A Question adapted from 1995:5:4X (maths 1a)

Thomas Forster

November 8, 2008

Here is an ML declaration of two functions by a simultaneous (or “mutual”)
recursion.

fun f n = if n = 0 then 0 else g(f(n-1) + 1, 1) -1
and g(n,m) = £(f(n-1)) + m + 1;

Question: What are the running times of f and

g’

The mutual recursion gives us a pair of mutual recurrence relations:
A:F(n)=G(f(n—-1)+1,1)+ F(n—-1)
B:Gnym)=F(n—-1)+F(f(n—-1)+k

where F' is the cost function for £ and G is the cost function for g. That is
to say, G(n,m) is the time taken to compute g(n, m) and F(n) is the time taken
to compute f(n). Notice that the function f appears in the equations A and B,
and life would be a bit easier if we could simplify A to get rid of it. So what is
£7 A quick investigation suggests that (Vn € IN)(£(n) = n), but we had better
prove it! It’s true for n = 0. For the induction step the recursive declaration
tells us that

f(n+1)=g(f(n)+ 1,1) — 1 (by substituting n + 1 for n)
But f£(n) = n by induction hypothesis so this becomes
fn+1)=gn+1,1)—1
Now, substituting (n + 1) for n and 1 for m in the declaration for g we get
gm+1,)=n+1-1)+1+1

which is n + 2 giving f(n+ 1) = n + 1 as desired. |

Now that we know £(n) = n we can use this fact to simplify our recurrence
relations as follows.



A F(n)=G(n,1)+ F(n—1)
B": G(n,m)=F(n—1)+ F(n— 1)+ k whence
B”: G(n,m)=2-F(n—1)+k

This gives
Fn)=F(n—-1)+Fn—-1)+F(n—-1)+k

so F(n) € O(3™).

G is exponential too. We have assumed that the cost of adding the second
agument (‘m’) is constant, but altho’ this simplification will cause no problems it
is a simplification nevertheless. Adding two arguments takes time proportional
to the logarithm of the larger of the two. Fortunately the cost functions of these
algorithms are so huge that an extra log or two will make no difference to the
order.



