € NT, THEN FL(uy) = FL(up) U L;
e FORi=n—-1TO 1DO

L = truncg(FIRSTy(ui+1)L);
IF U; € NT THEN FL(u;) = FL(u;) U L;

UNTIL FL(N) = FL'(N) for every N € NT

3. FOLLOW;(N) = FL(N)

7.5 LR(k) Parsing

We now turn to deterministic bottom-up parsing, or LR(k) parsing. Here,
the “LR” stands for “Left to right scanning of the input string to produce
a Rightmost derivation”. Once again, k stands for the number of words we
lookahead in the input string, but we will mainly focus on deterministic parsing

that uses no lookahead.

Recall that to make top-down parsing deterministic, we need some sort of oracle
to select the correct rule to expand each leftmost non-terminal. With bottom-
up parsing we need an oracle that says whether to (a) shift or reduce, and (b)
if reduce, with which rule. The oracle thus resolves any shift-reduce or reduce-
reduce conflicts. For LR(0) grammars, the oracle is able to give its answer

without using lookahead.

In this section, we will first introduce the idea of LR(0)-contexts and viable

prefixes. We will then show how a finite state automaton can provide
oracle required for deterministic shift reduce parsing. And finally, we will
a few words about LR(k) parsing where k& > 0.

7.5.1 LR(0) Contexts and Viable Prefixes
LR(0) Contexts
Suppose that a grammar permits a rightmost derivation

S = uRv = wwv = zv

the
say

154 CHAPTER 7. PARSING

(where zv € Term*). That is, there is at least one way in which a sentence
can be derived by applying the rule R — w to the sentential form uRv. Cor-
responding to this component of a rightmost derivation, there will also be a
reduction step in a shift-reduce parse:

Reduced Unreduced Operation

€ TV ...
uUwW v Reduce: R — w
uR v
S €

What this means is that there is at least one parse where the rule R — w can
be applied to reduce the string uw, and which leads finally to a reduction to
the start symbol. (Not all parses applying R — w to uw are guaranteed to
succeed: it all depends on what words are remaining in v).

uw is an LR(0)-Context for R — w

iff there is a rightmost derivation
S = uRv = uwv = v

Where uw € (Term U NonTerm)*, xv € Term*.

This means that in a bottom-up shift-reduce parse, if you encounter uw as the
reduced string, then it is sensible to attempt a reduction with the rule R — w.

Suppose, on the other hand, that uw is not an LR context for R — w. This
means that there is no successful rightmost derivation that applies the rule
R — w to a string wRv. Thus, there is no point in attempting to reduce
uw with R — w in a shift-reduce parse. Although the rule matches locally,
permitting a reduction to uR, there will still be no possible derivation in the
grammar including such a step.

Suppose that that we knew the contexts for all the rules in the grammar. Then
at any point in a shift-reduce parse where a reduction is possible (i.e. we have
a string uw where w matches the RHS of some rule), we can eliminate those
rules with which it is pointless to attempt a reduction: if uw is not a context
for N — w, even though the rule matches, do not reduce with it.

Moreover, if the LR contexts for all the rules are disjoint (any string uw is a
context for at most one rule), then whenever a reduction is possible, there is
only one rule that it is sensible to reduce with. That is, we can use the (disjoint)
contexts to resolve reduce-reduce conflicts.

Viable Prefixes

Suppose that u is the prefix of some LR(0) context uw. Then we say that u is
a viable prefiz of the grammar

7.5. LR(K) PARSING 155

Viable Prefix

If uw is an LR(0) context for a rule R — w,
then any prefix (initial substring) of uw is a viable prefix of R — w

If, while doing a shift-reduce parse, we encounter a reduced string that is not
a context for any rule, but is the viable prefix for one (or more) rules, then it
is sensible to shift. After this, depending on what words are shifted on, it may
be possible to do a reduction. (Again, there is no guarantee of this: it depends
on what words get shifted onto the end of the reduced string).

It is possible, with some grammars, for a context of one rule to be a viable
prefix for another. In such cases we are left in a shift-reduce quandary: either
reduce with the rule whose context it is, or shift in the hope of an eventual
reduction with the rule whose prefix it is. But if no context for any rule is the
prefix for any other, then all shift-reduce conflicts can be resolved.

7.5.2 Definition of LR(0) Grammar

We have already hinted at the definition of an LR(0) grammar in describing
contexts and viable prefixes: disjoint contexts resolve reduce-reduce conflicts,
and no contexts serving as prefixes resolve shift-reduce conflicts.

Definition of LR(0) Grammar
A grammar is LR(0) iff

(a) Contexts for all rules are disjoint

Hence: for a given reduced string/context, at most one sensible rule
to reduce with.

(b) No context for one rule is a viable prefix for another rule

Hence: for a given reduced string, no choice between reducing now or
shifting some more to reduce later

Note: not all context free grammars are LR(0).

Although we have defined what LR(0) contexts and viable prefixes are, we have
said nothing about how they can be recognized. We now turn to this.

7.5.3 LR(0) Machines

An LR(0) machine is a (deterministic) finite state automaton that accepts
strings of terminal and non-terminal symbols that are either LR(0) contexts
or viable prefixes. Moreover, for those strings that are LR(0) contexts, it says
which rule (or rules, if the grammar is not LR(0)) the string is a context for.

The LR(0) machine is used as an oracle in deterministic, LR(0), shift-reduce
parsing. At each point in th parse, the current reduced string is fed as input

156 CHAPTER 7. PARSING

to the LR(0) machine. The machine then decides to shift or reduce, and which
rule to reduce with. In particular, the LR(0) machine can:

(a) Terminate, identifying a context for a (single) rule
REDUCE

(b) Terminate, identifying a viable prefix for some rule or rules
SHIFT

(c) Not terminate successfully
FAIL Parse

LR(0) machines can be constructed for any context free grammar, even if the
grammar is not LR(0). Moreover, inspection of the LR(0) machine can be used
to determine whether or not the grammar is LR(0). The construction first
produces a non-deterministic machine from the rules of the grammar, and then
applies the standard technique to determinise the machine.

Non-Deterministic LR(0) Machines: Dotted Rules

The states of the non-deterministic LR(0) machine are provided by dotted rules
(or LR(0)-items) taken from the grammar rules. These are obtained by putting
a single dot at all possible positions on the right hand side of a rule. So, for
example, a rle with three symbols on its RHS gives rise to four dotted rules:

N — aBc gives four dotted rules:

{N — .aBe, N — a.B¢, N — aB.c, N — aBc.}
More formally:

1. If A — wv is a rule, then A — w.v is an LR(0) item

2. If A— eis arule, then A — . is an LR(0) item

Note that an item A — w. (with the dot at the end) is called a complete item.

Each item / dotted rule serves as an (accepting) state in the non-deterministic
LR(0) machine. In addition to these, there is a single extra start state, so. The
transitions between states are defined as follows

Transition Function for Non-Deterministic LR(0) Machine

1. 0(qo,¢) ={S — .w| S —weR}

2. §(A — u.av,a) = {A — ua.v}, a € Term

3. (A —u.Bv,B) ={A — uBw}, A€ NonTerm
(

4. 5(A - u.Bv,e)={B — .w | B —w € R}

7.5. LR(K) PARSING 157

In other words
1. There is an empty transition from the start state so to every state S — .w

corresponding to a rule expanding the start symbol S with the dot at the
beginning.

S — w

o
|

2. For any state N — w.xv where z is a terminal or non-terminal symbol,
there is an x-transition to the state that moves the dot one place further
along:

N — w.zv N — uz.v

g
l&
g

3. For any state N — u.Xv where X is a non-terminal symbol, add further
empty transitions to all the states expanding X where the dot is at the
beginning, X — .w:

N — u.Xv X —

X — w,

i
)k

Example To illustrate the construction of a non-deterministic LR(0) ma-
chine, we will construct machines for the grammar:

(which happens to be LR(0)).

158 CHAPTER 7. PARSING

Non-Deterministic LR(0) Machine

Rule LR(0)-Items

S—AB {S— .AB, S— A.B, S— AB.}

A— Aa {A— .Aa, A— Aa, A— Aa.}

A—a {A— .a, A—a}

B —bBa {B— bBa, B — b.Ba, B— bB.a, B — bBa.}
B — ba {B — .ba, B — b.a, B — ba.}

S—.AB A—a|l——>| A—a

6 -
’ T .
A A a
A:>.Aa — | A—Aa |— | A—Aa.

B—b.a|—— | B—bal.

B
S—A.B S—AB
I© O\
B—.bBa
b a
/ P

B—b.Ba

lB

B—bB.a |—— | B—bBa4g|

Note that in both the machines drawn, all states are accepting states, though
we have neglected to draw double boxes around them.

Determinising LR(0) Machines

Using the standard technique for determinising finite state machines, the non-
deterministic LR(0) machine can be determinised. This yields an automaton
defining exactly the same language as before. What is this language? The
machine accepts all strings that are either LR contexts or viable prefixes.

Taking the example above, we can determinise the machine to get the following

7.5. LR(K) PARSING 159

Determinised LR(0) Machine

S — .AB
_ | A=A

A — .Aa

Y
i
l
S

A

S— AB
S—AB. |« | B— .bBa
B — .ba
A— Aa

A — Aa.

Y

B — b.Ba
b B — .bBa
B — .ba
B —b.a

l B

B —bB.a

B — ba.

Y

Y

B — bBa.

The machine can be run on any sequence of terminal and/or non-terminal
symbols from the grammar.

(a) If the machine successfully terminates in a state containing a complete
item (i.e. a rule with a dot at the end), then the sequence of terminals
and/or non-terminals is an LR(0) context for the rule.

Hence, reduction with the rule is a possibility.
For example, running the machine on Aba terminates in state {B — ba.},

indicating a reduction via the rule to AB.

(b) If the machine successfully terminates in a state containing a rule where
the dot is not at the end, then the sequence of terminals and/or non-
terminals is a viable prefix for the rule.

Hence, further shifting may lead one to the context for a rule.

For example, running the machine on Ab terminates in state {B —

160 CHAPTER 7. PARSING

b.Ba,B — .bBa,B — .ba, B — b.a} indicating that Ab is a prefix for
the rules B — bBa and B — ba, and that a shift should take place.

(c) If the machine does not successfully terminate (i.e. gets stuck in a state
with remaining input but no possible transitions), then the sequence of
symbols is neither a context nor a viable prefix.

For example, running the machine on b gets stuck in the initial state.

Looking at the machine above, we can see that the grammar is LR(0). The
disjointness of contexts corresponds to the fact that there are no states in the
determinised machine containing more than one complete item. That no context
for one rule is a viable prefix for another corresponds to the fact that there are
no states mixing complete and incomplete items. In other words, we can tell the
grammar is LR(0) by the fact that all states containing complete items contain
only a single complete item.

If a state contained two complete items, this would indicate that the contexts
for those two rules overlapped. If a state contained a complete item plus some
incomplete items, this would indicate that the context for one rule is a prefix for
another. Note however, it is permissible for a state to contain several different
incomplete items: a string can be a viable prefix for several different rules, even
in an LR(0) grammar

LR(0) Machines for Non-LR(0) Grammars

It is important to note that LR(0) machines can be constructed for any context
free grammar, whether or not the grammar is LR(0). Indeed, the construction
of the determinised LR(0) machine can be used to see whether or not the
grammar is LR(0).

As an example, here is a non-LR(0) grammar with its dotted rules shown:

Rule LR(0)-Items

S—aA {S— .aA S—aA S—adA}

S —aAA {S— .aAA, S —a.AA, S —aA A S —aAA}
S—C {§—.C, S—C.}

A—b {A—.b, S—b}

C— A {C— .Ab, C — Ab, C — Ab.}

And overleaf are the non-deterministic and non-deterministic LR(0) machines:

7.5. LR(K) PARSING 161
LR(0) Machines for non-LR(0) Grammar
Non-deterministic

S’H aAA—>' SHaAA —>' SHaAA . SHaAA

\

So
A—>aA

oo] ——5-¢ |

€

Determinised
A
S — .aAA | C — Ab
— o S— .dA
C — .Ab | S —=C
A— b
b
a
Y
S — a.AA ;
S—aA | || A—D
A— b
A
b
Y
S — aA.A A
S — aA. > S — adAA.
A— b

C — Ab.

Note the state in the determinised machine labelled

{S —aA. A, S —aA., A— b}

162 CHAPTER 7. PARSING

This mixes a complete item, S — aA. with two incomplete items. A string like
aA, which terminates in this state is thus both a context for the rule S — aA,
and also a prefix for the rules S — aAA and A — b. This shows that the
grammar is not LR(0).

7.5.4 Deterministic Parsing with LR(0) Machines

Let us go back to a grammar that is LR(0), and its determinised LR(0) machine.

Determinised LR(0) Machine

Grammar:
S — AB
A—Aa | a
B —bBa | ba

S — .AB

Y

A — Aa

S — AB
S—AB. |« | B— .bBa
B — .ba
A— Aa

A — Aa.

Y

B — b.Ba
b B — .bBa
B — .ba
B —b.a

l B

B — bB.a

B — ba.

Y

Y

B — bBa.

We can use the machine as an oracle for a shift-reduce parser. The algorithm for
a deterministic LR(0) parser is as follows, where §* is the extended transition

7.5. LR(K) PARSING 163

function of the grammar’s deterministic LR(0) machine, and sy its start state:

LRO-parse(p)
1. Reduced := €; Unreduced := p
2. REPEAT UNTIL Reduced = S:

(a) IF 6*(so, Reduced) = {A — w.}, THEN reduce with rule A — w
(b) ELSEIF 6*(so, Reduced) contains A — y.z, THEN shift
(c) ELSE 6*(so, Reduced) is undefined, THEN FAIL

We can illustrate this algorithm by doing a deterministic shift reduce parse of
the string aabbaa with the grammar and machine shown

Reduced Unreduced FSA Result Action
1 e aabbaa 0*(s0,€) = {S — .AB,A — .a,A — .Aa} shift
a abbaa 0*(s0,a) = {A —a.} reduce
3 A abbaa 5*(s0, A) = {A— A, S — AB, shift
B — .bBa,B — .ba}
4 Aa bbaa 5*(s0, Aa) = {A — Aa.} reduce
5 A bbaa 5*(s0, A) = {A— Aa,S— AB, shift
B — .bBa,B — .ba}
6 Ab baa d*(s0, Ab) = {B — .bBa, B — b.Ba, shift
B — .ba,B — b.a}
7 Abb aa d*(s0, Abb) = {B — .bBa, B — b.Ba, shift
B — .ba,B — b.a}
8 Abba a 5*(s0, Abba) = {B — ba.} reduce
9 AbB a 5*(sg, AbB) = {B — bB.a} shift
10 AbBa € 0*(sp, AbBa) = {B — bBa.} reduce
11 AB € 0*(s0, AB) = {S — AB.} reduce
12 S €

Note, for example, how at step 4 a reduce-reduce conflict between the rules
A — Aa and A — a is resolved.

7.5.5 LR(k) (k> 1) Grammars

LR(0) grammars are in general to restrictive to define programming languages.
However, most programming languages are deliberately designed to be LR(1).
These can be deterministically parsed provided that the shift-reduce oracle
has access not only to the reduced part of the string, but also to the next
word (or k words) remaining in the input. It is possible to produce LR(1)
machines, somewhat like LR(0) machines, that recognize LR(1)-contexts and
viable prefixes.

164 CHAPTER 7. PARSING

We will not describe the construction of LR(1) machines here (see Sudkamp,
Chap. 16 for more information). Instead, we will just define what an LR(1)
context is

LR(1) Context

A string uwz is an LR(1) context for a rule R — w iff there is a rightmost
derivation
S = uRv = uwv = v

where xv € Term™ and z is the first symbol of v, or e if v = ¢

In other words, if you have a reduced string of uw in a shift-reduce parser, and
the next symbol to shift is z, then it is sensible to attempt a reduction with the
rule R — w.

A grammar is LR(1) when (a) the LR(1) contexts for all rules are disjoint, and
(b) no context for one rule is the prefix of another context.

The following grammar is not LR(0), but is LR(1):

S— A | Be
A—aA | a
B—a | ab

Consider four different derivations

Reduced Unreduced Operation | Reduced Unreduced Operation
€ abc Shift € ac Shift

a be Shift a c Reduce

ab c Reduce B c Shift

B c Shift Bc € Reduce
Bc € Reduce S

S

Reduced Unreduced Operation | Reduced Unreduced Operation
€ aaa Shift € a Shift

a aa Shift a € Reduce

aa a Shift A € Reduce
aaa € Reduce S

aaA € Reduce

aA € Reduce

A € Reduce

S

Note that when the parser has the reduced string a, there are three possible
actions

1. Reduce with A — a

2. Reduce with B — a

7.6. SUMMARY 165

3. Shift to obtain either a A or ab

The second stage in all the parses above involves scanning a reduced string a
and choosing the appropriate operation. Which of the above three operations is
appropriate can be determined by looking at the next symbol in the unreduced
string:

Reduced Next Word Operation

a € Reduce with A — a
a a Shift
a b Shift
a c Reduce with B — a

This is the essence of LR(1) parsing.

Unix provides a utility, yacc (standing for “yet another compiler compiler”)
that will automatically construct an LR(1) machine for a grammar, and report
on remaining possibiilties for shift-reduce and reduce-reduce conflicts if the
grammar is not LR(1).

7.6 Summary

This has been a lengthy chapter, but only begins to cover some of the aspects
concerned with parsing context free grammars. We have covered

Top-Down vs Bottom-Up (shift-reduce) parsing

Depth-first vs Breadth-first search

Deterministic, LL(k), top-down parsing

Deterministic, LR(k), bottom-up parsing

Having absorbed the material of this chapter, you should ensure that you are
able to (i) perform depth-first or breadth-first top-down parses, (ii) perform
shift-reduce parses and recognize potential shift-reduce and reduce-conflicts,
(iii) describe what makes a grammar LL(k), and (iv) describe what makes a
grammar LR(0) and how to detect this condition.

Chapter 8

Pumping Lemma & Closure
Properties

In this chapter we look at the pumping lemma for context free languages, and
then at a few facts about how context free languages can (and cannot) be
combined to form other context free languages

8.1 The Pumping Lemma

The pumping lemma for context free languages is similar to that for regular
languages. It capitalises on the fact that automata for CFLs, push-down stack
automata, have only a restricted stack-like memory. There are certain things
a single stack cannot do, and hence certain languages that cannot be context
free.

In particular, all context free languages are infinite (since all finite languages are
regular). This infiniteness is obtained (in the grammar) by means of recursive
rules, e.g.

S — aSb | ab

Limitations on the stack like memory of PDAs mean that if a recursion can occur
once, then it can occur any number of times. That is, context free languages
cannot place limits on the number of times a recursion can occur in a derivation.

8.1.1 Statement of Pumping Lemma

The pumping lemma for CFLs is formally stated as follows

166

8.1. THE PUMPING LEMMA 167

Pumping Lemma for Context Free Languages

If L is a CFL, then there is a number k such that any string z € L where
length(z) > k can be written as z = uvwxy where

1. length(vwz) < k
2. length(v) + length(z) > 0, and

3. wv"wax™y € L for any n > 0

As with the pumping lemma for regular languages, this is more often written in
the negative form, and used to show that a given language is not context free:

Negated CFL Pumping Lemma

L is not a CFL if there is a string z € L where length(z) > k,
such that for all possible decompositions of z = uvwzy, where

1. length(vwz) < k
2. length(v) + length(z) > 0
there is some number n such that

uw"wx"y & L

8.1.2 Applying the Pumping Lemma

We will illustrate the use of the CFL pumping lemma to establish that the
language a™b"c" (n > 0) is not context free.

First we have to pick on a string of length greater than k which cannot be
successfully decomposed. As with the pumping lemma for regular languages,
we do not actually know what the value of k is. So we need to pick some string
guaranteed to be longer than k.

Let us pick the string
z = akbkck

which clearly has a length greater than k, whatever the value of k is.

We now need to consider all possible ways of decomposing the string z such
that

1. z = uwvway
2. length(vwzx) < k

3. length(v) + length(xz) > 0

Here is a table showing all possible decompositions

168 CHAPTER 8. PUMPING LEMMA & CLOSURE PROPERTIES

U v w T Yy
aP ad a’ a’ a(k—p—q—r—s) bk
aP ad a’ ak—p—q—")ps plk—s) -k

aP ad ak—p—0pr s plk—r—s) ck

aP ak—Ppa pr bs plk—q—r—s) -k
akpp b br bs b(kfpqurfs)ck
akpp ba br plk=p—q—r) s (k—s)

akpp b b(kfpfq) &8 C(kfrfs)

akpp b(k—p) 4 s C(k—q—r—s)
akpkep o o s C(k—p—q—r—s)

For each possible decomposition we kind find a value of n such the uv"wz™y is
not a string of the form a*b'c*:

u v w T Y n
aP al a” a’® aF=p=a=r=s)pkck =
a? a? a” alk=p=a=n)ps plk—s)ck n =2
a? a? alk=p=apr s plk—r=s)ck n=20
aP alk=P)pa b® plk—ag—r=s)ck n=2
akoP be v b° plk—p=a=r=s)ck 5 =
P b plb=p—a=r)es ((k—s) n=2
akbp b? plk=p=a)er s clk—r=s) n=20
akvp plk=p)ea v c? clk—q=r=s) n =2
akvker " c? clk—p=gq=r=s) n=20

For example, if either v or x contain a mixture of different letters, then repeating
them twice will lead to a string where the as, bs and/or c¢s are scrambled up,

e.g.
aPa2dq”aF—P—a-7)ps o (k—p—q—r)psp(k—s) K

And when the v and z do not contain mixtures of letters, the repeating them
zero times will leave too many occurrences of either as, bs and/or cs, e.g.

aPaF—p=prptk—r=s) k _ (k=p)p(k=s) K
We have thus shown that for each possible decomposition of the string a*b¥c*
meeting the required length constraints, we cannot freely repeat the v and x
parts of the decompositions.! This establishes that the language a™b"c" is not
context free.

8.1.3 Proving the Pumping Lemma

In the section we show why the context free pumping lemma works. The lemma
relies on the fact that strings above a certain length will inevitably contain

'For this case we do not need to labouriously write out every decomposition. We can take
shortcuts by noting that (a) any decomposition that mixes the letters in v and/or cannot be
freely repeated, and (b) after a while there is a symmetry to the remaining decompositions.

8.1. THE PUMPING LEMMA 169

recursion in their CFG derivations. To prove this, first assume a grammar for
the language in Chomsky Normal Form. This means that all derivations will
give rise to binary trees.

For binary trees of depth n? it is easy to show that the terminal string given by
the leaf nodes has a length less than or equal to 2"~ !. Conversely, if the string
has length > 2™, the binary tree has a depth of at least n + 1

Now suppose we have a grammar in CNF containing only n non-terminal sym-
bols. This means that if a derivation tree contains a path of length > n + 1,
then the derivation must contain a recursion. This is because at least one of the
non-terminals must occur more than once on the path of length > n + 1 from
root to leaf. In other words, any string of length 2" or greater must involve a
recursion in its derivation from a grammar in Chomsky Normal Form.

So we now arrive at the first part of the pumping lemma: any string of length
> k, (where k = 2", and n is the number of non-terminals in the CNF grammar),
must involve at least one recursion in its CNF derivation.

That is, the derivation tree must take the general form, with at least one re-
cursion on some symbol A

\X A

—

u v w X y

Here, the string w is what is produced by the non-recursive derivation from the
lower A. The sub-strings v abd z flank this, and are derived in the course of
the recursion on the upper A (via a rule like A — VAX).

There is no reason why the recursion on A should not be repeated a second
time, to derive a different string, shown below:

2The depth of a tree is the maximum number of nodes you have to pass through in following
a path from the root node to a leaf node.

170 CHAPTER 8. PUMPING LEMMA & CLOSURE PROPERTIES

S
U A Y
\Y A X
u v A X y
\Y A X
v w X

Here there are two copies if v and x flanking the w terminating the A-recursion.
And we could repeat the recursion again, giving three copies of v and z flanking
w and so on. And of course, we could also leave out the recursion altogether,
so that there are no copies of v and x flanking w.

We can thus see that any string of length > k& must contain at least recur-
sion, and so is decomposible into a string uvwzy. Moreover, the v and the
x must be freely repeatable, so that derivations for uv"wz™y for any n > 0
should also be possible. Moreover, assuming that the sub-derivation A = vwz
does not contain any other recursions than the single one on A, it follows that
length(vwzx) < k.

8.2 Closure Properties of Context Free Languages

Here we state a few facts about context free languages

1. Context free languages are closed under union, concatenation and Kleene
star

8.3. SUMMARY 171

e Union:
1. Rename non-terminals so that they are distinct in the two gram-
mars.
2. Introduce a new start symbol, S, and two new rules S — S; and
S — S9 where S7 and Ss are the start symbols of the two component
grammars.
3. The new grammar if CF, and will generate strings in either gram-
mar

e Concatenation:
1. Rename non-terminals so that they are distinct in the two gram-
mars.
2. Introduce a new start symbol, S, and a new rule S — 51.59
3. The new grammar is CF, and will generate strings of the first
grammar concatenated with that of the second

e Kleene star:
1. Add a new start symbol, and the rules S — 515 and S — ¢

2. CFLs are not closed under intersection or complementation

e Counter example for intersection:
Let L1 = {a'b'c’}, Ly = {a’b'c'}
The intersection of these is {a’b’c'}, which is not regular

e Counter example for complementation:
If CFLs are closed in complementation, then L = L; U Ly should be
CF if Ly and Lo are.
But Li ULy = Li N Lo, and we know CFLs are not closed under
intersection.

3. The intersection of a CFL with a regular language is a CFL
(Proof: see Sudkamp 8.5.3)

8.3 Summary

The facts about closure of CFLs may occasionally be useful. You need to be
able to apply the pumping lemma for CFLs (and for regular languages), but
you do not really need to be able to reconstruct the proofs of the lemmas.

Part 111

Turing Machines

172

Chapter 9

Turing Machines

We now reach the top of the Chomsky Hierarchy. Turing machines, and the
language(s) associated with them are not of major practical use (unlike regu-
lar and context free languages). However, they do allow us to establish some
surprising results about the limits of what can be computed. Turing machines
are equivalent in power to digital computers (with infinite memory); and it is
possible to prove that there are some things that Turing machines (and hence
digital computers) just cannot do.

In this chapter we introduce Turing machines, which are essentially finite state
automata with unlimited random access memory. In the next chapter we briefly
discuss the language(s) defined by Turing machines. And in the final chapter,
we use Turing machines to establish some bounds on what can be computed.

9.1 The Standard Turing Machine

A finite state automaton is a finite state machine (a newtwork of states and
transitions) without any memory. Transitions are determined solely on the
basis of the current state and the next word on the input string.

Pushdown automata are finite state machines with a stack memory. Transitions
are determined by the current state, the next word on the input string and the
symbol popped off the top of the stack. Making the transition pushes a new
symbol onto the top of the stack.

Turing machines are finite state machines with infinite random access memory.
The memory is represented as an infinitely long tape divided into squares, where
each square can hold at most one symbol. Typically, the input string is written
onto the tape. Transitions depend on the current state and the symbol written
in the tape location currently being scanned. Taking a transition, as well as
moving to another state, can rewrite the symbol being scanned on the tape
and/or move one square to the left or the right on the tape.

It is customary to talk of there being a tape head that at any time scans a single
square on the tape. Transitions are thus dependent on

173

174 CHAPTER 9. TURING MACHINES

(a) the current state

(b) the symbol currently being scanned by the tape head
The effects of taking a transition are to

(a) move to a (possibly) new state
(b) rewrite the symbol in the tape position currently being scanned

(¢) move the tape head either one square to the left or one square to the right
In a standard Turing machine, the squares on the tape are numbered from posi-

tion 0 up to infinity (the tape is infinite towards the right, but has a beginning
— position 0 — on the left).

Example 1 Here is the graphical representation for a simple Turing machine:

TM to Swap as and bs
a/b R a/a L
b/a R b/b L
A/AR A/AL
sO = sl >

The diagram is a state-transition network, with heavily labelled transitions.
The the transition label “a/b R” means

1. Take the transition if a is currently lying under the tape head
2. Rewrite the tape with a b in that position

3. Move the tape head one place to the right

The transition “A/A L” means take the transition if a blank (A) is lying under
the tape head, rewrite it with a blank, and move one square to the left.

It is customary to write the input string for a Turing machine on a blank tape,
where the input string starts at position 1. The machine starts off in the start
state (sp) scanning position 0 of the tape. The machine halts when it can take
no further transitions.

We start the machine shown by writing a string of as and bs on an otherwise
blank tape, starting at position 1. The machine itself begins in state sy with
the tape head scanning position 0.

9.1. THE STANDARD TURING MACHINE 175

The transition out of state sg, A/A R, is triggered by reading the blank in
tape position 0, leaves the symbol as it is, and moves the tape head one square
to the right. There are two transitions looping around on state sl. One of
them is triggered by reading an a under the tape head, rewrites it to a b, and
moves the tape head one square to the write. It thus swaps as by bs. The
other loop is similar, except that it swaps bs by as. The machine will continue
looping around on state s1, moving the tape head one square to the right and
swappping as and bs, until it reaches the end of the input string. The end of the
input is signalled by the first blank on the tape, and at this point a transition
is made to state sy, whereupon the tape head is moved back one square to the
left. There are two looping transitions on state so, triggered by reading as or
bs, leaving the symbols as they are, and moving the tape head back one square
to the left. The loops continue until the tape head moves back to the blank in
position 0 of the tape. At this point, no further transitions are possible. So
the Turing machine halts, with a sequence of as and bs on an otherwise blank
tape, but where the as and bs have been swapped around compared to the input
string.

Example 2 Here is a somewhat more complex Turing machine that will du-
plicate a string of sumbols written on a tape. That is, you start with AuA ...
written on the tape, and end with AuAuA

176 CHAPTER 9. TURING MACHINES

TM for Duplicating Input

X/X R
Y/Y R

-

a/a R a/a R
b/b R b/b R

@ AJA R
o /

A/AT

b/Y R

Y
>
~
&
/

a/al
b/b L
A/A T

Transitions out of s; replace the first a with a X or the first b with a Y. The
top and bottom halves of the machine then read through the rest of the string,
and whatever has so far been copied, until the tape head reaches the second
blank terminating the copied string.

Different branches are followed depending on whether an a or a b is being copied.
The second blank is then replaced by an a or a b as appopriate (transitions out
of s3 and sg respectively). State s4 then loops round taking the tape head back
along the tape until it reaches an X or Y.

At this point, it moves the tape head forward, and goes back to s; so that the
next character in the input string can be copied. If there are no more characters
to be copied (i.e. a blank follows the X or Y'), then sy loops back through the
tape replacing Xs by a’s and Y's by b’s. The machine halts in s; when the tape
head reaches the blank in position 0.

TMs can do Anything (Almost)!

The Turing machine to duplicate a string is a relatively complex combination
of very simple components (and in case you are worrying: you do not need

9.2. VARIANTS ON TURING MACHINES 177

to remember how this particular TM, or any other, works). According to the
Church-Turing Thesis, which will be discussed later, Turing machines can be
constructed to do anything that a digital computer can — in fact, anything that
can be algorithmically computed can be computed using a Turing machine.

This is of theoretical rather than practical significance: Turing machines do not
provide a high-level programming language. If anything, they are considerably
worse than machine or assembler code. But the fact that TMs can be con-
structed from such simple building blocks does allow a number of interesting
theoretical results to be established.

9.1.1 Formal Definition of Standard TMs

We now briefly give the formal definition of a standard Turing machine

A standard TM has a tape that begins in position 0, and which extends indef-
initely far to the right. The tape positions are numbered, 0, 1, 2,

The machine is 5-tuple

M = <Sv]~_‘>vv75780>

where
S is a finite set of states
I is the tape vocabulary, including the special symbol A to rep-
resent a blank
V' is the input vocabulary, and V C T' — {A}
J is a partial transition function from S x I"'to S x I x {L, R}
sg 1s the initial state

In a given state, the transition function consults the symbol currently lying
under the tape head. It then moves to a (possibly) new state, rewrites the
symbol on the tape, and moves the tape head either to the left or the right,
depending on whether the third item in the function’s result is L or R.

If, for a given state and tape symbol, no transitions are defined, then the ma-
chine halts. If the machine attempts to move the tape head back past position
0, the machine crashes.

To recognise a string, the tape is initially all blank, and the string is written on
to it starting at position 1. If the machine halts, the string is recognised

9.2 Variants on Turing Machines

There are a number of variants on the standard Turing machine, some of them
looking very different, but which all turn out to be equivalent. In this chapter
we will describe some of the variants and sketch the reasons for why they are
equivalent to standard TMs

178 CHAPTER 9. TURING MACHINES

9.2.1 TMs Accepting by Final State

The standard TM has no final states. A string u is accepted if

1. the string is written on an otherwise blank tape, starting at position 1
2. the machine starts in its initial state, scanning tape position 0

3. the machine halts in some state
We can also specify final states for the TM, so that (3) above becomes
3’. the machine halts in a final state

To convert a standard TM to one that accepts by halting in a final state: make
every state a final state.

To convert a TM that accepts by halting in a final state to a standard TM:

(a) Add a new looping state

This has a transition that loops back onto the same state and moves the
tape head to the right, whatever symbol is currently being scanned.

Whenever you get into a looping state, the TM will continue round, mov-
ing the tape head inifintely far to the right.

(b) For every non-final state, and for every tape symbol for which no transition
is defined for that state, (i.e. every failing configuration) add a transition
to the looping state

9.2.2 Multi-Track TMs

A multitrack TM is one where several tapes are glued together side by side:

Tape 2

Tape 1

That is, the tape head can read or write several symbols at a time, one from
each tape.

9.2. VARIANTS ON TURING MACHINES 179

Given that the tape vocabulary is finite, we can create new complex symbols.
These will be pairs (n-tuples) of symbols from the vocabulary of all the tapes.
Thus if tape 1 has the symbol a, and tape 2 has the symbol A, we create a new
symbol (a, A). Reading the symbol (a, A) is equivalent to reading the symbol
a and the symbol A off two tapes.

9.2.3 Two-Way Tapes

These are TMs where the tape extends indefinitely in both directions (there is
no start of the tape).

We can simulate a one-way tape on a two-way machine by putting a start of
tape marker just to the left of the initial tape head position. That is, the first
action of the TM will be to move the tape head to the left, write the start of
tape marker, and move right. If during computation the tape head reads the
start of tape marker, the transition function moves to a non-accepting state
that terminates the computation.

To simulate a two-way tape with a one way tape, imagine that the two-way tape
has been folded in half, to give a two-track tape. That is, the tape head reads
or writes two symbols at a time, one from the right hand half of the folded tape,
and one from the left hand half. Each state s; in the two-way TM gives rise to
two states in one-way TM: (s;, U) and (s;, D) The U and D specify whether the
transition should depend on the symbol on the upper tape or the lower tape.
(The upper tape is the original left hand side of the tape).

The transitions on the U and the D states are the same as the transitions on
the original s; states except that

1. For U (D) state, we only pay pay attention to the symbol on the upper
(lower) tape

2. For U states, when the original transition moved the tape head left (right),
it now moves it right (left).

3. Upper states normally only make transitions to uppers states, and lower
states to lower states

We also need to make sure that the machine writes a middle of tape marker at
the start of the upper tape. Suppose we are in an upper state (s;, U) scanning
the middle of tape marker, with the symbol z on the lower tape. If in the
original machine there was a transition from s; on reading x that moved to
state s; and moved the tape head right

Then move to (sj, D) and move the tape head right. If in the original machine
there was a transition from s; on reading x that moved to state s; and moved
the tape head left

Then move to (sj,U) and move the tape head right.

180 CHAPTER 9. TURING MACHINES

9.2.4 Multi-Tape TMs

This is where there are several independent tape heads on several tapes. Tran-
sitions can move each of the tape heads in different ways. The input is put on
tape 1, and all the others start blank.

To emulate a multitape TM on a multitrack TM: Suppose we have two indepen-
dent tapes. We can emulate this with a 5-track TM. Two tracks will contain the
contents of the two tapes Two tracks will be blank apart from a single symbol
on each indicating the position of the tape head on the corresponding tape.
The fifth track contains a single marker at the start. This is used to reposition
the tape head to the start, so that it can be moved forwards to either of the
two marked tape head positions on the other tracks.

9.2.5 Non-Deterministic TMs

A non-deterministic TM is one where more than one transition may be available
for a given state / tape symbol pair. A non-deterministic (single tape) TM can
be emulated on a deterministic three tape machine.

We assume that all the transitions for the NTM have been numbered, and that
n is the maximum number of transitions for a state / tape symbol pair. For
each numbered transition in the NTM, the number assigned gives the third tape
symbol required to trigger a transition on the 3-tape DTM.

A computation on DTM proceeds as follows
1. Some sequence of number from 1 to n is written to tape 3

2. The input string on tape 1 is copied to the standard position on tape 2

3. The computation on the input is simulated on tape 2, with the transition
being determined by the number on tape 3

4. If the simulation halts, the machine halts and the input is accepted

5. A new sequence of numbers is generated on tape 3 and steps 2-5 are
repeated.

In other words, a Turing machine has sufficient power to encode its own stack-
ilke backtracking mechanism. Hence a deterministic TM can emulate the non-
deterministic execution of a non-deterministic TM. Hence, like finite state au-
tomata, but unlike pushdown stack automata, non-determinism does not affect
the expressive power of TMs.

9.2.6 Post Machines

A post machine has a queue (known as a store) of unlimited length. The
machine consists of READ, ADD, ACCEPT and REJECT states and a single
START state.

9.2. VARIANTS ON TURING MACHINES 181

e The READ states read (and remove) the leftmost symbol on the store,
and make a transition to a new state depending on the value read.

e The ADD states add a new symbol to the end (right) of the store, and
make a transition to some other state (independent of the store contents
or the symbol added.

e The ACCEPT and REJECT states have no transitions coming out of
them, and do what their names suggest.

e The start state has no transitions coming into it, and does what its name
suggests.

The store alphabet contains a special symbol, #, normally used as an end-of-
input marker. The input to the machine is written to the store, with a # at
the end. (Note that any ADDs will add symbols after the #)

Simulating a Post Machine on a TM

All we really have to do here is simulate a queue on the TM’s tape.

Assume that the store contents occur in a contiguous block somewhere on the
tape surrounded by blanks. READing a symbol amounts to moving to the start
of the tape, moving right until a non-blank is found, replacing a symbol with
a blank, and moving one place further right. ADDing a symbol involve moving
to the end of the block of non-blanks, and rewriting the first non-blank as the
symbol.

Simulating a TM on a Post Machine

To simulate a TM, we need to be able emulate a TM tape on a Post machine
store. That is: we need to be able to read/write a symbol from/to the middle
of the store.

Use the symbol # to mark the position of the TM tape head in the store.
Characters to the left of the TM tape head are placed to the right of the #,
and vice versa. Thus, the tape configuration

0 1 2 3 4 b} 6 7

B X1 X2 X3 X4 X5 X6 B

|

182 CHAPTER 9. TURING MACHINES

Corresponds to the store
X4 X5 Xe#X1X2

To move the tape head right, we just read and remove the X4 from the front of
the store, and add a new symbol to the end of the store:

X5 Xe# X1 XoY

Moving the tape head left is a little more involved. We need to read a symbol
off the front of the queue, add the new symbol to the front, and then shift the
last symbol on the store to the front:

XoV X5 X# X,

We can get a PM to add a character to the front of a store, and read a character
from the end of the store as follows. To add a to the front of the store

1. Add a special symbol, e.g. $ to the end of the store, and then add a to
the end of the store

2. Repeatedly read characters from the front ot the store and add them to
the end, until you reach $ (left shift).

3. Remove the $ by reading it.
To read from the end of the store

1. Add $ to the end of the store.
2. Read two characters, ¢; and ¢y from the front of the store

3. REPEAT UNTIL ¢ = $

IF C2 7é $,

THEN add ¢; to the end of the store
read the next character ¢ from the front,
let ¢ =c9,c0=c

ELSEIF ¢, = 8§,
THEN add ¢; to the front of the store.

4. The last character on the store is now at the front, with the rest of the
store unchanged, and we can read it normally

9.2.7 Two Stack PDAs

It turns out the a PDA with two stacks is equivalent to a TM. (Adding more
stacks does not increase the power of the 2PDA).

9.3. SUMMARY 183

9.3 Summary

This chapter has introduced the idea of a standard TM, and some variants that
turn out to be expressively equivalent. You do not need to remember in detail
why the variants are equivalent, but you should remember the fact that they
are.

Chapter 10

Context Sensitive &
Recursively Enumerable
Languages

Having introduced Turing Machines, we now turn to the languages defined
by them. In fact, there is a family of languages, depending on certain extra
restrictions placed on the TM.

10.1 Recursive and Recursively Enumerable Languages

A standard TM accepts a string if (a) when the string is written in the standard
position (starting at position 1) on an otherwise blank tape, then (b) the TM
eventually halts. What, if anything, is written on the tape when the TM halts
is immaterial.

However, this characterisation neglects the fact that some TMs for some inputs
can spin off into a loop. TMs thus define two classes of language

184

10.1. RECURSIVE AND RECURSIVELY ENUMERABLE LANGUAGES185

Recursive Language

A TM defines a recursive language iff for every possible string it either
e halts (i.e. accepts the string), or

e crashes (i.e. rejects the string).

Recursively Enumerable Language

A TM defines a recursively enumerable language iff for every possible string
it either

e halts (i.e. accepts the string), or
e crashes (i.e. rejects the string),

e loops forever (i.e. rejects the string)

Note that TMs defining recursive languages meet all the requirements for defin-
ing a recursively enumerable language. So the recursive languages are a subset
of the wider class of recursively enumerable languages.

10.1.1 Unrestricted Rewrite Grammars

Recursively enumerable languages can also be defined by unrestricted rewrite
grammars

Unrestricted Rewrite Grammar

An unrestricted rewrite grammar is a 4-tuple
G = (N,T,S,R)

where

N is a set of non-terminal symbols
T is a set of terminal symbols

S € N is the start symbol

R is a set of rules of the form

(NUT)* — (NUT)*

In an unrestricted rewrite grammar, any string of terminal and/or non-terminal
symbols can be rewritten as any other string of terminals and non-terminals.
The following are examples of unrestricted rewrite rules

AB — BA
aB — BAC

186CHAPTER 10. CONTEXT SENSITIVE & RECURSIVELY ENUMERABLE LANGUAGES

a— AB
ab — ba

Unrestricted rewrite grammars are of little practical interest.

10.1.2 TMs < Unrestricted Rewrite Grammar

Here we briefly describe how TMs can be converted to unrestricted rewrite
grammars and vice versa. This is for information only, and it is not necessary
to remember the details of this.

Grammars to TMs

We can construct a 3-tape TM from an unrestricted rewrite grammar as follows.
Tape 1 holds the input.

Tape 2 holds the rules, where a rule A — w is represented on the tape as a
string A#w, and the rules are separated by #'s.

The derivations of the grammar are simulated on tape 3.

The computation on the machine proceeds as follows
1. § is written in position 1 on tape 3
2. The rules of G are written on tape 2
3. The input is written on tape 3.
4. A rule A#w is chosen from tape 2.

5. An instance of the string A is chosen on tape 3. If none exists, the
computation halts in a rejecting state (and possibly backtracks)

6. The string A is replaced by w on tape 3

7. If the strings on tapes 1 and 3 match, computation halts in an accepting
state

8. To try another rule, steps 3—7 are repeated

TMs to Grammars

Likewise, from a non-deterministic TM (with final states) we can construct an
unrestricted rewrite grammar.

First, we need to represent a TM configuration as a string of symbols. If we
are in state s, with the tape head scanning the jth tape position, we represent
this as the string

ai...a;8p050541 - .. GpA

where aq, ..., a, are the symbols on the tape.

10.1. RECURSIVE AND RECURSIVELY ENUMERABLE LANGUAGES187

A transition, §(s;,x) = (sj,y, R) on a configuration us;zv can be represented
as a string transformation
US; TV == UYS;U

We use grammar rules to generate the string transformations corresponding to
the effects of transitions in the TM. The derivation of a terminal string u in the
grammar consists of three distinct subderivations (using three subsets of rules):

1. Generate from S the string u[soAu]

This sets up the TM simulation. It says we are in the start state with the
tape head in position 0 and the input u in standard position — [sgAu].
The preceding u says that we are trying to generate a u

2. Simulation of the TM computution on the string [soAu].

This applies string transformations corresponding to TM transitions to
the configuration recorded between square brackets

3. If the configuration is of the form [vs;zw], where s; is an accepting state,
and no transitions are defined for §(s;,), then the simulation has halted
in an accepting state.

In this case we can remove all of the string between square brackets, just
to leave the terminal string u

There is a standard trick for generating languages of the form wu[pu|, where w is
some terminal string and p a fixed terminal prefix. For each terminal symbol

a;, introduce a non-terminal A; and rules

S — aiT[ai]

For each pair of terminals / non-terminals there is a swap rule
Aja; — a;A;

For each terminal there is also a termination rule
Ai]l = ai

To introduce the prefix p (in this case spA) we have rules

S — [SoA]
T[—> [SoA

For a; = a and ag = b, consider the following derivation of aab[soAaab)

188CHAPTER 10. CONTEXT SENSITIVE & RECURSIVELY ENUMERABLE LANGUAGES

S — aTlla

— aaT[Aal

— aaT[aA]

— aaT|aa]

— aabT'[Baa]
— aabT'[aBal
— aabT'[aaB]
— aabT'[aab]

— aab[spAaaB]

The second set of rules, for simulating the TM computation on the string be-
tween the square brackets is derived directly from the TM transitions

o s;xy — zs;y whenever delta(s;,z) = (s, z, R)
o s;x] — zs;/A whenever delta(s;,x) = (sj, 2, R)
e ys;xz — s;yz whenever delta(s;,xz) = (sj,2, L)

The third set of rules, for eliminating the string between square brackets if it
represents an accepting configuration, is

e s;x — Ep whenever §(s;, x) is undefined and s; is an accepting state (i.e.
halted in an accepting state)

ER{L‘ — ER

° ER]HEL

I‘EL — EL

o [Ef — ¢

When an accepting configuration is encountered, the rules first move the the
right deleting symbols until they reach |, and then move back to the left deleting
symbols until they reach |[.

10.2 Context Sensitive Languages & Linear Bounded
Automata

We turn briefly to a class of languages midway between context free and recur-
sive. These are the context sensitive languages, of which the language a’b’c’ is
a standard example, and they are defined by a restricted form of TM known as
a linear bounded automaton.

10.2. CONTEXT SENSITIVE LANGUAGES & LINEAR BOUNDED AUTOMATA189

10.2.1 Context Sensitive Grammars

A context sensitive grammar is an unrestricted rewrite grammar subject to one
restriction: The righthand side of the rule cannot be shorter than the left hand
side.

Unrestricted Rewrite Grammar

An unrestricted rewrite grammar is a 4-tuple
G = (N,T,S,R)

where

N is a set of non-terminal symbols
T is a set of terminal symbols

S € N is the start symbol

R is a set of rules of the form

LHS — RHS

where LHS,RHS € (NUT)*
and length(LHS) < length(RHS)

Thus a rule like aBc — ac could not be part of a context sensitive grammar.

The restriction on context sensitive rules means that in derivations the length
of the derived string either remains constant or increases; the string can never
go shorter.

CS Grammar for a’bict

Recall that the pumping lemma for CFLs shows that a’b’c’ is not a context free
language. It is however context sensitive (provided i > 0)

S — aAbc | abe
A — aAbC | abC
Cb — bC

Cec— cc
Derivation

S

aAbc
aaAbCbe
aaabCbCbc
aaabbCChbc
aaabbCbC'c
aaabbbCCec
aaabbbCcc
aaabbbcce

190CHAPTER 10. CONTEXT SENSITIVE & RECURSIVELY ENUMERABLE LANGUAGES

10.2.2 Linear Bounded Automata

Context sensitive languages are accepted by a restricted from of Turing machine
known as linear bounded automata. This is a Turing machine where the lenth
of the tape is limited to the length of the input plus 2. In other words, a finite
state machine with strictly limited random access memory.

For proofs of the equivalence between context sensitive grammar and linear
bounded automata, see Sudkamp or Cohen.

10.3 The Chomsky Hierarchy

This is a convenient place to review the Chomsky hierarchy to summarise the
languages and machines we have encountered in this course:

Language Grammar Acceptor Notes
Regular LHS single non-terminal Finite state Regular
RHS either machines expressions

(a) a single terminal, or
(b) a single terminal plus
single non-terminal

Context LHS single non-terminal (Non-Deterministic) Deterministic
Free RHS can be anything Pushdown stack subset

automata
Context RHS no shorter than LHS Linear bounded
Sensitive automata
Recursively No restrictions Turing machines TMs may
Enumerable reject

by looping

The hierarchy represents an inclusion ordering over languages:

Inclusion Relations between Classes of Language

regular C
deterministic context free C
context free C
context sensitive U{{e}} C
recursive C
recursively enumerable

This also shows a few of the intermediate languages we have encountered.

Recall that any language is a set of strings. A language class is a set of lan-
guages, i.e. a set of sets of strings. Thus the inclusion relation over language
classes says that a a grammar or automaton higher up the Chomsky hierarchy
can be used to define a wider set of languages than one lower down.

Chapter 11

Decidability & Computability

We finally turn to some theoretical results on the limits of computation that
can be established via Turing machines. We start off with the Church-Turing
thesis. This is a claim (unprovable, but well confirmed) that any algorithmically
computable problem can be computed by a Turing machine. Or put another
way, anything that a digital computer can do, a Turing Machine can do.

We then go on to discuss the halting problem. We have already pointed out that
some TMs loop forever on certain inputs. The halting problem asks whether it is
possible to design a TM which, when given the specification of another TM and
its input, will determine whether or not that TM will halt. The answer turns
out to be that it is not possible to design such a Turing machine. Hence, there
is at least one well-defined and interesting problem that cannot be solved by a
Turing machine. We then go on to show, from the unsolvability of the halting
problem, that there are a range of other problems that are also unsolvable
(or undecidable, as we shall call it). This includes a number questions about
properties of context free grammars.

We finally briefly discuss computability in terms of Turing machines.

11.1 Church-Turing Thesis

The Church-Turing thesis essentially claims that any algorithmic procedure can
be implemented on a Turing machine. This is not a claim that can mathemat-
ically be proved. One of the reasons for this is that we do not really have a
well-defined, prior notion of what an algorithmic procedure is. In one sense,
the Church-Turing thesis can be seen as offering a candidate formal definition
for what an algorithmic procedure is — anything that can be done on a Turing
Machine. And so far the definition has proved to be a good one: all things
that have been studied that meet our vague intuitive notions of what it is to be
algorithmic have turned out to be implementable on a Turing Machine.

191

192 CHAPTER 11. DECIDABILITY & COMPUTABILITY

11.1.1 Decision Problems & Effective Procedures

Let us, however, begin at the beginning by stating what a decision problem and
an effective procedure are:

Decision Problem

A decision problem is a set of questions, where the answer to each question
)
is either “YGS” or “no”.

Decidable Problem

A decidable problem is a decision problem for which there is an effective
procedure (or algorithm) for answering each question in a finite amount of
time.

Undecidable Problem

An undecidable problem is a decision problem for which no effective proce-
dure exists

Thus, we can give a clear definition of a decision problem if we can give a clear
definition of an effective procedure (i.e. algorithm).

Unfortunately, this cannot be done. For a particular programming language
(for example), we could state what algorithms are possible given the constructs
of that language (e.g. while loops, conditional statements, etc). But we can’t
be sure that some clever language designer won’t come up with an entirely new
kind of language construct that extends the range of possible algorithms.

At best, then, we can state some characteristics that effective procedures must
exhibit

Necessary Properties of an Effective Procedure

1. It must be complete
— be able to produce a positive or negative answer for each question
in the problem domain

2. It must be mechanistic
— consist of a finite sequence of instructions that can be carried out
without requiring insight, ingenuity or guesswork

3. It must be deterministic
— always produces the same answer when presented with the same
input

Turing machines clearly satisfy all of these properties, and the essence of the
Church-Turing thesis is to suggest TMs as a model for all effective procedures

11.1. CHURCH-TURING THESIS 193

Church-Turing Thesis (for decidability)

There is an effective procedure for solving a decision problem iff there is a
Turing machine accepting a recursive language that solves the problem.
(I.e. for any decidable problem, a Turing Machine can be constructed to
return the answers.)

(In a later section, we will extend the thesis to cover computability: i.e. re-
turning more than just yes/no answers). This thesis, though not provable, is
well confirmed. Nothing has yet been found that plausibly counts as an effec-
tive procedure that cannot be coded up as a Turing Machine. In other words,
all computer algorithms correspond at some basic level to the operations of a
Turing Machine.

11.1.2 Termination & Loops

Note that the Church-Turing thesis states that there must be a TM defining
a recurstve language that solves the decision problem. This is an important
qualification. Recall that a TM defining a recursive language is one that halts
(accepts) or crashes (rejects) for any input, and never goes into a loop. By
contrast, a TM defining a recursively enumerable language is one that either
halts (accepts), crashes (rejects), or goes into a loop (rejects).

A decidable problem is defined as being one for which an answer is always
returned in a finite amount of time. If a TM is capable of delivering a negative
answer by going into an infinite loop, we cannot guarantee that it always returns
an answer in a finite amount of time. Hence, we cannot afford to solve a decision
problem by means of a potentially loopy TM defining a recursively enumerable
language.

It is worth dwelling on this point a bit more. A natural reaction is to say “OK,
so a negative answer is given by going off into a loop. Can’t we just detect
when the machine has gone into a loop, and cease its execution there and then,
returning a negative answer in finite time?”

The answer to this is “no, we can’t”. We will establish this more carefully in a
moment by means of the halting problem. But the following argument shows
why one initially plausible method of loop detection just won’t work.

Suppose that we cannot observe the internal workings of the TM. Instead, we
just provide it with its input, set it going and wait for an answer. This is much
the same as running a C++ program without the aid of a debugger: you type
in the command name and its arguments, hit “return”, and hope. And as with
C++ programs, it is not entirely unknown for the TM to go off into a loop.

The trouble is, from the outside there is no easy way to distinguish between
when the TM is just taking a long time to compute an answer, and when it has
really gone into a loop. One might decide to wait for a long time (several hours,
maybe several thousand years), and if no answer has been returned by then hit
Ctl-C and terminate execution. But at the precise point at which execution

194 CHAPTER 11. DECIDABILITY & COMPUTABILITY

is terminated, it could be that the machine was just a few steps away from
returning the answer. If you had waited just a little longer, you would have
discovered that the machine was not in a loop after all. And this observation
applies no matter how long you wait before giving up and terminating execution.
For after all, a finite wait for an answer can still be a very long wait.

We cannot detect loops, therefore, just by setting finite limits on the amount
of time allowed for execution. For the limit will cut off some permissible finite
executions. It therefore looks as though you have to look behind the scenes to
determine if a TM is looping. But as we will now see, even this does not help.

11.2 The Halting Problem

The halting problem is as follows: given any Turing machine and input, will the
machine halt on that input — yes or no? The halting problem is undecidable.

The undecidability of the halting problem does not mean that you can never
detect loops in the execution of TMs. What it does mean is that you cannot
detect all loops — some TMs on some inputs will have undetectable loops.*

The proof that the halting problem is undecidable is arguably one of the land-
marks of 20th century thought. While the proof involves a certain amount of
intuition stretching, it is basically quite simple. In outline, it goes as follows

1. First show how any Turing Machine can be encoded as a sequence of
symbols that can be written on the input tape to a TM.

(This should not be that surprising: if you look at the postscript file for
these notes, you will see that all the TMs we have discussed have been
represented as linear sequences of binary characters.)

2. Then suppose that we have succeeded in designing some TM, H, that
solves the halting problem.
That is we give the encoding of some TM, M, and its proposed input, I,
as the input to H. We then run H on (M, I). H behaves as follows
e If M halts on I, then H halts on (M, I) in an accepting state.
e If M loops on I, then H crashes on (M, I) (halts in a rejecting state).

We now deduce a contradiction from the supposed existence of a machine
like H:

3. Given H, it is easy to modify it to form another machine H' that behaves
as follows:

e If M halts on I, then H’' loops on (M, I)

n fact the halting problem is semi-decidable: we can return positive answers in finite
time (e.g run the machine on the input and see if it halts), but we cannot return all negative
answers in finite time.

11.2. THE HALTING PROBLEM 195

e If M loops on I, then H' halts on (M, I)
4. From H' we can construct another machine H” that computes what hap-
pens when a TM is run on its own encoding.

H" takes as input the encoding of some TM, M, duplicates it, and then
runs H' on the pair (M, M).

The machine H” behaves as follows

e If M halts on its own encoding, then H” loops on M’s encoding

e If M loops on its own encoding, then H” halts on M’s encoding
5. What happens if H” is run on its own encoding?

e If H” halts on its own encoding, then H” loops on its own encoding

e If H” loops on its own encoding, then H” halts on its own encoding

In other words, we get a contradiction.
This means that a TM like H” cannot exist.

Since H” was constructed from H by perfectly legitimate steps, it follows
that a TM like H cannot exist.

The details of the proof are not that interesting, and consist in (a) showing how
you can encode a TM on an input tape, (b) showing how you can construct
H' from H, and (¢) how you can construct H” from H’. Nonetheless, we will
briefly go over them.

11.2.1 Encoding TMs

To encode a TM, we can assume (without loss of generality) that all the TMs to
be considered will have an input vocabulary {0, 1}, a tape vocabulary {0,1, A}
and states {sg,s1,...,5,}.2 We can encode these elements in terms of the
halting machine, H’s, input vocabulary as follows

Symbol Encoding Symbol Encoding
0 1 S0 1

1 11 S1 11

A 111 : :

L 1 Si 1+

R 11

Let en(z) be the encoding of a symbol z.

We can encode a transition 6(s;,) = (s;,y, D) as

en(s;)0en(x)0en(s;)0en(y)0en(D)

2There is no loss of generality: after all, everything in a computer is represented as a binary
string.

196 CHAPTER 11. DECIDABILITY & COMPUTABILITY

We can encode all the transitions on a tape by separating the individual tran-
sition codings by 00. Since a TM is completely defined by its transitions, this
gives an encoding of the machine.

We can separate the machine encoding from its input by 000. Hence we can
write on the tape of the halting machine H the encoding of the subject machine
and its input.

11.2.2 Loops and Duplication

The proof that the halting problem is undecidable starts by assuming the exis-
tence of a halting machine H, such that for any Turing machine M and input
I we have

Behaviour of H:

e If M halts on I, then H halts & accepts en(M)I
e If M loops on u, then H crashes & rejects en(M)I

From this we create a machine H’ with the behaviour

Behaviour of H':

e If M halts on I, then H' loops en(M)I
e If M loops on u, then H' crashes on en(M)I

This is acheived quite simply if we assume that H is a TM with accepting
states. To each accepting state, s,, we add looping transitions:

S¢ = 1/1R = s,
Sa = 0/0R = s,
Sa = A/AR = s,

These just loop around on state s,, whatever symbol is being scanned on the
tape, and move the tape head towards the right. Since the tape extends in-
finitely far to the right, this guarantees an infinite loop.

Given the construction of H' from H, we now need to show how you can
construct H” from H’'. We have already shown (p. 170) how to construct a
Turing machine that duplicates whatever is on its input tape. Let us call this
machine D. We construct H” by first feeding a machine encoding through D
to duplicate it on the input tape. We then pass control over to the machine H’,
whose input is the duplicated tape

11.3. UNDECIDABLE PROBLEMS 197

M halts on en(M)

>

en(M) N n(Men(M), | 1

>

M loops on en(M)

H//
The behaviour of this machine is

Behaviour of H”

e If M halts on en(M), then H” loops on en(M)
e If M loops on en(M), then H” halts on en(M)

From which we can obtain a contradiction by running H” on en(H"), and thus
show that there can be no such machine as H.

11.3 Undecidable Problems

The unsolvability of the halting problem has a number of consequences. One
of the more immediate ones is that it is impossible to write a software utility
capable of detecting all loops in all possible programs. In other words, there is
no general way of guaranteeing that an algorithm will always terminate — it is
possible to spot some non-termination conditions, but not all of them.

But the halting problem has a much wider range of application. There are a
whole variety of apparently unrelated decision problems that can be shown to
be undecidable by reducing them to the halting problem.

Reducing a decision problem, P, to the halting problem means the following:

1. Assume that there is some effective procedure for solving P

2. Show that such a solution to P could be adapted to solve the halting
problem

3. Since the halting problem is known to be undecidable, there cannot in
fact be an effective procedure solving P.

In this section we will reduce a number of decision problems to the halting
problem. In doing this, we will establish some undecidable properties of context
free grammars, namely

e The problem of whether two context free grammars generate disjoint lan-
guages is undecidable

loop

halt

198 CHAPTER 11. DECIDABILITY & COMPUTABILITY

e The problem of whether a context free grammar gernerates all possible
strings as sentences of its language is undecidable

e The problem of whether a context free grammar is ambiguous is undecid-
able.

To establish these results, we first look at semi-Thue systems and then the
Post-correspondence problem.

11.3.1 Semi-Thue Systems

A semi-Thue system is an unrestricted rewrite grammar that has no start sym-
bol and does not distinguish between terminal and non-terminal symbols. The
rules are just used to rewrite one string into another.

For arbitrary strings u and v, the problem of whether v = v is a semi-Thue
system is undecidable.

This can be proved via reduction to the halting problem. From any determinstic
TM we can produce an equivalent semi-Thue system (in roughly the same way
that unrestricted grammars can be generated from TMs). It can be shown that
u = v in the derived semi-Thue system iff the computation in the TM will halt
in an accepting state given input wu.

But by the halting problem, there is no way of deciding whether the TM will
halt. Consequently there is no decision procedure for u = v

11.3.2 The Post Correspondence Problem

Suppose that you have dominoes with strings over a given vocabulary written on
the top and bottom halves. The post correspondence problem it to find a way of
putting the dominoes together, so that the string taken from concatenating all
the top halves is identical to that taken from concatenating the bottom halves,

e.g.

aaa baa aaa

aa abaaa aa

Formally, a Post correspondence system consists of a vocabulary V and a set
of pairs of strings (u;, v;) where u;,v; € VT A solution is a sequence i1, iz, . . . ig
where

Ujy Ujy « + - Ujy, = Vi Vg .. Vg,

Assume that V' = {0,1}. Let S be a semi-Thue system over V. For a pair of
strings u, v over V* we can show that the correspondence system has a solution

11.3. UNDECIDABLE PROBLEMS 199

iff u = v in the semi-Thue system (for details see Sudkamp). Since the semi-
Thue system is undecidable, so is the correspondence system.

11.3.3 (Un)Decidability Results for CFGs

Using the Post correspondence result we can establish some undecidability re-
sults for CFGs. From a Post correspondence system,

C= <V, {(ul, ’Ul>, o <un>vn>}>

we can construct two grammars (for the top and bottom halves of the dominoes)

Gy Ny = {5}
Vi=Vu{l,2,...,n}
Ry =Sy — u;iSii | wiifori=1ton

Gy Ny = {Sp}
V=V U{l,2,...,n}
Ry, =Sy, — v;Spi | viifori=1ton

If the correspondence system has a solution 4 ... 7 then the two grammars can
derive the same string:

* . .
Stiuil...uikzk...zl

% . .
Sbévil---viklk-nll

where ulluzkzkzl :’Ul'l...vikik...’il

Theorem 1: Whether the languages of two CFGs is disjoint is undecidable.

Proof 1: Assume there is a decision procedure. Then we could solve the Post
correspondence system:

e For an arbitrary correspondence system construct two grammars

e Use the decision procedure to determine whether the languages of the
grammars are disjoint

e The correspondence problem has a solution iff the two grammars are non-
disjoint

Theorem 2: There is no decision procedure for whether the language of a
CFG is all possible string over the vocabulary

Theorem 3: There is no decision procedure for whether a CFG is ambiguous

Proof 3: Derive two CFGs from an arbitrary correspondence system, and
combine them with the rules S — S; | Sp

There will be two derivations for some string iff the correspondence system has
a solution.

200 CHAPTER 11. DECIDABILITY & COMPUTABILITY

11.3.4 Decidability Results for CFGs

Forunately, there are also some decidable questions about CFGs. Most of the
proofs involve presenting an algorithm, but here we will just state the results.

1. There is a procedure to determine whether or not a CFG can generate
any sentences

2. There is a procedure to determine whether or not a given non-terminal is
ever used in the generation of a sentence

(See detection of useless symbols in connection with Chomsky Normal
Form)

3. There is a procedure to determine whether a CFG generates a finite or
an infinite language.

(Basically, if it generates any sentences long enough to apply the pumping
lemma, it generates an infinite language)

4. There is a procedure to determine whether a given string is a sentence of
the language defined by a given CFG

11.3.5 Another Undecidable Problem

We will finish with one further undecidable problem, namely whether one propo-
sition entails another in first-order predicate calculus.

It is possible to encode any Turing machine as a conjunction of propositions in
the predicate calculus. We can put together a conjunction of formulas I' that
gives a logical encoding of the machine and its input. We can also construct a
formula H stating that the machine halts. Putting these together, we get “I
entails H”, which means that the machine does halt for a given input. But since
we already know that this is an undecidable problem, the entailment between
I" and H must be undecidable.

In fact, the problem is semi-decidable. This means that for any pair of proposi-
tions, ¢ and v, if ¢ entails v, then there is a decision procedure that will inform
us of this in a finite time. However, if ¢ does not entail 1, we cannot always be
informed of this fact in a finite amount of time.

A semi-decidable problem is one for which positive (or negative) answers are
always given in a finite amount of time, but where negative (or positive) results
may cause a loop.

11.4 Computability

In talking about decidability, we have just been concerned about whether or
not a TM halts, regardless of what is written on the tape when the TM halts.
But algorithms/TMs can clearly do much more than decide yes/no answers.

11.4. COMPUTABILITY 201

They can compute more interesting results, and in the case of TMs leave these
results written on the tape.

There is another version of the Church-Turing thesis for computability

Church-Turing Thesis (Computability)

Any computable function can be computed on a Turing machine

As with the Church-Turing thesis for the decidability the suggestion is to take
Turing machines as definitional for algorithms, and subsequent investigation
has so far shown this to be reasonable.

In this section we will (i) look at a particular form of TM used for computing
functions, (ii) show that some some arithmetic functions are inherently un-
computable, and (iii) very briefly relate Turing computability to the theory of
recursive functions.

11.4.1 Turing Computability

A Turing machine that computes a function has two distinguished states: a
start state sp and a single accepting state sy. The input to the function is
written in the standard position on the tape. There is one transition out of sg,
which moves the tape head to position 1, and no transitions back into sg. All
computations that terminate do so in state s;. On termination, the result of
the function is written in the standard position on an otherwise blank tape.

A function is Turing computable if there is a TM of the above form that com-
putes it.

11.4.2 Uncomputable Functions

Some functions are not Turing computable. Essentially, each TM defines a
(computable) function. However there are more functions on real numbers
than there are possible Turing machines, and so some numeric functions are
therefore uncomputable.

In Chapter 2 we showed that the set of real numbers was uncountably large,
via Cantor’s diagonalisation argument.

Turing machines are defined by their transitions, which are 5-tuples where each
element is taken from a countable set. The set of all possible 5-tuples is therefore
countable (though infinite).

Hence there are more real numbers than possible Turing machines, even though
there are an infinite number of both.

Consider all unary numeric functions applied to a given input: there are as many
outputs (and hence as many possible functions) as there are real numbers —
uncountably many. But each Turing machine can only return one result, and
there are only countably many of these. Thus some unary functions get left

202 CHAPTER 11. DECIDABILITY & COMPUTABILITY

out. (Whether there are any interesting or important uncomputable functions
is another question).

11.4.3 Recursive Functions

An alternative approach to defining computability has been in terms of recursive
function theory (covered in more detail in G53COM). A very large family of
functions can be built up from three basic primitive recursive functions

1. Successor: s(x) =z + 1
2. Zero: z(z) =0

3. Projection: pl'(z1,...,2z,) =25, 1 <i<n
via the following modes of combination

1. Composition
Let g1, ..., gn be k-place functions and h be an n-place function.

Composition of h with g1, ..., g, is a k-place function f
flz1, ..., x) = h(gi(x1, . s 2k), ooy gn(21, - oy X))

(That is, the function obtained by using the output of g1, ..., g, as the
input to h)

2. Primitive Recursion
Let g be an n-place function and h an (n + 2)-place function.

We can obtain an (n + 1)-place function, f, from them by primitive re-
cursion

(a) f(x1,...,20,0) =g(x1,...,2,) (base case)
(b) f(xla sy Ty Y+ 1) = h(xlv -y Ipy Y, f('rb cee 7xn7y)) (recursion)
Functions built up from Zero, Successor and Projection via compsition and

primitive recursion are known as primitive recursive functions. This encom-
passes a surprisingly large range, for example

11.4. COMPUTABILITY 203

Some Primitive Recursive Functions
Description Function/ Definition
Predicate
addition add(z,y) add(x,0) = p3(z,0) ==
T4y add(z,y + 1) = s(add(z,y))
multiplication mult(z,y) mult(z,0) = z(x) =0
.y mult(z,y + 1) = mult(z,y) + x
predecessor pred(y) pred(0) =0
pred(y +1) =y
proper sub(z,y) sub(x,0) = pi(z,0) ==
subtraction r—y sub(x,y + 1) = pred(sub(z,y))
exponentiation exp(z,y) exp(x,0)=s(z(z)) =
x¥ exp(zr,y + 1) = exp(z,y).x
sign sg(z) sg(0) =2(0) =0
sg(y+1) =s(2(0)) =1
sign complement cosg(x) cosg(0) =1
cosgly+1)=0
less than It(x,y) sg(y —)
greater than gt(z,y) sg(z — y)
equals eq(x,y) cosg(lt(x,y) + gt(x,y)

If one adds one further mode of function combination, known as minimalisation
one obtains the set of u-recursive functions:

3. Minimalisation Given a predicate p (i.e. a function that returns 1 or 0),
the minimalisation

wzp(xi, ... o, 2)]

gives the least value of z for which p(z1,...,zp,2) =1

Investigation has shown p-recursive functions to be a good way of characterising
what we intuitively regard as computable functions.

However, it turns out to be straightforward to convert any p-recursive function
into a Turing Machine, so the Turing Computabilty gives the same characteri-
sation of computability as recursive function theory.

Conversion of the building blocks of primitive recursive functions to TMs pro-
ceeds, roughly, as follows:

e The successor TM just adds an extra 1 to the end of the number (repre-
sented as a string of 1’s) on the input tape.

e The zero function deletes all but the first 1.

e Projection functions scan along the tape until they find the number they
need to return, copy the number to the front of the tape, and delete
everything else.

204 CHAPTER 11. DECIDABILITY & COMPUTABILITY

e Composition involves putting two or more TMs together so that the out-
put that one writes to the tape is used as input to the next.

e We can also combine TMs for two functions in such a way as to compute
the primitive recursion of the two functions. (For details, see Sudkamp).

e Similarly for minimalisation

11.5 Summary

This chapter has been about the Church-Turing thesis, which amounts to say-
ing that anything that can be algorithmically computed can be computed via
a Turing Machine. The halting problem shows that there are some well defined
and interesting problems to which algorithms cannot always return a yes-or-no
answer in finite amount of time. Unfortunately, a large number of problems
are undecidable in this sense, as can be shown by reducing them to the halting
problem. Finally, we showed that some functions cannot be computed (decid-
ably or otherwise) by Turing Machines. Since Turing Machines give an abstract
characterisation of the expressive power of digital computers, this means there
are theoretical limits on what can be done with computers.

THE END

