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0.1 Stuff to fit in
3-SAT

Notes on a lecture given by Cook of Cook’s theorem.

n variables and ¢-n clauses. Let F be an instance. Then P(Fis satisfiable) — 0
as ¢ — 00. Phase change at ~ 4.26 gets steeper as n — oo.

Cook sez: a propositional proof system is a polytime surjection f : ¥* —»
set of tautologies. (“x is a proof of f(z)”).

A proof system is super if there is a polynomial p such that every tautology of
length n has a proof of length n. So NP = co-NP iff there is a super proof system.
Generally it seems quite hard to show that a proof system is not super. (If NP =
co-NP but NP # Pthen the short proofs of tautologies cannot be found effectively
(that is, in polytime)

(I find in my scribbles: Matrices AB = I — BA = I can be coded over F5 but
these tautologies do not seem to have polytime proofs ...not certain tho’ ... What
did i mean???)

2004 Paper 4 Q 9

Here is a slick way to do it. Given a stream F = (f; : i € IN) set
D(F) =: M.fn(n) + 1.

Evidently D(F) is distinct from all the functions in F.

Now let Fj be the sequence of f; we are presented with initially.

Then set go = D(Fp), and thereafter F;;1 = g; :: F; (where the double colon is
cons as in ML). For all 7 € IN, set ¢; =: D(F;).



Chapter 1

Languages and Automata

1.1 Questions

1987 p6 g3; 1988:2:3; 1988:2:11; 1989:6:12%; 1989:4:11; 1991 p4 q6; 1991 pll ¢6b;
1992 p4 q9*; 1992 p11 q9; 1993 p5 q12*; 1993 p6 q12; 1994 pl0 q4; 1994 p4 g3 (not
for 1a); 1994 p3 g3 1993 p5 q12; 1993 p6 q12; 1994:3:3; 1994:4:2; 1995:2:8; 1995 p3
q3; 1995:4:3; 1996:2:8; 1997:2:7. 1998:2:7

These are mostly 1b questions. There is actually not a great deal of material
that used to be covered in 1b that is not covered in the la course—all i can think
of is context-free languages and pushdown automata. The same goes for questions
below. I have put asterisks against the numbers of tripos questions for which i have
model answers.

1. Prove that L((r|s)*) = L((r*s*)*) (Use induction on word length)

2. Prove that L((rs*)*) C L((r*s*)*) but that the reverse inclusion does not
hold.

3. Describe! deterministic automata to recognise the following subsets of {0, 1}*:
(a) The set of all strings with three consecutive 0’s; provide a regular ex-

pression corresponding to this set as well;

(b) The set of all strings w such that every set of five consecutive characters
in w contains at least two 0’s;

(¢) The set of all strings such that the 10th character from the right end is
a ‘0’; provide a regular expression corresponding to this set as well. For
pedants: This could mean one of two things. Answer both of them.

4. Let L be a regular language over an alphabet . Which of the following are
regular languages?
(a) fwe X : (ue ) (wug L)}
(b) {w € L: (Vu € ¥*)((length(u) > 0) — wu & L)}
(¢) {we L: (Vu,v e X*)((w=wuv Alength(u) >0) - u¢& L)}
(d) The preceding question has a typo in it. Find it.
)
)

e) S, an arbitrary subset of L.

(
(f) {we X*: Bu,v € T*)((w = uwv) A (vu € L))} (hint: needs a different
approach ...)

1This word is very carefully chosen!
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A combination lock has three 1-bit inputs and opens just when it receives the
input sequence 101, 111, 011, 010. Design a finite deterministic automaton
with this behaviour (with accepting state(s) corresponding to the lock being
open).

Let ¥ be an alphabet and let B and C' be subsets of ¥* such that the empty
string is not in B. Let X C ¥* and show that if X satisfies the equation
X = BX UC, then B*C C X and X C B*C, i.e. the unique solution is
X = B*C. [Hint: use induction on number of “blocks”.]

Show that if in the previous question we allow A € B, then X = B*D is a
solution for any D D C.

Let A = {b,c}, B = {b}, C = {c}. Find the solutions X;, Xs C A* of
the following pairs of simultaneous equations: (i) X; = BX; UCXs; Xy =
(BUO)X, UCX U{A} (il) X1 = (BX; U{A}); Xo = BC(X1 U{A}).

There is an alphabet 3 with six letters a, b, ¢, d, e and f that represent the
six rotations through 7/2 radians of each face of the Rubik cube. Everything
you can do to the Rubik cube can be represented as a word in this language.
Let L be the set of words in 3* that take the cube from its initial state back
to its initial state. Is L regular? If you have had a sleepless night over this
you may consult the footnote for a hint.?

Can you construct an FDA to recognise binary representations of multiples of
37 You may assume the machine starts reading the most significant bit first.

For which primes p can you build a FDA to recognise decimal representations
of multiples of p? How many states do your machines have?

Let ¢ be a number between 0 and 1. Let L be the set of sequences s € {0,1}*
such that the binary number between 0 and 1 represented by s is less than or
equal to g. Show that L is a regular language iff ¢ is rational. What difference
would it have made if we had defined L to be be the set of sequences s € {0,1}*
such that the binary number between 0 and 1 represented by s is less than gq.

Give regular grammars for the two following regular expressions over the al-
phabet ¥ = {a,b} and construct finite non-deterministic automata accepting
the regular language denoted by them:

(a) bal(albb)a*d

(b) ((alb)(alb))*|((alb)(alb)(alb))"
For each of the following languages either show that the language is regular
(for example by showing how it would be possible to construct a finite state
machine to recognise it) or use the pumping lemma to show that it is not.

(a) The set of all words not in a given regular language L.

(b) The set of all palindromes over the alphabet a,b,c (a palindrome is a
word that is unchanged when reversed, for example, abcbabcba).

(c) If L is a regular language, the language which consists of reversals of the
words in L; thus if L contains the word abcd, then the reversed language
L contains dcba.

2If this is to be a regular language, there must be a FDA that recognises it. What might this
FDA be?
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(d) Given regular languages L and M, the set of strings that contain within
them first a substring that is part of language L, then a substring from M
arbitrary characters from the alphabet a, b, ¢ are allowed before, between
and after these strings.

(e) Given regular languages L and M, the set of strings that contain within
them some substring which is part of both L and M.

What is the language of boolean (propositional) logic? Is it regular? What
about the version without infixes (“Polish notation”) What about reverse
polish notation?

A “Muller C-element” is a device which receives two streams of binary digits
(xox122 ... and yoy1ys2...) and outputs a stream of binary digits zgz122 ...
satisfying the relation

2o = Tn+1 if Tn+1 = Yn+1,
+ —_— .

" Zn lf Tn+1 # Yn+1
Design a Moore machine with this behaviour.

Give context-free grammars generating the following languages:
(a) {aPbic"|p # qor q £}

(b) {w € {a,b}*| w contains exactly twice as many as as bs}

Let M be a finite deterministic automaton with n states. Prove that L(M) is
an infinite set if and only if it contains a string of length | with n <[ < 2n.

The interleaving of two languages L and M is the set of all words that can
be obtained from a word in L and a word in M by interleaving the two words
in the way that people shuffle together two halves of a pack of cards. Prove
that

(a) The interleaving of two regular languages is regular

(b) The interleaving of a regular and a context free language is context free

(c) The interleaving of two context free languages is not always context-free.

Does the set of strings in {a,b, c}* which have as many as as bs and c¢s put
together make a regular language?

Let K, L and M be regular languages. Is {u € L : (Jv € K)(uv € M)} a
regular language?

Is the language of Roman numerals regular?

Fit in somewhere: overloading of juxtaposition: abc uvw and ABC. I think this
is something to do with quasiquotation ...

3There is a pumping lemma for context-free languages which is not in the course. With the
hint that a™b™c™d™ is not context-free it all becomes terribly easy!
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1.2 Answers

Question 1.1

Let ¥ = {r,s}. If you sit and stare at these two expressions long enough you will
come to the conclusion that they both denote ¥*. The way to prove they are equal
to each other is therefore to prove they are both equal to ¥*. Clearly L((r|s)*) C ¥*
and L((r*s*)*) C ¥* so all we have to do to prove L((r|s)*) = X* and L((r*s*)*) =
¥* is prove the reverse inclusions:* ¥* C L((r|s)*) and ¥* C L((r*s*)*). We do
these two by induction on the length of strings in ¥*. If you want to be formal
about it you can properly describe what we are about to do as a proof by induction
on k that % C L((r|s)*) and X¥ C L((r*s*)*). This is certainly true for the empty
string (kK = 0). Suppose it is true for all strings of length k. Let wx be a string
of length k 4+ 1, where w is of length k£ and x is r or s. By induction hypothesis
w belongs to both L((r|s)*) and L((r*s*)*). Since w is of length k and belongs to
L((r|s)*) it must be k occurrences of r or s. If we stick an r or an s on the end we
get k + 1 occurrences of r or s. If w belongs to L((r*s*)*) it is a number (n, say)
of concatenated occurrences of (r*s*). Now r and s are both instances of (r*s*) so
wz is also a number (n + 1 in fact) of concatenated occurrences of (r*s*).

Question 3

Give finite deterministic automata accepting the following languages over ¥ =
{0,1}
1. The set of all strings with three consecutive 0s, and provide a regular
expression for this language.

2. The set of all strings such that every block of five consecutive symbols
contains at least two Os.

3. The set of all strings such that the 10th symbol from the right end is 1,
and provide a regular expression for this language.

Question 3 (a) Strings with three consecutive 0s

The FDA M = (Q, i, %, F, §) would be defined as follows:

Q = {A,B,C,D}
i = A

S = {o, 1}

F = {D}

The transition function § would be defined such that upon receiving a zero the
machine would move to the next state, but given a 1 it would move back to the
initial state.

Therefore ¢§ is given by:

The regular expression desired is (0]1)*000(0|1)*

4because set inclusion is antisymmetrical. Have you forgotten this word already?
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Question 3 (c)

The 10th character from the right is a zero. (1]0)*0(1]0)(1]0)(1]0)(1]0)(1]0)(1]0)(1]0)(1]0)(1|0)(1]0)

Question 4
Question 4(b)

The kiddies are liable to get confused beco’s this language is always finite and
usually empty. They are liable to interpret silly answers as fail and say ‘no’ when
they should in fact say ‘yes’.

Question 4(d)

It should be “length(v) > 0”.

Question 4(f)

Let £ be an arbitrary regular language C X*. Is the following also a regular
subset of ¥*7

{w: (Fv,u € T")(w=uwvAvu € L)}

Answer: yes. There is a very cute way of doing this with regular expressions:
the regular expression corresponding to L is finite and an be chopped in two and
rearranged in only finitely many ways, and we put all those finitely many topped-
and-tailed versions together with slashes between them.

Question 5

A combination lock has three 1-bit inputs and opens just when it receives the
input sequence 101, 111, 011, 010. Design a finite deterministic automaton
with this behaviour (with accepting state(s) corresponding to the lock being
open).

The FDA M = (Q,,%, F, ) would be defined as follows:

{A,B,C,D,E}
A

N M. O

{000, 001, 010, 011, 100, 101, 110, 111}

{E}

o
o
o
—
-
-
o
o
-
-
-
o
—
-

HO QW=

R
Pk
oS
R
P
Hwww oo
T
e
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Question 6

Show B*C C X. B*C C X is just (Vw)(w € B*C — w € X). To prove this we
prove (Vn € IN)(Vw)(w € B"C — w € X). The case n = 0 is just (Vw)(w € C —
w € X), which is C C X which follows from X = BX U C. Now suppose true for
n = k. Let w be a string in B*¥T'C. Then w is bw’ for some w’ € B*C and some
b€ B. Then w' € X because B¥C' C X by induction hypothesis. So bw’ (which is
w, after all) is in BX, and BX C X. (We were told this at the start: X = BXUC.)
So w € X as desired.

Show X C B*C

We classify members of X according to the number of strings from B that we
can abstract from the front of them. Since X = BX U C, any string from X that
has no initial segment in B must be a string from C. Any string from X that has
n + 1 B-strings concatenated together as an initial segment can be tho’rt of as the
result of sticking a B string on the front of a string with n B-strings ...etc. etc,
so it is in BX. We can only do this finitely many times (n gets smaller each time)
so eventually we are left with a string in C' as before. The significance of B not
containing the empty string is that it ensures that taking a B-string off the front
results in a genuine reduction in length.

Question 8

Part (i)

X1 = bX1|CX2 and X2 = (blC)X1|CX2

Joel Cartwright and Matt Cunnane and i came to the conclusion that X; con-
tains all nonempty strings ending in a ¢, and X5 contains the null string and all
non-null strings ending in a c.

The informal way to do this is to accumulate information about what X; and
X5 contain. Initially X7 contains nothing and X5 contains the empty string. Then
the two C' X, clauses tell us that X; and X5 contain ¢*. And soon ...

Part (ii)
X1 = (b|6)X1|6 and XQ = bC(X1|6)
We reckoned that X; = b* and X5 = beb*

Question 9

The machine is the cube itself

Question 13

Give regular grammars for the two following regular expressions over the al-
phabet ¥ = {a,b} and construct finite non-deterministic automata accepting
the regular language denoted by them:

1. bal(a|bb)a * b
2. ((a[b)(a[b)) = [((a]b)(a]b)(a]b))*

Question 13 (1): bal(albb)a b

An FNA constructed by the mechanical construction of Kleene’s Theorem to recog-
nise the language generated by the above regular expression has @ = {0,1,2,...12},
i=0, F={12},and ¢ : (Q x X) — P(Q) as follows:
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State
Input 0 1 2 3 4 5 6

{04} {12y B i i)
{} fa} b {3 {6 )
{ {2} (S R Lt
State
Input | 7 8 9 10 11 12

€ O {wop {3 {12y {}
a ¢ o 0 4O O O
ol {8r {9 O {1 {0

After removal of redundant e-transitions, and merging of states where possible,
this reduces to an FNA with @ = {0,1,2,3},i =0, F = {3} and ¢ : (QxX) — P(Q)
given by:

State
Input H 2 3
{2} {3} {2r {3
{1y {2 {3 {}
Another answer: a nondeterministic automaton.

The FNA M = (Q, X, A, i, F) is given thus:

Q = {AB,C,D}
Y = {a,b}

i = A
F o= {D}

A, the transition relation of M is given by:

MUQW>‘
HEHQOQe
mEg Qoo

And here is a grammar for it.

We define the NON-TERMINALS of G :

N = {(start ), (xz)}

the TERMINALS of G :

E ={a,b}

the START SYMBOL :

i = ( start )

and the PRODUCTION of G : ( start ) ::= ba

= alxx)

= bb(zx)

(xx) = a(zx)

n=10

Here is another CFG for (ba|(a|bb)a*b):

Y = {a,b}
N = (str),{astarb)
i = (str)



10 CHAPTER 1. LANGUAGES AND AUTOMATA

The productions (all of the form x — wy and © — w where w € ¥* is a string
of terminals and z,y € N are non-terminals) are given below:

(str) — ba

(stry — a(astarb)

(str) — bb(astard)
(astarb) — alastard)
(astarby — b

Question 13 (2): ((alb)(alb))  [((alb)(alb)(a|b))*

This language consists of all strings of a length divisible by two or three. The
corresponding FDA M = (Q, X, A, i, F) is given thus:

Q = {AB,C,DE,F}
Y = {a,b}

i = A
F {A,C,F}

A, the transition relation of M is given by:

’ﬂ@UOUJD>‘
>y Qe
>HEg Qoo

The grammar
Thinking of the ring of six states composing the equivalent FDA we define the
NON-TERMINALS of G :

N = {(50),(52), (53), (54)}

the TERMINALS of G :
E ={a,b}

the START SYMBOL : ¢ = (S0) and the PRODUCTION of G : (S0) ::= aa{S2)
= ab(S2)
= ba(S2)
= bb(S2)
.<15T2>e::: a({S3)
= b(S3)
'<.5T3>e::: a{S4)
= b(S4)
{54)6::: aa(S0)
= ab(S0)
= ba(S0)
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= bb(S0)
n=e
The CFG is...
¥ = {a,b}
N = {{(str), (twos), (threes)}
i = (str)
The productions are...
(str) — (twos)
(stry — (threes)
(twos) —  aa(twos)
(twos)y —  ab(twos)
(twos) —  ba(twos)
(twos) —  bb{twos)
(twosy — €
(threes) — aaa(threes)
(threes) — aab(threes)
(threes) — aba(threes)
(threes) — abb(threes)
(threes) — baa(threes)
(threes) —  bab(threes)
(threes) —  bba(threes)
(threes) — bbb(threes)
(threes) — ¢

Q 14

For each of the following languages either show that the language is
regular (for example by showing how it would be possible to construct a
finite state machine to recognise it) or use the pumping lemma to show
that it is not:

(i) the set of all words not in a given regular language L;

To make a FDA which does not accept the language L but accepts everything
not in L but in X* we make all the accepting states non-accepting and all the
non-accepting states accepting.

Therefore, if an automaton M = (Q, X, 6,4, F') accepts the language L = L(M)
we can construct an automaton M’ = (Q, X, 6,4, Q \ F') which accepts the language
L'=L(M")=%*\ L(M).

(ii) all palindromes over the alphabet a,b,c (a palindrome is a word
that is unchanged when reversed, for example, abcbabcba);

Consider the palindromic word a*ba* which has length [ = 2k+41. We can break
this down into a word w = ujvus thus:

S
I
S]

Uy = ba*
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If we now consider the word w = u1v™us in the case n = 0 we get that:

w = uv"ug
= Uru2

— akfsbak

This cannot be palindromic since s > 1. Therefore it cannot be in L. This
is in contradiction of the pumping lemma which holds for all regular languages.
Therefore, L cannot be a regular language.

(iii) if L is a regular language, the language which consists of reversals
of the words in L.

To every regular language there corresponds a regular expression. Reverse the
regular expression corresponding to the given language L. The result corresponds
to the language which consists of reversals of the words in L.

(iv) given regular languages L and M, the set of strings that contain
within them first a substring that is part of language L, then a substring
from M; arbitrary characters from the alphabet a, b, c are allowed before,
between and after these strings;

Let [ and m be regular expressions which generate the languages L and M. To
generate the language requested one would use the regular expression (a|b|c)*I(a|b|c)*m(a|b|c)*.
Since we have found a regular expression to generate the language, the language
must be regular by Kleene’s Theorem.

(v) given regular languages L and M, the set of strings that contain
within them some substring which is part of both L and M.

Since L and M are both regular languages LN M is also regular, and corresponds
to some regular expression r. We haven’t been told what the alphabet is that we
are working with, so—by way of illustration—assume it is {a,b}. Then the set of
strings we are after corresponds to the regular expression (a|b)*r(a|b)*.

Question 16

A ”Muller C-element” is a device which receives two streams of binary digits
(zox1z2 ... and yoy1y2...) and outputs a stream of binary digits zoz122. ..
satisfying the relation.

- - {$n+1 if Tnt1 = Ynt1,
n+1 — s
Zn if Tni1 # Ynt1

Design a Moore machine with this behaviour.

The machine M = (Q,1i, %, F, 0, <>, &) would be defined as follows:

Q = {4,B,C}

i = A

> = {oo, o1, 10, 11}
Fo={}

¢ = {o, 1}

The transition function works along the lines of: if you are in a state with output
x and get a pair of —zs then change to the state without output —x else stay in the
current state. If we take into account the initial state having an undefined output
we get a transition function ¢ given by:
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[E
[EY

QW
wwwg
Qwm =2
QwEs
Qaaan

Each state in the set @) an output from the set {6 has associated with it, given
by the following function é:

State ‘ Output

A Undefined
B 0
C

1

Another answer:
Let Q ={0,1,2}, X ={0,1},i = 0. Let § : (Q x ¥?) — @ be given by:

($n7yn)
State | ( 00 01 (1,00 (1,1)
0 2
1 2
2 2

Let z = {x,0,1}, and Z : Q — z be given by:

Z(q)

N = O

x
0
1
Then (Q,X2,2,6,Z,i) is a Moore machine which implements the Muller C-

element.

Question 17

Give context-free grammars generating the following languages:
L {a”bc"|p# qor g #r}
2. {w € {a,b}"| w contains exactly twice as many as as bs}

First one: The CFG would be as below. A large number of non-terminals are
needed because the problem breaks up into subproblems quite readily. There are
those with p # ¢ and those with ¢ # r. In the first case we can reduce to p > ¢ and
p < g and in the second ¢ < r and ¢ > r.

¥ = {aa ba C}
N = {{str),(ab),{c), (pgq), (plg)}
i = (str)

The productions are given by the following (given in Backus-Naur Form for
brevity).
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(str) == (ab><c>|<a><bc>

<ab> .

() =

(a) == ala)le
(be) = blggr)|{qlr)c
) u= a{pgq)la(pgq)ble
) = (plg)bla(plg)ble
) = blggr)|b{qgr)cle
) (glr)c|blglr)cle

Second one: The CFG would be defined as follows:

Y = {a,b}
N = {(str)}
i = (str)

The productions would work as follows. On each application two as and one b
are added to the string. This can be done with the string at any position relative
to the new characters and with the new characters in any order.

(stry — ¢

(str) — aab(str)
(str) — aba(str)
(stry —  baa(str)
(str) — aa(str)b
(str) — ab(str)a
(stry — ba(str)a
(stry — a(stryab
(str) — a(str)ba
(str) — b{str)aa
(stry — (str)aab
(stry — (str)aba
(str) — (strybaa

Question 18

Let M be a finite deterministic automaton with n states. Prove that
L(M) is an infinite set if and only if it contains a string of length [ with
n<l<2n

First consider the simpler of the two implications, that if L(M) contains a string
of length I (where n <1 < 2n) then L(M) must be infinite.

Since the automaton has only n states, if [ > n the string must pass through
some states more than once (since a length of n requires n transitions or n + 1
states). This requires that a cycle exists in the automaton. If a cycle exists then
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one could pass through it an arbitrarily large number of times, thus ensuring that
L(M) is an infinite set. This proves the implication in the case where [ # n.

The reverse implication is that if L(M) is infinite then the language must contain
a string of length | (where n <1 < 2n).

If L(M) is infinite then M must contain some cycles (since it does not have an
infinite number of states). The length of any one cycle from beginning, around and
back to beginning can be no longer than n states since this would be the whole of
the automaton. Passing twice around any of these cycles would produce a string of
length in the desired range.

*x 9 % Use the pumping lemma to show that {a*t*|k > 0} is not a regular
language over ¥ = {a, b}.

Here is a mistaken answer.

If the word w is decomposed as w = ujvus thus:

T—S
uy =

S
v o= a

k—ryk
uy = a° 'b

The pumping lemma states that for all n > 0, uiv™u2 € L. Consider our
example in the case n = 0:

0
w = U1V U2
= U1U2
_ arfsakfrbk
k—sbk

a

which would only be a member of the language if s were zero. The pumping
lemma states that s > 1. Therefore, this language is not regular.

The mistake is as follows. Suppose there were a machine that recognises {a*b*|k >
0} and that it has n states, and w is a word in {a*b*|k > 0} of length at least n,
then certainly there is a decomposition of w w = uyvuy. The trouble is that we do
not know if v consists entirely of a’s, or entirely of b’s, or of some a’s followed by
some b’s. The author of this answer didn’t consider the other two possibilities. I
think this is because he didn’t understand why the pumping lemma is true!

Another pumping lemma question

Let M be a finite state machine that accepts all strings in {a*ba*|k > 0}. We will
show that it will accept some strings that aren’t palindromes, and therefore doesn’t
recognise {aba”|k > 0}.

Pick n larger than the number of states of the alleged machine. Consider what
happens when we give the machine a"ba™. The idea is that in reading this string
the machine must have visited one of its states twice, and must have gone through
a loop. (Think of this as an application of the pigeonhole principle). That is to
say, this word a™ba™ has a substring within it which corresponds to the machine’s
passage through the loop. Call this string w. In fact, since we have force-fed the
machine n a’s, and it has fewer than n states, we can take it that w consists entirely
of a’s. This idea is that any string which is like a™ba™ but differs from it in having
the substring w within it replaced by any number of consecutive copies of w will
still be accepted by the machine. The poor machine will go thru’ the loop umpteen



16 CHAPTER 1. LANGUAGES AND AUTOMATA

times of course, but it has no memory of such events (it “knows” only the state it
is in, not how often it has visited that state). Thus we can compel the machine
to accept a string a®ba™ where k # n, demonstrating—as desired—that is doesn’t
recognise {a*b*|k > 0}.

* 4 x Construct a finite deterministic automaton accepting the same language as
the following finite non-deterministic automaton over ¥ = {0,1}: (Not reproduced
here.)

The FDA M = (Q,,%, F, ) would be defined as follows:

Q = {o{p}{a} {r}, {sh{erh g, st {nshAp, ¢, v} {a 7, s}}
i = {p}

x = {0,1}

F = {{S}’{q>s}’{T7S}7{QaTaS}}

The transition function § would be defined thus:

0 1

o ¢ o
{r} | {as} {a}
{ay | A{r} {g,r}
{r} | A{st {r}
{s} ¢ {r}
{a.;7} | {r;s} Ap.qr}
{a.;st | {r}  Ap.ar}
{r.sh | {s} {r}
ary | {erst Ap,gr}
{a,r 8} | {rs}  {p,qr}
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Odd number of 0s and 1s

This one is a real bugger. Here follows some edited highlights of the attempts
of four Churchillians (Mssrs Tonge, Ewald, Scott and Walker) to crack it. One
thing everybody agrees on is that the automaton accepts strings containing an odd
number of 0s and an odd number of 1s.

One Churchillian says:

A regular expression for the language it accepts can be constructed as
follows. Let x be the regular expression 00[11|0101|1010. Then the
required regular expression is z*((0z*1)|(12*0))z*, since recognising x*
does not change the state.

At any point (00/11)* and (0101|1010)* have the effect of sitting still.
We can simplify this to (00/11]0101|1010)*.

Another chap says:

To get around clockwise from p to s we need to sit still at p, get a 0, sit
still at ¢, get a 1, sit still at s. Alternatively, we can go anticlockwise
and swap the Os and 1s in the previous sentence and mention r rather
than q.

This becomes:

s = 00[11]0101[1010
r = s"(0s"1]1s"0)s"
(00[11]0101/1010)* (0(00[11]0101|1010)*1|
1(00/11]0101]1010)*0)(00|11]0101[1010)*

Karl Ewald says:

The shortest ones I can come up with at first glance are
both even: ((00]11)(01|10)(00|11) * (01|10))x

others: (00]|11) * R both-even

where R is (01]10) for both-odd

(1]010) for odd number of 1’s - even number of 0’s (0]101) for odd number
of 0’s - even number of 1’s

I think they are right, whether they are the shortest possible I don’t
know.

Karl

For that machine which accepts strings containing even numbers of ones and
Zeros -

{00]11|(01]10)[(00)*(11)*]*(01|10)}*

This seems to be the simplest and most intuitive solution, the others I have
found are:

{0(1)"0[[(01(11)"0)(0(11)"0)* (01(11)"0)] }*

and the same where all zeros and ones are swapped.
James
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From rjt26@thor.cam.ac.uk Thu May 1 22:19:06 1997

Is this a correct answer for the DFA example you gave in the supervision?
(00]11](01|10)(00|11)*(01|10))*

Rob Walker says:

Here is what I think the regular expression for the FDA that accepts
strings with an odd number of 0’s and 1’s in them:

The (reformatted) answer is:

0(00) *1

(1 | 0(00)*01)
(11 | 10(00)*01)*
(0 | 10(00)*1)

(0€00)*1 | (1 | 0(00)*01)
(11 | 10(00)*01)*
(0 | 10¢00)*1) )

(1(00)*1 | (0 | 1(00)*01)
(11 | 10(00)*01)*
(0 | 10(00)*1) )+

Examples of strings this generates:

01
0001
10
001101

01101101
000011110111
01010011000010

ete ...

The (somewhat messy) program I used to generate this is:

/* A messy C program which takes the
FDA to recognise strings over {0,1}
with a odd number of both 0’s & 1’s
and works out the regular expression
that represents it using Kleene’s
theorem.

*/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stddef.h>

VESEE - - ————x/
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/* delta : states x lang --> states */

int delta[5][2] = { -1, -1, /* ignore these */
2, 3,
1, 4,
4, 1,
3, 2}

static int initial = 1;
static int accept[5] = {0, 0, 0, 0, 1};

/* use dynamic programming techniques to reduce amount
of work done by a very large amount

*/

static char *dynamic[5][5][5];

2 — -— S——
* R -=> a | bcxd
K */

char *R(int i, int j, int k)

{

/* have I worked this out before 7 */

if (dynamic[i] [j][k]) return(dynamic[i] [j][k]);

if (k == 0) {
char *answer = malloc(8); /* longest = (0[1) */
int c=0;

if (delta[il[0] == j) c = 1;
if (deltal[il[1] == j) c += 2;

/* soc=0,1, 2, 3 x/

switch (c) {
case 0: *answer = ’\0’; break;
case 1: sprintf(answer,"0"); break;
case 2: sprintf(answer,"1"); break;
case 3: sprintf(answer,"(0/1)"); break;

}

/* store result for use later */
dynamic[i] [j] [k] = answer;

return(answver) ;
¥
else {
char *answer, *ptl, *pt2, *pt3, *pt4, *second;
int c=0;

/* now it gets messy - work out what the resulting

string is ...
*/
ptl = R(i, j, k-1); if (xptl) c |= 1;
pt2 = R(i, k, k-1); if (*xpt2) c |= 2;
pt3 = R(k, k, k-1); if (xpt3) c |= 4;
pt4 = R(k, j, k-1); if (xpt4) c |= 8;
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answer = malloc(strlen(ptl)+strlen(pt2)+strlen(pt3)
+strlen(pt4)+12);

second = malloc(strlen(pt2)+strlen(pt3)+strlen(ptd)+12);

*second = ’\0’;

/* if no components then go home! (second == "") %/
if (!'c) { dynamic[i] [j][k] = second; return(second); }

/* if either p2 OR p4 is blank then NO second bit! */
if (1*pt2 || !*pt4d)
{ dynamic[i] [j][k] = ptl; return(ptl); }

/* is there a first part to the second part? */
if (xpt2) strcat(second, pt2);

/* what about the starred bit? */

if (xpt3) {
/* are the last two parts the same --> use + instead of * x/
if (!strcmp(pt3, pt4)) {

/* try to reduce number of brackets */

if (xpt3 != ’(’) strcat(second, "(");
strcat(second, pt3);
if (xpt3 != ’(’) strcat(second, ")");

strcat(second, "+");

}

else {
if (*pt3 != ’(’) strcat(second, "(");
strcat(second, pt3);
if (*pt3 != ’(’) strcat(second, ")");
strcat(second, "x");
}

/* is there an end bit? */
if (xpt4 && strcmp(pt3, pt4)) strcat(second, pt4);

/* if no first bit ... %/
if ('*pt1) { dynamic[i][j][k] = second; return(second); }

/* is no second bit */
if (!*second) { dynamic[i] [jI1[k] = ptl; return(ptl); }

/* if 1st bit = 2nd part then just return one */
if (!strcmp(ptl, second)) { dynamic[i][j][k] = ptl; return(ptl); }

sprintf (answer, "(%sl|(%s))", ptl, second);

dynamic[i] [j] [k] = answer;
return(answer) ;

JH==m= -—- -—- -—- ———k/

int main()

{
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printf ("answer is %s\n", R(1,4,4));

return(1);

}

U>>——- -—

%>>——- -

%Rob

%| Rob Walker

%| Churchill College
%| Cambridge. CB3 ODS
/A— —

| Pt 1B Computer Science Tripos
| Telephone 0223 69509
| e-mail: rnwl1000Q@cus.cam.ac.uk
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An answer from Lewis Brown, but i’m not sure what the questions were

Let Q = {p,q,r,s}, ¥ = {0,1}, i = {p}, and F = {S|S € P(Q) As € S}. Let
§: (P(Q) x X) — P(Q) be as follows:

State

tp {ap {r} {s} Har} {as} A{rs} {par} {ars}

Input || {}
0 i Aasy {rp {sp { {rs} {r} {s}  Aarsp A{rs}
1 I At Aar} {p} {p} {par} {part {p} {par} {par}

1.3 Model Answers to Tripos Questions

1989:6:12

Explain what is meant by
(a) a regular expression;

(b) a (deterministic) finite state machine.

(a) Regular expressions are used to describe the language of an automaton.
They describe how the language L C X* is constructed using a standard set of
operations for making new languages from old ones. These operations are called
union, concatenation and Kleene closure.

Union of two regular expressions r and s gives the regular expression r|s which
denotes the language L(R) U L(.S).

Concatenation of two regular expression r and s gives the regular expression rs
which denotes the language L(R)L(S).

Kleene closure of a regular expression r gives the regular expression r* =
r|rr|rrr|rrre|reerr ... which denotes the language L(R)*.

The language L(r) denoted by the regular expression r is the set of strings
L C ¥x which can be constructed by application of the regular expression r.

(b) A finite state machine takes has a set of possible states @) which it can be in
at any time. According to its inputs from a finite set ¥ and a transition function
0 it moves between these states. An initial state i must be specified as must the
set of accepting states F. When the machine is in an accepting state it can be said
to have accepted the string of symbols fed it up to that point. The set of all such
strings is the language L(M) of the machine.

A deterministic machine can only be in one state for any input sequence, whereas
a non-deterministic machine can be any of a number of states for the same input
sequence.

Another tripos question

Assuming Kleene’s theorem (which states that the regular expressions
and finite state machines are closely related), describe what is meant by
a regular language by relating such languages to both regular expressions
and to machines.

A regular language L is one for which L = L(r) for some regular expression r
over the same alphabet ¥ as that of the language L. In the context of machines, L
is regular if L = L(M) for some Finite Deterministic Automaton M.

State the Pumping Lemma for regular languages

For every regular language L, there is a number [ > 1 such that all strings w € L
of length [ or more can be expressed as w = ujvugy where uy, v and uy satisfy

e length(v) > 1
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o length(uyv) <1
e for all n > 0, uyv™us € L.

ie: For long enough strings in the language, more strings in the alphabet can be
got by repeating the middle bit.

1992:4:9
(a)

Let L be the set of words over the alphabet {a,b} that end in b and do
not contain the word aa. Describe, with justification, a finite deterministic
automaton accepting L.

Which, if any, of the following regular expressions denotes L? Jus-
tify your answer in each case.

(i) (ablbblba)*b
(ii) (blab)*b
(iii) (blab)t [6 marks]

L and F are languages over an alphabet 3, and F' is finite. Prove that L is
regular iff LU F is regular. You may use any well-known results provided you
state them clearly. [8 marks]

Answer to (a):
Our FDA M = (Q, %, 4,1, F) is defined thus:

@ = {initial,got a,error,ok}
Y = {a,b}

¢ = {initial}
F = {ok}

The state transitions ¢ are defined thus:

initial got a error ok
€ | initial got a error accept
a got a error error got a
b | accept accept error accept

Which of the three expressions denotes L? (i) cannot be the answer because it
allows consecutive as. (ii) cannot be the answer because it cannot deliver ab. (iii)
is OK however. It is clear that everything in (blab)™ ends in b and does not contain
two consecutive as. Conversely we want to show that any string ending in b that
does not contain two consecutive as is in (blab)™. We prove this by induction on the
relation of end-extension on finite strings. Let w be a word ending in b that does
not contain two consecutive as which does not belong to (blab)™ for any n, and let
it be minimal with this property. w must be either uab or ub where u is another
word ending in b that does not contain two consecutive as. Because w is minimal
with this bad property we know that u belongs to (b|ab)™ for some n. But then w
belongs to (blab)"*! contradicting assumption on w.

Answer to (b)
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One direction is easy: the union of two regular languages is regular, and every
finite language is regular so if L is regular so is L U F.
For the other direction notice that

L=(LUF)\(F\L)

which is

(LUF)N(F\L)

which is

(LUF)N(FNL)

Now (L U F) is regular by assumption; F'N L is regular because it is a subset of F,

and so is finite, and (LU F) N (F N L) is regular because it’s the intersection of two
regular languages.

1993:5:12

Part 2:

Given that L(t|sr) C L(r). We want to show

L(s*t) C L(t|sr).

We prove by induction on the number n of occurrences of ‘s’ on the front of a
word w that w € L(s*t) — w € L(t|sr). If n = 0 then w € L(t) so w € L(t|sr).
Suppose true for k occurrences of ‘s’ at the beginning of w. (That is to say, if there
are k occurrences of ‘s’ at the beginning of w and w € L(s*t) then w € L(t|sr)).
So let sw be a word in L(s*t) with k + 1 occurrences of ‘s’ at the beginning. By
induction hypothesis we can infer that w € L(¢|sr). Now we were told at the
outset that L(t|sr) C L(r) so w € L(r) whence sw € L(sr) and L(sr) C L(t|sr) so
sw € L(t|sr) as desired.

1994:3:3
(1101*0)(0*|(170)*)*

1996:2:8

Show that if L is a regular language then the set of strings in L of odd length
is also a regular language. Is the same true of strings of even length? Justify
your answer [8 marks]

The set of strings of even length is a regular language and the set of strings of
odd length likewise a regular language. (the machine to do it needs only two states!)
The intersection of two regular languages is regular, so the set of L-strings of even
length is a regular language if L is.

To be a bit more formal about it, make two copies of a machine that recognises
L, and change the transition rules so that each rule like “If in state s a letter p is
received go to state s’ is replaced by two rules: (i) “If in state (s,0) a letter p is
received go to state (s'1)” and (ii) “If in state (s, 1) a letter p is received go to state
(s'0)7.

If L is a regular language let L’ be the set of strings in L that are palindromes.

Is it possible that L' is regular? Will L' necessarily be regular? Explain your
answer with suitable examples and proofs [6 marks]

Well, it’s certainly possible that L’ should be regular, because if L is finite L’
will be finite too, and therefore regular. L’ needn’t be regular because if L = X*
then L’ is the language of all palindromes which famously is not regular.
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It is known that the language Pal of all palindromes is not a regular language.
If possible find a regular language L such that L is a subset of pal, or if this is
not possible explain why. Similarly either find a regular language L' so that
Pal is a subset of L' or again explain why this cannot be done. [6 marks]

Finally any finite set of palindromes is regular, so the answer to the first part is
yes’. For the second part Pal is clearly a subset of ¥*, and ¥* is regular.

4

1998:2:7

The problem can be solved if we have a way of telling whether or not two given
machines recognise the same language. After all, we can get a machine from a
grammar and we can get a machine from a regular expression, so the Janet-and-
John question can be expressed in this form.

So, given M7 and Ms, do they recognise the same language? We seek a bound
on the length of the shortest string on which they disagree. We can build a machine
that accepts things accepted by M; but not by M5, and a machine that accepts
strings accepted by My but not by M;. (These two machines will even have the
same number of states, namely |Mj| X |Mz|). There is a version of the pumpkin
(sorry, pumping) lemma that tells us that if either of these new machines accepts
any strings at all, it will accept at least one string of length at most |M;]| x |Ms],
which gives us the bound we need.

1.3.1 Regular expressions and pattern matching

(x REGULAR EXPRESSIONS & PATTERN MATCHING
by Inge Norum (in206) May ’98

* String interface functions are provided in ’RegExpStringInterface.ml’

*)

datatype ’a RegExp = CONCAT of (’a RegExp * ’a RegExp)
| UNION of (’a RegExp * ’a RegExp)
| STAR of ’a RegExp
| VAL of ’a
| NULL
| EMPTY;

(kkxkxkkxk*x Sequence/Lazy list functions: kxskkkkkskkk)

datatype ’a seq = Cons of ’a * (unit -> ’a seq) | Nil;

fun head (Cons(x,_)) = x;

fun tail (Cons(_,f))
| tail Nil = Nil;

f() (x force evaluation *)

B

fun Append (Nil,B) =
= Cons(head A, fn()=>Append(tail A, B));

| Append (A,B)

fun Map £ A = case A of Nil => Nil
| Cons(x,t) => Append(f(x), ((Map £) (£t(0))) );
(* not analogous to the list map function, uses append, not cons *)
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(orskeskeok stk ke ok sk ke ok sk ok sk s ok sk sk sk sk sk sk sk ok ok
The pattern matching function.
Returns a sequence of solutions, in the form of input ’left over’.
=> no input left over is a match (but ’Nil’ is not)

*)

fun REmatch (VAL(a), [] )
REmatch (VAL(a),x::xs)

Nil
if (a=x) then Cons(xs, fn()=>Nil)
else Nil

REmatch (CONCAT(4,B),1) =
Map (fn (inputleft_A) => REmatch(B, inputleft_A)) (REmatch(A, 1) )

REmatch (UNION(A,B), 1) = Append( REmatch(A,1), REmatch(B,1) )

REmatch (STAR(A), 1) =
(* = REmatch(UNION(NULL,CONCAT(A,STAR(A))), 1 ) can cause an infinite loop *)
let
fun StarFun(Nil) = Nil
| StarFun(Match_A) =
if ((head Match_A)=1) (* A has evalueted to NULL, stop recursion *)
then StarFun(tail(Match_A))
else Append( REmatch(STAR(A),head(Match_A))
, StarFun(tail(Match_A)) )
in
Cons( 1 , fn() => StarFun(REmatch(A,1l)) )
end

REmatch (NULL, 1) = Cons( 1, fn()=>Nil )

REmatch (EMPTY, 1) = Nil

fun curry £ a b = f(a,b);
val REmatchCurry = curry REmatch;
(* MatchFinder converts a sequence (from the function above)

into a sequence of the solutions (i.e. an empty list).
CountMatches can then be used to count these. *)

fun MatchFinder (Cons([],f)) = (* no input left => successful *)
Cons(true, fn()=>MatchFinder(f()) )
| MatchFinder (Nil) = Nil (* no (more) matches *)

| MatchFinder (S) = MatchFinder (tail(S)); (* try next *)
(*x A curried ’interface’ function for REmatch, using MatchFinder. *)
fun REmatches (R) input = MatchFinder( REmatch(R, input) );
(* Counts the number of solutions/matches in a bool solution sequence
generated by MatchFinder/RegExpMatch.
e.g. the number of ways "11" matches ( 1% )* is 2.
i.e. CountMatches (REmatches ( STAR(STAR(VAL(1))) ) [1,1] ) =2
*)

fun CountMatches (Cons(b,f)) = if b then 1+CountMatches(f())
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else CountMatches(f())

| CountMatches (Nil) = 0
| CountMatches (1) = CountMatches(tail(l));
(* STRING INTERFACE FUNCTIONS

* for the RegExp pattern matching functions (in RegExp.ml)

* by Inge Norum (in206) May ’98
*)

(* Returns a list of the n first elements in list 1 *)
fun nFirst (1,n) = if n=0 then [] else hd(1l)::nFirst(t1(1),n-1);

(* Returns list 1 with the n first elements removed *)
fun nlLess (1,n) = if n=0 then 1 else nlLess(t1(1l),n-1);

(* Returns the nth elemts of list 1 *)
fun nth ((x::xs),n) = if n=1 then x else nth(xs, n-1);

exception ErrorBrackets;
exception ErrorSyntax;

fun ScanCorrespondingRBracket (1, bracketdepth) =

let fun ScanCRB([],_,_) = raise ErrorBrackets

| ScanCRB(x::xs, pos, b) =
if x="(" then ScanCRB(xs,pos+1l,b+1)
else if x=")" then if b=1 then pos else ScanCRB(xs,pos+l,b-1)
else ScanCRB(xs,pos+1,b)
in ScanCRB(1,0,bracketdepth)
end;

fun ScanOuterUnion (1) =
let fun ScanOU([],_,_) = "1 (* no outer | found *)
| ScanOU(x::xs, pos, b) = (* b is the bracketdepth *)
if x="(" then Scan0OU(xs,pos+1,b+1)
else if x=")" then Scan0OU(xs,pos+1,b-1)
else if x="|" andalso b=0 then pos
else ScanOU(xs,pos+1,b)

in Scan0U(1,0,0)
end;

(ke ks e ks e ks o sk sk s e ks s sk s sk sk e sk sk e ksl sk e ok sk sk e sk sk sk e sk sk s e ks sk sk s sk sk sk o okok )
(* Main Function: Generates a string RegExp from string input *)

(* *)
(*x Order of precedence: (=) > -*x > -- > |- *)
(x *)
(* Note: "()" is converted to a null character *)

(****************************************************************)

fun L2RE ([],_) = NULL
| L2RE (x::xs,1) =

if ScanOuterUnion(x::xs)>0 then
let
val n = ScanOuterUnion(x::xs)
in
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UNION(L2RE(nFirst(x::xs,n),n), L2RE(nLess(xs,n),1-n-1))
end

else if x="(" then
let val n = ScanCorrespondingRBracket(xs,1)
in if 1=n+2 then L2RE(nFirst(xs,n),n)
else if (nth(xs,n+2))="*" then
if 1=n+3 then STAR(L2RE(nFirst(xs,n),n))
else CONCAT(STAR(L2RE(nFirst(xs,n),n))
,L2RE(nLess(xs,n+2),1-n-3) )
else CONCAT(L2RE(nFirst(xs,n),n), L2RE(nLess(xs,n+1),1-n-2) )
end

else if x=")" then raise ErrorBrackets
else if x="*" then raise ErrorSyntax
else if x="|" then raise ErrorSyntax

else if 1=1 then VAL(x)

else if (hd(xs))="*" then if 1=2 then STAR(L2RE([x],1))
else CONCAT(STAR(L2RE([x],1)), L2RE(tl(xs),1-2))

else CONCAT(L2RE([x],1), L2RE(xs,1-1))

>

(* SRE2IRE converts a string RegExp to an int RegExp one.
Characters are changed to ints using ord(), relative to "O". *)

fun SRE2IRE (VAL(c))
| SRE2IRE (NULL) NULL

SRE2IRE (EMPTY) EMPTY

SRE2IRE (STAR(A)) = STAR(SRE2IRE (A))

SRE2IRE (CONCAT(A,B)) = CONCAT(SRE2IRE (A), SRE2IRE (B))

SRE2IRE (UNION(A,B)) UNION(SRE2IRE (A), SRE2IRE (B));

VAL (ord(c) - ord("0"))

(* Removes spaces from an expanded string (string list) *)

fun RemoveSpaces [] = []
| RemoveSpaces (x::xs) = if x=" " then RemoveSpaces (xs)
else x :: RemoveSpaces(xs);

(* Calls L2RE to generate a string RegExp from a string.
A1l spaces in the input are removed! *)

fun S2SRE (S) = let val ProperString = RemoveSpaces (explode S)
in L2RE (ProperString, length(ProperString))
end;

(* S2IRE generates an integer RegExp, using S2SRE and SRE2IRE.

(Int RegExps use less memory and are faster than string RegExps.)
*)
fun S2IRE (8) = SRE2IRE (S2SRE(S));

(* S2Sinput converts a string to a list of input characters for use
in the matching function (REmatch). i.e. "ab" -> ["a","b"] *)

fun S2Sinput (S) = explode (S);
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(* S2Iinput converts a string to an integer input list
i.e. "10120" -> [1,0,1,2,0]
Alphabetical characters will also be uniquely mapped to an integer
equivalent. (Using integer internmal structures is much faster than
using the string ones in the pattern matching function.) *)

fun S2Iinput (S) = (map (fn(c)=>ord(c)-ord("0")) (explode S));
(* SMatch and IMatch test string input for matching in
string and int RegExps respectively.
They return a sequence of bools, corresponing to each match. *)

fun SMatch R StringInput = (REmatches (R)) (S2Sinput(StringInput));

fun IMatch R StringInput = REmatches (R) (S2Iinput(StringInput));

(* BoolAnswer can be used to turn the output of the preceding two functions
into a single true or false. i.e. accepted/not accepted by the RegExp *)

fun BoolAnswer (Cons(b,f)) = if b then true else BoolAnswer(f())
| BoolAnswer (Nil) = false;

(x A ’total’ string matching function, give it two strings and
it returns a bool. (it is curried) *)

fun match StringRegExp StringInput =
BoolAnswer (SMatch (S2SRE(StringRegExp)) (StringInput) );
(* Same as match, but returns the total number of matches.
Uses integer RegExps for lower memory requirement. *)
fun matchCount StringRegExp Stringlnput =
CountMatches (IMatch (S2IRE(StringRegExp)) (StringInput) );

Dear Dr. Forster,

I have made some Language code. (Using sequences here as well!) It isn’t
working reliable yet, but just thought I would email it anyway.

I didn’t use lexicographic ordering for the Language, because then expressions
like (alb)* would just evaluate to "", "a", "aa", "aaa", ... I used a mixture
of length and alphabetic ordering:I.e. "", "a", "b", "ab", "ba",

The function locks into an infinite loop if the regular expression

contains too many stars. I guess it is inserting infinitely many null
strings... I will try to fix that later.

Inge

RegExpLanguage.ml:

(*x LANGUAGE GENERATOR
* by Inge Norum (in206) May °’98
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* (Uses RegExp/sequence datatypes/functions defined in RegExp.ml)
*)

fun MapCons f A = case A of Nil => Nil
| Cons(x,t) => Cons((f x), fn()=>((MapCons f) (t()))
);

(* analogous to the list map function *)

fun Merge (Cons((i:int,a:string),fa), Cons((j,b),fb)) =
if i<j orelse (i=j andalso a<b)
then Cons((i,a), fn()=>Merge(fa(),Cons((j,b),fb)) )
else if j<i orelse b<a
then Cons((j,b), fn()=>Merge(Cons((i,a),fa),fb()) )
else Cons((j,a), fn()=>Merge(fa(),fb()) )
Merge (A,Nil) = A
Merge (Nil,B) = B;

fun ConCat ((i:int,a:string), (j,b)) = (i+j, a"b);

(* Generates a sequence of all the strings accepted by a regular expression,
in ’length order’ (& lexicographic order) *)

fun Language (VAL(x:string)) = Cons((1,x), fn()=>Nil)
| Language (UNION(R,S)) = Merge(Language(R),Language(S))

| Language (CONCAT(R,S)) =
let
val Language_S = Language(S)
fun ConCatFun (Nil) = Nil
| ConCatFun (Cons(head_R, fr)) =
Merge(
(MapCons (fn (head_S) => ConCat(head_R, head_S)) Language_S )
, (ConCatFun(fr())) )
in
ConCatFun(Language (R))
end

Language (STAR(R)) = Cons( (0,""), fn()=>Language (CONCAT(R,STAR(R))) )

Language (NULL) Cons( (0,""), fn()=>Nil)

Language (EMPTY) Nil

(* The n first words in the language: *)

fun Languagelist (Cons((i,s),f), n) = if n=0 then []

else s::LanguagelList(£f(), n-1)
| Languagelist (Nil,_) = ["End of language."];
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(* All the words with length not longer than 1: *)

fun LanguageNotLongerThan (Cons((i,s),f), l:int) =
if i<=1 then s::LanguageNotLongerThan(f(), 1)
else []
| LanguageNotLongerThan (Nil,_) = ["End of language."];

31
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Chapter 2

Foundations of Functional
Programming

Some suitable tripos questions.
1991:5:9, 1993:12:9, 1994:5:10, 1994:10:12, 1995:5:10, 1995:12:12, 1996:5:9, 1996:12:11,
1997:5:11, 1998:13:10

A Question from John Harrison’s notes

Moscow ML version 1.40 (1 July 1996)
Enter ‘quit();’ to quit.
- fun itlist £ [I b =D

| itlist £ (h::t) b =f h (itlist f t b);
> val itlist = fn : (Ca -> (b -> ’b)) -> ’a list -> ’b -> ’b
- fun map £ []1 = []

| map £ (h::t) = (£ h)::(map £ t);
> val map = fn : (Pa -> ’b) -> ’a list -> ’b list
- fun Cfxy=1£fyx;
>val C =fn : (CCa -> (b -> ’c)) => ’b -> ’a -> ’c
- local fun mem x [] = false

| mem x (h::t) = x = h orelse mem x t;
fun insert x 1 = if mem x 1 then 1 else x::1

I+ Hs

in fun union 11 12 = itlist insert 11 12

end;
> val union = fn : ’’a list -> ’’a list -> ’’a list
- fn f => fn 11 => fn 12 => itlist (union o C map 12 o £f) 11 [];
>val it = fn : (Ca -> (b -> ?’¢c)) -> (Pa list -> (’b list -> ’’c list))
- it (fn a => fn b => (a,b)) [1,2,3] [4,5,6];
> val it =

[, 9, 1, 5, 1, 6), (2, 4, (2, 5, (2, 6), (3, 4, (3, 5, (3, 6)]

(int * int) list

2.1 Answers to Tripos questions

1991:5:9

We declare some A-terms as follows.
true = Azy.x; false = Axy.y; 0 = Az.x; succ = Az f.f false z

e a We want succ (succ 0)

33
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First we compute succ 0 = A\zf.f false z Az.z
= Af.f false (Az.z). Do succ again
succ (Af.f false (Az.x))
= \yg.g false y (\f.f false (A\z.7))
= Ag.g false (Af.f false (Az.x))
e b Evaluate at false

e ¢ Evaluate at true

e d Distinct normal forms
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1993:12:9

- fun N f x = x;;
val N =£fn : ’a -> ’b -> ’b

- funPakfx=fFfa((kffx);;
val P = fn
’a > ((’a => ’b => ’c) => ’d => ’b) -> (’a -> ’b -> ’¢c) -> ’d -> ‘¢

- fun Qk1lfx=%kf (1 fx);;
val Q = fn : (Pa => ’b => ’c) => (Pa -=> ’d => ’b) > ’a -> ’d > ’c

- funWak=Q%k (P ak);;
val W = fn
’a => ((Pa -> b => ’¢c) -> ’c => ’b) -> (’a -> ’b -> ’¢c) > ’c > ’b

- fun Rk =k W N;;

val R = fn
(()a -> (()a -> )b -> ’C) -> )C -> )b) -> ()a -> ;b -> ’C) -> )C -> ;b)
_> (ld _> Je _> )e) _> Jf)
_> )f

Suppose further that K and L have ML definitions of the form:

val K =P al (P a2 (P a3 N ...))

val K =P bl (P b2 (P b3 N ...))
1. State the ML types of N and P.
N has type a — (8 — (). P seems to have the type:

a— ((a=B—=7)—=(06—=0)—=(a—=(8—=7)—=(—17) God

knows why.

2. What does the expression K f x evaluate to?

Let us start by noting that K of the form P al T for some term T. Then

K f x becomes
PalTf x by expanding K. Then expand P to get
fal (Tf x)

But now we have a task just like the one we started with, since T is an
expression of the same form as K. We repeat this step until we have T that is
in fact N. But N £ x is just x, so the result is going to be K with all the Ps
replaced by fs and the final N replaced by x.

3. What does the expression Q K L f x evaluate to?

QKLTfx First expand Q to get
Kf (L £ x) Next use the fact that K is of the form P a1l T as before.
Pal Tf (L £ x) then expand P getting

fal (Tf (L f x))
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But by now the embedded expression T £ (L f x) is clearly of the same form
as the term K £ (L £ x) we started with, so we can keep repeating this until
we get down to a T that will in fact be N. Then £ al (N £ (L £ x)) will
clearly B-reduce to £ al (L £ x) which means that the result is going to be
a concatenation of the two lists!

. What does the expression R K £ x evaluate to? Given that the earlier ISWIM

code in this question relates to an ISWIM implementation of lists, it’s an
obvious guess that R means Reverse. Let’s see.

Rk fx expand R k
kWNf x expand K into P al k’
Palk’ WN f x expand P al k’ W N using definition of P
Wal (k2 WN) f x expand W
Q (k2 WN) (P a1 N) f x W now has 4 arguments, so expand it

k>’ WN f (P al N £ x)

So by unpeeling the top level of the structure of k, into P a1l k’, we have
turned

k WN f xinto
k?’ WNf (Pal N f x)

These two look suspiciously alike. We match k to k’, W and N to themselves,
and P al N f x to x. This tells us what will happen if we repeat what we
have just done, this time on k’ instead of on k. R is indeed Reverse!
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1994:5:10

‘=" between A-terms is not (syntactic) equality, but convertibility and it is defined
by the following recursion

o (A\z.M)N = M]Jz := N] (f-conversion)
o M =M

e M=N—->N=M

e M=NAN=L—-M=L

e M=N—-MZ=NZ

o M=N—-ZM=ZN

e M =N —Xx.M = Xx.N

Set true = Azy.z and false = Azy.y. Then we can define the desired terms as
follows.

cons Define cons a l = Afz.fa(lfz)

null T am assuming that the null list is A fz.z, which is false (i can’t think what else
the given definition of list could intend it to be). So null [ must be Al.(lt)true
for some term ¢t. Consideration of the null case doesn’t tell us what ¢ is to be.

Check this:

((Al.lt)true) false

B-reduces to (false t)true

which (-reduces to true as desired.

On the other hand a non-null list is Afz.faM for some term M containing
an occurrence of ‘z’. This will tell us what ¢ has to be. So let’s apply

Al.l t true to Afx.falMl.
Al.l t true Afx.fabl.
(Mfz.faM) t true.
(Azx.taM) true.

This has got to S-reduce to false, and we can achieve this only by tweaking
t. Let’s take t to be K (K (false)). Then

(Az.taM) true is

(Ax.K (K (false))aM) true.

(A\z.false) true.

false.

So null must be M.l (K(Kfalse)) true.

append Define append [; ls = Afz.(l1 f)(Iafx)
hd can be Al true t for any A-term t.

tl (Matt Grimwade says:)

The clue is in the question: "assume A-encodings of ordered pairs”. So first
use:

mk_pairs = A.[(Aaz.pair true (pair ax))(pair false false)
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to turn the list into a lot of internesting pairs, flagging the end so we’ll know
when we get there:

/\
/ N\
true \

/\

false false

get rid of the unwanted head using snd; and convert back with:

mk_list = Y (Agpfz.if(fst p)(f(fst(snd p))(g(snd(snd p))fz)x).

In total we have:

tl = M frmk_list(snd(snd(mk_pairs [)))fx.
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1994:10:12

Recall that £ o g is the function that sends z to f(g(x)). Consider the ML def-
initions: fun I & = ; fun pair (f,9)(@,y) = ((f2),(g)); fun pup (f,g)z =
((f2),(gz)); fun fst(z,y) = x; fun snd(z,y) = y;

Describe the effect of the following functions:

pair(I, I) is the identity relation of type a x § — a x 3.

pair((flo f2),(glog2)) sends (z,y) to (f1(f2(x)),91(92(v)))

pup(fst, snd) is the identity relation of type a x § — a x [3.

pup(f o fst, g o snd) sends z to ((f(fst(z)),g(snd(x))). That is, it be-
haves like pair (f,g) z.

Infinite lists can be represented in a functional language by triples. The triple
(a, h,t) represents the infinite list whose nth element is h(¢"(a)) (for n > 0).

(a) Give a representation for the infinite list n,n+ 1,n+2,...
This is (n, I, succ)

(b) Code in ML a map functional for this representation; given a function f and the
infinite list 2o, 21, ... &y . . ., it should yield a representation of f(xo), f(21),... f(zs) ...,

map [ (a,h,t) = (a,(f o h),t);
(¢) Code in ML a zip function

zip (a,h,t) (a/, 1, t') = ((a,d’), pair(h,h’'), pair(t,t'));
(d) Code in ML an interleave function

[HOLE I

e (e) Discuss
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1995:5:10
Let

A = dzy.y(zzy)
0= AA

suc = A\nfz.f(nfx)
true = \zy.x

false = \zy.y

The first thing to do is to demonstrate that © is a fix-point combinator. Let us
B-reduce © f. Thisis A A f, or

(Ary.y(zzy)) A) f

The first occurrence of A (the one i have written out in full) has two variables
at the front, ‘z’ and ‘y’. We replace ‘¢’ by A and ‘y’ by ‘f’, and lop off the ‘A\zy.’
getting f(Of).

This will save a lot of trouble later on.

© suc will g-reduce to suc(O suc), which is Afz.f((© suc) f x) which is in
head normal form, tho’ clearly not in normal form.

O (Az.xzx) f-reduces to (O(A\x.zx))(O(A\x.zx))

This is going to go on getting bigger and will have no normal form.

O(suc n) f-reduces (once one has relettered ‘n’ for ‘z’) to (suc n)(O (suc n)).
Notice that suc of anything has a head normal form. But this thing is not
going to have a normal form.

© true [-reduces to

true(© true). But true x is always A\y.z. So this is \y.(© true) which has
our original formula as a subformula, so this will go on for ever. It doesn’t
even have a head normal form, beco’s it never returns anything except itself.

© false (-reduces to
false(© false). false of anything is I.

O(A\x.fxx) B-reduces to (Az.fzz)(O(Azx.fzz)) and one more B-reduction will
give
(O fr2))))(O(A2. fr))

which is in head normal form.

If M has no hnf then M[N/z] has no hnf, for any N. Use this fact to prove the
following:

If M has no hnf then M N has no hnf for any N.
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1995:12:12

The type of curry is ((a x 8) — 7)) — (o — (8 — 7)) and the type of uncurry is
(@ = (8—=7) = (ax ) =)

curry(fn(x,y) => x) is \zy.z.

uncurry o curry is the identity function of type ((a x 8) — 7)) — ((a x 8) —
)

curry I is Azxy.pair(z,y). To deduce this we have to specialise I to a thing
of type (a x 8) — (a x ), and curry of a thing of this type must be of type
a— (8 — (axp)).

To determine what uncurry I evaluates to we must note that uncurry expects
an argument of type @« — (8 — 7). So we must specialise I to identity of type
(6 — ) — (8 — 7). Applying uncurry to this will give a result of type ((8 —
v) x 8) — v and this must be

Az.((fst(x))snd(x)).

fun n =>nx*2;

(a
(b

If g codes the list in question we want £ o g.

d) interleave f g n = if even n then f (n div 2) else g (n div 2);

)

)
(c) drop fin = f (n+1);
()

)

(e fun ifilter(f,p,x,0,0) if p(£(x)) then f(x) else
ifilter(f,p,x+1,0,0)
if n=1 then f(x-1) else
if p(£(x)) then ifilter(f,p,x+1,n+1,1)
else ifilter(f,p,x+1,n,1);;

fun filter f p x = ifilter(f,p,0,0,x);;

| ifilter(f,p,x,n,1)

(Thanks to David Bradshaw)
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1996:5:9

Consider binary trees that are either empty (written ‘leaf’) or have the form
Br = t; t2 where t; and t2 are themselves binary trees. Give an encoding of
binary trees in the A-calculus, including functions isleaf, label, left and
right satisfying

isleaf leaf — false

isleaf(Br z t1 t2) — true

label(Br x t1 t2) —

left(Br = t1 t2) — t1

right(Br = t1 t2) — t2

If you use encodings of other data structures, state the properties assumed.
[6 marks]

Consider the ML functions £ and g defined to satisfy

£f([1,ys) = ys
f(x::xs,ys) = f(xs,x::ys)
g([d,ys) = ys

g(x::xs,ys) = x :: g(xs,ys)
Using list induction, prove f(f(xs, [1), [1) = xs. [14 marks]

A model answer from Larry Paulson

Here are the definitions:

leaf = Az.2

Br = Aztity.pair false (pair x (pair ¢; t3))

isleaf = fst

label = At.fst (snd t)

left = At.fst(snd (snd t))

right = A\t.snd(snd (snd t))

This assumes fst(pair z y) — z and snd(pair x y) — y; the definition of
leaf given above actually relies on fst = Ap.p true. Thus isleaf leaf [-reduces
successively to (Az.z)true then to true. The other laws hold trivially.

Now for the second part.

Obviously, g is the append function. The given formula requires generalization
before induction. Perform induction on xs in

Vys.f(f(zs,ys), zs) = f(ys, g(xs, 25)).

The result will then follow by the definition of f and by g(zs,[]) = s, itself
provable by a trivial induction.

The base case of the induction holds by definition of f and g:

F(F(y5), 25) = F(ys, 25) = £(ys, a([], 75))-

For the inductive step we have (mostly by definition)

F(f(x::xs,ys),zs) = f(f(xs,x :: ys), zs)

= f(z :: ys,g(xs, 2s)) (induction hypothesis)

= f(ys,x == g(xs, 2s))

= f(ys, g(x :: xs,28))

The main difficulty lies in choosing the right generalization.
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1996:12:11

Any recursive function f :int -> int declared like
fn=:1if n =0 then a else g(n, f(n—1))
is a fixed point for the function F:(int -> int) -> (int -> int) declared as
F fn=:if n=0 then a else g(n, f(n —1))

If F is a A-term for F then Y F is a A-term for f.
The displayed attempt to declare Y in ML won’t work because it won’t typecheck.
Instead we should declare

fun Y f x = f (Y f) x;

val Y = fn : ((Pa -> ’b) -> ’a -> ’b) -> ’a -> ’b

val fac =Y ( fn g => fn x => if x=0 then 1 else x*(g (x-1)));
val fac = fn : int -> int

Notice that fun Y £ x => £ (Y £) x

doesn’t cause non-termination because ML evaluates functions only when they
have been given all their arguments (I think; I don’t believe it does any partial
evaluation). So if you evaluate fac, it goes something like this:

val fac => Y ( fn g => fn x => if x = 0 then 1 else x*(g (x-1)));

fac 1 =>Y ( fn g => fn x => if x = 0 then 1 else xx(g (x-1))) 1
(now Y has enough arguments, so gets evaluated)
=> ( fn g => fn x => if x = 0 then 1 else x*(g (x-1)))

(Y ( fn g => fn x => if x = 0 then 1 else x*(g (x-1)))) 1

=> if 1= 0 then 1
else 1x(Y ( fn g => fn x => if x = 0 then 1 else x*(g (x-1)))) (1-1))

=> 1%((Y ( fn g => fn x => if x = 0 then 1 else x*(g (x-1)))) 0))

=> 1x( fn g => fn x => if x = 0 then 1 else x*(g (x-1)))
(Y ( fn g => fn x => if x = 0 then 1 else x*(g (x-1)))) O

=> 1*(if 0 = O then 1
else x¥((Y ( fn g => fn x => if x = 0 then 1 else x*x(g (x-1)))) (0-1))))

=> 1x%1
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Of course, we're just pretending that it uses substitution rather than keeping
variables in store locations, but that would make what’s already rather messy too
much worse.

Anyway, the crucial things are that

e it does look at the definition of Y

e it works because the applicative order evaluation strategy doesn’t apply to
function arguments.

(Thanks to Jon Fairbairn)
Grant Warrell sez the answer that was wanted was one not using recursion, to
wit:

- val Y = (fn t=>t(T t));
val Y =fn : (Ca t -> ’a) -> ’a

[HOLE ML detects failure of typechecking in cases like ‘zx’ by doing an occurs
check. What happens if we write it in PROLOG which famously doesn’t do an
occurs check? What is the class of things that suddenly become OK?]

1997:5:11
(a) [bookwork]

(b) (i) Yas is A£WWM. This is

M [AxAz. f(zxz) W M)

Now do two S-reductions inside the square bracket (W/z and M/z) get-
ting

Af.f(WW M)

which is in head normal form.
(ii) Y (KI)is (AfWWM) (KI)

Using (i) this becomes Af.f(WWM)) (KI) (then do a (-reduction)
(KI)(WW M) which of course is just I.

(iii) We follow the same track as (ii) to get K(WW M). If that has a HNF
i’'ll eat my hat.

(¢) If a A-term M is in HNF, then the body is of the form fN for some vbl f and
some term N. If we now ensure that f gets instantiated to KI, we will find
that (KI)N S-reduces to I as desired. As far as i can see it doesn’t matter
what the other variables get instantiated to.

The fact that Y3 (K1) S-reduces to I shows that Y}, is solvable. IT is also I
so Yy (K1) is solvable too.

The third one is not solvable. Y, is a fixpoint combinator so Y, K is a fixpoint
for K. But no fixpoint for K can possibly be solvable: whatever you apply it
to you just get back what you started with and that can’t be I—beco’s I is
not a fixed point for K!
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1998:13:10

fun update(s,z,i) = if © = y then i else s(y)

fun interpret Assign(a, Expr(e)) sl = fun update(sl,z,e(sl)))

— interpret Sequence(cl,c2) sl = interpret(c2,interpret(c2,sl))

— interpret while_do(Expr(e),c) sl =if note(s1)<>0then interpret(c,sl)
elsesl
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Chapter 3

Semantics

Some tripos questions: 1991:13:9 1992:7:9 1992:9:10 1996:9:10

Three induction questions

Andy’s semantics exercise 2.5.2

The subset D of IN x IN defined by the two rules
(n,0) € D

and
(n,n")y € D

(n,n+n') € D

Is the intersection of all subsets of IN x IN which contains all ordered pairs of the
form (n,0) and contains (n,n + n’) whenever it contains (n,n’).

The set {(n,n’) : (3k € N)(n’ = k xn)} contains all ordered pairs of the form
(n,0) and contains (n,n + n’) whenever it contains (n,n’). Let us demonstrate this.

For every n € IN, the tuple (n,0) satisfies (3k € IN)(0 = k*n), since the desired
k is 0. Now suppose that for the ordered pair (n,n’) (3k € IN)(n' = k*n). We seek
k' such that n +n’ = k' x n. Clearly the desired ¥’ is k + 1.

Therefore {(n,n’) : (3k € IN)(n’ = kxn)} contains every pair (n.0) and is closed
under the operation in the rule so it is a superset of D. In other words it contains
every member of D as desired.

For the other direction (“Use Mathematical induction on & to show conversely
that for all n,n’ € IN, if n’ = kxn then (n,n’) € D”) we note that the rule (n,0) € D
disposes of the case where kK = 0. For the induction suppose k is such that for all

!
n,n’ € N if n’ = k xn then (n,n') € D; then the rule < {n,n') € D

TL7’I'L+—TL/>61) ensures that

the same is true for k + 1.

1992:9:10

R is a wellfounded relation on X if for all nonempty X’ C X (3y € X')(Vz)(R(z,y) —
x g X').

The effect of the < relation is to ensure that if w < u then at the leftmost place
where they disagree w has a lower number than u. If we fix the length of words
we are looking at, and think of a word as a numeral to base 3 (pretending that the
alphabet was {0, 1,2} instead of {1,2,3}) then < is a subset of the relation “is less
than” on numbers whose base-3 representations are of that length (or less, beco’s
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48 CHAPTER 3. SEMANTICS

of leading zeroes) and is thus obviously wellfounded. On the whole of ¥*, < is
actually the lexicographic order induced on ¥*, by taking 1 < 2 < 3 and this order
is well known to be illfounded, because of the sequence 2, 12, 112, 1112, 11112, .. ..

The recursive declaration of the relation — ensures that if w — w then the
number corresponding to the numeral w is strictly bigger than the number corre-
sponding to the numeral u. We do this by structural induction. Finally to show
that < is wellfounded it is sufficient to note that it is a subset of < on IN, since any
subset of a wellfounded relation is wellfounded and < is wellfounded.

Finally we note that we can prove by structural induction that if w — u then w
and u are the same length. So the words which are —-maximal are those consisting
entirely of 3s.

1991:13:9

The principle of complete induction for < over IN is the following inference scheme:

(Vn)((vm)(m <n — ¢(m)) — ¢(n))
(Vn)(d(n))

The assertion we are asked to prove has two number variables in it. Are we to
fix m and prove it by induction on n? Or the other way round? Or what? The fact
that the declaration of divide involves a recursion on m but not on n is a dead
give-away that we should be trying to prove the allegation by induction on m.

So let us assume that it is true for all m’ < m that

divide(m',n) =m’ div n

In particular this is true for m’ = m — n, so divide(m — n,n) = (m —n) div n.
But m div n = ((m —n) div n) + 1, giving us the desired result.

These trees are binary trees with natural numbers at the endpoints. The obvious
induction principle is this: if ¢ is something that is true of all singleton trees
(leaves) and is true of the result of gluing together two trees ¢; and to by the fork
constructor, then it is true of all intrees.

rv fixes all singleton trees (leaves) and so sum(rv ¢) =sum(¢) certainly holds for
such trees. To verify the induction we need to show that if sum(rv t) =sum(¢) holds
for both parents of a tree t/, then it holds for ¢’ as well. We reason thus:

sum(rv t) = (expanding t)
sum(rv(Fork(t1,t2))) = (expanding the recursive definition of rv)
sum(Fork(rv ¢, rv t3)) = (expanding the recursive definition of sum)
sum(rv tq)+sum(rv to) = (applying induction hypothesis)
sum(ty) + sum(tz) = (contracting t)
sum(t)
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1993:8:10
Fixed point induction
P(L) (VdeD)(P(d)— P(fd))
P(fiz(f))

where fixz(f) is the least fixed point of f and P is an inclusive subset of D.

§ fd = in(hd(d), f(t1 d))

...or Lifd=1.

We will need the fact that the only fixed point for § is the identity. Let f =df.
For each d € D we prove by induction on n that the nth member of fd = nth
member of d.

maps is that function which increases each coordinate by 1.

To show that there is at most one fixed point for Ad.in(0,maps(d)) follow the
hint. Suppose d; and dy are both fixed points for Ad.in{0,maps(d)). Match the
‘D’ above to integer_streams -> integer_streams and let P(d) say that (i) d
commutes with maps and (ii) d(dy) C ds. f has to be 4.

Claim: ¢ satisifes (i). i.e. a commutes with maps implies that d(a) commutes
with maps.

(6a)(maps x) =inthd (maps z),atl (maps x))

=in (hdz + 1, a(maps tl x))

but a commutes with maps to give

=in ((hd z) + 1, maps (a tl x))

=maps in (hd z,a (t1 z))

= maps ((0 a)x)

We also need to know that ¢ satisfies (ii). i.e. if a(dy) E dy then §(a)(d1) E da

We check easily that L (the empty function) satisfies (i) and (ii) and that the
class of functions satisfying (i) and (ii) is an w-closed subset of D.
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1993:9:10

Definition of wellfounded relation is bookwork.

Suppose (Vy)(y <z — f(y) = g(y)). We wish to infer
that f(x) = g(z). If > 100 this is true irrespective of the
induction hypothesis so we’ll go straight to the hard part
where x < 100. We want to prove that f(f(x + 11)) = 91.

A good rule in life is that if a stranger gives you some-
thing for nothing then it isn’t worth having, but exams are
not life so perhaps the idea of considering the case z = 100
separately isn’t necessarily a bad one.

If = 100 then f(x) =: f(f(111)). f(111) = 101 and
f(101) = 91, which is what we wanted.

Notice that we haven’t used the induction hypothesis yet.
It might be a good idea to get a feel for what the relation
< does. It is the reverse of the usual ordering on numbers
< 100. We've got f(100) sorted out, so let’s orient ourselves
by thinking about f(99), since 99 is <-minimal among the
things we haven’t yet considered. This must be f(f(110)).
f(110) is 100 and f(100) we have just shown to be 91.

So let’s try the case 90 < z < 100. Naturally f(z) =:
f(f(z+11). But x + 11 > 100 so f(x 4+ 11) = (x + 11) —
10 =2+ 1. But x4+ 1 <z and so, by induction hypothesis
f(x+ 1) =91. This tells us that f(z) =91 as desired.

Finally we have to deal with the case x < 90. As before
f(x) = f(f(x+11)). 411 is now 100 at most, so f of it is
91, as we showed (without using the induction hypothesis!).
f(91) = 91, as we showed in the previous paragraph. This
completes the proof.
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1994:8:12
An inclusive subset of a cpo simply one that is closed under taking least upper
bounds of (countable) chains — aka “chain-closed subset”.
The principle of fixed point induction is:
P(L) (vd e D)(P(d) — P(f'd))
P(fixz(f))

where fixz(f) is the least fixed point of f and P is an inclusive subset of D.
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1996:6:12

(a)

An arbitrary intersection of closed subsets is a closed subset.

Let C' be an intersection of a family C of closed subsets, and sup-
pose z € C. Then x belongs to every member of C. Then any y
below x likewise belongs to every member of C and therefore to C'.
That takes care of the first condition.

Now let (z; : i € IN) be a C-increasing sequence of elements of C'.
Each z; belongs to every element of C and therefore, since each
such element is closed, the sup of this sequence belongs to every
member of C and therefore to C.

A union of finitely many closed subsets is a closed subset

Let C be a union of a finite family C of closed subsets, If y € C'
and z C y then y belongs to some member of C and this (together
with the fact that = C y) implies that x belongs to that member
of C, and therefore to C'. That takes care of the first condition.
(Notice that we haven’t yet used the fact that C is finite.)

Now let 2, be the sup of a C-increasing sequence (x; : ¢ € IN) of
elements of C. We want x to be in C'. Each x; belongs to a member
of C but there are infinitely many x; and only finitely many things
in C, so one of the things in C must have infinitely many z; in it.
But then that thing in C must contain x.,, being closed, So x, is
in C' as desired.

This set trivially satisfies the downward-closed condition. For the
other condition notice that an sup of an w-sequence (indeed any
sequence) of things all C x is itself C z and therefore in | x.

The preimage of a closed set in a cts function is closed

Let C be a closed subset of D = (D, Cp) and let f be a continuous
function & — D whose range is C'.

Suppose f(y) € C and x Cg y. Then f(x) Cp f(y) by monotonic-
ity of f. This takes care of the first condition.

Finally suppose that z. is the (Cg -) sup of a Cpg-increasing
sequence (z; :i € IN) of elements of £ such that for each i € IN
f(x;) € C. Then, by continuity of f, f(zs) is the (Zp-) sup of
the sequence (f(z;) : i € IN). All these elements are in C', so their
sup is in C', so x, is in the preimage as desired.
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Question 6 on Andy’s example sheet

D,E and F are cpo’s and f : D x £ — F has cts projections. i.e., for all d € D and
allee &
Ay € €.f(dy)

and
Ay € D.f(y,e)

are continuous.

Prove that f is cts. First we show that f is monotone. Suppose z <p z’
and y <g 3. Then f*(z,y) < f*(a’,y) by continuity of Ay € D.f(y,e) and then
2 y) < f2',y') by continuity of Ay € D.f(y,e).

Now it remains to show that f is cts at limits. We are given a sequence

(do, eq), (d1,e1), (da, e2) ...

Its sup is (doo, €x0), Where du, €00 are the two sups of the two sequences. We have
to show that f*(doc,€c0) = sup, N f (dn, €n)
Consider the two sequences

(1) s (do,eso), (d1, €0, (das €00) - - -

(2) : <d00760>a<d<>07el>v<do<>ae2>---
and fs of them

(3) : f‘<d07600>7ft<d17600>7f4<d27600>"‘

(4) 1 fYdeose0), [{doo,€1), [{doo,€2) ...

By continuity of Ay € D.f(y, e) the sup of (3) must be f(dy, ex) and ditto (4).
Since f is monotone we know at least that f'(dp,en) < f*(dso,€00) for all n € IN,
SO Supneﬂ\If‘<dn; en> < f‘<d005 600>'

Now fix some k € IN and think about sup, N f‘(dn,ex). By continuity of
Ay € D.f(y,e) this must be f(doo,ex). By continuity of Ay € £.f(d,y), [ (doo, €co)
is the sup of all the f(dw,er). But each f(dw,ex) is below sup, N (dn;en)
because the k is constant and the e,, are eventually bigger than ex. So f*(dw, €x0)
is the sup of a lot of things all < sup, N f*(dn,en) so it is < sup, Nf(dn,en)
itself, and we’ve got the other half of the inequality.

1995:5:12

Tim Waugh writes: Continuation semantics of IMP (Cont = States — A, , [[-]]:
Comm — (consts — (states — A])))
[[skip]] k S = k(S)
[x:=ie]] k S = k (S][[[ie]]S/x])
[C1;Co]] k S = [[C]]([[C2]] k) S
[if be then C else C3]] k S = [[be]] S=>[[C4]] kS — [[C1]] k S
[while be do C]] k S = [[be]] S => [[C]] ([[while be do C]] k) S — k(S)
[ €
]
[

[
[
{ ] |

[[while be do C]] k S fix ®; & = A\f € {states — A, }, \k € {states — A, }.
]
[

[[be]] S => f*
abort]] k S = Err
To add exit and orelse [[-]] is redefined as

[]] Comm — (cont — (cont — (states — A,)))
and the commands are redefined as
[[skip]] k e S = k(S)
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ie]] ke S =k (S[[[ie]]S/x])
1702]] ke S = [[C]([[Ca]] k
f be then C else CQ]] keS =
= |

[[x:=

[C S
[[i

[[while be do C]] k

[l

[l

] § = [[Ci]] ke S — [[Ci]] ke
> [[C]] ([[while be do C]] k e) e S — k(S)

O"co

e)
[l
S

S
Ibel]
abort]] ke S = Err
exit]] ke S = e(S)
[[Cy orelse Co]l ke S =[[Ci]] k ([[C2]] ke) S
For exit to behave as abort outside an ‘orelse’ clause, e should initially be

AS € states. Err.

The function b => C1|C5 is a conditional expression defined as b => C1|Cy = C

if b = true; = (5 if b = false.



Chapter 4

Part II types

A Lambda-2 question
We want a lambda-2 term of type

vavp[(vy)((a = (8 =) =) —

Specialise the v to a and apply to a suitable version of the K combinator. So
we want

Aa. AB g (B=1)=7) 4 gra—(B—a)

...where K is of course Auv.u as usual.

(Here the superscript on a variable denotes its type. The subscript on a variable
(asin “X,”) is an instruction to specialise that object by substituting—in this case
a—for the bound variable (in this case 7)).

Why not specialise the Az to @« — (8 — a) — « to start with? The idea is that
then you are eating something that can never give rise to a 3, but only an «.

1991:9:11

Define int to be the type (Va)((a — a) — (@ — «)). This is a halfway-sensible
name for this type, ‘cos it’s obvious that all Church numerals are polymorphic chaps
of type ((&« — &) — (o — «)) for all a. (What is less obvious, and nobody will ask
you to prove it, is that Church numerals are the only polymorphic things of type
(@ = a) = (e — a) for all a.)

Now, what are Church numerals for? Answer: take a thing = of any type you
wish, like «, take a function f of type a — «, and a church numeral n, and do f n
times to x. This activity is described by the higher-order lambda term

A Azo A fomsaAnipne-nfe

Next we have to check that it does what it is supposed to do, and that its type
is what it is supposed to be. The A« at the beginning ensures that it is of type
(Va)(...) and the rest is easy.

1992:8:11

The only remotely hard bit is the second part (12 marks!) Do it by (“structural”)
induction on e.

e If e is an identifier and I' - e : ¢ this can only be because I' contains e : o.
So by the definition of v on contexts (v of a context is the least value that v
assigns to a type mentioned in that context) v(I") < v(o) as desired.
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e Suppose e is Az.e’, and that I thinks that e is of type o — 7. (I suppose it
is ok to assume that the type of e is a function type, but it might be an idea
to put out some patter on this point). By the construction of proof trees for
type assignments, if we have I' - e’ : ¢ — 7 then this must have come from
I'2z:0and I' - e’ : 7. The induction hypothesis tells us that these can
happen only if v(T") < v(o) and v(T") < v(r). But, by the inductive way in
which v is defined on bigger types in terms of its definition on smaller ones,
we know that v(I") < v(o — 7) as desired.

e Suppose e is ejes. If I' thinks that e is of type o then for some 7 we have
I'Fe;:7—>o0cand I' F ey : 7. Then, by induction hypothesis, we have
v(I') <v(r — o) and v(I') < v(7). We now have to consider two possibilities—
whether or not v(7) < v(o). If v(r) < v(o) then the fact that v(T") < v(7)
is enough to ensure that v(I') < v(o). Contrariwise, if v(7) > v(o) then
v(T — o) = v(o) and we already know that v(I") < v(r — o) so as before we
infer v(T") < v(o) as desired.

For the next part (“Deduce that if [ |- e : o ...”) notice that v of the empty
context is 1.

Next (“for four marks!!”) deduce that there is no ML expression e such [ ]+ e :
((a = ) = a) — a.

Well, if there were such an e then for any v we would have v(((a — ') — ) —
a) = 1. We could only have drawn the conclusion that [ Fe: ((« — ') = a) = «
by means of the rules that assigns function types to lambda terms. That is, e
must have been A\z.e’ and we had deduced [ F e : ((@¢ — &) — a) — «a from
z:(a—ad)—>at

stuff missing

we must have had

By the way v is defined on function types we would have had to have either

(This reveals someone’s hidden agenda, and i suspect Larry Paulson.
This expression, (((« — o') — a) — «), if thought of as a propositional
formula, is a truth-table tautology, but it is not provable intuitionisti-
cally. This is an important fact. The formula itself is called Peirce’s
Law)

[HOLE I have done this in rather a hurry and i may have missed out some details
to do with deleting] x : o from T in the case where e is Ax.e’. I can’t remember the
small print of these recursions. Please check it yourselves: it won’t kill you, and let
me know if this answer looks halfway-sensible.

Question 6 on the types sheet

I still don’t really know what is going on, since it turns out that it’s all category
theory at heart. However i am clinging on to the following pieces of wreckage in the
hope that they will eventually bear fruit:

It probably also helps to consider a few examples:

(i) If 7(«) is 1 4 (k x @) (+ is disjoint union then ¢ turns out to be & list. (ii)If
7(a) is 1 + (o X &) then ¢ turns out to be binary trees. If you want binary trees
with as at each node you want to start with 1+ (a X k X a x &) (iii) I think (tho’ i
don’t remember this bit very clearly) that if you start with 1 + « you get Nats.



Chapter 5

Program correctness

”Is the following specification true?

[- {X=x /\ Y=y} X:=X+Y; Y:=X-Y; X:=X-Y {Y=x /\ X=y}

Of so, prove it. If not, give the circumstances in which it fails.”
It looks to me that the spec is true, with VC:

X=x/\Y=y==> F+V-Y = x /\ E+-(E+V)-Y) =y
My man says: if X and Y are the same variable then after

X :=X+Y

we have

X=x+x=2x

then after

Y:=X-Y wehave Y=X-X=0

because the two variables are the same!

Ah ha! I see the point. Quite subtle! I guess what you said was right, namely
that there is a lurking assumption that variables with distinct names were distinct.

Mike

Paul Curzon has a short list of exercises which aren’t quite right:

There is an ambiguity in the notation used with While loops. It is not clear
whether

WHILE S DO C1; C2

means
WHILE S DO (C1;C2)

or

(WHILE S DO C1); C2
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especially since the indentation often suggests the former when the latter is
meant (eg see Exercise 21)

Also in exercise 21 either y should be Y or the precondition should include Y =
y

In exercise 23, N > 0 is given as an invariant when it is not. I think it needs
to be N > 0 in which case its also needed in the precondition (or possibly its not
needed at all).

There is confusion throughout over whether the variables range over natural
numbers or integers (or even reals). Some of the exercises assume naturals I think.

1992:6:12

Write down a condition P(k), which holds for infinitely many k, such that the
following specification becomes true:

{X=2A2>0ANK=KkAP(k)} WHILE K >1D0 X := X * X; K := K
DIV2 {X =2* A K =1}

A bit of ingenuity reveals that P(k) has to be (3In)(k = 2™). This P is not only
sufficient but is necessary.

The WHILE rule on p 45 of the notes allows us to claim we have proved something
of the form

{P} WHILE S DO {R} C {Q}

as long as we have
FP—R
F(RA-S)—Q
{RAS}C{R}

Now we have to do some pattern-matching. We know that
PisX=xANz>0NK=kA(3n)(k=2")
and that
QisX=zFANK=1

and S is K > 1 but we have to come up with an R to decorate the WHILE loop with.
This has to be something that is true each time we go through the loop. A good
candidate for R would appear to be K > 1A X = 8 DIV K A 5 > 0 A (3n)(k = 27)

P—R

is

X=z2Az>0ANK=kA@n)(k=2") - K >1AX =2FDIVE A4z >
0A (In)(k=2")

which certainly follows by arithmetic. (We are assuming that all our variables
take values in IN, so that K > 1 follows from K =k A (3In)(k = 2™))

We also want (R A =S) — Q. This is

(K> 1AX =2F PV E A2 > 0A3n)(k=2")A~(K > 1)) = (X =2FAK =1)

and this too will follow by arithmetic. (If =(K > 1) then the only possibility is
K =1 and then X = 2% PIV K gimplifies to X = 2% as desired.)

It remains to deal with

{RAS}C{R}
...which is

{K>1AX = 2" PV Epg > 0AEn)(k = 2M)AK > 11X := X+ X; K :=
KDIV2{K >1AX =" PV K Az >0 (3n)(k=2")}
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Now we do not need both K > 1 and K > 1 in the precondition and we will
delete K > 1 since it follows from the other, to get

(X =a*"PIVEAz>0AGn)(k=2)AK >1} X =X+ X; K = K
DIV2 {K >1AX =2 PV K Ay >0 (3n)(k =27)}

Now we have to invoke the sequencing rule to find something that is true after we
have reset X but before we have reset Y, or a sequence of things to put in between
such that we can infer along the chain by arithmetic (precondition strengthening
and postcondition weakening). It’s pretty obvious that this has to be something
like

{X =gk DIV(KDIV2) A g > 0 A (3n)(k=2") AK > 1}

...s0 let’s try it. This means we have to prove

LAX = aFPIVE A > 0A@n)(k=2")AK > 1} X = XX {X =
aF PIV(KDIV2) A g > 0N 3n)(k=2") A K > 1}

2. {X = gFPIWV(KDIV2) Ay > 0A (3n)(k = 2")AK > 1} K := K DIV 2
{(K>1AX =2F DIV K A g > 0 A (3n)(k =27)}

To prove (1) we need worry only about those bits of the precondition and post-
condition that concern X, namely

{szkDIVK} X = XX {X:xk:DIV(KDIVQ)}
and for (2) we can ignore things that don’t mention K:

{X = 2* DIV (KDIV) A > 1} K := KDIV2 {K > 1IAX = oF DIV K}

The second follows easily from the assignment rule whereas the first needs the
arithmetic theorem that if @ = b¢ PIV € then a2 = b PIV (¢ DIV 2) which follows from
the rules for exponentiation.

1990:3:10

There are presumably various rules one could set up. The following serves our
purposes pretty well:

AP AS}CA{PY

iel
{P} *[Sy — Cil...|Sk — Cil{ /\ =Si A P}

el

(If none of the S; are true then nothing happens and they remain all false. If
one of them is true the loop is executed and carries on being executed until they
are all false)

To apply this to the case in hand we make the following identifications:

Si1is X <Y

SeisY < X

Pis GCD(X,Y) = GCD(x,y)

The index set I in this case has only two members. (There is only S; and Ss.)
We must verify that the antecedents of the correctness rule are true in this case. The
fact that P is preserved by S; and S is conveniently supplied by the management.
Accordingly we can deduce the conclusion of the rule, namely

{GCD(X,Y)=GCD(z,y)}
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X <Y Y =Y X[y <X > X:=X-Y]

{~(X<Y)A=(Y < X)ANGCD(X,Y)=GCD(x,y)}

(T have written this on three lines beco’s of shortage of space) Now GCD(X,Y) =
GCD(z,y) is certainly true when we start. If X <Y and Y < X are both false
when we begin then we are done. If at least one of them is true we have satisfied
the precondition and we know that the postcondition will hold if the program ever
terminates. The postcondition tells us that X <Y and Y < X are both false. It
is true that we haven’t been told that < is a strict total order (which is what we
need to deduce that X =Y') but we are conventionally allowed as much arithmetic
as we need. X = GCD(z,y) then follows easily.

The point about the last part of the question is that termination is guaranteed
only if x and y are both nonzero naturals.

1987:3:6
We are going to treat
This REPEATED that TIMES

as a WHILE loop with an incrementer/decrementer in the obvious way. Thus the
middle line of

{X=x Y=y, X>0}
Y :=Y + 1 REPEATED X TIMES
{Y=x+y}

becomes

BEGIN VAR X count
count := 0; WHILE count < x DO
(Y :=Y + 1; count := count + 1)
END

We have to find two things to decorate this with. (i) Something that is going
to be true after we have initialised count and (ii) something to put after DO that
will be true each time through the loop. Since initialising count does nothing to
any of the quantities mentioned in the precondition there is—on the face of it—mno
reason why our candidate for (i) shouldn’t be the original precondition itself with
“count = 0” adjoined. It’s pretty obvious that the thing we want for (ii) has to
be Y = y+count A count < x. This means that we have generated the correctness
task:

{X=x, Y=y, x>0}

BEGIN
count = 0; {X=xAY=yAX>0A count =0}
WHILE count < x DO {Y =y + count A count < x }

(Y := Y+1; count := count+1)
END

{Y=x+y}

This is a sequence of two commands so first we use the sequence rule to split
this up into two correctness tasks. We reckon we have already decided what ought
to be true after the first command (the assignment) is executed, namely

X=xAY=yAX2>0A count =0

and this is easy, so we can concentrate on the second, which is:



{P} WHILE S DO {R} C {Q}
where
PisX=xAY=yAX2>0A count =0
R is Y = y+count A count < x
S is count < x
CisY :=Y + 1; count := count + 1

Qis{Y=x+y}
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(Look at the wee magic box—in my copy it’s on page 45 of the handout—that
tells you how to generate subtasks from a decorated WHILE-loop.) According to the

wee magic box this generates the following things to prove:

1. X=xAY=yAX>0Acount =0—Y =y + count

2. (Y=y + count A count < x ) A—(count < x) > Y=x+7y

3. {Y = y+count A count < x}
Y : =Y + 1; count = count + 1

{Y =y + count}

(1) and (2) are verification conditions and we are supposed to be able to wave
our arms over them. Fortunately we can. (3) is another correctness task. (I have
dropped the clause ‘count < x’ since it follows from ‘count < x’: we can do this by
precondition strengthening.) Here again we have to be clever and find something
that is true after the first command has been executed and is such that if we
subsequently execute the second command then {Y = y+count} is true again. The

obvious thing is
Y =y + count +1 A count < x
Then we can infer that

Y =y + count

holds after the assignment statement by the assignment rule.

This leaves us with two further correctness tasks

{Y = y+count A count < x}
Y=Y+ 1
{Y=1y + count +1 A count < x }

and

{Y=y + count +1 A count < x }
count := count+1

{Y =y + count}

both of which we can attack with the assignment rule.
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1991:5:12

We are looking at the code

while K < N do
begin
K := K+1;
if A(K) < A(0) then (T:=A(0); A(0):=A(K); A(K):=T)
end

We want to prove that if K was 0 before we started then when we’ve finished we
have

(Vi)(0 < i < N — A(0) <A(4))
Consider the result of substituting ‘K’ for ‘N’ in this formula:
(Vi)(0 < i < K — A(0) <A(0))

Notice that this is a trivial consequence of K = 0. Therefore we can prove what
we wanted—namely that if K was 0 before we started then when we’ve finished we
have (Vi)(0 < i < N — A(0) <A(%))—Dby proving that if

(Vi)(0 < ¢ < K — A(0) <A(4))
was true before we started than
(Vi)(0 < i < N — A(0) <A(4))
will be true after we have finished. This changes the task to

{(vi)(0 < i <K — A(0) <A(9))}

while K < N do

begin

K := K+1;

if A(K) < A(0) then (T:=A(0); ACO0):=A(K); A(K):=T)
end

{(vi)(0 < i <N — A(0) <A(d))}

We have to annotate this thing, and this involves writing after the ‘do’ something
inside curly brackets which will be true whenever control reaches that point. A good
candidate seems to be (Vi)(0 <i < XK — A(0) <A(7)) which we have just seen.

Now we invoke the correctness rule for annotated while commands, which says

that to prove
{P} while S do {R} C{Q}

you have to prove
1. P—-R
2. (RA-S)—=Q
3. {RAS}C{R}
To invoke this we do some pattern matching:

e S is of course K < N;
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Pis (Vi)(0<i <K — A(0) <

IA

0)) and
o Qis (Vi)(0<i<N— A0) <A(d

))-
)-

e Cisbegin K := K+1; if A(K) < A(0) then (T:=A(0); A(0):=A(K); A(K):=T)

A(
A(i
A

o Ris (Vi)(0<i<K— A(0) <

C has a begin and and end. These oblige us to respect certain conditions on the
local nature of variables, which are going to be respected anyway (it’s all to do with
T) so we'll forget them. Items 1 and 2 are new verification conditions. 1 is trivial.
2 is

(Vi)(0 < i <K — A(0) <A®))A=(K < N) — (Vi)(0 < i <N — A(0) <A(4))

We note en passant that this is going to be provable.
It also generates a new correctness problem (from “{R A S}C{R}”): we have to
prove

{(Vi)(0 < i < K — A(0) <A(i))AK < N}

begin

K := K+1;

if A(K) < A(0) then (T:=A(0); A(0):=A(K); A(K):=T)
end

{(vi)(0 < i <K — A(0) <A())}

Now we have to use the correctness rule for sequencing, which is pretty obvious
really. If you want to prove—given that P was true and you have done C; followed
by Co—that @ is now true, you have to find something else (call it P’ to give it a
name) such that {P}C1{P’} and {P'}C2{Q}. In this case it means we have to find
a P so that we are in with a chance of proving both

{(Vi)(0 <i <K — A(0) <A(i)) ANK <N} K := K+1 {P}
and

{r}

if A(K) < A(0) then (T:=A(0); AC0):=A(K); A(K):=T)

{(vi)(0 < i < K — A(0) <A(9))}

A suitable candidate seems to be
(Vi)(0 < ¢ <K— A(0) <A(i)) A KN

To deal with the first hurdle we use an array assignment rule, and that should
be straightforward. The next is a one-armed conditional. We have to prove

{(Vi)(0 < i <K— A(0) <A(i)) A KN}
if A(K) < A(0) then (T:=A(0); AC0):=A(K); A(K):=T)
{(vi)(0 < i <K — A(0) <A(i))}

The rule for one-armed conditionals is

(PASYC{QY (PA-S)—Q
{P}If S then C {Q}

Again we have to do some pattern-matching:

end
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e Pis (Vi)(0 < i <K— A(0) <A(7)) A KN
e Sis A(K) < ACO)
e Qis (Vi)(0<i<K— A0) <A(7))

The verification condition (P A =S) — @ is therefore
{(Vi)(0 <7 <K— A(0) <A(7))AKSN} A =(A(K) < AC0)) — {(Vi))(0 <i <K —

A(0) <A(i))}

This is certainly true. So we have the new correctness problem:

{(Vi)(0 < i <K— A(0) <A(i)) A K<N A ACK) < AC0)}
T:=AC0); AC0):=A(K); A(K):=T
{(v)(0 < i < K — A(0) <A(I)}

Now we invoke the rule for sequencing again. As before, we have to find things
that will be true at intermediate stages in the computation. (In what follows keep
your eye on the last clause in the displayed formula). Given the precondition, it
seems a fair bet that after the first assignment has been executed the following is
true:

(Vi)(0 < i <K— A(0) <A(i)) AKSNAAKK) < T

and after the second assignment has been executed the following will hold:
(Vi)(0 < ¢ <K— A(0) <A(i)) ANKSN A ACO) < T

and after the third ...
(Vi)(0 < i <K— A(0) <A(i)) A KN A A(0) < A(K)

Finally we use postcondition weakening: If A(0) < A(K) then certainly A(0) <
ACK).



Chapter 6

Logic and Proof

Notice that one can do it more shortly by complicating the logic (3z1 ... zn)(Vy)(V,<, ¥ =
.Z'l) a

Programme: sequent calculus is natural deduction with control structures. So
a sequent should be read as saying “there is a proof of something on the R using
assumptions on the L”. This explains why its conjunction on the left but disjunction
on the right. One can be quite specific about it. For example, A-L. Why does this
operation preserve goodness of a sequent? A: Beco’s of A-elimination: if i can
deduce something from the two premises ¢ and 1, then by two applications of
A-elimination i can deduce it from ¥ A ¢.

Similarly we can tell a story about —-R in terms of —-int. Perhaps we can tell
a story about —-L in terms of —-elim.

Notice that Godel-style proofs suffer from not having the subformula property.
Make a meal of it.

6.0.1 2002 p2 qll

One of Larry’s exercise
(Vo)(P(z) — P(f(x))) = (Vo) (P(x) — P(f(f(2))))

clearly came by a V-R from

(Va)(P(z) — P(f(2))) - P(a) = P(f(f(a))))

which in turn came from a —-R from

(Va)(P(z) — P(f(2))), P(a) = P(f(f(a))))

Now we have to be clever. A V-L

(V:(v]l)(P(w})1 — P(f(2))), P(a) — P(f(a)), P(a) = P(f(f(a))))
and another

P(f(a)) = P(f(f(a))), P(a) = P(f(a)), P(a) = P(f(f(a))))

after which two —-L will do it.

6.1 Some Exercises

1. A graph is a set of vertices with undirected edges. It is connected if one can
get from any vertex to any other vertex by following edges. The complement
of a graph is what you think it is.

Use resolution to show that a graph and its complement cannot both be
disconnected.

2. 1993:3:3
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3. The following text is a celebrated argument by Bishop Berkeley which pur-

ports to show that nothing exists unconceived. It’s a fairly delicate exercise
in formalisation.

HYLAS : What more easy than to conceive of a tree or house existing
by itself, independent of, and unperceived by any mind whatsoever.
I do at present time conceive them existing after this manner.
PHILONOUS : How say you, Hylas, can you see a thing that is at
the same time unseen?

HYLAS : No, that were a contradiction.

PHILONOUS : Is it not as great a contradiction to talk of conceiving
a thing which is unconceived?

HYLAS : It is

PHILONOUS : This tree or house therefore, which you think of, is
conceived by you?

HYLAS : How should it be otherwise?
PHILONOUS : And what is conceived is surely in the mind?

HYLAS : Without question, that which is conceived exists in the
mind.

PHILONOUS How then came you to say, you conceived a house or
a tree existing independent and out of all mind whatever?

HYLAS That was I own an oversight ...

The exercise here is to formalise this and construct a natural deduction proof
that everything is conceived (as Berkeley wants) and perhaps even a sequent
calculus proof. This has been discussed in print by my friend Graham Priest,
and this treatment draws heavily on his.

You may, if you wish to think through this exercise very hard, try to work out
what new syntactic gadgets one needs to formalise this argument, but i don’t
recommend it. The best thing is to use the gadgetry Priest introduced.

Priest starts off by distinguishing, very properly, between conceiving ob-
jects and conceiving propositions. Accordingly in his formalisation he
will have two devices. One is a sentence operator T which is syntactically a
modal operator and a predicate 7 whose intended interpretation is that 7(z)
iff x is conceived. T'¢ means that the proposition ¢ is being entertained. (By
whom is good question: is the point of the argument that for every object
there is someone who conceives it? or that everybody thinks about every
object?)

At this point you could, if you like, work out your own natural deduction
rules. Here are the rules Priest came up with.

¢ —
T(¢) = T(¥)
which says something to the effect that T" distributes over conditionals. Priest

calls this “affixing”. The other rule is one that tells us that if we conceive an
object to have some property ¢ then we conceive it.

T(¢(x))

7(x)

Let us call it the mixed rule.
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(a) Devise a natural deduction proof of (V) (7(z)), or of (Vz)((7(x) — L) —
1). You are allowed to use the undischarged premiss Tp where p is an
arbitrary propositional letter. You may wish to use a natural deduction
version of the law of excluded middle. My model answer doesn’t, and
accordingly i prove only that (Vz)((7(xz) — L) — L1). You might try to
prove (3z)(r(xz) — L) — L as well.

At this point you could, if you like, work out your own sequent calculus
rules. Here are the rules i came up with.

T,AFA,B
T,TAF A, TB

and
I'EAT(o(x))

I'+A 7(x)
(b) Prove the sequent Tp - (Vz)(7(x))

(¢) Prove that a premiss of the form T'p really is needed.
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1993:3:3
L {=P(z),Q(z)}
2. {=P(x), ~Q(x), P(fr)}.
3. {P(b)}
1 {~P(fa)}.
1 and 2 resolve to give
5. {=P(z), P(fz)}. First reletter this to get
6. {=P(w), P(fw)}
Resolve 5 and 6 by unifying w — fz, cut against P(fz) to get
7. {=P(z), P(f?z)}. First reletter this to get
8. {=P(w), P(f*w)}
Resolve 7 and 8 by unifying w — f2x cut against P(f2x) to get
9. {=P(x), P(f*r)}. Resolve with 3 to get

10. {P(f*b)}. Resolve with 4 to get the empty clause

11. {}.

That’s the clever way to do it. I think what PROLOG does is something more
like this. It cuts 4 against 2 to get {=P(f3z), ~Q(f3r)} and cuts against 1 to get
[-P(f2)}.

Then repeat until you get {—P(z)} which you can cut against 3. The point is
that at each stage PROLOG only ever cuts the current goal clause against something
it was given to start with. That way it has only a linear search for a cut at each
stage instead of a quadratic one. I'm not sure what sort of relettering PROLOG does,
and whether it can make copies of clauses, and reletter one to cut against the other
as above. It certainly only ever does linear resolution.

(a) How long does it take?

b

~

/—\A,.\
~

c
d

~—

—[(Vy3z) = (p(z, y) < ~(32)(p(x, 2) A p(2,2)))]
Rewrite to get rid of the biconditional

S[(Vy3z)=(p(x, y) v = (32)(p(2, 2) Ap(2,2)) Ap(x,y) v =(32)(p(2, 2) Ap(z,2))]

push in =

[(Fyva)=(p(z,y) vV ~(32)(p(z, 2) Ap(z,2)) Ap(z,y) V —~(32)(p(x, 2) Ap(z, 2))]
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1996:5:10
(V2)(3z)(Vy) ((P(y) — Q(2)) — (P(z) — Q(x)))

Given that the decision problem for first-order logic is undecidable,
you haven’t much chance of finding a proof of something or a convincing
refutation of it unless you postpone work on it until you have a feel for
what it is saying.

First we notice that as long as there is an x s.t. Q(z) we can take
that element to be a witness to the ‘dz’ no matter what z is. This is
because the truth of ‘Q(x)’ ensures the truth of the whole conditional.
On the other hand even if nothing is ) we are still OK as long as nothing
is P—because the falsity of ‘P(z)’ ensures the truth of the consequent
of the main conditional. There remains the case where (Vz)(=Q(z))
and (Jz)(P(z)). But it’s easy to check that in that case the whole
conditional comes out true too.

So we can approach the search for a sequent calculus proof confident
that there is one to be found.

Clearly the only thing we can do with

(V2)(3z)(Vy) ((P(y) — Q(z)) — (P(z) — Q(x)))
is a V-R getting

= (32)(Vy)((P(y) — Q) — (P(z) — Q(x)))
(I have relettered ‘2’ to ‘a’ for no particular reason). We could have
got this by 3-R by replacing ‘a’ by ‘z’ so that it came from

= (V) ((P(y) — Q(a)) — (P(a) — Q(a)))
but this doesn’t appear to be valid. So we presumably have to keep
an extra copy of ‘+ (3z)(Vy)((P(y) — Q(a)) — (P(x) — Q(x)))’ and
we got it from

- @2)(W) (P(y) — Q(a) — (P(x) — Q@)).  (w)(P(y) — Q(a)) — (P(a) — Q(a)))
which came by V-R from
- (30)(7) (P(y) — Q@) — (P(x) — Q@)),  ((P(b) — Q(a) — (P(a) — Q(a)))
This obviously came from an 3-R:
- (W)(P(y) — Q(a) — (P() — Q1)) ((P(B) — Q) — (P(a) — Q(a)))

... where i’'m assuming the ‘x’ came from the ‘b’ we've already seen.
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and this must’ve come from a V-R with a new variable:

= (P(c) = Q(a)) = (P(b) — QD). ((P(b) = Q(a)) — (P(a) — Q(a)))

and now we’ve got all the quantifiers out of the way and have only
the propositional rules to worry about: pretty straightforward from
here. Four applications of —-R take us to

Pe) = Q(a), P(b) — Q(a), P(b), Pla) Q(b), Qa)
and if we break up the ‘P(b) — Q(a)’ on the left we get the two
initial sequents:

P(c) — Qa), P(b), P(a), Qa) = Q(b), Qa)

and

P(c) — Qa), P(b), Pla)F P(b), Q(b), Qa)

... where i have underlined the two formulea that get glued together by
the —-L rule.
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1996:6:10
Davis-Putnam: This procedure has three main steps:
1. Delete tautological clauses;

2. Delete unit clauses {A} and remove —A from all clauses. This is safe because
a unit clause {A} can be satisfied only if A — true and once that is done A
does not need to be considered further.

3. Delete any formula containing pure literals. (If a literal appears always pos-
itively or always negatively we can send it to true or to false without com-
promising later efforts to find an interpretation of the formula).

If a point is reached where none of the rules above can be applied, a variable
is selected arbitrarily for a case split and the proof proceeds along both resulting
clause sets. We will be happy if either resolves to the empty clause. This algorithm
terminates because each case split removes a literal.

In this example, we have no tautological clauses or pure literals, so we start
with a case split, arbitrarily selecting P to split. If P is true, our clauses are
{R},{-R}. We delete unit clause {R}, and then delete =R from all clauses; we
are left with the empty clause, which constitutes a refutation of the clause set (the
empty disjunction), so the formula is valid. The P false case proceeds similarly,
with @ for R. Resolution: There is only one rule of inference in resolution:

{B,A}{-B,C}
{4,C}
The algorithm terminates because as soon as a point is reached where the rule

cannot be applied, the clause set is established as satisfiable. Repeatedly applying
this rule to the given clause set:

P BHP Q)
{R7 ﬁQ}’
P oRHP QY
{ﬁR? Q}

{R, ~Q}H{-R, ~Q}
O

The empty clause (O) is a contradiction: we have refuted the clause set and so
proved the original formula.

Part of an answer to another question

Let A* represent the formula A, converted into polynomial representation. First
we note that in arithmetic mod 2, 22 = 2, as 0> =0 =0and 12 =1 = 1, and
all integers are congruent to 0 or 1 modulo 2. Now (—A)* is 1 + A*, (AA B)* is
A*-B*, (AV B)* becomes A*+ B*+ A*B*, A — Bis 1+ A*+ A*B*, and A< B
is (1 =A%)+ B*) - ((1 — B*) + A*), which simplifies to 1 + 24*B* — A* — B*
and thence to 1 + A* + B*. Recursively applying these rules to any formula will
convert it to equivalent polynomial form. (A A B) < (B A A) translates into

1+ 2(A*B*)? — A*B* — B*A* = 1, hence the formula is a tautology. A < A

translates into 1. 1 «» A translates into 1 + 24* — A* — 1 = A*. So if we adopt
the notation (A < A)™, to represent formulae of the given type where < appears n
times, we get: (A < A)” =1 (n odd) or A (n even), n > 0. This works for n =0,
which is just the formula A.
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1998:6:10

Clause 1 tells us that if  pees on itself it pees on a. Clause 2 tells us that if x
does not pee on itself then it pees on fa. This drops a broad hint that perhaps a
is {z:x €z} and fais {x:x € x}. Clause 3 tells us that nothing pees on both a
and fa which is starting to look good. Now ask whether or not P(fa, fa)? Well,
P(fa, fa) — P(fa,a) by clause 1. Then use clause 3 to infer =P(fa, fa) whence
—P(fa, fa). But then clause 2 tells us that P(fa, fa) after all.

The final part. Three clauses:

{ﬂP(J;,x),P(x,a)},{P(JJ,J;),—\P(x,f(a))}{—'P(y,f(x)),—\P(y,x)}

I think this is Russell’s paradox. P(z,y) is ¢ € y; a is the complement of the
Russell class, and f is complementation.
In the third clause make the substitutions a/x and f(a)/y to get {=P(f(a), f(a)),P(f(a),a)}
In the first clause make the substitution f(a)/x to get {=P(f(a), f(a)), P(f(a),a)}
and resolve on P(f(a),a) to get {=P(f(a), f(a))}.
In the second clause make the substitution f(a)/x to get {—~P(f(a), f(a)), P(f(a), f(a))}
which is of course {=P(f(a), f(a)), P(f(a), f(a))} resolves with the current goal
clause to get
damn
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Some ML code for unification

let apply_subst 1 t = rev_itlist (\pair term.subst[pair]term) 1 t;;

% Find a substitution to unify two terms (lambda-terms not dealt with) 7%

letrec find_unifying_subst tl t2
if t1=t2
then []
if is_var ti
then if not(mem t1 (frees t2)) then [t2,tl1l] else fail
if is_var t2
then if not(mem t2 (frees t1)) then [t1,t2] else fail
if is_comb t1 & is_comb t2
then
(let ratil,rndl
and rat2,rnd2
in
let s = find_unifying_subst ratl rat2
in s@find_unifying_subst(apply_subst s rndl) (apply_subst s rnd2)
Jelse fail;;

dest_comb t1
dest_comb t2

This language (HOL) curries n-place predicates. This corresponds to a determination—
when unifying (for example)—*f(a, b, f(z))’ with ‘f(z,y, w)—to detect = — a and
then do that to the third argument of the first occurrence of ‘ f’ so that it becomes
‘f(a)’ before we get there. This finesses questions about simultaneous vs consecu-
tive execution of substitution. It might be a good idea (or perhaps a very bad one!)
to think about unification in L, .,. How does it work?

An illustration

In the two axioms.
1. (Vzy)(x >y — Sz > Sy)
2. (Vw)(Sw > 0)

‘S’ is the successor function: S(z) = 4+ 1. (Remember that IN is the recursive
datatype built up from 0 by means of the successor function.)

Now suppose we want to use PROLOG-style proof with resolution and uni-
fication to find a z such that z > S0. We turn 1 and 2 into clauses getting
{=(z > y), Sz > Sy} and {Sw > 0}, and the (negated) goal clause {—(z > S0)}.

The idea now is to refute this negated goal clause. Of course we can’t refute it,
beco’s there are indeed some z of which this clause holds, but we might be able to
refute some instances of it, and this is where unification comes in.

z > S0 will unify with Sz > Sy generating the bindings z — Sx and y — O.
We apply these bindings to the two clauses clauses {=(z > y),Sx > Sy} and
{=(z > S0)}, obtaining {—=(z > S0),Sz > S0} and {-~(Sz > S0)}. These two
resolve to give {—(x > 0)}. Clearly the substitution z — Sw will enable us to
resolve {—(x > 0)} (which has become {—(Sw > 0)}) with {Sw > 0} to resolve
to give the empty clause. En route we have generated the bindings z — Sz and
x +— Sw, which compose to give z — SSw, which tells us that the successor of the
successor of any number is bigger than the successor of 0 as desired.

The idea is this: We are trying to find a witness to (3z)(A(z)). Assume the
negation of this, and try to refute it. In the course of refuting it we generate bindings
that tell us what the witnesses are.
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Higher-order Unification

Unification in first-order logic is well-behaved. For any two complex terms t; and
to if there is any unifier at all there is a most general unifier which is unique up
to relettering. This doesn’t hold for higher-order logic where there are function
variables. It’s pretty clear what you have to do if you want to unify f(3) and 6:
you replace f by something like

if x = 3 then 6 else don’t care

(which one might perhaps write (ef)(f(3) = 6)).

However what happens if you are trying to unify f(3) and ¢g(6)? You want to
bind ‘f’ to

if x = 3 then g(6) else don’t care (A)
but then you also want to bind ‘g’ to
if £ =6 then f(3) else don’t care (B)

and you have a vicious loop of substitutions. There are restricted versions that
work, and there was even a product called Q-PROLOG (‘Q’ for Queensland) that did
something clever. I've long ago forgotten.

I find in my notes various ways of coping with this, one using € terms. One can
have an epsilon term which is is a pair of things satisfying (A) and (B):

(ep)(Bha, ha)(p = (h1, he) A ha(3) = ha(6))
so that we bind ‘f’ to ‘fst(p)’ and ‘g’ to ‘snd(p)’.
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Question 63
Question 633a

The natural deduction proof i favour looks like this:

7 ()" [(r(z) = L]

(r(x) = 1) =L
(Vo) ((r(z) = L) — 1)
... where m superscript betrays a use of the mixed rule; a a use of the affixing rule.

Cancelled assumptions are enclosed in [square brackets| as usual. (There may be
other proofs as well.)

633b

The shortest sequent calculus proof i can find is the following.

p,7(x) - 7(x)
pk 7(x), -7 (x)
Tp, b 7(x), T(—7(z))
Tp, b 7(x), 7(x)
Tpk 7(x)

Tp bk Var(x)

633c

Prove that a premiss of the form Tp really is needed.

Notice that since neither the affixing rule nor the mixed rule have anything like
T¢ as a conclusion, we can obtain models of this calculus in which T'p is always
false (The modal logicians express this by saying that T is a falsum operator) and
7(x) is always false. Accordingly we cannot expect to be able to prove that even
one thing is 7 without some extra premisses.
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61

Use resolution to prove that a graph and its complement cannot both be
disconnected.

Robert Thatcher’s model answer (edited by me)

Suppose G is a graph such that G and G are both disconnected. We will derive a
contradiction by resolution.

If G is disconnected then there are vertices a and b which are not connected in G. If
G is disconnected then there are vertices ¢ and d which are disconnected in G.

Let us have six propositional letters: ab, ac, ad, bc, bd, cd. The intended interpretation
is that ab (for example) means that the edge ab belongs to the edge set of G.

First consider G. The first thing we know is that the edge ab is not in the edge set
of GG, hence we have the clause —ab. Since we know that a and b are disconnected in G,
we cannot allow any indirect paths from a to b. There are two possible lengths of indirect
path involving 1 or 2 indirect vertices. (It will turn out that we can get our desired
contradiction without considering indirect paths that are longer, but we don’t know that
yet, and are just hoping for the best!) This tells us that (—ac V —bc), or, in resolution
jargon, {—ac, —bc}. Similarly we may add {—ad, —~bd}. The paths involving 2 vertices are
acdb and adcb. We already know that the path cd must be present (since it cannot be in
G) hence we may add the clauses {—ac, bd} and {—ad, =cb}.

Now consider G. This cannot have cd, so we can add {cd} (this is not negated, since
we are now considering edges that are not in G, and hence must be in G). Similarly, we
cannot have any indirect connections from ¢ to d, so we cannot have the paths cad, cbd,
cabd and cbad. Since we know that ab cannot be in the graph, we can write these as the
clauses: {ac,ad}, {bc,bd}, {ac,bd} and {bc,ad}. Note that the last two do not contain ab
since we know that we must have —ab by choice of a and b.

So now we have a set of clauses representing the conditions that need to be satisfied if
both G and G are to be disconnected. To recapitulate, these are:

{—ab} {—ac,-bc} {—ad,—bd} {—ad, -bc} {—ac, ~bd}
{cd} {ac,ad} {be,bd} {ac,bd} {ad,bc}

Now we may combine these clauses (carefully) using resolution — the choice of clauses
to resolve is crucial, since it is very easy to end up with many useless clauses of the form

{A4,-A}.
{—ac, =bc} {bc, bd}

—ac, —~bd

{—ac, bd} { } (6.1)

{—ac} '

{—ad, —bd} {bd, bc} {~ad, -bc}

{—ad, bc} (6.2)

{—ad} '

Now we have two literal clauses, we can use them to derive a contradiction:
{ac, ad} {—ac} (~ad}

{ad} (6.3)

1

We have derived the empty clause.

Note that only six of the original 10 clauses were required for the resolution — partly
because the two simple clauses are disjoint from the remaining eight (due to the way we
initially wrote down the clauses — in a sense they have already been used in a resolution).
The remaining two clauses are superfluous: they do not provide any information beyond
the original eight. The clauses found when considering the 3-stage path in G are comple-
mentary to those found when considering similar paths in G, and hence if resolved in any
way with them, give useless clauses of the form {A, ~A}.
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6.2 Answers to Larry’s exercises

P(a), (b(F P(a), P(b), P(a), P(b)

~

(),P b) = P(a) A P(b), P(a) A P(b)
P(a) = P(a) A P(b), P(b) — P(a) A P(b) (A-R twice)
F (32)(P(2) — P(a) A P(b)), (32)(P(2) — P(a) A P(b)) 3-R twice

~— —

F (32)(P(z) — P(a) A P(b)) (contraction)

(This needs to be properly set using the stylefile bussproofs....

Most of these answer are by Dave Tonge. Not all, and some of his have been
mutilated by me.

* 1 x Is the formula A — —A satisfiable? Is it valid?
The case where A is false satisfies. The case where A is true does not satisfy.
Therefore the expression is satisfiable but not valid.

* 3 x Work out the details above.

Negate and convert (A; A--- A A) — B to CNF
Negate to give =((A1 A--- AN Ap) — B)

Eliminate — to give =(—=(41 A--- A Ag) V B)

Push in negations (A1 A--- A Ag) A B

Remove parentheses to give Ay A--- A A A =B

Convert M — K A P to clausal form.
Split into two formulae, M — K and M — P.
Eliminate —s to give -M V K and -M V P.
Convert to clauses {-M, K} and {-M, P}.

* 5 x Write down a formula that is true in every domain that contains at least
m elements. Write down a formula that is true in every domain that contains at
most most m elements.

At least m:

(Fzq ... a:m)(/\ (a;j # ag)?
k£
An answer for the next is obviously obtainable by increasing m by one and negating!
At most m:
(Vxl e IE",+1)( \/ XTj = Ii)
i#j<m

Many readers find the following more natural

(Fzq ..o 2m) (Vy)( \/ Yy =1x;)

1<i<m

This formula is logically more complicated (it has an alternation of quantifiers)
but is shorter.
A brief question to ask yourself: how rapidly does the formula grow with n?

* 6 x Verify these equivalences by appealing to the truth definition for first order
logic.

There are too many of these, so I'll just do the infinitary de Morgan law My =
~((¥2)A) = ((Fr)A).

!The temptation to write this as: (3a1...am)(Vj,k <m)(k # j — a; # ax) must be resisted.
This is not correct, since the subscripts on the variables are not themselves variables and cannot
be bound.
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To show this we have to show that My = —((Vz)A) is equivalent to My =
((3x)-A).

The first half becomes: for all m € M such that My (,,,/,) = A does not hold.
The second half becomes there exists an m € M for which My ¢, /,) = A does not
hold.

These two are plainly equivalent for if the first one does not hold then there
there will not exist an m for which the second holds. Similarly, if the second is true
then the first will not hold for all ms (for it won’t hold for the m given by the first).
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* 7 x  Ezplain why the following are not equivalences. Are they implications?
In which direction?

((Vx)A) vV ((Vx)B)? =?(Vx)(A V B)

((3x)A) A ((3z)B)? =?(3x)(A A B)

First one: The RHS could be true if A were true and B were false for a particular
x. Thus, B would not be true for all x. There might be another x for which A were
false and B true. Thus A is not true for all x. Thus the LHS can be false although
the RHS is true. Because this case exists the two statements are not equivalent.
However, there is a left-to-right implication.

Second: The x for which A might not be the same x for which B. Therefore the
RHS will be false in this case. The two statements are note equivalent. However,
the RHS implies the LHS.

*x 9 % Verify that o is associative and has [] for an identity.

To show associativity we need to show that (¢ of)ooc = ¢o (¢ o8).

If we consider ¢, § and o as functions f(z), g(z) and h(xz) which map literals to
their substituted values then we get the composition

Az.((fog)oh) Az.(fo(goh))
Az ((Ay-f(g(@)h) = Az.(f(goh))
Az.(f(g(h(z)))) Az.f(g(h(z)))p

Which says that they are the same. This relies on our functions returning the
literal given as an argument in cases where no substitution has been defined.

To show that [| is the identity we need to consider it as a function g which
maps all the argument literals to themselves, without substitution. ¢ remains the
function f as before.

fog f
g(f) = f
f =1f1

* 11 x  Each of the following formulae is satisfiable but not valid. FExhibit a
truth assignment that makes the formula true and another truth assignment that
makes the formula false.

P—qQ

True for P = true and @ = true. False for P = true and @ = false.

PVQ@Q—PAQ

True for P = Q = true. False for P = true and Q = false.

-(PVQVR)

True for P = @ = R = false. False otherwise.

“(PAQ)AN-(QV R)A(PVR)

True for P = true and Q = R = false. False for P = Q = R = true.
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* 12 x Convert of the following propositional formule into Conjunctive Normal
Form and also into Disjunctive Normal Form. For each formula, state whether it
is valid, satisfiable, or unsatisfiable; justify each answer.

(P—Q)A(Q— P)

To obtain CNF we first eliminate — to get (=P V Q) A (-Q V P).

To obtain DNF we first eliminate — to get (=P V Q) A (-Q V P). Push in
conjunctions to get (=P A (=Q V P))V (Q A (-Q V P)). And again to get (=P A
P)V (=P A-Q)V(QAN-Q)V(QA P). Remove those which are obviously false to
get (P A-Q)V (PAQ).

This formula is satisfiable—it is satisfied when P = Q.

(PAQ)VER)A(=((PVR)A(QV R)))
Both CNF and DNF require one to push in negations to get

(PAQ)VER)A(=(PVR)V=(QVR))

and then
(PAQ)VR)A((-PA-R)V(-QA~R))

TO get CNF push in disjunctions to get
(PVRYA(QV R)A(-PV-Q)A(=PV-R)A(-RV-Q)A(-RV-R)

which is
(PVRYA(QV R)A(-PV-=Q)A(-RV-Q)AN-PA-R

To get DNF push in conjunctions to get (PAQA-RA-R)V (PAQA—-QA
-R)V(RA-PA-R)V(RAN-QA-R).

The formula is unsatisfiable—if you look at it in DNF each conjunct has an atom
in both negated and unnegated form so all conjuncts must be false so the whole
disjunction is always false.

-(PVQVR)V((PAQ)VR)

Both CNF and DNF require one to push in negations to get (—P A —Q A —R) V
(PAQ)VR).

To get CNF we need to push in disjunctions to get (-PA-QA-R)V ((PV R) A
(QV R)) then (nPA-QA—-R)V(PVR))A((-PA-QA-R)V(QV R)) and then
(=PVPVR))A(=QVPVR)A(~RVPVR)A(=PVQVR)A(=QVQVR)A(~RVQVR)
which might as well be (-QV PV R)A (-PV QV R).

To get DNF we don’t have to do much except expand brackets to (=P A =Q A
“R)V(PAQ)VR.

This is satisfiable—it is only false for P = R = false, Q = true and P =
true, @ = R = false.

~(PVQ—=R)AN(P —R)ANQ— R)

Both CNF and DNF need one to get rid of —s to give =(=(PV Q) V R)A (=P V
R) A (-Q V R). Push in negations to get ((PV Q) A-R)A(-PV R) A (—=Q V R).

We would appear to have the CNF already—(PVQV-R)A(-PVR)A(-QV R).

To get DNF we ned to push in conjunctions to get (PV QV —R)A (=P V -Q) A
(=P V R) A (RV Q) A R. Again to give (PVQV R)A(PV R)A(=PVQV R) A
(QVR)A(—=PV-QV-R).

This is satisfiable - for example in the case P = Q = false, R = true but it can
be false as it is when P = Q = R = false.
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*x 14 x Prove (PANQ — R)A(PVQVR)— (P— Q) — R) and (P — Q) —
P) — P by resolution. Show the steps of converting the formula into clauses.
We have to negate and remove —s first.

~(PAQ—=R)AN(PVQVR)— (P Q)— R))
“(((=(PAQ)VR)A(PVQVR)V (~((=PVQ)A(=QV P)) V R))
("PV=-QVR)AN(PVQVR)AN-((PAN=-Q)V(-PAQ)VR)
(-PV=QVR)AN(PVQVR)A(-(PAN=Q)AN—=(=PAQ)A—-R)

(-PV-QVR)A(PVQVR)A(-PVQ)N(PV-Q)A

This gives us the clauses {—P,-Q, R}, {P,Q, R}, {-P,Q}, {-Q, P}, {-R}.

If we resolve the last one with the first two we get {—P,—-Q} and {P,Q}. This
gives us all four possible clauses starring P and ) so we will certainly get the
empty clause. ({}). We have assumed the negation of the theorem and derived a
contradiction. This proves the theorem.

We have to negate and eliminate —s first.

=(=(=(=PVQ)V P)VP)

(~((PA=Q)V P)V P)
~((=(P A=Q) A=P)V P)
(
(

J

-((PVQ)AN—-P)VP)
(~((=PV Q) A—-P)A=P)
(( ﬁP\/Q /\P) ﬁP)
(PA=Q)AP)A—P)
PAPA=PA-Q
PA-PA-Q

This gives us the clauses { P}, {—P} and {-Q}. Resolving {P} with {—~P} gives
a contradiction ({}). We have assumed the negation of Peirce’s law and derived a
contradiction, thus proving the law.

*x 15 x Using linear resolution, prove that (P A Q) — (R A S) follows from
(P—>R)A(Q—S) and RANP — S.

The two assumed formule and the negated conclusion give us the clauses {=P, R},
{-Q, S} and {—~R,—P,S}. We need to resolve these with the clauses given by the
negation of the formula we are trying to prove. These clauses are {P}, {@Q} and
{-R,—S}.

Take {—R, S} and resolve with {—R, P, S} to get {-R,~P}.

Resolve the result with {=P, R} to get {-P}.

Resolve the result with { P} to get a contradiction ({}). This proves the formula.
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* 16 x Conwvert these axioms to clauses, showing all steps. Then prove Winterstorm —
Miserable by resolution: Rain A (Windy V ~Umbrella) — Wet, Winterstorm —
Storm N Cold, Wet A Cold — Miserable and Storm — Rain A Windy.

First we need to construct all our definite clauses.

(Rain A (Windy V ~Umbrella) N Wet
expand/ ((Rain A Windy) V (Rain A ~Umbrella)) — Wet
remove — =((Rain A Windy) V (Rain A ~Umbrella)) V Wet
(=(Rain A Windy) A —~(Rain A ~Umbrella)) V Wet
((=Rain V =Windy) A (mRain V ~Umbrella)) V Wet
(mRain V =Windy V Wet) A (wRain V ~Umbrella vV Wet)
clauses are {=Rain, ~Windy, Wet} and {—~Rain, -Umbrella, Wet}

Winterstorm — Storm A Cold
remove — —Winterstorm V (Storm A Cold)
expand/A (=Winterstorm A Storm) A (=Winterstorm A Cold)

clauses are {=Winterstorm, Storm}and{-Winterstorm, Cold}

Wet A Cold — Miserable
remove — —(Wet A Cold) V Miserable
push in - -Wet VvV =Cold VvV Miserable
clauses are {=Wet,~Cold, Miserable}

Storm — Rain N Windy
remove — =Storm V (Rain A Windy)
expand/\ (=Storm V Rain) A (—~Storm vV Windy)
clauses are {=Storm, Rain}and{—Storm, Windy}

In order to prove Winterstorm — Miserable we have to assume its negation
and derive a contradiction. So, let’s find out the clauses that would give us.

Winterstorm — Miserable

negate —(Winterstorm — Miserable)
remove — —(=Winterstorm V Miserable)
push in— Winterstorm N = Miserable
clauses are {Winterstorm}and{—~Miserable}

Now, using all the clauses we have gathered we need to use resolution to get a
contradiction.

Resolve {Winterstorm} with {=Winterstorm, Storm} to give {Storm}.

Resolve {Winterstorm} with {=Winterstorm, Cold} to give {Cold}.

Resolve {Storm} with {=Storm, Windy} to give {Windy}.

Resolve {Storm} with {=Storm, Rain} to give { Rain}.

Resolve {Rain} with {—Rain, ~Windy, Wet} to give {-Windy, Wet}.
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Resolve {Windy} with {~Windy, Wet} to give {Wet}.

Resolve {Wet} with {—=Wet, =Cold, Miserable} to give {~Cold, Miserable}.

Resolve {Cold} with {—Cold, Miserable} to give { Miserable}.

Resolve {Miserable} with {—Miserable} to give a contradiction ({}). This
proves the theorem by contradiction of the negated theorem.

* 17 % Let = be a 2-place predicate symbol, which we write using infix notation:
for instance, x =y rather than = (x,y). Consider the following axioms:

(V) xT==x (6.4)
(Voy) (e=y—y=2) (6.5)
(Vayz) (r=yANy=z—>x=2) (6.6)

Let the universe be the set of natural numbers, N = {0,1,2,---}. Which azioms
hold if the interpretation of = is...

the empty relation, ¢?

(1) does not hold. (2), (3) hold.

Notice that the empty relation on an empty set is reflexive!!

the universal relation, {(x,y)|z,y € N} ¢

(1), (2), (3) all hold.

the relation {(x,x)|x € N}?

(1), (2), (3) all hold.

the relation {(z,y)|x,y € N ANz + yiseven}?

(1), (2), (3) all hold.

the relation {(x,y)|z,y € N Az +y =100}?

(1), (3) do not hold. (2) holds.

the relation {(z,y)|z,y € N Ax =y (mod 16)}?

(1), (2), (3) all hold.

* 18 x Taking ~ and R as 2-place relation symbols, consider the following
azioms:

(Vz) -R(z,x)
(Vzy)  —(R(z,y) A R(y, x))
(Voyz)  (R(z,y) A R(y, 2) — R(z,2))
(Vzy)  (R(z,y) Vo =yV R(y,z))
(Vzz)  (R(x,2) — 3y)(R(x,y) A R(y, 2)))

Ezhibit two interpretations that satisfy axioms 1-3 and falsify axioms 4 and 5.
Ezxhibit two interpretations that satisfy axioms 1-4 and falsify axiom 5. Ezhibit two
interpretations that satisfy axioms 1-5. Consider only interpretations that make =
denote the equality relation.

1-3 true, 4 and 5 false.

Domain is sets of natural numbers. R is C or C (strict subset) or D or D (strict
superset).

1-4 true, 5 false.

Domain is natural numbers. R is < or > or < or >.

1-5 true.

Domain is real numbers. R is < or > or < or >.

* 19 x  Consider a first-order language with 0 and 1 as constant symbols, with
- as a 1-place function symbol and + as a 2-place function symbol, and with = as a
2 place predicate symbol.
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(a) Describe the Herbrand Universe for this language.

¢ = {0,1}
Fio= {-}
Fr = {+}
Fo(n>2) = ¢
P = ¢
Py = {=}
Pnin>2) = ¢
Hy = {0,1}
Hy = {0,1,—(0),-(1)}
H = {0’17_(0)’_<1)’_(_(0))5_(_(1))7+(0’0)7+(0’1)7+(1a0)7
+(17 1)a +(07 _(0))7 +(07 _(1))a +(_(O)’ 0)7 +(_(1)a 1) o }
HB = {=1(0,0),=(0,1),=(1,0),= (1,1),= (=(0),—(0)),
= (=(1),=(0)), = (+(0,1), +(=(1), =(0))),
(b) The language can be interpreted by taking the integers for the universe and
gwing 0, 1, -, + and = their usual meanings over the integers. What do those
symbols denote in the corresponding Herbrand interpretation?

In the interpretation = is interpreted by the set of all ordered pairs formed from
two expressions « and [ such that the result of putting an equals sign between «
and [ is a theorem of the theory we have in mind. + similarly is the set of all
ordered triples of expressions («, 3,7) such that the result of putting a ‘+’ sign and
an ‘=" sign between them in the obvious way gives an expression that is a theorem
of, again, whatever the theory is that we have in mind. Interpretations for the
others are defined similarly.

* 20 x For each of the following pairs of terms, give a most general unifier or
explain why none exists.
F(9(x), =) and f(y, h(y))
f(g(x),h(g(x))) is the most general unifier.
J(@,y,2) and j(f(y,y), f(2,2), f(a,a))
i(f(f(f(a,a), f(a,a)), f((a,a), f(a,a))), f(f(a,a), f(a,a)), f(a,a)) is the most

general unification.

j(x, z,x) and j(y, f(y), 2)

Any unification requires that £ = y = z and that z = f(y) also. Therefore the
terms cannot be unified without allowing f(f(f(---)))-

J(f(x),y,a) and j(y, z, 2)

This cannot be unified because it required that y = z = a and also that y = f(z).
This will only work if f(z) = a for all z.

j(g(z),a,y) and j(z,x, f(z, 2))

Jlg(a),a, f(g(a),g(a))) is the most general unification.

* 34 x Convert these formule into clauses, showing each step: negating the

universal quantifiers and converting the matrixz into CNF.

formula, eliminating — and <, moving the quantifiers, Skolemizing, dropping the

(V2)(Fy)R(x,y)) — ((3y) (Vo) R(z,y))
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negate and remove — ((Vz)(Fy)R(x,y)) A =((Jy)(Vz)R(z,y
move quanti fiers ((Vz)3y)R(x,y)) A (Vy)(—~(Vx)R
((v2)By)R(z 1)) A ((F9) (3)~R(zy
skolemise and clause {R(z, f(x))}, {-R(g9(x),x)}

((By)(Vz)R(z, y)) — ((V2)(Fy) Rz, y))
negate and remove — ((Fy)(Vz)R(x,y)) A =((Vx)(Fy)R(x,y))
(Fy) (V) Rz, y)) A ((Fr)(Vy)~R(z,y))

skolemise and clause {R(z,a)}, {~R(b,z)}

(B2)(Vy2)((P(y) — Q(2)) — (P(z) — Q(x)))
negate and remove — =(3z)(Vy2)((P(y) A —Q(2)) V —=P(x) V Q(z))

(V) (Jy2)~((P(y) A ~Q(2)) V P (z) v Q(x))

(V) (3y2) (=P (y) vV Q(2)) A P(x) A =Q(x))
skolemise and clause {=P(f(x)),Q(g(x))}, {P(z)}, {-Q(x)}

* 22 % Find a refutation from the following set of clauses using linear resolution

{P(f(z,y)),~Q(x), ~R(y)}, {=P(v)}, {=R(2),Qg(2))} and {R(a)}.

Unify ‘o’ — *g(2)” and cut {P(f(z,y)), ~Q(x), ~R(y)} against {-R(z),Q(g(z))}
with cut formula Q(g(z)) to give {P(f(g9(2),2)),~R(z)}. Unify ‘2’ — ‘@’ and
cut {R(a)} against {P(f(g(2),2)), ~R(2)} to give {P(f(g(a),a))}. Unify ‘v’
‘f(g(a),a)” and cut the result against {—P(v)} to give a refutation ({}).

* 37 x Find a refutation from the following set of clauses using resolution with
factoring.

{(=P(x,a),~P(x,y), ~P(y,2)}, {P(w, f(2)), P(w, a)} and {P(f(x), 2), P(z,a)}

Binding both ‘g’ and ‘z’ to ‘a’ in clause 1 we get (4) {—P(a,a)} (with factoring).
We can resolve (4) with both clauses 2 and 3 (seperately ) to get (5) {P(a, f(a))}
and (6) {P(f(a),a)}. 5 resolves with 1 (bind ‘y’ to ‘a’ and ‘z’ to ‘f(a)’) to give (7)
{=P(f(a),a),~P(f(a),a)} which reduces by factoring to {=P(f(a),a)} and this
resolves with (6) to the empty clause.

* 24 % Prove the following formulae by resolution, showing all steps of the
conversion into clauses. Remember to negate first!

(V) (P V Q(z)) — (P V (V&)Q(x))

(Vz)(PV Q(z)) — (PV (V2)Q(x))
negate and remove — =(=((Vx)(PV Q(x))) V (PV (Vz)Q(x)))
move quantifiers (Vz)(PV Q(x))) A ((Vx)(P V Q(x)))
(V2)(PV Q(x))) A ((Fz)~(PV Q(x)))
(V2)(PV Q(x))) A ((Fz) (=P A =Q(x)))
skolemise and clause {P,Q(x)}, {-P} {—Q(a)}

Resolving the three clauses together gives a contradiction. Therefore the nega-
tion of the formula is inconsistent. Therefore the formula is proven.
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(Bzy)(P(z,y) — (Vow)P(v, w))

(Bzy)(P(z,y) — (Vow) P(v, w))
negate and remove — —((Fzy)(—P(z,y) V (Yow)P(v,w))
move quanti fiers (Vzy)(Bow)(P(x,y) A =P(v,w))
skolemise and clause {P(z,y)}, {-P(f(z,y),9(z,y))}

These two clauses resolve to the empty clause when x takes on the value of
f(z,y) and y the value of g(z,y). Thus the formula is proven.

—(3z)(Yy)(R(y, z) <> =R(y,y))

=(32)(Vy)(R(y, ) < ~R(y,y))
negate and remove < (Iz)(Vy)((=R(y,z) V =R(y,y)) A (R(y,y) V Ry, z)))
skolemise and clause {-R(z,a),"R(z,z)}, {R( x), R(x,a)}

If we resolve these two clauses together we get a contradiction. Thus formula is
proven.

* 25 x  Dual Skolemisation

Let £ be a language, and let ¥ : £ — £ be a map such that, for all formulae ¢,
U(¢) is satisfiable iff ¢ is. (Skolemisation is an example). We will now show that
the map A¢.—(¥(—¢)) preserves validity.

¢ is valid iff

—¢ is not satisfiable iff

U (—¢) is not satisfiable iff

—(¥(—9¢)) is valid.

Now all we have to check is that if ¥ is skolemisation then A\¢.—~(¥(—¢)) is dual
skolemisation a la Larry Paulson. Take a formula in prenex normal form, as it might
be

VeIyVzo

where ¢ is anything without quantifiers. Negate it to get

JxVy3dz—o

and skolemize to get

—[(f'y)/z a/x]

and negate again to get

ol(f'y)/ 2 a/x]

.. which is exactly what you would have got if you dual skolemised the formula we
started with.
I suppose one might use it in the following circumstances. You want to prove
¢ from I'. You (i) dual-skolemise ¢ and convert to disjunctive normal form; (ii)
negate I' and convert to disjunctive normal form. Then you write clauses which
are of course conjunctions not disjunctions and resolving to the empty clause means
you have established the truth of —I' V ¢. Two things to think about: (i) is there a
problem about relettering clauses? (ii) Did we really need to dual skolemise?
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The way to understand what skolemisation is doing is something like this:
skolemisation is supposed to preserve satisfiability not truth. Truth is a prop-
erty of a formula in an environment, but satisfiability is a property of the formula.
Skolemisation is something you do to a formula not to a formula-in-an-environment.
(Any logical manipulation on a formula of course, like conversion to CNF is also,
strictly something you do to a formula not a formula-in-an-environment, but with
CNF you can carry the environment along with you). Corresponding to skolemisa-
tion is a function on environments. I suppose AC is an assertion that this function
is uniform in some sense or functorial or something. For example, there is a way of
turning any interpretation of ‘(3z)(F'(x))’ into an interpretation of ‘F'(a)’: one adds
structure. To go the other way one throws structure away. The forgetful functor?

Postscript: both skolemisation and dual skolemisation are maps from a language
into itself that preserve something. In one case satisfiability and in the other case
validity. In this context we can anticipate a map used in the complexity theory
course. Take a formula in conjunctive normal form (so it’s a conjunction of disjunc-
tions) In general the individual conjuncts may have lots of literals in them, and be
something like (p V ¢V —r V s). This conjunct has four literals in it. Now consider
the result of replacing this conjunction by the (conjunction of the) two conjuncts
(pVagVit)A(—tV-rVs), where ‘¢’ is a new variable not present in the original
formula. The new formula is satisfiable iff the original one was. Also (although
the new formula has more conjuncts) we have replaced longer conjuncts by shorter
conjuncts. You will see later why this is a useful trick.

2002 p6 ql1

(a) A is consistent

(b) We have derived a contradiction from something that has been negated.
So the thing that had been negated is valid. That thing is the skolemised version
of A. So the skolemised version of A is valid. Doesn’t seem to tell us anything.
Skolemisation preserves satisfiability.

(c) If —A is refutable, then it shouldn’t matter which vbl you choose for a case
split: you should get the empty clause every time. OTOH if he means by the q that
if you split on p say, and the clauses arising frpm p resolve to the empty clause but
the clauses arising from —p don’t, then the fmla is consistent.

* 34 x Definite clauses

If we resolve two nonempty definite clauses we get a nonempty definite clause.
So, by induction, the only things we can deduce from nonempty definite clauses
are other nonempty definite clauses. Since no definite clause is empty, we cannot
deduce the empty disjunction, which is to say we cannot deduce the false!

One of Larry’s questions

Are {P(z,b), P(a,y)} and {P(a,b)} equivalent?

{P(x,b), P(a,y)}is (Vzy)(P(x,b)V P(a,y)). Instantiating ‘a’ to ‘a’ and ‘y’ to ‘v’
we infer P(a,b). The converse is obviously not going to be provable: take a universe
just containing a and b and decide that =P (b,b) and —P(a,a). (don’t worry about
the truth-values of the other three atomics—they don’t matter).

Are {P(y,y), P(y,a)} and {P(y,a)} equivalent?

This one looks uncannily like a tarted up version of Russell’s paradox. Perhaps
i just have a nasty suspicious mind. Let’s rewrite P as € (and as infix) to get

Are {y € y,y € a} and {y € a} equivalent?
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which are (Vy)(y € y — y € a) and (Vy)(y € a) and it’s already much clearer
what is going on. They are obviously not equivalent, but it might be an idea to
cook up a small finite countermodel. One like this, perhaps:

aa,a€b cec,cgb beb.

b contains all things that are not members of themselves (namely a), but it
doesn’t contain everything (it’s missing c).
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Lots of funny symbols—a FAQ

The following symbols appear in this course at various times, and people often
wonder about the differences. —, =, >, =, .

— and -> are the same symbol in the sense of being different manifestations of
the same symbol in two different fonts.

They have several uses. A — B is a notation denoting the set of all functions
from A into B where A and B are sets (or types). Also — is a constructor of the
recursive datatype of (propositional) formulee: sticking a ‘—’ between two formulee
results in another formula. Punning between these two uses of the one symbol plays
an important part in understanding A calculus.

When ‘—’ is used as a constructor of the recursive datatype of (propositional)
formulz it is often provided with semantics to make p — g mean the same as ‘—pVq’.
It was not always thus. There is also the symbol ‘D’ which is also a constructor and
is only ever used for this purpose. ‘—’ was first used in propositional logic quite
explicitly to not mean the same thing as the truth-functional connective ‘O’ (since
there was an ideological debate around whether or not the relation encapsulated by
‘=p V ¢ could properly be regarded as implication!). Sadly this symbol is hardly
used any longer, and ‘—’ is now used for both.

The symbol ‘I’ is usually placed between a term denoting a theory or a set
of formulae (to its left) and a single formula (to its right). Occasionally even the
thing on the left can be a single formula. In these circumstances ‘+’ belongs to
a metalanguage and means that there is a deduction of the formula on the right
from the theory or set of formulea on the left. Sometimes it has a subscript (“I” for
example) denoting a theory or Logic in which the deduction is to be performed. The
relation it captures is sometimes called syntactic entailment (to be contrasted
with semantic entailment below).

There are people (like me!) who write sequents with ‘+’ in the middle instead
of ‘=’ (as Dr. Paulson does). In this usage ‘F’ is not a piece of metalanguage but
is a constructor of a formal language. However the commonest use of the double-
shafted arrow is probably its use as a piece of slang metalanguage, where it is put
between two formulse (or more typically between two lines of a proof) to mean that
the second follows (in some sense to be divined from context) from the first.

Notice the difference between this use and the way we can put ‘—’ between two
formulae. Putting ‘—’ between two formulae results in another formula of the
same language that the two given formul® belonged to. The slang use of
‘=>’ really involves putting ‘=’ between two names of formule so as to make an
assertion about how those two formulse are related, and this assertion is not an
object of the same language that the two given formulae belonged to, but is a piece
of English (or rather: English with knobs on).

‘M E T and ‘M = ¢’ are two correct uses of ‘='. The first means that the
theory (set of formulae) T is true in the structure M, and the second means that
the formula ¢ is true in the structure M.

There is another use of ‘=". It can be used, like ‘+’ between a formula (or
something denoting a set of formulae) on the left, and a formula on the right. The
resulting expressions mean that every interpretation making the stuff on the left true
makes the stuff on the right true too, and this relation is usually called semantic
entailment.
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Chapter 7

Hardware verification
exercises

1. Explain how the behaviour and structure of hardware designs can be rep-
resented in higher order logic. How is the sequential, or time-dependent,
behaviour of a device modelled?

2. Consider the n-bit multiplexer Mux n shown below:

ab
/)

:
I/
O

When the control wire ¢ is high, the n-bit value present on the input a ap-
pears on the n-bit output o. And when the control value ¢ is low, the n-bit
value present on the input b appears on the n-bit output o. Write a formal
specification of the device Mux n. Design an implementation of Mux n using
only combinational logic gates (AND-gates, OR-gates, etc.). Verify by formal
proof that your design meets its specification.

3. Using only simple combinational logic gates, design a device to increment an
n-bit binary number by one. Write a formal specification for your device, and
verify the correctness of its design by formal proof.

1991:.7:7

Want pty in = out.

To do this it is sufficient to show that for each n,

pty inn =out n

This is because we have a kind of implicit extensionality that says two functions
are the same if they always give the same values to the same arguments.

Clearly the way to prove this is by induction on n. The case n = 0 is easy to
deal with: both sides of the equation evaluate to 0.

Now we have to deal with the induction case. Assume that it is true for n, and
infer that it holds for n + 1.

Thus we are given

pty inn = out n
and we want

pty inn+1=outn+1

91
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The LHS is pty in n + 1 which (by dfn of pty) is
in n => =(pty in n)|(pty in n)

which is
in n => —(out n)|(out n)

by induction hypothesis. Now we also know
(Vn)(out n = (n=0 => 0] 1l(n—1)))

but we are only interested on the case n > 0 (it’s the induction case we are
examining, after all!) so wlog ‘n’ can be rewritten as ‘n + 1’ so this simplifies to

out (n+1)=

and the RHS of this equation is
—(in n = out n)

which is the same as
inn => - (out n)|(out n)

as desired.

Another answer to the same question

Tom says:
What we’re really proving is:

[31.X0R(in, out,l) A REG(in, out)]
So assume for some [ that
1. Vt.I(t) = —(in(t) = out(t))
2. Yt.out(t) = (t=0=>0|l(t — 1))

Prove Vn.out(n) = PTY(in(n)) by induction on n.
Base case: n = 0.
by (2) out(t) = (0 = 0 => 0]I(0 — 1)) which is 0 (by definition of conditional)
which is PTY(in(0)) (by definition of PTY)
Step case. Assume out(n) = PTY(in(n)). Show:
outtn+1)=(n+1=0=>0[l((n+ 1) — 1)) (specialise n to 0 in (2))
= Il(n)
— ~(in(n) = out(n)) (by (1))
= =(in(n) = PTY(in(n))) by induction hypothesis.
(in(n) => ﬂPTY( n(n))|PTY(in(n))) by case analysis
=PTY(in(n + 1)) by dfn of PTY
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ML

1997:2:1 (a)

Q:

Give some ML text to replace <insert> in the following:

<insert>
fun f gg=g; £ xy;

to make it into a valid ML program.
Answer

datatype w = g;

val x = g;

val y = g;

fun f g g = g; fun x y;

8.1 Some ML exercises

1.

Working in ML, represent positive integers in binary as bool lists. Write ML
code to do multiplication and addition.

Develop matrix manipulation routines of your choice representing matrices as
list list e.g., transpose, determinants, inverses. Perhaps even declare a new
datatype?

Like 1 but include negative integers as well.!

The knapsack problem is: given a list L of integers, and an integer n, find a
subset L' C L which adds up to n. Write an ML program to solve it. How
long does your code take to run as a function of the length of the input list?

A (nonempty) Conway game is an ordered pair of sets of Conway games.
Write ML code to develop an automated theory of the arithmetic of Conway
games. See J.H.Conway “On numbers and Games” Academic Press.

8.2 Answers

8.2.1 Question 8.1

Pompiboon Satangput’s answer

1Could use lazy lists of booleans for this!
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fun

fun

fun

fun

fun

fun

An

(*
(*
(*
(*

Tand( one ,

Tor( one ,

|Tand ( []

0)=10
, two ) =[]

|Tand( n::ones , t::twos ) =

(n andalso t)

[Tor( []

1)

, two ) = two

: :Tand (ones, twos) ;

one

|Tor( n::ones , t::twos ) =

(n orelse t)

NumToBi( 0 ) = []
| NumToBi( n ) = (n mod 2 = 1)

BiToNum( [] ) =0

: :Tor (ones,twos) ;

| BiToNum( i::inp ) =
if i then 2*(BiToNum(inp))+1
else 2% (BiToNum(inp));

answer from Andrew Rose

BINARY MANIPULATIONS

bbitAND(x,y)
bbitOR(x,y)
bbitNOT (x)

blogAND(x,y)
blogOR(x,y)
blogNOT (x,y)

bAdd (x,y)
bSub(x,y)
bMult (x,y)

BinToDec (x)
Bin2CToDec (x)

DecToBin(x)
DecToBin2C(x)

ANDREW ROSE

12/11/97

The code below defines the following functioms...

- bitwise AND
- bitwise OR
- bitwise NOT

- logical AND
- logical OR
- logical NOT

- Addition
- Subtraction (2’s Complement)
- Multiplication

- Binary to Decimal Conversion
- Binary to Decimal Conversion

using 2’s complement

- Decimal to Binary Conversion
- Decimal to Binary Conversion

using 2’s complement

*)
*)
*)
*)

All values are represented as binary lists with MSB first.

CHAPTER 8. ML

: :NumToBi(n div 2);

AndNumber (n,m) = BiToNum(Tand (NumToBi(n) ,NumToBi(m)));

OrNumber (n,m) = BiToNum(Tor (NumToBi(n) ,NumToBi(m)));
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The function bSub(x,y) subtracts y from x.

(* B ettt

fun eqlength(x,y) =
if length(x) = length(y) then

(x,y)
else
if length(x) > length(y) then
eqlength(x,false::y)
else
eqlength(false::x,y)
()
(%)

’

fun xbbitAND([], ) = []
| xbbitAND(xs, [1) = []
| xbbitAND(x::xs,y::ys) =
if x andalso y then
true: :xbbitAND(xs,ys)
else
false: :xbbitAND(xs,ys)
(x%)

fun bbitAND(x,y) = xbbitAND(eqlength(x,y));

fun xbbitOR([1, ) = []
| xbbitOR(xs,[1) = [I
| xbbitOR(x::xs,y::ys) =
if x orelse y then
true: :xbbitOR(xs,ys)
else
false: :xbbitOR(xs,ys)
(x%)

fun bbitOR(x,y) = xbbitOR(eqlength(x,y));

fun bbitNOT([]) = []
| bbitNOT(x::xs8) = (not(x))::bbitNOT(xs);

(x - -

*)

*)

*)
*)

*)

95
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(k mm e *)
(* LOGICAL OPERATIONS *)
(* e et ettt *)

fun IsFalse([]) = true
| IsFalse(x::xs) =
if (x = true) then
false
else
IsFalse(xs)
(%)

fun blogAND([],_) = false
| blogAND(_,[]) = false
| blogAND(xs,ys) =
if IsFalse(xs) orelse IsFalse(ys) then
false
else
true

()

fun blogOR([1,[])
| blogOR([],ys)
if IsFalse(ys) then

false

false

else
true
(%)
| blogOR(xs,[1) =
if IsFalse(xs) then
false
else
true
(x%)
| blogOR(xs,ys) =
if IsFalse(xs) andalso IsFalse(ys) then

false
else
true
(%)
fun blogNOT([1) = true
| blogNOT(xs) = not(IsFalse(xs));
(k ————mmmmm *)
( —- - -—- )
(x ’MATHS’ OPERATIONS *)

(k mm *)

CHAPTER 8. ML
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fun fst(x,y) = x;
fun snd(x,y) = y;

(* A function xbAdd(x,y,carry) adds together two equal
length boolean lists with MSB last. *)

exception UnEqual;

fun xbAdd([]1, [1,carry)
if carry then
[truel
else
(]
(%)
| xbAdd(xs, [],carry) = raise UnEqual
| xbAdd([],ys,carry) = raise UnEqual
| xbAdd(x::xs,y::ys,carry) =
if x andalso y then
carry: :xbAdd(xs,ys,true)

else
if x orelse y then
(not carry)::xbAdd(xs,ys,carry)
else
carry: :xbAdd(xs,ys,false)
(xx)
(%)

(x A function bAdd(x,y) prepares two boolean lists of any
length with MSB first by making them equal lengths
with MSB last before passing them to xbAdd *)

fun bAdd(x,y) = rev(xbAdd(rev(fst(eqlength(x,y))),rev(snd(eqlength(x,y))),false));

fun bComp2(x)
if IsFalse(x) then
X
else
bAdd (bbitNOT(x), [truel);
(%)

fun bAdd(x,y) = rev(xbAdd(rev(fst(eqlength(x,y))),rev(bComp2(snd(eqlength(x,y)))),false));

fun shifted(acc) =
if acc=0 then
[]
else
false::shifted(acc-1)
(%)

fun xbMult([],ys,acc) = [false]
| xbMult(x::xs,ys,acc) =
if x = false then
xbMult (xs,ys,acc+1)
else
bAdd(ys @ shifted(acc),xbMult(xs,ys,acc+1))
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()

s

fun bMult(x,y) = xbMult(rev(x),y,0);

(* et ettt %)
(* -—- -—- - %)
(* CONVERSIONS *)
(k mm *)
nonfix POW;

fun POW(x,y) =
let fun POWI(x,y,acc) =
if y = 0 then

acc
else
POWI(x,y-1,x*acc)
(*x)
in
POWI(x,y,1)
end
infix POW;

fun xBinToDec([],n,Ans) = Ans
| xBinToDec(x::xs,n,Ans) =
if x then
xBinToDec(xs,n+1, (2 POW n) + Ans)
else
xBinToDec (xs,n+1,Ans)

()

fun BinToDec(xs) = xBinToDec(rev(xs),0,0);

fun Bin2CToDec([]) = 0
| Bin2CToDec(x::xs) =
if x then
~(BinToDec (bComp2(xs)))
else
BinToDec (xs)

(x%)

fun xDecToBin(x,bs) =
let
val tf = if (x mod 2) = 1 then true else false
in
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if x=0 then
bs
else

xDecToBin((x div 2),tf:

()

end

exception Negative;

fun DecToBin(x) =
if x<0 then
raise Negative
else
xDecToBin(x, [1)
(*x)

fun DecToBin2C(x) =
if x<0 then
bComp2 (DecToBin(abs(x)))
else
false: :DecToBin(abs(x))
(*x)

An answer from Inge Norum

(* BINARY FUNCTIONS

(*
(*

(* First convention: Binary number represented as a list of booleans with

the least significant bit first.

99

:bs)

by Inge Norum Oct ’97

(* Second convention: no trailing falses (zeroes) are allowed. The last

element of any list must be a true or [].

( => gain in efficiency )

(* Third convention: [false] will be used as a fail ’signal’ and will

signify that a function failed.

val error_b = [false];
val error_i ~1;

(x A recursive funtion to turn an integer into a list of booleans: *)

fun bin (i : int) =

if i>0 then ((i mod 2) = 1) :: bin (i div 2)

else [];

(x An iterative funtion to turn a bool list into an integer: *)

*)
*)
*)

*)

*)
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fun

(*

fun

(*

fun

(*

fun

(*

fun

fun

(*

val

CHAPTER 8. ML

int_b (b : bool list) =
let

fun intb([] , n, i) = 1i : int

| intb(b::bs, n, i) = intb(bs, n+n, if b then n+i else i)

in

if b=[false] then error_i else intb(b, 1, 0)
end;

A function to strip off trailing falses: *)

strip (b::bs) =
if b then b :: strip(bs)
else let val stripped = strip(bs)
in if stripped = [] then []
else b :: stripped
end

strip ([1) = [J;

An iterative binary addition function using only logical operators: *)
add_b (a, b) =
let fun addb([],[], carry, sum) = if carry then (true :: sum) else sum
| addb([], y, carry, sum) = addb([false], y, carry, sum)
| addb(x ,[], carry, sum) = addb(x, [false], carry, sum)
| addb(x::xs, y::ys, carry, sum) =
if (x andalso y) then addb(xs, ys, true , carry :: sum)
else if (x orelse y) then addb(xs, ys, carry, not carry :: sum)
else addb(xs, ys, false, carry :: sum)
in rev(addb(a, b, false, [1))
end;
An iterative binary subtraction function: *)

sub_b (a, b) =
let fun subb([], [], borrow, dif) =
if borrow then error_b (x Failed: b>a *)
else strip(rev(dif)) (* strip off any trailing zeroes *)
| subb(x, [], borrow, dif) = subb(x, [false], borrow, dif)
| subb([], y, borrow, dif) subb([false], y, borrow, dif)
| subb(x::xs, y::ys, borrow, dif) =

if (y andalso borrow) then subb(xs, ys, true , x :: dif)
else if (y orelse borrow) then subb(xs, ys, not x, not x :: dif)
else subb(xs, ys, false, x :: dif)

in subb(a, b, false, [])

end;

Currying and Uncurrying functions! (for functions with two argumets) *)
curry(f) nm = £f(n,m);

uncurry(f) = fn (n,m) => (f n) m;

now curry add_b and sub_b: *)

plus_b = curry add_b;
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val

(*

fun

(*

fun
fun

(x

(*

fun

(*

fun

(*

(*

fun

(*

fun

(*

fun
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subt_b = curry sub_b;

A binary nfold function: *)

X
f(nfold_b(f, sub_b(n, [truel)) x);

nfold_b(f,[1) x
nfold_b(f, n) x

Now, a product and power funtion can be defined: *)

nprod_b a b = nfold_b(plus_b a, b) [false];

npower_b a b = nfold_b(nprod_b a, b) [true];
However, these functions are very inefficient, and hence called n... *)
A right bit shifting function: Since I have a binary number represented

with the least significant digit first, I only have to take away
boolean(s) from the beginning of the list in order to ’shift off’ the
least significant bit(s) *)

shr(b::bs, n::ns) = shr(bs, sub_b(n::ns, [true]))
shr(b::bs, []) = b::bs
shr([], _) = error_b;

A left bit shift function: ( -> inserts falses onto beginning) *)

shl(b, n::ns) = shl((false :: b), sub_b(n::ns, [truel))
shl(b, [1) = b;

Bit shifting can be exploited to optimize functions: a left shift
doubles a binary number n times, and a right shift halves it n times. *)

Now a product function which explots bit shifting: *)

prod_b(a, b::bs) =

if bs = [] then if b then a else [] (* done *)

else if b then add_b(a, prod_b(shl(a, [truel), shr(b::bs, [truel)))
else (xeven*) prod_b(shl(a,[truel), shr(b::bs, [truel))

prod_b(_, _) = []; (* one of the arguments must have been [] *)

and using this, an efficient power function: *)

power_b(a, n::ns) =

if ns = [] then if n then a else [] (* done *)

else if n then prod_b(power_b(prod_b(a, a), shr(n::ns, [truel])), a)
else power_b(prod_b(a, a), shr(n::ns, [truel))

power_b([1, _) [1

power_b(_, [1) [truel;

An iterative general binary comparison function: *)

lessthan(x::xs, y::ys, ans) = if x=y then lessthan(xs, ys, ans)
else lessthan(xs, ys, y)

lessthan([], [], ans) = ans

lessthan([], _ , ans) true (* | Works since no trailing *)
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lessthan(_ , [], ans) = false; (* | falses are allowed! *)

(* Then use this to overload the <, <=, >=, > operators for bool lists: *)

fun op< (a : bool list, b : bool list)
fun op<= (a : bool list, b : bool list)
fun op>= (a : bool list, b : bool list)
fun op> (a : bool list, b : bool list)

lessthan(a, b, false);
lessthan(a, b, true);
lessthan(b, a, true);
lessthan(b, a, false);

(x Lastly, a function to turn a curried binary function
into a function with integer I/0 ... *)

fun intfun_b(f_b) x y = int_b((f_b (bin x)) (bin y));

(x Now generate some curried integer functions from the binary ones: *)

val plus = intfun_b plus_b;

val subt = intfun_b subt_b;

val add = uncurry plus;

val nprod = intfun_b nprod_b;

val npower = intfun_b npower_b;

val prod = intfun_b(curry prod_b);
val power = intfun_b(curry power_b);

8.2.2 Question 8.2

An answer from Andrew Rose

(k @ ———— *)
(% MATRIX OPERATIONS *)
(* ANDREW ROSE *)
(* 12/11/97 *)
(k ————mmmm —————————— *)

(* The code below defines the following functions...

mCof (A) - Cofactors of an element
mDet (A) - Determinent of A

'HELP! - mCof depends on mDet and mDet depends
on mCof. This means that you have to
define 1 of them in a dummy manner
before loding the code. Then you have
to load the code twice!

mTsp(A) - Transpose of A
mAdj (4) - Adjoint of A
mInv(A) - Inverse of A

A1l matrices to be represented by a list of lists.
Each list is a row of the matrix. *)

(* —— - - %)
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exception mNoSuchRow;
exception mNoSuchCol;
exception mNoSuchItem;
exception mTooFewElements;
exception mNoMatrix;
exception mDivByZero;

fun mTrimRow(r,[]) = raise NoSuchRow
| mTrimRow(r,x::x8) =
let fun xmTrimRow(r,[],acc) = raise NoSuchRow
| xmTrimRow(r,x::xs,acc) =
if r = acc then

xs
else
x: :xmTrimRow(r,xs,acc+1)
(*x)
in
xmTrimRow(r,x::xs,1)
end

fun mTrimItem r ([]) = raise NoSuchItem
| mTrimItem r (x::xs) =
let fun xmTrimItem(r, [],acc) = raise NoSuchItem
| xmTrimItem(r,x::xs,acc) =
if r = acc then

Xs
else
x::xmTrimItem(r,xs,acc+1)
(%)
in
xmTrimItem(r,x::xs,1)
end

fun mTrimCol(c:int,[]) = raise NoSuchCol
| mTrimCol(c,A : int list list) = map (mTrimItem c) A

fun nth ([],n) = raise TooFewElements
| nth (x::xs,n) = if n=1 then x else nth(xs,n-1);

nonfix POW;
fun POW(x,y) =
let fun xPOW(x,y,acc) =
if y=0 then acc else xPOW(x,y-1,x*acc)
in
xPOW(x,y,1)
end

infix POW;
fun mCof(r,c) A = mDet(mTrimCol(c,mTrimRow(xr,A))) * ((71) POW (r+c))

fun mDet([]) = raise NoMatrix
| mDet(A) =
let fun xmDet(A,length,done,acc) =
if done = length then
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(nth(hd(A) ,done)* (mCof (1,done) A))+acc
else

xmDet (A, length,done+1, (nth(hd(A) ,done)* (mCof (1,done) A))+acc)

(%)
in
if length(hd(A))=1 then
hd (hd (A))
else
xmDet (A, length(A),1,0)
(%)
end

fun mTsp([1) = [[1]

| mTsp(A) =
if hd(A)=[] then
[
else
map hd(A)::mTsp(map t1(A))
(%)

fun mRowAdj(r,A) =
let fun xmRowAdj(r,A,acc,cnt) =
if cnt=length(A)+1 then

acc
else
xmRowAdj(r,A,acc @ [mCof(r,cnt) Al,cnt+1)
(*x)
in
xmRowAdj (r,A, [1,1)
end

fun mAdj(A) =
let fun xmAdj(A,acc,x) =
if (x=length(A)+1) then

acc
else
xmAdj (A,mRowAdj(x,A)::acc,x+1)
(%)
in
xmAdj (A, [1,1)
end

s

fun mInv(A) =
if mDet(A) = O then
raise DivByZero
else
(mDet (A) ,mAdj(A))
(%)
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An answer from David Burleigh

(* Matrix Determinant Program. By David Burleigh *)
(* All these functions treat a matrix as a list of columns *)

fun butnth([],n) = [] (* returns all the list elements except the nth *)
| butnth(x::xs,n) =
if n = 0 then butnth(xs,n-1)
else x::butnth(xs,n-1);

fun nth([],_) = [1 (* returns the nth element of a list *)
| nth(x::xs,0) = x
| nth(x::xs,n) nth(xs,n-1);

(* getsubdet returns a the subdeterminant which is the tails of all the
columns
except the column containing the value to which the subdeterminant refers.

*)

fun getsubdet [] = [[]]

| getsubdet cols col = map tl (butnth(cols,col));

fun subdet([]) = 0 (* calculates the base case, which is a 2x2 matrix *)
| subdet([[a,b]l,[c,d]]) = a*d - bx*c;

fun even n = (n mod 2 = 0); (* even returns true is n is even *)

(* makedet takes a matrix and the values of its subdeterminants
and calculates the overall determinant, using even on the column
number n (note that the first column has n = 0) to decide
whether to add or subtract the next value. *)

fun makedet (mtx, subs) =
let fun md([], [1,n) =0
| md(c::cs, s::ss,n) =
let val num = hd(c)
in
if even n
then num * s + md(cs,ss,n+1)
else "num * s + md(cs,ss,n+1)
end
in md(mtx,subs,0)
end;

(* listsubdets reduces a matrix to its constituent subdeterminants,
calling itself recusively untill it reaches a 2x2 matrix which
it evaluates using subdet. The subdeterminant lists are built up
in reverse so as to avoid append, so they have to be reversed before
being passed to makedet. *)

fun listsubdets(mtx,n,subs) =

if nth(mtx,n) = [] (*end of matrix*)
then subs

else

let val sb = getsubdet mtx n
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in

if length(hd(sb)) = 2 (% 2x2 matrix reached *)
then listsubdets(mtx,n+1,subdet(sb)::subs)

else listsubdets(mtx,n+1,

makedet (sb,rev(listsubdets(sb,0,[])))::subs)
end;

(*x det is the actual determinant function which calls makedet on the result
of listsubdets. This function has 0(a"n) time complexity where n is the
dimensionality of the matrix, since T(n+1) = (n+1) * T(n). *)

fun det(mtx) = makedet(mtx,rev(listsubdets(mtx,0,[]1)));

(* makematrix generates an n x n matrix whose determinant is zero, for test
purposes.
On my P166, det does an 8x8 matrix in 5 seconds, and a 9x9 matrix in 30
seconds. *)
fun makematrix(n) =
let val dim = n
in let fun mm(r,mtx) =
let fun mc(cs,ce,mtx) =
if cs = ce

then mtx
else mc(cs-1,ce,cs::mtx)
in
ifr=20
then mtx
else mm(r-1, mc(r*n, (r-1)*n,[])::mtx)
end
in mm(n, [1)
end
end;

8.2.3 Knapsack question

letrec knapsack nlist num = if null nlist then if num = O then nlist else fail
else let h,t = (hd nlist),(tl nlist) in
(if num <O then fail else
else [h] @ (knapsack t (num - h) ) 7
knapsack t num);;

How long does this thing take to run as a function of the length of the input
list?

=3
]

N

ot
|

= [4;8;16;32;64;5] num = 25 [2]@(knapsack [4;8;16;32;64;5] 23)

h =41t = [8;16;32;64;5] num = 23 [4] @ knapsack [8;16;32;64;5] 19

8.3 ML ticks

8.3.1 ML tick 4

A reasoned answer from Jonathan Page, hacked about by me.
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(* PROBLEM 1. A function startpoints(pairs,z) ... *)

fun startpoints([],_)=[]
startpoints((start,finish)::pairs,z)=
if (finish=z) then
start::startpoints(pairs,z)
else
startpoints(pairs,z);

(x PROBLEM 2. A function endpoints(z,pairs) ... *)

fun endpoints(_, [1)=[]
endpoints(z, (start,finish)::pairs)=
if (start=z) then
finish: :endpoints(z,pairs)
else
endpoints(z,pairs);

(x PROBLEM 3. A function allpairs(xs,ys) ... *)

fun allpairs(xs,ys)=
let
fun prefix(_, [1)=[]
| prefix(x,y::ys)=(x,y)::prefix(x,ys)

fun makeallpairs([])=[]
| makeallpairs(x::xs)=prefix(x,ys) @ makeallpairs(xs)

in
makeallpairs(xs)
end;
(x PROBLEM 4. A function addnew((x,y),pairs) ... *)

fun addnew((x,y),poss)=
let
val us=startpoints(poss,x)
val vs=endpoints(y,poss)
val new=allpairs(x::us,y::vs)

fun inject(w,zlist)=
let
fun doinject([])=w::zlist
| doinject(z::zs)=
if (z=w) then
zlist
else
doinject(zs)
in
doinject(zlist)
end;

fun merge([])=poss
| merge(w::ws)=inject(w,merge(ws))
in
merge (new)



108 CHAPTER 8. ML

end;

Notice that if you are not careful merge takes time n? where n is the length of
the longer list, whereas it shouldn’t taker longer than the product of the lengths.
The point is that merge is allowed to assume that the input lists are duplicate-free.
If you merge two lists by testing the head of the first list for membership in the
second, and adding it if the answer is ‘no’ you end up checking for duplicates in the
first list.

fun merge 11 [] = 11
| merge (a::as) b = if mem a b then merge as b else a::(merge as b);
(* PROBLEM 5. A function routes(pairs) ... *)

fun routes[]=[]
routes((x,y): :pairs)=addnew((x,y) ,routes(pairs));

Various things to keep in mind. Decide at the outset whether you are measuring
time taken as a function of the number of nodes or the numbr of edges.

The function routes(pairs) is O(n®) in time, where n is the number of pairs
(”directed roads”) in the input list. This may be established by the following
argument:

1. During each invocation of addnew((z,y), pairs), at maximum one "road”, and
hence two new nodes may be added to the ”"one-way road system”.

2. Thus, the maximum number of unique nodes in the road system after ¢ invo-
cations of addnew((x,y), pairs) is 2i.

3. In the case where the input to addnew consists of a list of edges saying: half
the world (n nodes, say) can see a, and b can see the other half, together with
an edge joining a to b, the output will be of length (n + 1)? when the input
list was of length 2n. This can happen for arbitrarily large n so addnew is of
complexity at least O(n?) and clearly of complexity at most O(n?).

4. At the start of the ith invocation of addnew((z,y),poss), poss will men-
tion at most 2(¢ — 1) = 2¢ — 2 unique nodes, due to 2). Step 3) shows that
poss will never include the same pair more than once. Thus, an upper limit
on the number of nodes in the list of nodes us, output by the function call
startpoints(poss, ), is 2i — 2, given by the case where all the nodes men-
tioned in the list of routes poss have a route going from them to the node
x.

5. Similarly, an upper limit on the number of nodes in the list of nodes vs, output
by the function call endpoints(y, poss), is also 2i —2, given by the case where
all the nodes mentioned in the list of routes poss have a route going from the
node y to them.

6. Now, the function allpairs(xs,ys) produces the list of all (z,y) for = in
the list xs and y in the list ys. Thus, an upper limit on the number of
pairs in the output list new of the function call allpairs(z ::us,y ::vs) is
(20 —2)+1) x ((20 —2) +1), due to 5) and 6) above, which equals 4i% — 43 + 1.
This is of the order 2.



8.3. ML TICKS 109

7. The function merge takes each pair in the list new, and via the inject and
doinject functions, performs a linear search of the list poss, only adding the
pair if it is not found in the list. The result is the concatenation of the two
lists, but with duplicates removed, so that each pair appears once at most.
Thus, roughly speaking, merge () is O(ab) in time, where a is the number
of pairs in new and b is the number of pairs in poss. (This corresponds to
the worst case scenario, where none of the pairs in new are present in the list
poss, and so the whole list must be searched each time). Actually, merge ()’s
operation is more complicated than this, as the length of the list to search
increases as pairs are added to it, but this cannot affect merge ()’s complexity
if the order of the number of items added is equal to or less than the order of
the number of items in the list being added to.

8. Thus, during the ith invocation of addnew((x, y), poss), the order of the time
taken by the function call merge(new) is given by the worst case scenario
(which could in fact be unattainable), where the following three conditions
hold:

(a) the no. of pairs in new is of the order of i? (see 7))
(b) the no. of pairs in poss is of the order of i% (see 4))

(¢) none of the pairs in new are present in poss (see 8))

Thus, merge (new) is O((i?)*(i2)) = O(i*) in time during the ith invocation of
addnew((z,y), poss) (the function call merge (new) being made exactly once
per invocation of addnew((z,y), poss)).

9. Now, the function call merge (new) is made exactly n times, once for each of
the n pairs in the list input to the function routes(pairs). Thus, i ranges
from 1 to n. So the order of the time taken by the routes(pairs) function
is given by the order of the sum of i from i = 1 to i = n (see 9)). Thus, the
function routes(pairs) is O(n®) in time.

10. It should be noted that each of the function calls startpoints(poss, ) and
endpoints(y, poss) is linear in time (with respect to the number of pairs in
poss), and that the function allpairs(xs,ys) is O(zy) in time, where x is
the number of nodes in xs, and y is the number of nodes in ys. However, these
times do not affect the complexity of addnew((z,y), poss) as they are negli-
gible in comparison to the worst case times for the execution of merge (new),
and so have been ignored in evaluating the complexity of routes(pairs).

11. Although the above argument shows that routes(pairs) is O(n®) in time,
this does not mean that routes(pairs) cannot also be O(n?) in time, or
indeed O(n3) or O(n?) etc. However, it can fairly easily be shown (though
the proof is omitted for brevity) that if routes(pairs) is called with pairs
equal to:

[(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),... ...,(@m/2,n/2+1),(n/2+1,n/2)],

with n even, but arbitrarily large, then the execution time for routes(pairs)
is of order n®. This example, together with the result of 10) shows that k = 5
is the smallest value for which routes(pairs) is O(n*) in time.

Some cubic code (using mutable lists) from Andrei Legostaev

%(x ML ASSESSED EXERCISES, TICK 4 AND 4* SUBMISSION FROM A. LEGOSTAEV... *)
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(* The algorithm works by representing the given network in terms of *)
(* "nodes" and then finding all possible routes. *)
(* *)
(* A Node is a data structure representing all the information about a  *)
(x particular point. It is a four-tuple. The elements are: *)
(* *)
(* 1. The point identificator (as in the input) *)
(x 2. Ref to a list of references to every node which can be reached *)
(* directly from the current node (i.e. in one step) *)
(* 3. A boolean flag, "ture" if the node has been visited by the *)
(* routine which explores possible routes. *)
(x 4. A boolean flag, "true" if there is a "loop" route leading back to *)
(* the node and this fact has been recorded. *)

datatype ’a Node =

makeNode of (’a * (((’a Node) list) ref) * (bool ref) * (bool ref));

(* function routes *)
(* *)
(x Argument: a list of pairs of route points *)
(* Returns: a complete list of pairs such that there is a route from  *)
(* the first point in the pair to the second through the *)
(* network given as the argument. *)

fun routes (pairs) = let

(3 ok sk sk sk sk ok sk ok ok ok ok ok ok K 3 ok ok ok K o ok ok oK K 3 ok ok oK K 3 ok ok oK K 3 ok ok K K 3 ok ok oK K K ok ok ok K 3k ok ok Kk sk ok ok K K ok ok ok Kk ok ok Kk K ok ok )
(s s s o s ok ok ok ok ok ok sk sk sk sk ok sk ok ok ok kK KK o o o o o ok ok ok ok ok ok sk sk sk sk ok sk ok ok ok K K K K K K ko ok sk ok ok ok ok ok ok ok ok ok kK kKoK )

(* I'nrList is a list of Nodes. nrList is defined as a reference in *)
(x order to make modification of its contents possible. *)

val nrlList = ref [];

(* functions n1, n2, n3, n4 *)
(* *)
(x Argument: A node. *)
(* Return: nl: 1st element of the node (point identeficator) *)
(* n2: 2nd element (reference to a list of nodes) *)
(* n3: 3rd element (bool flag "has been visited") *)
(* n4d: 4th element (bool flag "there is a loop-route back")  *)
(* *)

(* Worst case complexity: constant in time and space. *)
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nl (makeNode(a, b, c, d)) = a;
n2 (makeNode(a, b, c, d)) = b;
n3 (makeNode(a, b, c, d)) = c;
n4d (makeNode(a, b, c, d)) = d;
pseudo-function getRef *)
*)
Arguments: 1. node identificator z (i.e. a route point) *)
2. the current node ref list. *)
Returns: The reference to node z. If node z does not exist at *)
the time of call, it is created. *)
*)
Worst case complexity: 1linear in time and space. *)

getRef (z, [1) = let
val newNode =
makeNode (z, ref [], ref false, ref false)

in
nrList := newNode :: !nrList;
newNode
end
getRef (z, y::ys) = if  z=nl(y)
then y

else getRef(z, ys);

pseudo-function updateNode *)
*)
Arguments: A pair of route points. *)
Returns: Unity. nrList is updated with the information about the *)
given pair of route points. *)
*)
Worst case complexity: 1linear in time and space. *)
updateNode (a, b) = let
val dest = n2(getRef(a, !nrList))
in
dest := getRef(b, !nrList) :: !dest
end;
function buildNodes *)
*)
Arguments: A complete list of pairs of route points. *)
Returns: Unity. Converts the complete list of pairs into a *)
complete node list (nrList). *)
*)
Worst case complexity: quadratic in time and linear in space. *)

buildNodes [1 = ()
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| buildNodes ((x,y)::rest) = ( updateNode(x,y); buildNodes(rest) );

(* function travelNodes

(*

(* Arguments: 1. Start point of the search

(* 2. Current point (input should be the same as 1.)

(* 3. Points to visit (list of Nodes corresponding to 2.)
(* 4. [] (internal accumulator)

(* Returns: A complete list of pairs, where in each pair the first
(* element is the start point 1., and the second element is
(* a point that can be reached from the start point.

(*

(* Using "has been visited" flags it is rather difficult to detect
(* routes which lead back to the start point while avoiding both

*)

(* looping and repeated recording of such routes. The clumsy structure
(x of "if... then..." constructoins in the middle of the function deals

(x with that aspect. It can be read as:

(*

(* If the next point has already been visited then ignore it, unless it

(x is the start point. In this case (unless it has already been done)

(x record the route (start,start) and set a flag to show that this
(* route has been recorded.

fun travelNodes (s, c, [], beenThere) = beenThere
travelNodes (s, c, g::goThere, beenThere)

let
val goThere’ = !(n2 g)
in
(n3 ¢) := true;
if  !'(n3 g
then if (nl g) = s andalso not (!(nd g))
then ( (nd g) := true;
travelNodes(s, c, goThere, [(s,s)]) )
else travelNodes(s, c, goThere, [])
else let
val new = (s,(nl g))::travelNodes(s, g, goThere’, [])
in
travelNodes(s, c, goThere, new @ beenThere)
end
end;

(x pseudo-function clearFlags

(*

(* Argument: !nrList

(x Returns: Unity. All flags in !nrList are reset to "false".

fun clearFlags [1 = O
| clearFlags (p::ps) = ( (n3 p) := false;
(nd p) := false;
clearFlags (ps) );

ML

*)
*)
*)
*)

*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)

*)
*)
*)
*)
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(x below is the final part of the declaration of "fun routes (pairs)" *)
(akokk sk ok ok ok ok ok ok ook ok K oK oK oK oK KK oK K ok KK ok oK K oK KK oK oK KoK KoK ook o ook K ok kK ok oK ok oK oK oK KK ook ok ok ok ok ok ok )

fun £ [1 = []
| £ (p::ps) = ( clearFlags( !mrList);
travelNodes((nl p), p, !(n2 p), [1) @ £(ps) );
in
buildNodes (pairs);
f ( !'nrList)
end;

(*
Worst case complexity of function routes(input).

Let there be N points (in some number of pairs) in input. Also assume
that

there are few or none of duplicate pairs in input. (Those can be
filtered

out in quadratic time if required).

1) Pseudo-function giveRef is obviously linear in space and constant in
time complexity with respect to the size of !mrList. In the worst
case
'nrList will be of size N.

Complexity of giveRef: time N, space constant.

2) The most complex (pseudo)-function called by buildNodes is giveRef
(called N times).
Complexity of buildNodes: time N"2, space N.

3) Pseudo-function travelNodes is the heart of the algorithm. It is
effectively a depth-first tree search function with certain cut-off
parameters.

travelNodes calls itself recursively to explore a sub-tree whenever
it encounters a node it has not yet visited. Obviously it can do so

a
maximum of N times. At a breadth search stage travelNodes may look
at a
maximum of N nodes (the number of other nodes that a given node can
be

connected to). The "has been visited" flag is checked for every
node,
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which only requires constant time and space.

Therefore travelNodes could perform at most N breadth searches on N
points each.

A breadth search on N points takes time N and space N, since this
operation may be performed up to N times the complexity is:

Complexity of buildNodes: time N~2, space N~2.

4) Functoin "routes" builds the node list once (time N~2, space N --

see
"buildNodes"). Then for each of the N point in the node list
(!nList)
it calls "clearFlags" (time N, space constant) and "travelNodes"
(time N"2, space N72).
Therefore the complexity of "routes" is determined by the N calls to
"travelNodes"
Worst case complexity of "routes": time O(N"3), space 0(n"3).
*);

8.3.2 ML tick 5

An

answer from James Bowden

datatype univ =
Int of int
| Real of real
| Complex of real*real ;

fun
fun
fun

fun
fun
fun

ineg [Int m] = Int ("m);
rneg [Real x] = Real ("x);
cneg [Complex (x,y)] = Complex(~x,7y);

iplus[Int x, Int y] = Int(x+y);
rplus[Real x, Real y] = Real(x+y);
cplus[Complex(x,y), Complex(u,v)] = Complex(x+u,y+v);

iplus [ Int 503, Int 40 ];
cneg [ Complex(1.3, 6.23) 1;

val

[

fun

fun

table =

((uIntu’u'“n)’ ineg),
(("Real" s ||~||) s rneg) s
(("Complex","”"), cneg),

(("Int","+") s iplus),
(("Real" s ||+||) s rplus) s
(("Complex","+"), cplus) 1;

typeof (Int( u)::us) = "Int"
typeof (Real (u)::us) = "Real"
typeof (Complex (u)::us) = "Complex";

lookup ((x,f)::ps, y: string*string) = if x=y then f else lookup(ps,y);
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fun apply(opr:string, us) = lookup(table, (typeof(us),opr)) us;

fun negsum(x,y) = apply("~", [apply("+",x@y)]);

8.3.3 ML tick 6

An answer from Rujith de Silva

datatype stream = Item of int * (unit->stream);

fun cons (x,xs) = Item (x,xs);

(* I don’t think we need to rename this function to ‘cons’ *)
fun head (Item (i,xf)) = i;

fun tail (Item (i,xf)) = xfQ);

fun makeints n = cons (n,fn()=>makeints (n+1));

(* PROBLEM 2. The function maps f xs ... *)

fun maps f xs = cons (f (head xs),fn()=>maps f (tail xs));

(* PROBLEM 3. A function nth (s,n) ... *)
fun nth (s,n) =
if n=1 then head s

else nth (tail s,n-1);

fun squares p = maps (fn (x:int) => x*x) (makeints p);

(x PROBLEM 4. A function filters f xs ... *)

fun filters f xs =
if f (head xs) then cons((head xs), fn()=> filters f (tail xs))
else filters f (tail xs);

(*The following would have done equally well....*)
fun filters f xs =

if f (head xs) then xs
else filters f (tail xs);

fun notdiv2or3 x
if x mod 2 = 0 orelse x mod 3 = 0 then false

else true;
(*x PROBLEM 5. A function primes n ... %)
(*
fun primes n =
*)

- fun primes xs =
let val x = head xs
in
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cons (x,fn()=>primes ( filters (fn p => p mod x <> 0) ( tail xs ) )) end;

Note that the above is essentially a one-line function to generate a stream of primes.

The following code to generate Fibonacci numbers incorporates a fairly unusual
use of streams, in that the embedded function has embedded in it the last two
numbers in the series.

datatype intstream = Item of int * (unit->intstream);
fun fibgen (a,b) = Item ( b, fn () => fibgen (b:int,a+b) );

The following [rather ugly] code merges two streams using the “diagonal” method
of counting - the same method used to prove that the set of rational numbers in
countable. Can you think of a better way to accomplish the merging of infinite

streams?

datatype int2str = cons of (int*int)*(unit->int2str);

fun eval (cons ( _, b)) =Db O;
fun head ( Item ( b, _ ) ) = b;
fun tail ( Item ( _, x ) ) =x O;

fun merge2 ( x, y, nil, prev ) =

let
val hx = head x;
val tx = tail x;
val ty = tail y;
val hty = head ty;
val newlist = hx :: prev
in
cons ( (hx, hty), fn () => merge2 ( tx, ty, prev, newlist ) )
end
| merge2 ( x, y, p :: prevl, prev2 ) =

let

val hy = head y
in

cons ( ( p, hy ), fn O => merge2 ( x, y, prevl, prev2 ) )
end;

fun merge ( x, y ) =

let

val hx = [ head x ]
in

merge2 ( tail x, y, hx, hx )
end;

merge is the actual function that is called. This sets up the parameters for merge2,
which in turn accomplishes the actual merging. Strictly speaking, the code for
merge?2 should be declared within the function merge, but I thought this would
only make the code even uglier.

Why doesn’t the code for merge2 work if cons is not used, so that merge2
returns a type ’a such that ’a = ((int*int)*unit->’a) ? Surely, ML should be
able to handle that and deduce the type of ’a? It manages to evaluate the equally
recursive definition of int2str.



8.3. ML TICKS 117

An answer from Charles Bayliss

(*
(x Est

(* 1.
dataty

fun co
fun he

fun tail (Item(i,xf))

ML TICK 6 SUBMISSION FROM C G BAYLIS *)
imated time to complete: 2hrs. Actual time 1lhr 30 *)

[code taken from question *)

pe stream = Item of int * (unit->stream);
ns (x,xs) = Item(x,xs);
ad (Item(i,xf)) = i;

xfQ);

fun makeints n = cons(n,fn()=> makeints(n+1));

fun maps f xs = cons(f (head xs), fn()=> maps f (tail xs));

(* nth
val

fun nt
| nt

(* dro
it

fun dr
| dr
| dr

(x ins
fil

d

gr
fun

fun fi
let
let
if

in
le
in

en
end
in
fi
end;

takes a stream and an integer and returns the nth
ue in that stream x)

h (s,1) = head(s)
h (s,n) = nth (tail s,n-1);

p removes the first n elements from a stream.
is used by filters x*)

op xs 0 = xs

op xs 1 = tail xs

op xs n = drop (tail xs) (n-1);
ide filters:

t acts as filters except it uses num as a counter for the
epth within the input stream

eturns the next number in the stream for which the

ction f returns true. *)

lters (f:(int -> bool)) xs =

fun filt (f:(int -> bool)) xsss num =
fun g xss number =

f (head xss) then number

else g (tail xss) (number+1)

t val count = g xsss O
cons (count+num, fn()=>filt f (drop xsss (count+1)) (num+count+1))

d

1t £ xs 1

(* is used for question 4 *)

fun divtwothree x =

(x mod

2)<>0 andalso (x mod 3)<>0
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FAM fam started on 15-Jan-1998 01:20:34

(version 4.1.00 of Nov 17 1990)
Image file <0Obey$Dir>.smlcore_ex

(written on 03-Aug-1988 17:38:32 by FAM version 4.1.00)
[Loading]

Edinburgh Standard ML (core language) (C) Edinburgh University

- use "ml:tick6";

> () : unit

[Opening ml:tické]

> datatype stream = Item of int * (unit -> stream)
con Item = fn : (int * (unit -> stream)) -> stream
val cons = fn : (int * (unit -> stream)) -> stream
val head = fn : stream -> int

val tail = fn : stream -> stream

val makeints = fn : int -> stream

val maps = fn : (int -> int) -> (stream -> stream)
val nth = fn : (stream * int) -> int

val drop = fn : stream -> (int -> stream)

val filters = fn : (int -> bool) -> (stream -> stream)
[Closing ml:tickeé]

V V V V V V VvV

> val divtwothree = fn : int -> bool

- val squares=maps (fn x:int=>x*x) (makeints 1);
> val squares = Item (1,fn) : stream

- tail squares;

> Item (4,fn) : stream

- tail it;

> Item (9,fn) : stream

- tail it;

> Item (16,fn) : stream

- nth (squares,49);
> 2401 : int

— 49%49;
> 2401 : int

8.3.4 Tick 6*

An answer from Charles Bayliss

(* ML TICK 6* SUBMISSION FROM C G BAYLIS *)
(* Estimated time to complete: 2hrs.  Actual time lhr 30 *)

(* Uses functions from Tick6 *)
fun map2 f xs ys = cons(f (head xs) (head ys), fn()=> map2 f (tail xs) (tail ys));

fun plus m n = m+n:int;
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fun fibs (O =
cons (1, fn()=>
cons(1l, fn()=> map2 plus (fibs()) (tail(fibs())) ));

fun merge (xs,ys) =
if (head xs)=(head ys) then
cons (head ys,fn()=> merge (tail xs,tail ys))
else
if (head xs)>(head ys) then
cons(head ys,fn()=> merge (xs,tail ys))
else
cons (head xs,fn()=> merge (tail xs,ys));

fun double x 2*x:int;

fun triple x = 3*x:int;
(* ij answers question 4 *)

fun ij O =
cons (1, fn()=> merge (maps double (ij()),maps triple (ij())));

fun xfive x = b*x:int;
fun merge3 (xs,ys,zs) = merge(xs,merge (ys,zs));
(* ijk answers question 5 *)

fun ijk() =
cons (1, fn()=> merge3 (maps double (ijk()),maps triple (ijk()),maps xfive (ijk()) ));

FAM fam started on 15-Jan-1998 01:27:01

(version 4.1.00 of Nov 17 1990)
Image file <Obey$Dir>.smlcore_ex

(written on 03-Aug-1988 17:38:32 by FAM version 4.1.00)
[Loading]

Edinburgh Standard ML (core language) (C) Edinburgh University

- use "ml:tick6";

> () : unit

[Opening ml:tickeé]

> datatype stream = Item of int * (unit -> stream)
con Item = fn : (int * (unit -> stream)) -> stream
val cons = fn : (int * (unit -> stream)) -> stream
val head = fn : stream -> int

val tail = fn : stream -> stream

val makeints = fn : int -> stream

val maps = fn : (int -> int) -> (stream -> stream)
val nth = fn : (stream * int) -> int

val drop = fn : stream -> (int -> stream)

val filters = fn : (int -> bool) -> (stream -> stream)

V V V V V V V vV
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[Closing ml:tick6]

> val divtwothree = fn : int -> bool

- use "ml:tick6star";

> () : unit

[Opening ml:tick6star]

val map2 = fn : (int -> (int -> int)) -> (stream -> (stream -> stream))
val plus = fn : int -> (int -> int)

val fibs fn : unit -> stream

val merge = fn : (stream * stream) -> stream
val double = fn : int -> int

val triple = fn : int -> int

val ij = fn : unit -> stream

val xfive = fn : int -> int

val merge3 = fn : (stream * stream * stream) -> stream
val ijk = fn : unit -> stream

[Closing ml:tick6star]

V VV V V V V V VYV

nth (fibs (),15);
> 610 : int

- val squares = maps (fn x:int=>x*x) (makeints 1);
> val squares Item (1,fn) : stream

- val threes = maps (fn x=>3*x) (makeints 1);
> val threes Item (3,fn) : stream

- (x a stream of multiples of three and square numbers *);

- merge (threes,squares);
> Item (1,fn) : stream

- tail it;

> Item (3,fn) : stream
- tail it;

> Item (4,fn) : stream
- tail it;

> Item (6,fn) : stream
- tail it;

> Item (9,fn) : stream
- tail it;

> Item (12,fn) : stream
- tail it;

> Item (15,fn) : stream
- tail it;

> Item (16,fn) : stream

-ij0;

> Item (1,fn) : stream
- tail it;

> Item (2,fn) : stream
- tail it;

> Item (3,fn) : stream
- tail it;

> Item (4,fn) : stream
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- tail
> Item
- tail
> Item
- tail
> Ttem
- tail
> Item
- tail
> Item
- tail
> Ttem
- tail
> Item

it;
(6,fn)
it;
(8,fn)
it;
(9,fn)
it;
(12,fn)
it;
(16,fn)
it;
(18,fn)
it;
(24,fn)

- ijkQ);

> Ttem
- tail
> Item
- tail
> Item
- tail
> Ttem
- tail
> Item
- tail
> Item
- tail
> Item
- tail
> Item
- tail
> Ttem
- tail
> Item
- tail
> Item
- tail
> Ttem
- tail
> Item
- tail
> Item

8.3.5 Larry’s arithmetic

(1,fn)
it;
(2,fn)
it;
(3,fn)
it;
(4,fn)
it;
(5,fn)
it;
(6,fn)
it;
(8,fn)
it;
(9,fn)
it;
(10,fn)
it;
(12,fn)
it;
(15,fn)
it;
(16,fn)
it;
(18,fn)
it;
(20,fn)

stream

stream

stream

stream

stream

stream

stream

stream

stream

stream

stream

stream

stream

stream

stream

stream

stream

stream

stream

stream

stream
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(* Two’s complement binary arithmetic — could form the basis for numerals and

arithmetic in theorem provers, by rewriting

The sign Plus stands for an infinite string of leading 0’s; the sign Minus stands

for an infinite string of leading 1’s.

A number can have multiple representations, namely leading 0’s with sign Plus
and leading 1’s with sign Minus. See int_of_binary for the numerical interpreta-

tion.
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The representation expects that (m mod 2) is 0 or 1, even if m is negative; For
instance, —5 div 2 = —3 and —5 mod 2 = 1; thus —5 = (=3) x 2 + 1.
Still needs an implementation of division!

System.Control.Print.printDepth := 350;
*)

(*Infix constructor and arithmetic operatorsx)
infix 5 %

infix 6 |+| |-|

infix 7 |*|;

(*Recursive datatype of binary integersx)
datatype bin = Plus | Minus | op % of bin * int;

(*x Conversions between bin and int *x*)
fun int_of_binary Plus = 0

| int_of_binary Minus = "1
| int_of_binary (wib) 2 * int_of_binary w + b;

fun binary_of_int O = Plus
binary_of_int "1 = Minus
binary_of_int n = binary_of_int (n div 2) % (n mod 2);

(*xx Addition ***)

(*Adding a carry to a numberx)
fun carry_plus (0, w) = w
| carry_plus (1, Plus) = Plus)1
| carry_plus (1, Minus) = Plus
| carry_plus (1, w'%a) = carry_plus(a, w) % (1-a);

(*Adding a carry and "1 to a numberx)
fun carry_minus (1, w) = w
| carry_minus (0, Plus) = Minus
| carry_minus (0, Minus) = Minus%0
| carry_minus (0, wka) = carry_minus(a, w) % (1-a);

(*sum of two bins with carryx)
fun binsum (c, Plus, w) = carry_plus (c,w)
| binsum (c, w, Plus) = carry_plus (c,w)
| binsum (c, Minus, w) = carry_minus (c,w)
| binsum (c, w, Minus) = carry_minus (c,w)
| binsum((a+b+c) div 2, w, v) % ((at+b+c) mod 2);

binsum (c, wha, v%b)
fun vl [+| v2 = binsum(0, v1, v2);
(**x*x Subtraction ***)

(*¥Unary minus*)

fun neg Plus = Plus
neg Minus = Plus)1

|

| neg (w/0) = neg(w) % O

| neg (whl) = carry_minus (O, neg(w)%0);
fun vl |-| v2 = vl |[+| (neg v2);
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(kx* Multiplication **%*)

(*xproduct of two binsx*)

fun Plus |*| _ = Plus
| Minus |*| v = neg v
| W%0) |*| v = (w |*| v) %O
I %) I*] v = (w [*] v) % 0) |+| v;

(x*x Testing **x)

(*tests addition*)
fun checksum m n =
let val wm = binary_of_int m
and wn = binary_of_int n
val wsum = wm |+| wn
in if m+n = int_of_binary wsum then (wm, wn, wsum, m+n)
else raise Match
end;

fun bfact n = if n=0 then Plus)l else (binary_of_int n) |*| bfact(n-1);

bfact 5;
int_of_binary it;
bfact 69;
int_of_binary it;
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8.4 Tripos Questions

8.4.1 1996:1:6

datatype LR = Cl of int * (unit->LR);

datatype LF = C2 of (int->int) * (unit->LF);
datatype LRs = C3 of LR * (unit->LRs);

Most of the functions are easy. The last one is something like:

fun newnumb fs = newnumbl fs 1

and newnumbl (C2(f,next)) i =
C1( (f i + 1) mod 10), fn()=>newnumbl (next()) (i+1);

1996:1:B5
fun rotations [] = []
| rotations [x] = [[x]]

| rotations (x::xs) =
let fun swap ([],gs) = [
| swap (p::ps,qs) = ((p::ps)@qgs)::swap(ps,qs@[p]l)
in swap (x::xs,[])
end;

8.5 Miscellaneous titbits

Tal Kubo and Ravi Vakil have illuminated the behavior of the somewhat infamous
recurrence relation a(n) = a(a(n—1))+a(n—a(n—1)) (with initial conditions a(1) =
a(2) = 1) through the following combinatorial model: Enumerate the finite subsets
of the positive integers in the order {}, {1}, {1,2}, {2}, {1,2,3}, {1, 3}, {2,3}, {3},
{1,2,3,4}, {1,2,4}, {1, 3,4}, {2,3,4}, {1,4}, {2,4}, {3,4}, {4}, {1,2,3,4,5}, ...s0
that one finite set of positive integers A = {aj,as,...,a,} is “prior to” another
finite set B = {by,ba,...,bs} if a, < by, or if a, = bs and r > s, or if a, = by and
r=sbuta,_1 <b._1,orifa, =bsandr = sand a,_1 = b,_1 but a,_» < b,_o, etc.
Associate the positive integer n with the nth set on this list. Then the operation
n — a(n), carried over to the domain of finite sets of positive integers, corresponds
to the simple operation of deleting the smallest element of a set and reducing every
remaining element by 1.

E.g.: {1,3,4} — {2,3}, and a(11) = 7.

(The sequence a(n) is associated with the names of Hofstadter, Conway, and
Mallows; the “infamy” comes from the fact that Conway accidentally offered a
larger cash prize than he’d meant to. The work of Kubo and Vakil appeared in
Discrete Mathematics, v.152 (1996) no.1-3,225-252.)

Question: In terms of this model, is there a direct combinatorial explanation
for the recurrence relation? (The proof in the paper is not too unnatural, but it
doesn’t really explain what’s going on.)

Jim Propp Department of Mathematics M.I.T.

Here’s the ML version :



8.5. MISCELLANEOUS TITBITS 125

(ke ——————— *
* Defines an interesting sequence, allegedly due to J. H. Conway. *
K *)

fun Conway 1 =1
| Conway 2 =1
| Conway n = Conway(Conway(n-1)) + Conway(n - Conway(n-1));

* That’s too slow, because it’s always recomputing everything. We can use *

* a cache of previously computed results to speed things up. *
K *)
local fun nth 0 _ = raise Fail "Implementation Error"

| nth 1 (x::_) = x
| nthn (_::t) = nth (n-1) t
| nth n [] = raise Fail "Cache miss"
val cache = ref [1,1]
in
fun fastConway n =
let val _ = cache :
fun Conway 1
| Conway 2
| Conway n =
nth n (!cache)
handle Fail "Cache miss"
=> let val a = Conway(Conway(n-1))
+ Conway(n - Conway(n-1))
val _ = cache := !cache @ [a]
in a end
| e => raise e

1]
|

in Conway n

end end;
(Rm *
* Some test harness bits. *
e e  amta e e e *)\

fun iter bot top =
if bot > top then []
else bot :: iter (bot+1l) top;

val nums = iter 1 30;

val nums
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30]

map Conway nums; (* takes quite a long time *)
val it = [1, 1, 2, 2, 3, 4, 4, 4, 5,6, 7,7, 8,8, 8,8, 9, 10, 11, 12, 12,
13, 14, 14, 15, 15, 15, 16, 16, 16]

(* Larger example. Note interesting behaviour around powers of 2. *)
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map fastConway (iter 1 128);

> val it =

[1, 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 7, 8, 8, 8, 8, 9, 10, 11, 12, 12, 13, 14,
14, 15, 15, 15, 16, 16, 16, 16, 16, 17, 18, 19, 20, 21, 21, 22, 23, 24,
24, 25, 26, 26, 27, 27, 27, 28, 29, 29, 30, 30, 30, 31, 31, 31, 31, 32,
32, 32, 32, 32, 32, 33, 34, 35, 36, 37, 38, 38, 39, 40, 41, 42, 42, 43,
44, 45, 45, 46, 47, 47, 48, 48, 48, 49, 50, 51, 51, 52, b3, b3, 54, 54,
b4, b5, 56, 56, 57, 57, 57, 58, 58, 58, 58, 59, 60, 60, 61, 61, 61, 62,
62, 62, 62, 63, 63, 63, 63, 63, 64, 64, 64, 64, 64, 64, 64]

: int list

fun prefix [ 1 [ ] =[]
| prefix (x::xs) (y::ys) = (x::y)::prefix xs ys;

fun sep [ ] (ci1, 11
| sep [x] [[x1, [ 11
| sep (x::y::rest) = prefix [x,y] (sep rest);

y : int list
X

fun merge [[ ], y]
| merge [x,[ 1]
| merge [x::xs, y::ys] =

if x < y then x:: mergel[xs,y::ys]
else y:: mergel[x::xs, ys];

fun s [ ] =[]
| s [x] = [x]
| s x = merge (map s (sep x));

Something pretty from David Burleigh

(* The following functions combine manage the dictionary.
This includes getting user input into the right form (listwords),
and udating the dictionary according to the links between the words. *)

(* Mutable list datatype *)

datatype ’a mlist = Nil
| Cons of ’a *’a mlist ref;

(* mlistof turns a list to a mutable list *)

fun mlistof [] = Nil
| mlistof (x::xs) = Cons(x, ref (mlistof xs));

(* dic is the reference that stores the dictionary *)
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val dic = ref (mlistof ([ref ("$",[1)1));
(* mutapp puts its argument on the end of dic *)

fun mutapp x =

let val r = !dic
in dic:=Cons(x, ref r)
end;

(* fst and snd functions that work on references *)

'r in x end;
!r in y end;

fun fstr r = let val (x,y)

let val (x,y)

fun sndr r

(* dlookup looks for a word in the dictionary
and returns the list of words it links tO. *)

val blankd = ref ("", [ref ("",0)]);
fun dlookup dic str =
case !dic of
Nil => blankd
| Cons(d,ds) => if fstr d = str then d
else dlookup ds str;

(* wlookup looks for a word in a word list, returning it if found
or a blank if not. *)

val blankw = ref ("",0);
fun wlookup dic str =
case !dic of
Nil => blankw
| Cons(w,ws) => if fstr w = str then w
else wlookup ws str;

(* sort uses a simple insertion sort to arrange the items in the
word list by their associated number. *)

fun sort ([],1lst) = 1lst
| sort ((x::[1),1lst) = x::1st
| sort ((x::xs) :((string * int) ref) list ,lst) =
if (sndr (hd xs)) > (sndr x) then sort (xs,x::1lst)
else sort ((tl xs),x::(hd xs)::1st);

(* wupdate takes two consecutive words, looks up the first in the
dictionary then

looks up the second in the list that is returned. If the second word
exists

already then its number is incremented, otherwise it is added to the
list. *)

fun wupdate strs stra =
let val dr = dlookup dic strs
val wr = wlookup (ref (mlistof (sndr dr))) stra
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in
if sndr wr <> 0
then (wr:=(fstr wr, (sndr wr)+1);
dr:=(fstr dr, (sort (rev(smdr dr),[]))))
else dr:=(fstr dr, ((sndr dr) @ [ref(stra,1)]))
end;

(* dlookup looks up the first word in the dictionary, and creates a new
record if

it doesn’t exist, or calls wupdate if it does. It does not matter if the
second

word is not yet known, because it will be added next time round. *)

fun dupdate strs stra =
let val dr = dlookup dic strs

in
if fstr dr = ""
then mutapp (ref(strs, [ref(stra,1)]))
else wupdate strs stra

end;

(* lupdate moves through a list of words calling dupdate. *)

fun lupdate [] = O
| lupdate (w::[]) = dupdate w " "
| lupdate (w::ws) (dupdate w (hd ws); lupdate ws);

(* listwords function turns a string into a list of words,
removing all punctuation *)

fun listwords str =
let val charlist = explode(str)
in let fun findwords ([],word,words) = (implode(rev(word)))::words
| findwords (x::xs,word,words) =
if ord(x) < 48
orelse (ord(x) > 57 andalso ord(x) < 65)
orelse (ord(x) > 90 andalso ord(x) < 97) then
if word <> [] then

findwords(xs, [], (implode(rev(word))) : :words)
else findwords(xs,word,words)
else findwords(xs,x::word,words)
in "$"::rev(findwords (charlist,[],[]1))
end

(k —m *)
(* The following functions combine to produce a random response.
the choice is weighted towards words that commonly link. *)

(* random number generator *)

local val a = 16807.0 and m = 2147483647.0
in fun nextrandom seed =
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let val t = a * seed
in t - m * real(floor(t/m)) end
and truncto k r = 1 + floor((r/m) * (real k))
end;

(* rnd function returns a random integer between 1 and the argument.
references used to track the seed value. *)

val rndseed = ref (nextrandom 1.0);
fun rnd (max :int) =

(let val seed = !rndseed

in rndseed := nextrandom seed
end;

let val newseed = !rndseed

in truncto max newseed

end) ;

(* this nth function looks at the number associated with each word,
reducing its conter by that value, and returning the word whose number
makes the counter less than 0. When ued with random number and a list
sorted according to number, this produces the neccessary weighted choice.

*)

exception error;
fun nth [] _ = raise error
| nth (x::xs8) n =
if (n-(sndr x)) <= 0 then x

else nth xs (n-(sndr x));
(* wlen sums the numbers associated with the words in the list *)

fun wlen 1lst =
let fun wl ([1,n) =n
| wl ((x::xs) :((string * int) ref) list,n) = wl (xs,n+(sndr x));
in wl (1st,1)
end;

(* randlist picks a random element from a weighted list. *)
fun randlist 1st = nth 1lst ((rnd (wlen 1lst))-1);

(* makesent picks a word that it’s argument links to and adds it to the
sentence accumulator, which it retuns on reaching the end of a sentence.

*)

fun makesent (str,sent) =

if str = " " then sent

else let val wrd = fstr (randlist (sndr (dlookup dic str)))
in makesent (wrd, sent ~ wrd =~ " ")
end;

(* These are the functions used to interface with the program.
tt allows you to type a sentence which the program processes, but
does not reply to.
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tb calls for a response without any input.

tar allows input, and gives a reply. *)

fun tt str = (lupdate (listwords str));
fun tb () = makesent ("$","");
fun tar str = (tt str; tb());

CHAPTER 8. ML



Chapter 9

Miscellaneous

9.1 Combinatorics

9.2 Dynamic binding

Under the current dispensation if i say

letref fred = 3;;
let sam = fred * 10;;
let fred = 8

it then knows that sam = 80. I think what my student had in mind is where
the concept of fancy-variable is not one such that :

anything that calls a fancy variable gets updated whenever the fancy
vbl does

but
any fancy variable gets updated whenever anything it calls gets updated

so that a sample session would be

let fred = 3;;
letfancy sam = fred * 7;;
let fred = 5;;

and then it thinks that sam is 35
Mike replies

That is called ”dynamic binding” and is found in old versions of Lisp (e.g. Franz
Lisp).

There is quite a large literature on the pros and cons of such binding. The main
snag is that late definitions can mess up earlier ones.

Mike

P.S. .. .assignable variables in the old ML sense don’t exist in Standard ML. As
far I know all the ML courses taught in the Lab are the same dialect: Standard
ML. I don’t think Cambridge ML has ever been taught. In my view Standard ML’s
assignment contructs (references, weak type variables etc) are not as nice as the old
constructs (though they are much more powerful) — but they seem to be what we
are stuck with.

Re exams: there are important type-checking differences between letref-variables
and Standard ML’s references (e.g. the need to explicitly dereference):
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|
i
+
=

0ld ML: x :=

New ML: x := Ix + 1
For example:

- val x = ref 1;
val x = ref 1 : int ref
-x :=x + 1;

std_in:3.1-3.10 Error: operator and operand don’t agree (tycon mismatch)
operator domain: int ref * int ref
operand: int ref * int
in expression:
+ : overloaded (x,1)
std_in:3.8 Error: overloaded variable "+" not defined at type:
int ref

If you want to follow this up you could look at Section 9.7 (entitled “Dynamic
Binding”) on Page 162 of ” Programming Language Theory and its Implementation”
by M.J.C. Gordon (i.e. me). Prentice-Hall.

Mike



Chapter 10

Discrete Maths

10.1 Notes for a course

This is the sequel to a course on baby number theory and digelec. It assumes ML
as well

set and itself. Game-theoretic account of meaning. Also used in exegesis of
hebrew texts (Henle)

Something about plants that flower every p years where p is a moderately large
prime.

Trig examples of functions that one wants to store as embedded code not as a
look-up table: quite easy to compute them quickly by using Chebyshev polys if you
know in advance the precision you need.

Bit of relational algebra. Sets of ordered pairs with boolean operations plus
composition and inversion. Composition of relations is matrix multiplication. Do
not confuse complement, converse and mult inverse (ain’t none) Exercise on enemy
and friends, that sort of thing.

Set closed under an operation. IN closed under + but not -. Then chat about
closure operations. Convex sets.

excercise on idempotence (closures)

additive grp of reals iso to mult grp of +ve reals

10.1.1 Notation

[1,7n] is the set of (natural) numbers from 1 up to n. S is the successor relation on
IN. (“succ” in 1la ML!)
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10.2 Exercises

Starred exercises have model answers. The following relevant tripos questions also
have model answers in this file.

Maths tripos questions

1988:6:9E, 1988:6:10E, 1995:5:4X,

Comp Sci tripos questions

1990:1:9, 1990:1:11, 1993:11:11, 1994:10:11, 1996:1:8

10.2.1 Elementary

“Elementary” doesn’t mean ‘easy’. It means that on the whole for the questions in
this section no very sophisticated ideas are needed.

Exercises on (binary) relations

1. (Do not do more than a sample of the bits of this question: if you are
making any mistakes they will always be the same mistakes, and there
is no point in making the discovery more than once!)

Given the operations of composition and union, express the following
relations in terms of brother-of, sister-of, father-of, mother-of, son-of,
daughter-of. (You may use your answers to earlier questions in answering
later questions.)

(a) parent-of

ii. uncle-of

iii. aunt-of

iv. nephew-of

v. niece-of

vi. grandmother-of

vii. grandfather-of
viii. first-cousin-of

You can also express some of the relations in the original list in terms of
others by means of composition and union. Do so.

(b) Do the same to include all the in-law and step relations, by adding spouse-
of to the original list. This time you may use intersection and complement
as well.

(c) If the formalisation of “x is a parent of y” is “(father-of(z, y)Vmother-
of(x,y))” (i.e., use logical connectives not U and N. You will also need
to use quantifiers) what is the formalisation of the other relations in the
preceding list? And for a bonus point, formalise “x is the double cousin
of 7.1 Hint: might need new variables!

(d) Using the above gadgetry, plus set inclusion (“C”) formalise

i. Every mother is a parent.

ii. The enemy of [my] enemy is [my] friend
iii. The enemy of my friend is my enemy.
iv. The friend of my enemy is my enemy.
v. no friend is an enemy

2. What is a graph? How many graphs are there on n vertices?

1Fred and Bert are double cousins if they are first-cousins in two different ways.
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3. When doing this question remember that relations are relations-in-extension.
You will find it helpful to think of a binary relation on n things as an n X n
matrix whose entries are true or false.

(a)
(b)

—
¢
~

—_—
—
— — —

—~~
(S

How many binary relations are there on a set of size n?
How many of them are reflexive?

How many are fuzzies? (A fuzzy is a binary relation that is symmetric
and reflexive)

How many of them are symmetrical?
How many of them are antisymmetrical?
How many are total ordersg?

How many are trichotomous? (A relation R on X is trichotomous iff
(Vz,y € X)((z,y) € RV {y,z) € RV (z = y)).

How many are antisymmetrical and trichotomous?

There are the same number of antisymmetrical relations as trichotomous.
Prove this to be true without working out the precise number.

(for the thoughtful student) If you have done parts 3h and 3d correctly
the answers will be the same. Is there a reason why they should be the
same? (Revisit this later in connection with natural bijections.)

What is a partial order? Do not answer the rest of this question. How
many partial orders are there on a set of size n?

Do not answer this question. A strict partial order is a transitive relation
R satisfying

(VaVy)(—=R(x,y) V - R(y, x))
How many strict partial orders are there on a set of size n?

Should the answers to the two previous questions be the same or dif-
ferent? Give reasons. (Compare this with your answer to question 3j
above.)

An extensional relation on a set X is a binary relation R satisfying
(Va,y)(x =y — (V2)(2Rz — zRy))

i. If R is extensional is R~! also extensional?
ii. How many extensional relations are there on a set of size n?

iii. Show that the proportion of relations on a set with n members that
are extensional tends to 1 as n — oo.

The five properties symmetrical, transitive, reflexive, trichotomous, anti-
symmetrical give rise to 2° possible combinations of properties. In each
case find relations exhibiting the appropriate combination of properties
or explain why there cannot be one. On second tho’rts do this only for
a random sample of such combinations, or you will exhaust your super-
visor’s patience!

4. Can a relation be both symmetrical and antisymmetrical?

5. * Write out a formal proof that the intersection of two transitive relations is
transitive.

6. * Let R be a relation on A. (‘r’, ‘s’ and ‘¢’ denote the reflexive, symmetric
and transitive closure operations respectively.)
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a) Prove that rs(R) = sr(R).
b
(c

(d) If R is symmetrical must the transitive closure of R be symmetrical?
Prove or give a counterexample.

(a)
(b) Does R transitive imply s(R) transitive?

) Prove that rt(R) = tr(R) and st(R) C ts(R).
)

7. Think of a binary relation R, and of its graph, which will be a directed graph
(V, E). On any directed graph we can define a relation “I can get from vertex
x to vertex y by following directed edges” which is certainly transitive, and
we can pretend it is reflexive because after all we can get from a vertex to
itself by just doing nothing at all. Do this to our graph (V| E), and call the
resulting relation S. How do we describe S in terms of R?

8. * Show that—at least if (Vz)(3y)({z,y) € R)—RoR™! is a fuzzy. What about
RN R~'? What about RU R™1?

9. * Given any relation R there is a least T D R such that T is transitive, and a
least S O R such that S is symmetrical, namely the transitive and symmetric
closures of R. Must there also be a unique maximal (aka maximum) S C R
such that S is transitive? And must there be a unique maximal (maximum)
S C R such that S is symmetrical? The answer to one of these last two
questions is ‘yes’: find a cute formulation.

10. What are the transitive closures of the following relations on IN?

(a) {(0,1),(1,2),(2,3),...}: ie, {(n,n+1) :n € N},
(b) {{n,2n) : n € N}.

11. What is an antichain? Let D, be the poset whose elements are the divisors
of n, with <y if z|y. Find a maximum antichain in Dag.

12. * Define xRy on natural numbers by
cRyiffe <y+1
What are the following relations??

RNR!
R\ R!

The transitive closure of the relation in (a)

(a
(b
(c

(d) The transitive closure of the relation in (b)

)
)
)
)

13. * Are the two following conditions on partial orders equivalent?

(a) (Vayz)(z <z Ly fe—z<y)
(b) (Vayz)(z>z Ly Lx—2>y)

14. * Show that R C S implies R~* C §~!

15. * Show that composition of relations is associative: i.e. if R, S and T are
relations, show (Ro S)oT = Ro (SoT).

2The structure (IN, R) is known to students of modal logic as the Recession Frame.
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16. (a) Consider the following non-deterministic algorithm. A bag contains b
black balls and w white balls. Two balls are removed. If they are both
white, a white ball is replaced. If they are both black, an arbitrary and
unspecified quantity of white balls from an inexhaustible supply is put
in the bag. If one is black and one is white, the black ball is replaced.
This process is repeated till the bag has only one ball. Show that the
colour of the ball is determined by b and w alone and hence the algorithm
determines a function of b and w.

(b) * How can you be sure that the algorithm always terminates whatever you
pluck out of the bag at each stage? hint: think about the lexicographic
order of IN?.

(¢) The purpose of this question was to make a point about lexicographic
orders: in this case, about the order on IN x IN. Check that you have
really understood what is going on by rewriting the question for the
scenario in which the balls come in three colours ...k colours.

(d) (abstruse: not for a first pass) Extend the product order of IN x IN
by stipulating that (z,y) < (y,S(z)) and taking the reflexive transitive
closure. Write the result <g. Is <p a total order? Define < between
finite subsets of N x IN by X <Y iff (Vo € X)(Jy € Y)(z <g y). Is <
wellfounded?

17. Functions are just special kinds of relations, okay? What can you say about
a function that is also a symmetrical relation? What about a function that
is also a tramsitive relation? (That is, f(zx) = y A f(y) = z — f(x) = 2)
Embarrass your supervisor by demanding explanations of the words involution
and idempotent.

18. Let K = Az.(Ay.z). Evaluate K8, K(K8) and (KK)8.

19. This question concerns (binary) games of length n. For each set X C {0,1,2,3,4...2"—

1} we have a game G, of length n; there are two players I and II; they play
by writing down either 0 or 1, ad libitum, alternating (with I starting), and
carry on until n 0s and 1s have been written down (that’s why the game is
of length n); the result is a a string of n 0s and 1s, which is to say, a binary
number k < 2™. The rule is that I wins iff £ € X. Show that for every n € IN
and for every game of length n, one of the two players must have a winning
strategy. How many (binary) games of length n are there? (Easy) Let II,
be the proportion of these games for which player IT has a winning strategy:
what is the limit of II,, as n gets large? (Easy).

20. What is a wellordering? What is an initial segment of an ordering? (If you
don’t know what a chain in a poset is you probably won’t know what an
initial segment in a total ordering is either.) If (X, <) is a total order, then
a suborder of it is a subset X’ C X ordered by the obvious restriction of <.
Prove that (X, <) is a wellordering if every suborder of it is isomorphic to an
initial segment of it. (The converse is also true but involves more work.)

21. Consider the argument: “If Anna can cancan or Kant can’t cant, then Greville
will cavil vilely. If Greville will cavil vilely, Will won’t want. But Will will
want. Therefore, Kant can cant.” By rewriting the statement in terms of four
Boolean variables, show it is tautologous and hence a valid argument. (There
are loads of similar exercises in any number of introductory logic books. Try,
for example, Lewis Carroll, Symbolic Logic.)

22. Bracket ‘[(a = b))V (a — d)] = (bVd) «— a VbV d and test all versions for
validity.
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23. * “Everybody loves my baby, but my baby loves nobody but me”. Demon-
strate that my baby = me.

24. “Brothers and sisters have I none, but this man’s father is my father’s son”
What?!

10.2.2 Slightly less elementary

1. * Show that |J,,cpy R is the smallest transitive relation extending R.
2. t(R) is the transitive closure of R.3

(a) * Give an example of a relation R on a set of size n for which ¢(R) #
R'UR*U...UR" "

(b) Give an example of a set and a relation on that set for which ¢(R) #
R'UR?U...UR" for any finite n.

(c) If R is reflexive then t(R) is clearly the reflexive transitive closure of R
(often called just the transitive closure): if you are not happy about this,
attempt to write out a proof.

(d) Find an example of an irreflexive® relation R on a set such that ¢(R) is
indeed the reflexive transitive closure of R.

3. Think about IN and S. What is the transitive closure of S? For integers n
and m when do we have (S™)* C (S™)*? When do we have (5™ U (S")"tuU
Smoy (Sm)—l)* — (S U S_l)*?

4. * Show that the smallest equivalence relation containing the two equivalence
relations R and S is t(RU S).

5. If R C X x X is a fuzzy on X, is there a largest equivalence relation on X
that C R? Is there a smallest equivalence relation on X that O R?

6. (a) Suppose that for each n € IN, R,, is a transitive relation on a (presumably
infinite) set X. Suppose further that for all n, R,, C R, 1. Let R be
Une]N R,,, the union of all the R,,. Prove that R, is also transitive.

(b) Give an example to show that the union of two transitive relations is not
always transitive.

7. For all the following choices of allegations, prove the strongest of the correct
options; explain why the other correct options are not best possible and find
counterexample to the incorrect ones. If you find you are doing them with
consummate ease, break off and do something else instead.

(a) An intersection of a fuzzy and an equivalence relation is (i) an equivalence
relation (ii) a fuzzy (ii) neither

(b) A union of a fuzzy and an equivalence relation is (i) an equivalence
relation (ii) a fuzzy (iii) neither

(¢) An intersection of two fuzzies is (i) an equivalence relation (ii) a fuzzy
(iii) neither

(d) An intersection of the complement of a fuzzy and an equivalence relation
is (i) an equivalence relation (ii) a fuzzy (iii) neither

3Misleadingly people often use the expression “transitive closure of R” to mean the transitive
reflexive closure of R.

4You don’t know what ‘irreflexive’ means? There are only two things it can possibly be, so
what are they? Answer this question for both versions! That’ll teach you ask silly questions!
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(e) An intersection of a fuzzy and the complement of an equivalence relation
is (i) an equivalence relation (ii) a fuzzy (iii) neither

(f) A union of a fuzzy and the complement of an equivalence relation is (i)
an equivalence relation (ii) a fuzzy (iii) neither

(g) An intersection of a fuzzy and the complement of a fuzzy is (i) an equiv-
alence relation (ii) a fuzzy (iii) neither

(h) An intersection of the complement of a fuzzy and the complement of an
equivalence relation is (i) an equivalence relation (ii) a fuzzy (iil) neither

(i) A union of two fuzzies is (i) an equivalence relation (ii) a fuzzy (iii)
neither.

A PER (‘Partial Equivalence Relation’) is a binary relation that is symmet-
rical and transitive. Is the complement of a PER a fuzzy? Is the complement
of a fuzzy a PER? In each case, if it is false, find sensible conditions to put
on the antecedents that would make it true.

Let < be a transitive relation on a set X. Consider the two relations (i)
{{z,y) : (€ X)A(y € X)A (2 <y)A(y <)} and (i) {(z,y) : (x €
X)N(ye X)N(x £y)A(y £ o)}

(a) Are either of these fuzzies, or equivalence relations?

(b) If one of these isn’t a fuzzy, but “ought to be”, what was the correct
definition?

(c) If the relation in (i) was an equivalence relation, what sort of relation
does < induce on the equivalence classes? Why is the result a mess?
What extra condition or conditions should i have put on < to start with
to prevent this mess occurring?

(d) If (the correct definition of) relation (ii) is an equivalence relation, what
can we say about the quotient?

Explain how to find the two greatest numbers from a set of n numbers by
making at most n + |log,n| — 2 comparisons. Can it be done with fewer?
How about the 3 biggest numbers? The k biggest numbers, for other values of
k7?7 What happens to your answer as k gets bigger and bigger and approaches
n?

* Show that the largest and smallest elements of a totally ordered set with n
elements can be found with [3n/2] — 1 comparisons if n is odd, and 3n/2 — 2
comparisons if n is even.

Construct natural bijections between the following pairs of sets. (For the
purposes of this exercise a natural map is (expressed by) a closed A-term; a
natural bijection is (expressed by) a closed A term (L, say) with an inverse
L'. That is to say, both compose(L,L’) and compose(L’, L) simplify to \z.z.
Alternatively, a natural function is one you can write an ML program for. If
you want to think more about what a natural bijection is, look at your earlier
answers to the questions: If A is a set with n members, how many symmet-
rical relations are there on A, and how many antisymmetrical trichotomous
relations are there on A? The answers to these two questions are the same,
but there doesn’t seem to be any ‘obvious’ or ‘natural’ bijection between the
set of symmetrical relations on A and the set of antisymmetrical trichotomous
relations on A.) You will need to assume the existence of primitive pairing
and unpairing functions which you might want to write as ‘fst’, ‘snd’ and

(z,y)
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A— (B—C)and B— (A— C);

A x B and B x A;

A— (BxC(C)and (A— B)x (A—C);
(AxB)— Cand A— (B — C);

You may wish to try the following pairs too, but only once you have done the
ML machinery for disjoint unions of types:

(A= C)x(B—C)and (A+ B) — C;
A+ (B+C)and (A+ B)+C;
Ax (B+C)and (Ax B)+ (AxQC).

Let Z be a set with only one element. Find a natural bijection between
(Y + Z)* and the set of partial functions from X to Y.

Find natural functions®

i) from A into B — A;

ii) from A into (A — B) — B;

iii) from A — (B — C) into (A — B) — (A — C);

iv) from (((A — B) — B) — B) into A — B. (This one is hard:
you will need your answer to (ii))

(v) from (A — B) — A into (A — B) — B.

S~ o~ o~ o~

(it might help to think of these as invitations to write ML code of types
’a => ’b -> ’a, ’a -> (’a -> ’b) -> ’aetc.)

What is a fixed point? What is a fixpoint combinator? Let T be your answer
to the last bit of the preceding question. (So T is a natural function from
(A — B) — Ainto (A — B) — B.) Show that something is a fixpoint
combinator iff it is a fixed point for T'.

Let P = AG.(A\g.G(g99))(Ag.G(gg)). Show that P is a fixpoint combinator.
Why is it not typed? After all, T" was typed!

Give ML code for a higher-order function metafact such that any fixed point
for metafact will turn out to be good old fact. Do the same for something
tedious like fibo. Delight your supervisor by finding, for other recursively
defined functions, higher-order functions for which they are fixed points.

Think of ‘=’ as implication: is (((p — q) — p) — p) a truth-table tautology?
Now think of — as “set of all functions from ...”. Is there a natural map
from ((p — q) — p) to p? (Very Hard!)®

* Solve

5These do not have to be either injective or surjective. They only have to be functions.

6Hints: Suppose p has five members and g is a subset of p with two members. Use the
pigeonhole principle to find a map ((p — ¢) — p). Reflect on how natural maps must interact
with permutations. See Dana Scott’s article “Semantic archaeology” in Harman and Davidson
(eds.) Semantics of Natural language Reidel 1977.
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Prove that 2" — 1 moves are sufficient to solve the Towers of Hanoi problem.

The fellows of Porterhouse ring each other up every sunday to catch up on
the last week’s gossip. Each fellow passes on (in all subsequent calls that
morning) all the gossip (s)he has picked up, so there is no need for each fellow
to ring every other fellow directly. How many calls are needed for every fellow
to have aquired every other fellow’s gossip?

A triomino is an L-shaped pattern made from three square tiles. A 2% x 2%
chessboard, whose squares are the same size as the tiles, has one of its squares
painted puce. Show that the chessboard can be covered with triominoes so
that only the puce square is exposed.

Is it possible to tile a standard (8 x 8) chessboard with thirty-one 2 x 1 rect-
angles (dominoes) to leave two diagonally opposite corner squares uncovered?

* Let £k € IN and let F be a family of finite sets closed under symmetric
difference, such that each set in F has at most k elements. How big is | J F?
How big is F7?

Fix aset X. If m; and 7y are partitions of it, we say 7 refines 75 if every piece
of 7y is a subset of a piece of mo. What properties from the usual catalogue
(transitivity, symmetry, etc.) does this relation between partitions of X have?

Let X be a set, and R the refinement relation on partitions of X. Let II(X) be
the set of partitions. Why is it obvious that in general the structure (II(X), R)
is not a boolean algebra?

Boolean Algebra

1.

Write down the truth tables for the 16 functions {7', L}? — {T, L}, and give
them sensible names (such as A, V,—, NOR, NAND). Which of these functions
splat that you have identified have the feature that if p splat ¢ and p both
hold, then so does g7 Why are we interested in only one of them?

(a) Show that NAND and NOR cannot be constructed by using A and V and
— alone

(b) Show that none of NAND, NOR, —, A, V can be constructed by using X0OR
alone. (hard)

(¢) Show that XOR and «— and — cannot be defined from V and A alone.
(d) (for enthusiasts only) Can A and V be defined in terms of «— and —7

(e) (for enthusiasts only) Show that all connectives can be defined in terms
of XOR and —.

(f) A monotone propositional function is one that will output 1 if all its
inputs are 1. Show that no nonmonotone function can be defined in
terms of any number of monotone functions. (easy)

What is a boolean algebra? Find a natural partial order on the set of functions
from question 1 that makes them into a boolean algebra.

. How many truth-functions of three propositional letters are there? Of four?

Of n?

Prove that P([0,2] and {7, L }® are isomorphic posets.
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Generating functions etc.

1.

Let u, be the number of strings in {0, 1,2}" with no two consecutive 1’s.
Show w,, = 2up—_1 + 2uy,—2, and deduce u,, = 4—\1/5[(1 +4/3)" 2 — (1 —+/3)"+2].

Let m,, be the number of ways to obtain the product of n numbers by brack-

eting. (For example, ((ab)c)d, (ab)(cd), (a(be))d, a((be)d) and a(b(ed)) show

m4 = 5.) Prove m,, = 1 27?:12 .

Prove that IN x IN, with the lexicographical order, is well-ordered, and that
IN x IN with the product order has no infinite antichain.

Say n € m (where n,m € IN) if the nth bit of m is 1. n C m is defined in
terms of this in the obvious way. Prove that n C m iff (ZL) is odd. (Hint: use

the fact that (772) = (7) + (1))

Let p,, be the number of ways to add n— 3 non-crossing diagonals to a polygon
with n sides, thus splitting it into n — 2 triangles. So p3 = 1, py = 2, p5 = 5,
and we define ps = 1. Show that

Pn = D2Pn—1 +P3Pn—2+ ...+ pp1p2 for n >3,
and hence evaluate p,,.

A question on generating functions which will keep you out of mischief for an
entire afternoon!” Let A, be the number of ways of ordering the numbers 1
to n such that each number is either bigger than (or smaller than) both its
neighbours. (“zigzag permutations”). Find a recurrence relation for (A,,/2).
(Hint Think about how many zigzag permutations of [1,n] there are where n
appears in the rth place.) Further hints: you will have to divide the nth term
by n! and solve a (fairly simple) differential equation.

What can you say about

G =:Ligny1 =1 —e" ™7

Truth-definitions

An ML question which will prepare you for the 1b courses entitled “Logic and Proof”
and “Semantics”. You should make a serious attempt at—at the very least—the
first part of this question. The fourth part is the hardest part and provides a serious
work-out to prepare you for the semantics course. Parts 2 and 3 are less central,
but are educational. If you are a 1b student treating this as revision you should be
able to do all these questions.

Propositional Logic Predicate (first-order) Logic

A recursive datatype of formulee | A recursive datatype of formulse

An interpretation Z is a domain D with: for
each n-place predicate letter F' a subset Z°F
of D™; for each n-ary function letter f a
function Z*f from D™ — D. (Also constants).

states: literals — bool. A (Fix T then) states: vbls — D; a
(recursively defined) satisfaction | recursively defined satisfaction function: satz:
relation SAT:statesxfmla—bool | formule X states — bool

A formula ¢ is valid iff for all states v, satz(¢,v) =true.
states v, SAT(v, ¢) =true. ¢ is valid iff it is true in all interpretations.

¢ is true in an interpretation Z iff for all

7This comes from a book called “100 great puzzles in maths” or some such title: the author’s
name is Dorrie, it is published by Dover, and there is a copy in the DPMMS library. This is
problem 16 on p 64.
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1. Write ML code to implement the left-hand column. If you are completely
happy with your answer to this you should skip the next two questions of this
section.

2. (For enthusiasts). Expand the propositional language by adding a new unary
connective, written ‘00’. The recursive definition of SAT for the language with
this extra constructor has the following additional clause:

if s is a formula of the extended language and v is a state then
SAT(v,0s) = 1 iff for all states v’ we have SAT(v',s) =1

Then redo the first question with this added complication.

3. (For enthusiasts). Complicate further the construction of the preceding ques-
tion by altering the recursive step for O as follows. Accept as a new input a
(binary) relation R between states (presumably presented as a list of pairs,
tho’ there may be prettier ways of doing it). The new clause is then:

if ¢ is a formula of the form Os and v is a state then SAT(v,t) = 1
iff for all states v' such that v" R v we have SAT(v',s) =1

4. Declare a recursive datatype which is the language of partial order. That
is to say you have a set of variables, quantifiers, connectives etc., and two
predicate letters ‘< and ‘=’. Fix an interpretation of it, possibly the ML type
int. Implement as much as you can of the apparatus of states, truth etc.

5. Declare a recursive datatype which is the language of fields. That is to say
you have a set of variables, quantifiers, connectives etc.; two constants ‘0’ and
‘1’; a binary predicate letter ‘=" and two function symbols, ‘+” and ‘x’. Fix
an interpretation of it, for example the natural numbers below 17. Implement
as much as you can of the apparatus of states, truth etc. You should be able
to write code that will accept as input a formula in the language of fields and
evaluate to true or false depending on what happens in the naturals mod

17.8

In the last two questions you could make life easier for yourself (but less natural)
by assuming that the language has only finitely many individual variables. This
would enable you, for example (by somehow generating all the possible states, since
there are now only finitely many of them) to verify that the naturals as an ordered
set are a model for the theory of total order, and that the naturals mod 17 are a
model for the theory of fields.

When you have done this ask the system minders or any member of the hvg
group about how to run HOL on the machines available to you. In HOL is a
dialect of ML in which all the needed datatypes are predefined.

Other logic: for 1b revision, mainly
1. 7 and e are transcendental. By considering the equation
2 — (m+e)x+me=0

prove a trivial but amusing fact. (If you cannot see what do do, read the
footnote for a mnr ). ¥ What have you proved? Is your proof constructive? If
not, does this give rise to a constructive proof of something else?

81t won’t run very fast!
9At least one of 7 + e and we must be transcendental.
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2. The uniqueness quantifier 3!x’ is read as “There is precisely one = such that

.”7. Show how to express the uniqueness quantifier in terms of the old

quantifiers 3 and V (and =).

(a) Find an example to show that (Fz3'y)p(x,y) is not always the same as
(Ay3z)o(z, y)

(b) Is the conjunction of Jlzg(x) and Iy (y) equivalent to something of the
form Jlax3ly...7

Explain what a model of a sentence is. If ® is a sentence the spectrum of
® is the set of n € IN such that ® has a model of size n. Is every spectrum
recursive? Use a diagonal argument to find a recursive set that is not a
spectrum.

4. You are the computer officer in charge of a system that is not secure, in the

sense that it is possible to write viruses for it ad lib. (A virus is something
that corrupts the operating system). Use a diagonal argument to show that
any program running under this system that accepts a body of code as input
and outputs 0 if the input is a virus and 1 otherwise must itself be a virus.

Propositions as types

Check that you know what is meant by “natural deduction”. In this section,
Greek letters will range over expressions built up from ‘A’, ‘B’, etc. by putting
‘—’ between such expressions. Thus they can be read indifferently as propositional
formuleae or as types. Call these chaps formulze. Attempt these in connection with
question 12 from section 10.2.1.

1.

Prove that if a is a formula such that there is a closed lambda term of type
« then there is a natural deduction proof of . And conversely!

If D is some natural deduction with conclusion o and premisses f; . .. 3, show
that any valuation defined on the propositional letters in ;... 3, and « that
makes all the 37 ..., true must also make a true too.

The relation ——(z = y) is (intuitionistically) distinct from the relation z = y.
Prove that it is a fuzzy. Is it an equivalence relation? Prove it or explain why
you think it isn’t

Find a natural deduction proof of
X=>V—=0Z-W)=>(X=>Y—=2)=(X=Y)—-(X-=>W)

and a A-term to go with it.

Horn clauses

1.

What is a horn clause? What is an intersection-closed property of relations?!°
Let ¢(Z) be a horn clause (in which ‘R’ appears and the Z range over the
domain of R). Show that the property VZ(¢(Z)) is intersection closed. (The
converse is also true but do not attempt to prove it!)

Let I be an index set, and for each ¢ € I, P,; is a person, with an associated set
of beliefs, B;. We assume (unrealistically) that each B; is deductively closed
and consistent. Show that ;.; B; is deductively closed and consistent. What
about the set of all propositions p such that p is believed by a majority of

10A horn clause is a formula of the kind /\ieI 1; — ¢ where ¢ and all the v; are atomic. F() is
an intersection-closed property of relations if an intersection of any number of relations that have
property F' also has property F.
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people? (You may assume [ is finite in this case, otherwise it doesn’t make
sense). What about the set of things believed by all but finitely many of the
P;? (You may assume [ is infinite in this case, otherwise it doesn’t make
sense).!!

3. We are given a set L of literals. We are also given a subset Ky C L. (‘K for
‘Kmnown’.) Also a set Cy (‘C” for ‘Conditionals) of formulaze of the kind

(PLAD2A...App) —q

If we are given two such sets, of literals and of conditionals, we can get a
new set of Known literals by adding to Ky any ¢ that is the consequent of a
conditional all of whose antecedents are in K. Of course we can then throw
away that conditional.

(a) Turn this into a precise algorithm that will tell us, given Ky, Cy and a
candidate literal ¢, whether or not ¢ can be deduced from Ky and Cj.
By coding this algorithm in ML, or by otherwise concentrating the mind,
determine how efficient it is.

(b) What difference does it make to the implementation of your algorithm if
the conditionals are of the form

pr— (p2— (p3—...q)...)7

(¢) What happens to your algorithm if Conditionals are allowed to be of the
(more complicated) form:

(prLAp2 Ao Apn) — (@1 Vq2)?

Can anything be saved?

(d) Define a quasi-order (remember what a quasi-order is?12) on £ by setting
p R q if there is a conditional in Cy which has ¢ as its consequent and
p as one of its antecedents, and letting < be the transitive closure of R.
Is < reflexive? Irreflexive? Antisymmetrical? What happens if p < p?
What happens if (p < ¢) A (¢ < p)?

1'What about the set of propositions believed by an even number of people?
12 And don’t lose sleep over the reflexivity condition: we can add lots of silly clauses like p — p
at no cost!
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10.3 Answers

1988:6:9E (maths tripos)

The Master asked 2n + 1 people and got 2n + 1 different answers. Since the largest
possible answer is 2n and the smallest is 0, there are in fact precisely 2n+ 1 possible
answers and that means he has got every possible answer from 0 up to 2n inclusive.

Think about the person who shook 2n hands. This person shook hands with
everyone that they possibly could shake hands with : that is to say everyone except
their spouse. So everybody except their spouse shook at least one hand. So their
spouse shook no hands at all. Thus the person who shook 2n hands and the person
who shook 0 hands are married. Henceforth disregard these two people and their
handshakes and run the same argument to show that the person who shook 2n — 1
hands and the person who shook 1 hands are married. And so on.

Where does this get us? It tells us, after n iterations, that the person who shook
n+ 1 hands and the person who shook n — 1 hands are married. So what about the
person who shook n hands, the odd man out? Well, it must be the odd woman out,
because the only person of whom the Master asks this question who isn’t married
to another person of whom the Master asks this question is his wife.

Let’s name people (other than the Master) with the number of hands they shook.
(This is ok since they all shook different numbers of hands.) 2n didn’t shake hands
with its spouse, or itself, and there are only 2n people left, so it must have shaken
hands with the Master. Correspondingly 0 didn’t shake hands with anyone at all,
so it certainly didn’t shake hands with the Master. We continue reasoning in this
way, about 2n — 1 and 1. 2n — 1 didn’t shake hands with itself or its spouse or with
0, and that leaves only 2n — 1 people for it to shake hands with and since it shook
2n — 1 hands it must have shaken all of them, so in particular it must have shaken
hands with the Master. Did 1 shake hands with the Master? No, because 1 shook
only one hand, and that must have been 2n — 1’'s. And so on. The people who
shook the Master’s hand were 2n, 2n—1, 2n—2 ...n+1 and the people who didn’t
were 1, 2, 3, ...n — 1. And of course, the Master’s wife. So he shook n hands.

1988:6:10E (maths tripos)

Let R be a relation on a set X. Define the reflexive, symmetric and transitive
closures r(R), s(R) and t(R) of R. Let A be the relation {(z,z) : v € X}.

Prove that
1. RoA=R
2. (RUA)"=AU(|JR) forn>1

3. tr(R) = rt(R).

Show also that st(R) C ts(R). If X = IN and R = AU {{(z,y) : y = pz for
some prime p} describe st(R) and ts(R).

The reflexive (symmetric, transitive) closure of R is the intersection of all re-
flexive (symmetric, transitive) relations of which R is a subset.

1. RAis R composed with the identity relation. z is related to y by R-composed-
with-S if there is z such that x is related to z by R, and z is related to y by
S. Thus RA = R. (I would normally prefer to write ‘R o A’ here, using a
standard notation for composition of relations: ‘o’)

2. It is probably easiest to do this by induction on n. Clearly this is true for
n = 1, since the two sides are identical in that case. Suppose it is true for
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n==k.
(RUAF=AU( ] RY

1<i<k
(RUA) = (RUA)* o (RUA). By induction hypothesis this is

(Au( | R))e(RUA)

1<i<k

Now (AU B) o (CUD) is clearly (Ao C)U (Ao D)U (BoC)U(Bo D) and
applying this here we get

(AoR)U(AoA)U U R')oR)U U Ri)oA)
1<i<k 1<i<k
Now AoRis B; AoAis A; (Ur<icy BY) oA is Uyciop B and (U <icp RO R
is (Ui<i<ps1 B') so we get

RuUAU( | RHYU(UR)
1<i<k+1 i<k

which is _
Au | R

1<i<k+1

3. The transitive closure of the reflexive closure of R is the transitive closure of
RUA which is |J,, .y (RUA)™ which (as we have—more-or-less—just proved)
is AU (U,;cv R') which is the reflexive closure of the transitive closure of R.

s is increasing so R C s(R). t is monotone, so t(R) C t(s(R)). But the transitive
closure of a symmetrical relation is symmetrical so ¢(R) C t(s(R)) implies s(¢(R)) C
t(s(R)) as desired.

Finally if X = IN and R = AU {(z,y) : y = pz for some prime p} then st(R)
is the relation that holds between two numbers when they are identical or one is a
multiple of the other, and ¢s(R) is the universal relation INxIN.
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1990:1:9

Peter Dickman’s model answer
We are asked to use generating functions to prove that:

oot ( 2n — 2 >
" n—1
where ¢, is the number of binary trees with n leaves (NB not n vertices) where
no vertex has precisely one descendent. Now the formula given is remarkably similar
to the one for Catalan numbers — which were introduced in the section of the course
concerned with generating functions. So these may well be useful in answering this

question.
Recall that for Catalan numbers:

On: ! <2n>
n+1 n

so it is (hopefully) clear that C;, = ¢p41.

To use generating functions it is necessary to find a recurrence relation. . .

Consider trees of the form described in the question. Clearly, any such tree
which has more than one leaf can be viewed as being composed of two trees joined
together by a single (new) root vertex, whose descendents are the two roots of the
component smaller trees. Now the sum total of leaves in these sub-trees will be the
same as the number of leaves in the composite; and each tree will have at least one
leaf. So, the number of trees with some given number of leaves can be determined
by considering all of the ways such a tree can be split into left & right subtrees, and
the parts combined together.

It follows that:

Vn>1:cp1 =cicp +CaCn—1 +c3cp—2+ ...+ cpcy

Note that we have n > 1 in the above, because the equation is giving us an
expression for n + 1. The recurrence only holds for the trees with two or more
leaves (as we assumed that the root had two descendents).

Also we know that ¢; = 1 by inspection.

Note that I’ve written this out for the case n + 1 not, as I would normally do,
the case n because it makes everything neater later. The result can be achieved
from the n case but is a bit messier. The only hint I can give as to how to tell that
this is helpful in advance is that we already knew that there was an “off by one”
effect present in this question.

Now, let us consider d,, = ¢, 4+1,Vn > 0. Then we have that:

Vn>1:d, =dodp—1+didp—2+ ...+ dn—_1dp

Now, if we define d, = 0,Vk < 0 then we have that
n—1 e}
Vn>1:d,= Z didp 15 = Zdidnflfi
i=0 i=0
Now, the generating function for the d,,, called D(z) say, has the property that

the coefficient of 2™ in D(z) is d,,. So we have that:

. 1 ifn=0
[2"]D(z) _{ Yocodidn—1-; otherwise

Whence we derive:
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D(z) = idnz”
n=0

= 14+ iididnflfizn

n=1 7=0

= 14+ i i didn_l_izi niliiZ

n=1i=0

o0 o0
= 1+=2 Z Z didy—1—iz'2" "

n=1 i=0

= 14z i i dizi . dnflfizn_l_i

n=1 i=0

— 1+2(D(2))

since the penultimate line is a convolution.

This is a formula we recognise from the Catalan numbers, so we proceed by
following the same argument as in the lecture notes. . .

Reorganising this gives us:

2(D(2))> = D(2)+1=0
Solving this we find that:

1+ V1-42

D(z) 5

Since d,, is non-negative Vn and since /1 — 4z has only negative signs after the
first term we can eliminate the form with an addition in and find:

1-1-4z

D(z) 5y

Which, from a standard binomial identity leads us to:

D(Z)l\/mzkil(2k>2k

2z k
k>0

So we find that:

n+1 n

dy = ["|D(z) = — ( 2n )

However, d,, = ¢,41, Vn > 0 therefore we have that:

1 _
Vnzlzcn:<2n 2)
n

n—1

as required.

Note that the formula is obviously useless for n = 0 as it would give ¢y = oo
so we clearly aren’t being expected to worry about that case. However it might be
worth pointing this out

The second part of the question asks how many trees of the form considered,
with n leaves, have depth n — 1. Again let’s look for a recurrence relation. I’ll skip
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through this fairly quickly...I suggest that you draw some pictures as you read
through this. Be aware of the assumption that n > 2 in the following.

Consider the trees of this form, that have n leaves and are of depth n — 1, for
arbitrary n > 2. Given such a tree, let the number of leaves at depth n — 1 (ie the
maximal depth) be k.

From such a tree we can construct k distinct trees of depth n which have n + 1
leaves by taking one of the leaves at the n — 1 level and replacing it with a vertex
with two descendents, which are themselves leaves.

Now consider a tree of depth n with n + 1 leaves, satisfying the condition on
numbers of descendents. Selecting any leaf at the maximal depth, its parent is at
depth n—1 and, by the condition on numbers of descendents, this has another child
at depth n. Replacing these two leaves and their parent vertex with a single leaf
at depth n — 1 we either construct a tree with n leaves of depth n — 1 (if we have
removed the only pair of leaves at the maximal depth) or we have a tree of n leaves
of depth n.

However the depth of one of our trees must be strictly less than the number of
leaves. Assume otherwise, ie that for some such tree, the number of leaves is less
than or equal to the depth. Since each ‘plucking’ operation of the form described
above reduces the number of leaves by one and the number of levels by at most one,
we would be able to construct a tree with 2 leaves and depth of at least 2 — which
is clearly impossible.

So, we have shown that each such tree has precisely 2 leaves at its terminal level,
and that the only possible constructions are the k variants of each of the trees of
one smaller size. But k is the number of leaves at the terminal level i.e. 2, so we
have a doubling of the number of possible trees at each level. Given that there are
1 = 20 trees with 2 leaves of depth 1, 2 = 2! trees with 3 leaves of depth 2 and so
forth we have that,

Vn > 2,32"? trivalent trees with n leaves and depth n — 1
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1990:1:11

Equivalence relations correspond to partitions. A PER (X, R) that fails to be an
equivalence relation features elements z € X such that (x,z) ¢ R. Such elements
are not related to anything at all, since if x is related to y, then by symmetry y is
related to x and by transitivity x is related to x.

So we put on one side all the € X such that (x,z) € R, leaving behind a
subset X’ C X consisting of all those elements related to themselves by R. What is
the restriction of R to this set? Clearly it is reflexive. Actually it is transitive and
symmetrical as well, because X’ x X’ is transitive and symmetrical, and transitivity
and symmetry are intersection-closed properties so RN (X’ x X') will be transitive
and symmetrical. So RN (X’ x X') is an equivalence relation on X’.

How many PER’s on a set with 4 elements?

There is one way of throwing away no elements, leaving 4. These can be either

all in one piece
one singleton, one triple
two pairs

two singletons

= O W ke =

all singletons

There are 4 ways of throwing away one element, leaving 3. These can be either

all in one piece 1x4=14
one singleton, one pair 3x4=12
three singletons, 1x4=14

There are 6 ways of throwing away two elements, leaving 2. These can be either

all in one piece 1x6=6

two singletons 1x6=6

There are 4 ways of throwing away 3 elements leaving 1.

This can be partitioned in only one way 1 x4=4
52

Let us prove that T is a PER. We first show that it is transitive. Suppose

(i) (f.9) € T and

(ii) (g, h) € T. We want (f, h) € T.

By definition of T we infer

(iii) (Va1, 22 € X)((z1,22) € R — (f‘x1,g'T2) € 5) and

(iv) (Vza,z3 € X)((z2,23) € R — (g‘wa,h‘zg) € S). (We have relettered
variable to make life easier)

Now let 1 and x3 be two elements of X such that (z1,23) € R. We want to
infer (f(z1),g(x3)) € S. R is symmetrical so (z3,x1) € R too. So by transitivity we
have (x1,21) € R. By (iii) we can infer (f(x1),g(z1)) € S. We now use (iv) on our
assumption that z; and x3 are two elements of X such that (x1,z3) € R to infer
that (g(z1), h(zg)) € S. Finally, by transitivity of S we infer that (f(x1), h(z3)) € S
as desired.

It is much easier to show that T is symmetric. Suppose (f,g) € T and let 21 and
x2 be two elements of X such that (x1,z2) € R. We want to infer (f(x1), g(z2)) € S.
R is symmetric, so we infer (zq, 1) € R, whence (f(x1), g(z2)) € S as desired.

To show that T' is not in general reflexive, even if R and S both are, take R to
be the universal relation on X and S to be the identity relation on Y, where both
X and Y have at least two members.
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1993:11:11

(A, <) is a partially ordered set if
1. (Vo,y,z€ A)(x <y — (y <z — z < z) (< is transitive)
2. (Ve,ye A)(z<y— (y<z—x=y)) (< is antisymmetrical)
3. (Vx € A)(x < z) (< is reflexive)

In what follows we write ‘¢ <y’ for ‘x <y Ay # 2’

(a) If (A, <) is to form a totally ordered set then in addition < must
satisfy connexity.

(Ve,ye A)(z <yVy<ux)

or equivalently < must satisfy trichotomy

Vz,ye Az <yVz=yVy<z)

(b) If (A, <) is to be wellfounded then in addition < (which is the
strict version of <, namely {(x,y) : ¢ < y A x # y}) must satisfy
wellfoundedness:

(VA" C A)(Fx € A')(Vy € A')(y £ x)

(This détour via strict partial orders is necessary beco’s no wellfounded relation
can be reflexive.)

(c) If (A, <) is to be a complete partially ordered set then one of the
following conditions on < must be satisfied, depending on what your
definition of complete poset is:

One definition is that every subset of A must have a least upper bound
in the sense of <. This is

(VA" C A) Pz € A)[(Vy € A')(y <a)A(Vz € A)((Vy € A)(y < 2) — x < 2)]

...or that every directed subset of A has a least upper bound. A’ is a
directed subset of A if (Va,y € A')(3z € A')(x < zAy < z). (They
probably don’t mean that tho’.)

To show that the restriction of a partial order of A to some subset B of A
is a partial order of B we have to check that RN (B x B) is reflexive transitive
and antisymmetrical. Now B X B is reflexive and transitive, as is R; reflexivity
and transitivity are intersection-closed properties, so RN (B x B) is reflexive and
transitive. To verify antisymmetry we have to check that if (x,y) and (y, «) are both
in RN (B x B) then z = y. But if (z,y) and (y,z) are both in RN (B x B) then
they are both in R, and we know R is antisymmetrical, whence z = y as desired.

(A deeper proof can be obtained by noting only that all the clauses in the
definition of partial order are universal. Any universal sentence true in A is true
in any subset of A. After all, a universal sentence is true as long as there is no
counterexample to it. If A contains no counterexamples, neither can any subset of
A. This shows that a substructure of a total order is a total order which is useful
later on in the question ...)
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Z (i) < is a partial order of Z. Indeed it is a total order. (ii) It isn’t wellfounded
(e.g.: no bottom element) nor (iii) is it a complete poset (e.g.: no top element).

Divisibility (i) is not a partial order because for any integer n, n and —n divide
each other but are distinct, so it isn’t antisymmetrical. (ii) The relation “n
divides m but not vice versa’ is wellfounded on Z however. If X C Z, then
its minimal elements under “n divides m but not vice versa” are precisely the
minimal elements of {|n| : n € X} under “n divides m but not vice versa”, and
this relation, being a subset of a wellfounded relation (and < is wellfounded
on IN) is itself wellfounded. (iii) Z is not a complete poset under divisibility
for the same reason as before.

IN < is a partial order of IN. Indeed it is a total order. It is also wellfounded but
it is not a complete poset (as before)
Divisibility is a partial order on IN but not a total order, it is wellfounded.
This time we do get a complete poset, because everything divides 0.

INT As for IN except that it is not a complete poset (e.g.: no top element)
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1994:10:11

The way to do part 2 is to stop trying to be clever and do it the easy way. Let
Ay, Bp, Cp be the number of valid strings in {4, B,C}" ending in A, B and C
respectively. Clearly

C(n-"-l = An + B, +Cn

and
Apt1 = Bny1 =B, +C,

This is because if the last character of a legal string is an A or a B then the
penultimate character cannot be an A. We are not going to try to do anything
clever like derive the equality we have been given, but we can at least confirm it!
So let’s try to simplify

2(An+1 + Bn+1 + Cn+1) + An + Bn + Cn

and hope that it simplifies to A1 + Bpy2 + Cra.

Take out Byt1 + Cpy1 twice to give Ao + Bpya, leaving 24,11 + A, + B, +
Cp. The last three terms add up to Cp41, and 24,41 = Ant1 + By so this is
Ap+1+ Bpy1 + Cpy1 which is C), 2. Together with the A, 12 + Bj,+2 this adds up
to v(n + 2) as desired.

Part 3 is ‘A’-level maths that you remember from your creche.
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1995:5:4X (maths 1a)

Well, adapted from it!

fun f n = if n = 0 then 0 else g(f(n-1) + 1, 1) -1
and g(n,m) = f(f(n-1)) + m + 1;

What are the ML types of these two functions?

What are the running times of f and g?

By inspection we notice that (Vn € IN)(f(n) = n), but we had
better prove it! It’s true for n = 0. For the induction step the recursive
declaration tells us that

fn+1)=g(f(n)+1,1) — 1 (by substituting n + 1 for n)
But f(n) = n by induction hypothesis so this becomes

fn+1)=g(n+1,1)—1

Now, substituting (n + 1) for n and 1 for m in the declaration for g

we get

gn+1,1)=n+1-1)+1+1
Whi(d; is n + 2 giving f(n+ 1) =n + 1 as desired.

d

The mutual recursion gives us a pair of mutual recurrence
relations:

A: Fin)=G(f(n—1)+1,1)+ F(n—1)
B:G(n,m)=Fn—-1)+F(f(n—1))+k

where F' is the cost function for f and G is the cost function
for g.

Using f(n) = n we can simplify our recurrence relations as
follows.

A" F(n) =G(n,1)+ F(n—1)
B': G(n,m)=F(n—1)+ F(n— 1)+ k whence
B": G(n,m)=2-F(n—1)+k

This gives
Fn)=Fn—-1)+Fn—-1)+Fn—-1)+k
so F'(n) grows like 3".

G is exponential too. We have assumed that the cost of
adding the second agument (‘m’) is constant, but altho’ this
simplification will cause no problems it is a simplification nev-
ertheless. Adding two arguments takes time proportional to
the logarithm of the larger of the two. Fortunately the cost
functions of these algorithms are so huge that an extra log or
two will make no difference to the order.
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1996:1:7

A partial ordering is a relation that is reflexive, antisymmetrical and transitive.

‘Topological sort’ is Compsci jargon for refining a partial ordering, which just
means adding ordered pairs to a partial ordering to get a total ordering. The two
partial orders of IN x IN that you have seen are the pointwise product ({(z,y) <,
(', ¢y iff ¢ < 2’ Ay < y') and the lexicographic product ((x,y) <ie. (z/,y')
iff & <a’Vv(x=a" Ay <4y')). The second is clearly a refinement of the first. It
is also clear that the lexicographic product IN x IN is not isomorphic to IN in the
usual ordering, since it consists of w copies of IN. (w is the length of IN in its usual
ordering: the length of IN x IN in the product ordering is therefore said to be w?).

To get a refinement of the product ordering of IN x IN that is isomorphic to
the usual ordering on IN we notice that for a wellordering to be isomorphic to
the usual ordering on IN it is sufficient for each point to have only finitely many
things below it (given that is also a wellordering, that is). Try (x,y) < (2/,y') iff
(x+y) <@ +y)V(e+y=a"+y Az <2'). It’s a total order, each element has
only finitely many things below it (so it’s isomorphic to the usual order on IN) and
it refines the pointwise product ordering.

1996:1:8

The recurrence
R: w(n, k) =w(n—2% k) +wn, k—1)

can be justified as follows. Every representation of n pfatz as a pile of coins of size
no more than 2% pfatz either contains a 2 pfatz piece or it doesn’t. Clearly there
are w(n, k — 1) representations of n pfatz as a pile of coins of size no more than
2F=1 pfatz so that’s where the w(n, k — 1) comes from. The other figure arises from
the fact that a representation of n pfatz as a pile of coins of size no more than 2%
pfatz and containing a 2% pfatz piece arises from a representation of n — 2 pfatz as
a pile of coins of size no more than 2%.

Base case. w(n,0) = 1. That should be enough.

To derive w(4n,2) = (n + 1)2, substitute 4n for n, and 2 for k in R, getting

w(4n,2) = w(dn — 22,2) + w(4n, 1)
But this rearranges to
w(dn,2) = w(d(n —1),2) + w(4dn, 1)

w(4n, 1) is 2n+ 1, since we can have between 0 and 2n 2-pfatz pieces in a represen-
tation of 4n. This gives

w(dn,2) =w(4(n—1),2)+2n+1

This is a bit clearer if we write this as f(n) = f(n — 1) + 2n + 1. This recurrence
relation obviously gives f(n) = (n + 1)? as desired.

We can always get an estimate of w(n, k) by applying equation R recursing on
n, and this works out quite nicely if n is a multiple of 2* because then we hit 0
exactly, after n/(2%) steps. Each time we call the recursion we add w(n,k — 1) (or
rather w(n — y, k — 1) for various y) and clearly w(n, k — 1) is the biggest of them.
So w(n, k) is no more than n/(2%) - w(n, k — 1).

Finally, using R with 251 for n again we get w(28T1 k) = w(2F, k) +w (21 k—
1). The hint reminds us that every representation of 2* pfatz using the first k& coins
gives rise to a representation of 2¥*! pfatz using the first £+ 1 coins. Simply double
the size of every coin. It’s also true that every representation of 2% pfatz using the
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first k coins gives rise to a representation of 28! pfatz using the first k 4+ 1 coins
by just adding a 2¥ pfatz piece. The moral is: w(2¥*! k4 1) = 2 - w(2*, k). This
enables us to prove the left-hand inequality by induction on k.

To prove the right-hand inequality we note that any manifestation of 2* pfatz
using smaller coins can be tho’rt of as a list of length k where the ith member of
the list tells us how many 2° pfatz coins we are using. How many lists of length k
each of whose entries are at most 2% are there? Answer (2%)%, which is 2%°.
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1997:1:2
1997:1:7

(a) Yes: equality is a partial order, and it is tree-like beco’s the set of strict
predecessors is always empty.

(b) Yes. The usual order is a partial (indeed total) order and every total order is
tree-like.

(¢) No. This is a partial order but is not tree-like beco’s (for example) 6 has two
immediate strict predessors.

(d) This is reflexive and antisymmetrical (if xRy and yRx so that x and y are
either equal or each is the greatest prime factor of the other then they are
equal). The hard part is to show that it is transitive. Suppose xRy and yRz.
If x =y or 2z = z we deduce xRz at once so consider the case where xRy
and yRz hold not in virtue of x = y or y = z. But this case cannot arise,
because if yRz and y # z, then y is a prime, and the only x such that zRy is
y itself. Finally, it’s easy to show this relation is tree-like, because no number
can have more than one greatest prime factor.

It seem to me that the number of treelike partial orderings of n elements is
precisely n!. Each treelike partial ordering of n chaps gives rise to n new partial
orderings beco’s the extra chap can be stuck on top of any of the n things already
there. No new partial ordering gets counted twice.

2002:1:8

The last part seems to have caused problems for some. Let’s have a look.

We are contemplating relations that hold between elements of 2 and subsets of
Q. An example of the sort of thing the examiner has in mind is the relation that
a point y in the plane bears to a (typically non-convex) region X when y is in the
convex hull of X. (A picture would be nice at this point!) The idea is that y one of
the points you have to “add” to obtain something convex. (Check that you know
what a convex set is, as i'm going to procede on the assumption that you do, and
use it as a—one hopes!—illuminating illustration)

What is R? A is an intersection-closed family of subsets of . (As it might be,
the collection of convex subsets of the plane). We are told that it is the relation
that relates y to X whenever anything in A that extends X also contains y. In
our illustration—where A is the collection of convex subsets of the plane— R is the
relation that hold between X and y whenever y is in the convex hull of X. Certainly
in this case any set that is R-closed is convex.

Assume C' is R-closed. That is to say

V(X,y) ERXCC—yel (10.1)

But R = {(X,y) € P(Q) x QVA € AX C A — y € A}. Substituting this for
“R’ in 10.1 we obtain

V(X,y) e{(X,y) e P XQUVAc AX CA—-ye A}, X CC—yeC (10.2)
which reduces to

VX, ) [(VAe A X CA—-ye ANXCC. —-ye(C] (10.3)

The examiners suggest you should consider the set {4 € A: C C A}. T think
they want you to look at (J{A € A: C C A}
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If you’ve followed the action this far you would probably think of this anyway,
since this is a set that you know must be in A and it seems to stand an outside
chance of being equal to C. So let’s look again at 10.3 to see if it does, in fact, tell
us that ([{A€ A: C C A} is C.

And—of course—it does. First we instantiate ‘X’ to ‘C’ in 10.3 to obtain:

Vy|[(VAe A)(CCA—yeA)—yel] (10.4)

Now let y be an arbitrary member of (J{A € A: C C A}. That means that y
satisfies the antecedent of 10.4. So it satisifes the consequent of 10.4 as well. So we
have proved that (J{A € A: C C A} is a subset of C. It was always a superset of
C, so it is equal to C. So C € A as desired.

Question 10.2.1.1

Show that (J, .y R" is the smallest transitive relation extending R.
To do this it will be sufficient to show

1. UnelN R" is transitive
2. If S is a transitive relation D R then U,ceIN R*C S

For (1) We need to show that if (x,y) and (y, z) are both in U,y R"
then (z,z) € U, . nR" If (z,y) € U, NR" then (z,y) € R" for
some k and if (y,z) € U, N R" then (y,2) € R’ for some j. Then
(:L‘,Z> € Rtk - Une]N R™.

For (2) Let S D R be a transitive relation. So R C S. We prove by
induction on IN that for all n € IN, R* C S. Suppose R™ C S. Then

R =R'oR C@ SoR Cc® So08 Ccl@ g

a) and (b) hold because o is monotone: if X CY then XoZ CYoZ.
c¢) holds because S is transitive.
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Question 10.2.1.4

Let R and S be equivalence relations. We seek the smallest equivalence relation
that is a superset of RUS. We’d better note first that this really is well defined, and
it is, because being-an-equivalence-relation is the conjunction of three properties all
of them intersection closed, so it is itself intersection-closed.

This least equivalence relation extending R U S is at least transitive, so it must
be a superset of t(R U S), the transitive closure of R U S. Wouldn’t it be nice if it
actually were t(RU S)? In fact it is, and to show this it will be sufficient to show
that ¢(R U S) is an equivalence relation. Must check: transitivity, reflexivity and
symmetry. Naturally ¢(R U S) is transitive by construction. R and S are reflexive
so RU S is reflexive. In constructing the transitive closure we add new ordered
pairs but we never add ordered pairs with components we haven’t seen before. This
means that we never have to add any ordered pairs (x, x) beco’s they're all already
there. Therefore t(R U S) is reflexive as long as R and S are. Finally we need to
check that ¢(RUS) is symmetrical. The transitive closure of a symmetrical relation
is also symmetrical. First we show by induction on n that R™ is symmetrical as long
as R is. Easy when n = 1. Suppose R" is symmetrical: i.e., R* = (R")~1. Rt =
R o R™ anyway. The inverse of this is (R7!)" o R™Y. (R™!)" is of course R™", so
(R"H"o R 1Yis (R"™")o R™1. R™™ = R" by induction hypothesis so (R™!)" o R~!
is R" o R which is of course R"T!. Then the union of a lot of symmetrical relations
is symmetrical, so the transitive closure (which is the union of all the (symmetrical)
iterates of R) is likewise symmetrical.

Actually we can give another—perhaps simpler—proof of this. #(R) = [{S :
R C SAS%C S}, or (X for short. Notice that R is symmetrical, then X is closed
under taking inverses (the inverse of anything in X is also in X). And clearly the
intersection of a class closed under taking inverses is symmetrical.

Question 10.2.1.5

Show that if R and S are transitive relations, so is RN S.

(RNS)o(RNS)CRoRCR

(RNS)o(RNS)CSoSCS

SO

(RNS)o(RNS)CRNS

Notice that the same argument shows that the intersection of any
number of transitive relations is a transitive relation: i.e., transitivity is
an intersection closed property of relations.

Question 10.2.1.6

Let R be a relation on A. (‘r’, ‘s’ and ‘t’ denote the reflexive, symmetric and
transitive closure operations respectively.)

Prove that rs(R) = sr(R).
Does R transitive imply s(R) transitive?
Prove that r¢(R) = tr(R) and st(R) C ts(R).

If R is symmetrical must the transitive closure of R be symmetrical?
Prove or give a counterexample.

W N e

5. Think of a binary relation R, and of its graph, which will be a directed
graph (V, E). On any directed graph we can define a relation “I can get
from vertex z to vertex y by following directed edges” which is certainly
transitive, and we can pretend it is reflexive because after all we can get
from a vertex to itself by just doing nothing at all. Do this to our graph
(V, E, and call the resulting relation S. How do we describe S in terms
of R?
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(a) Prove that rs(R) = sr(R):
r(s(R)) =s(R)UIT
=(RURYHUI
=(RUDU(R'UI)
=(RUNURUIT
=(RUDU(RUI)™
= s(r(R))

(b) The symmetric closure of a transitive relation is not automatically transitive:

take R to be set inclusion on a power set.
(c) Prove that rt(R) = tr(R):
r(t(R)) =t(R)UI = RUR*U...R"...UI
=(RUI)U(R*UI)U(R"UI)...
At this point it would be nice to be able to say (R" UI) = (RUI)™ but this isn’t
true. (RUI)™ is actually RUR?... R"UI. But this is enuff to rewrite the last line
as
(RUNDU(RUID?U(RUI)...
which is of course t(r(R)) as desired.

The transitive closure of a symmetrical relation is also symmetrical. First we
show by induction on n that R™ is symmetrical as long as R is. Easy when n = 1.
Suppose R™ is symmetrical. R"T! = Ro R". The inverse of this is (R™1)" o R7!
which by induction hypothesis is R" o R which is of course R"*!. Then the union
of a lot of symmetrical relations is symmetrical, so the transitive closure (which is
the union of all the (symmetrical) iterates of R is likewise symetrical.

Finally S is the reflexive transitive closure of R.

Question 10.2.1.8

Show that—at least if (Vz)(Jy)((z,y) € R)—Ro R™! is a fuzzy. What
about RN R~!'? What about RU R™1?

If (z,y) € Rthen (y,z) € R™! so (x,z) € RoR™!. That takes care of reflexivity.
Suppose {x,z) € Ro R™!. Then there is a y such that (x,y) € R and (y, z) € R™1.
But then (z,y) € R. So (z,2) € Ro R™! is the same as (Jy)(({x,y) € R) A
({z,y) € R)). But this is clearly symmetric in z and z, so we can rearrange it to
get (3y)(((y,z) € R7Y) A ((2,y) € R)) which is (z,2) € Ro R™! as desired.

RU R™! is the symmetric closure of R and is of course symmetric, but there is
no reason to expect it to be reflexive: it’ll be reflexive iff R is reflexive.

Question 10.2.1.9

Given any relation R there is a least 7' O R such that T is transitive, and a
least S O R such that S is symmetrical, namely the transitive and symmetric
closures of R. Must there also be a maximal S C R such that S is transitive?
And must there be a maximal S C R such that S is symmetrical? The answer
to one of these last two questions is ‘yes’: find a cute formulation.

RN R7! is the largest symmetrical relation included in R. The unwary some-
times think this is the symmetric closure of R. The point is that altho’ being-the-
complement-of-a-transitive-relation is not an intersection-closed property, neverthe-
less being-the-complement-of-a-symmetric-relation is intersection-closed, since it is
the same as being symmetrical. RNR™! is the complement of the symmetric closure
of the complement of R. Do not confuse complements with converses!!
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Question 10.2.1.12

If < S(y) and y < S(x) then x and y are neighbouring naturals. This is RN R~
x and y are related by the transitive closure of this relation iff there is a finite
sequence xg, 1,3 ... T, = y such that each z; is adjacent to z; 1. But clearly any
two naturals are connected by such a chain, so the transitive closure is the universal
relation. For part 2, remember that z is related to y by R\ R™! if it is related to
y by R but not by R~1. In this case that means z < S(y) Ay £ S(x). This is
x < S(y)AS(z) < y. The second conjunct implies the first so we can drop the first,
getting S(z) < y. Getting the transitive closure of this is easy, ‘cos it’s transitive
already!

Question 10.2.1.13

Are the two following conditions on partial orders equivalent?

(v

1. 2z>rLdyLax—z<y)
2. (Vv

Ty
xyz)(z>ax Ly Lr—z>y).

Assume (i) (Vzyz)(z <ax Ly £z — z < y) and aim to deduce (ii) (Vzyz)(z >
x Ly Lx— z>y). To this end assume z > z, x £ y and y £ = and hope to
deduce z > y.

z < z tells us that z £ y for otherwise x < y by transitivity, contradicting
hypothesis. Next, assume the negation of what we are trying to prove. This gives
us y £ z. But then we have y £ z £ y and < z so by (i) we can infer z < y,
contradicting assumption.

I think the proof in the other direction is similar but i haven’t checked it.

For the record: to any partial order there corresponds in a obvious way a strict
partial order. (like < and < on IN, for example.) Consider the strict partial order
corresponding to a partial order satisfying this condition we have just been dis-
cussing. If it is wellfounded it is said to be a prewellordering. This is because
we can think of it as a total ordering of the equivalence classes (under the relation
r~yif e =yVa Ly L), and if < is wellfounded this in in fact a wellordering
of the equivalence classes.

Question 10.2.1.14

Show that R C S implies R~! C §—1

The way to do this is to assume that R C S and let (z, y) be an arbitrary ordered
pair in R~!. We then want to infer that (z,y) is in S~1.

If (z,y) is in R™! then (y,z) is in R, because R~ is precisely the set of ordered
pairs (z,y) such that (y,z) is in R. (We would write this formally as: R~ =
{{z,y) : (y,z) € R}.) But RC S, so (y,x) is in S, and so (flip things round again)
(z,y) is in S~

Notice that to tell this story successfully we have to come out of the closet and
think of R and S as sets of ordered pairs, that is, as relations-in-extension.

Question 10.2.1.15

Show that Ro (SoT)=(RoS)oT
That is to say xRo (SoT)y iff z(Ro S)o Ty
Now, by definition of relational composition,

zRo (SoT)y
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(32)(xRz A z2(SoT)y)

and expand the second ‘o’ to get
(32)(zRz A (Fw)(zSw A wTy))

We can pull the quantifiers to the front because'® ‘(3u)(A A ¢(u))’ is the same
as ‘AN (Ju)o(u)’ getting

(32)((Fw)(xRz A (zSw A wTy)))

and
(3z)(Fw)(zRz A (2Sw A wTy))

and we can certainly permute the quantifiers getting
(Fw)(Fz)(xRz A (zSw A wTy))

we can permute the brackets in the matrix of the formula because ‘A’ is associative
getting
(Fw)(3z)((xRz A zSw) A wTy)

import the existential quantifier again getting
(Fw)((3z)(xRz A zSw) AN wTy)
and reverse the first few steps by using the definition of o to get
(Fw)(z(R o S)w A wTy)

and
z(RoS)oTy

as desired.

Question 10.2.1.16b

The lexicographic order on IN? is wellfounded, so we can do wellfounded induction
on it. This means that if we can prove that, if every ordered pair below p has some
property ¢ then the pair p has property ¢ as well, then every ordered pair in IN?
has that property.

Now let ¢({x,y)) say that if the bag is started with = black balls and y white
balls in it the process will eventually halt with only one ball in the bag. Suppose
#((z’, ') holds for every (z’,3') below (z,%) in the lexicographic product IN?. We
want to be sure that if the bag is started with z black balls and y white balls in
it the process will eventually halt with only one ball in the bag. The first thing
that happens is that we pick two balls out of the bag and the result is that at
the next stage we have either x — 2 black balls and an unknown number of white
balls, or we have x black balls and y — 1 white balls. But both these situations
are described by ordered pairs below (z,y) in the lexicographic product IN?, so by
induction hypothesis we infer that if the bag is started with x black balls and y
white balls in it the process will eventually halt with only one ball in the bag, as
desired.

13 At least as long as ‘u’ is not free in A.
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Question 10.2.1.23

Everybody loves my baby, so in particular my baby loves my baby. My baby
loves nobody but me. That is to say, if « is loved by my baby, then x = me. So
my baby = me.

Question 10.2.2.2a

The answer is the relation that holds between k£ and k+1 for 0 < k < n and between
n and 0.

Question 10.2.2.12

Paula Buttery’s answer to one of the fiddly ones.

- fun f gba=gab;

val f = fn : (’a => ’b -> ’¢c) => ’b -> ’a -> ’c

- fun ff g let fun fa a = let val (b,c) = g a in b end;
fun fe a = let val (b,c) = g a in c end;

in (fa, fe) end;

val ff = fn : (Pa -> ’b * ’c) -> (Pa -> ’b) * (Pa —> ’c¢)

Question 10.2.2.11

Show that the largest and smallest elements of a totally ordered set with n elements
can be found with [3n/2] — 1 comparisons if n is odd, and 3n/2 — 2 comparisons if
n is even.

First check this for a few small values. If n = 2 we need 1, for n = 3 we need 3,
for n = 4 we need 4.

The induction step requires us to show that adding two more elements to a set
requires us to perform no more than three extra comparisons.

So suppose we have a set X with n members, and we have found the top and
bottom elements in 3n/2 — 1 comparisons. Call them ¢ and b. Let the two new
elements be z and y. With one comparison we can find out which is bigger. Without
loss of generality suppose it is . Compare x with ¢ to find the biggest element of
X U{z,y}, and compare y with b to find the smallest. This has used three extra
comparisons.

Question 10.2.2.17

The exponent on the LHS is 2" which is 2, so 22 = 2 and = /2. That was
easy. The problem with this is that the second equation gives z* = 4 and thence
2 = /2 again. They can’t both be right!

Of course the answer is that the reasoning that led us to conclude that z = /2
in the first place doesn’t prove that that is the answer. All we have done is show
that if there is a solution it must be v/2. We haven’t shown that there is a solution.
In fact it is a simple matter to show by induction that the approximants to the

LHS, which we generate as follows
a0 = V2 anpr = V2"

...are all less that 2. So the sequence has a limit which is < 2.
Let’s see what we can do that is more general.

z
2T

Let F(z) =4 2%



10.3. ANSWERS 165

We have z¥(*) = F(z). The inverse to this function is the function \z.z'/?.
This is much easier to understand. For example we can differentiate it. It is the
same as e(!°9 ®)/* whose differential is of course e(°9 #)/*. (1 /2% — (log x)/2?). This
is zero when x = e, and this is clearly a maximum. The fact that the differential is
zero there of course means that F reaches a maximum at e!/¢ and that F’(e'/¢) is
infinite. This gives us the amusing but (as far as i know) useless fact that
e/

1/0) (el/ﬁ)(el/e) (e

(el/e)(e =e

(Check this: if the LHS is to evaluate to 2 we must have (e(1/))? = z and e is
certainly a solution to this equation.)

We can get a power series expansion of F' for values of x not much bigger than
1. Let 3 be the power series for F/(1 + x). Then we have

(1+2)” =3

and we can use the binomial theorem to expand the left hand side. This gives us a
sequence of equations expressing later coefficients of ¥ in terms of earlier coefficients
in a wellfounded way. I haven’t worked out the general formula for a,, the coefficient
of " in F(1 + ) tho’ in principle it could be done. (ag = 1 for a start!)

Question 10.2.2.22

Let m = |F|and p=||JF|. Let C = {(z, Ay : x € A€ F}.

Given x € |JF, pick B € Fwithz € B. Let Y, ={A € F : x € A} and
N, ={A € F:x¢ A}. The map MA.(AAB) permutes F and swaps Y, and N,.
Hence |Y,| = |N,| = m/2.

So |C| = (1/2)mp, as each z is in exactly m/2 A’s. But each A contains < k
things, and one A contains none at all, so |C| < (m — 1)k whence p < =1 .2k < k.
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Question 10.2.2

The problem is to find a cute way of getting lots of variables, literals, call them
what you will. One solution is to cast ints as literals. That way one can represent
a state as a list of bools, and one has a nice recursion over ints for the base (literal)
case of the declaration of the eval function.

Various strategies are adopted in the following code submitted by my supervisees
over several years. I don’t know who did the second answer.

(* This code was cooperatively produced by Mike Bond and Joseph Lord. It
produces truth results for all possible inputs into a boolean expression.
To run use the function tttable (x) where x is a boolean expression using
the characters a-z excluding o as the variables and symbols ! (NOT), &
(AND) and + (OR). Precedence is set in that order. & and + are infixes
and ! precedes the complemented variable. *)

infix 7 !;
infix 6 &;
infix 5 +;

nonfix !;

datatype BOOL = VAR of string
| NOT of BOOL
| AND of BOOL+*BOOL
| OR of BOOL*BOOL;

fun (a & b) (ANDC a , b)) );
fun (a +b) = (ORCa, b) );
fun ! x = NOT ( x );

fun lvars( VAR(x) ) = [x] |
lvars( AND(x,y) ) = lvars(x) @ lvars(y) |
lvars( OR(x,y) ) = lvars(x) @ lvars(y) |
lvars( NOT(x) ) = lvars(x);

fun ispresent(x,[]) = false |
ispresent(x,t::ts) = if x=t then true
else ispresent(x,ts);

fun member (bh,[]) = false |
member (bh,mainh: :maint) = if bh=mainh then true
else member (bh,maint);

fun fr(main, []) = main |
fr(main,bh::bt) = if member(bh,main) then fr(main,bt)
else fr(bh::main,bt);

fun evl(expression,alist) =
let fun evaluate( AND(x,y) ) = evaluate(x) andalso evaluate(y) |
evaluate( OR(x,y) ) = evaluate(x) orelse evaluate(y) |
evaluate( NOT(x) ) = not (evaluate(x)) |
evaluate( VAR(x) ) = ispresent(x,alist)
in
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evaluate (expression)
end;

fun tline(expression,alist) =
if evl(expression,alist) then (alist,"TRUE")
else (alist,"FALSE");

fun powset ([],base) = [base]
| powset (x::xs,base) = powset (xs,base) @ powset(xs,x::base);

fun ttable(expression,[]) = []
| ttable(expression,p::ps)=[tline(expression,p)]::ttable(expression,ps);

fun tttable(expression) =
ttable(expression,powset( fr([],lvars(expression)) , [1 ));

val a=VAR("a");
val b=VAR("b");
val c=VAR("c");
val d=VAR("d");
val e=VAR("e");
val f=VAR("f");
val g=VAR("g");
val h=VAR("h");
val i=VAR("i");
val j=VAR("j");
val k=VAR("k");
val 1=VAR("1");
val m=VAR("m");
val n=VAR("n");
val p=VAR("p");
val gq=VAR("q");
val r=VAR("r");
val s=VAR("s");
val t=VAR("t");
val u=VAR("u");
val v=VAR("v");
val w=VAR("w");
val x=VAR("x");
val y=VAR("y");
val z=VAR("z");

(* We’ll need things for dealing with lazy-lists so here’s some. *)
datatype lazylist = Tip
| Cell of (int->bool) * (unit->lazylist);

fun head (Cell (x,y)) = x;
fun tail (Cell (x,y)) =y O;
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(* Basic list functions. *)
(* *)
(* Membership test *)

fun mem [] x = false
| mem (y::ys) x = if x=y then true else mem ys Xx;

(* Merge two lists set-union style. Only x add to ys if it isn’t *)
(* already in ys. *)
fun merge ([1, ys) = ys
| merge (x::xs, ys) = if mem ys x then merge (xs, ys)
else x::merge (xs, ys);

(* Simply prefixes x to each list y in the list of lists ys. *)
fun prefix (x, [1) = []
| prefix (x, y::ys) = (x::y) :: prefix (x, ys);

(* Return a list of all the possible subsets of the list given as an *)
(* argument. *)
fun subsets [1 = [[]]

| subsets (x::xs) = prefix (x, subsets xs) @ subsets xs;

(*x Here’s the data-type we’re going to use for our formulae. *)
datatype fmla Lit of int
Not of fmla

Or of fmla * fmla
Implies of fmla * fmla

|

| And of fmla * fmla
|

|

| Iff of fmla * fmla;

(* The SAT function. *)
(* *)
(*x Evaluates the function given that the literals take the states *)
(* returned by the function given as the second parameter. States *)
(* should be a function with type int->bool. *)

fun SAT (Lit (1), states) = states 1
| SAT (Not (f), states) = not (SAT (f, states))
| SAT (And (f, g), states) = SAT (f, states) andalso SAT (g, states)
| SAT (Or (£, g), states) = SAT (f, states) orelse SAT (g, states)
| SAT (Implies (f, g), states) = (not (SAT (f, states))) orelse
SAT (g, states)
| SAT (Iff (f, g), states) = SAT (Implies (f, g), states) andalso
SAT (Implies (g, f), states);

(*SAT (Iff (f, g), states) (SAT (f,states) = SAT(g,states)) *)

(* A1l the below is for the valid function. *)

(* First we want a list of the literals in the function. We will need *)
(* this in order to work out all the possible true/false combinations. *)
fun getlits (Lit 1) = [1]

| getlits (Not 1) = getlits 1

| getlits (And (1, m)) = merge (getlits 1, getlits m)

| getlits (Or (1, m)) = merge (getlits 1, getlits m)
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| getlits (Implies (1, m)) = merge (getlits 1, getlits m)
| getlits (Iff (1, m)) = merge (getlits 1, getlits m);

(* Return a lazy list the head of which is a function which returns
(* whether its argument is a member of that list (in the lazy list of
(* lists which it is.
fun allstates [] = Tip

| allstates (x::xs) = Cell (mem x, fn () => allstates xs);

(* Now the crunchy bit. Valid takes a single argument - the function.
(* It extracts all the literals from it and then finds all the subsets
(* of the list. We will use this to find all the true/false
(* combinations: Each subset will count as a separate case. If the
(* literal in question is a member of the subset then it is true
(* in this case. If it is not a member then it is false. We test
(* phi with each case returning false as soon as we get a false, but
(* only returning true when we’ve tested all the cases and all were
(* true.
fun valid phi =

let fun validbit (Tip) = true

| validbit (Cell (f, g)) =
if SAT (phi, f) then validbit (g ())
else false
in validbit (allstates (subsets (getlits phi)))
end;

(* Test formulae.
(* P/ANQ->Q/\P
val ok = Implies (And (Lit 1, Lit 2), And (Lit 2, Lit 1));

(x P\/Q->P/\Q
val bad = Implies (Or (Lit 1, Lit 2), And (Lit 1, Lit 2));

(* ((P->Q ->P) >P
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*)
*)
*)

*)
*)
*)
*)
*)
*)
*)
*)
*)

*)
*)

*)

val peirceslaw = Implies (Implies (Implies (Lit 1, Lit 2), Lit 1), Lit 1);

Question 10.2.2 part b

Below is a version of SAT which has been extended to cope with the
unary box operator, and a revised data-type which includes the
operator.

—_—— —_ ___>8 ______ —_
(* Here’s the data-type we’re going to use for our formulae.
datatype fmla Lit of int

Not of fmla

And of fmla * fmla
Or of fmla * fmla

|
| Box of fmla
|
|
| Implies of fmla * fmla
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| Iff of fmla * fmla;

(* The SAT function. *)
(* *)
(* Evaluates the function given that the literals take the states *)
(* returned by the function given as the second parameter. States *)
(* should be a function with type int->bool. *)
(* In this version the unary box operator has been implemented. *)

fun SAT (Lit (1), states) = states 1
| SAT (Not (f), states) = not (SAT (f, states))
| SAT (And (f, g), states) = SAT (f, states) andalso SAT (g, states)
| SAT (Or (f, g), states) = SAT (f, states) orelse SAT (g, states)
| SAT (Implies (f, g), states) = (not (SAT (f, states))) orelse
SAT (g, states)
| SAT (Iff (f, g), states) = SAT (Implies (f, g), states) andalso
SAT (Implies (g, f), states)
| SAT (Box (f), states) =
let fun validbit (Tip) = true
| validbit (Cell (g, h)) =
if SAT (f, g) then validbit (h ())
else false
in validbit (allstates (subsets (getlits £)))
end;

—_—— —_ ___>8___ ——————

Question 10.2.2 part c

Below is a version of SAT which has been extended to cope with the R
relation on the set of valid states.

——— _— ___>8___ _— _—

(*x The SAT function. (part c) *)
(x *)
(* Evaluates the function given that the literals take the states *)
(* returned by the function given as the second parameter. States *)
(* should be a function with type int->bool. *)
(* In this version the unary box operator has been implemented in the *)
(*x style of part c. The idea is that the third parameter R is the *)
(* relation between states. Given a state R it will return a lazy list *)
(* of states (in the manner of allstates). *)

fun SAT (Lit (1), states, R) = states 1
SAT (Not (f), states, R) = not (SAT (f, states, R))
SAT (And (f, g), states, R) = SAT (f, states, R) andalso SAT (g, states, R)
SAT (Or (f, g), states, R) = SAT (f, states, R) orelse SAT (g, states, R)
SAT (Implies (f, g), states, R) = (not (SAT (f, states, R))) orelse
SAT (g, states, R)

| SAT (Iff (f, g), states, R) = SAT (Implies (f, g), states, R) andalso

SAT (Implies (g, f), states, R)

| SAT (Box (f), states, R) =
let fun validbit (Tip) = true
| validbit (Cell (g, h)) =
if SAT (f, g, R) then validbit (b ())
else false
in validbit (R states)
end;

And an answer from David Burleigh
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(x A formula datatype and its implementation.
datatype formula = 1it of string
| fand of formula * formula
| for of formula * formula
| fimp of formula * formula
| fnot of formula
| feq of formula * formula;
fun eval (fand(x,y) :formula) statefun =
statefun x andalso statefun y
| eval (for(x,y) :formula) statefun =
statefun x orelse statefun y
| eval (fimp(x,y) :formula) statefun =
not (statefun x) orelse statefun y
| eval (feq(x,y) :formula) statefun =
(statefun x) = (statefun y)
| eval (fnot(x) :formula) statefun =
not (statefun x)
| eval (a :formula) statefun = statefun a;

fun state (s::ss :(string * bool) list) x =
let val states = s::ss
in
let fun staten [] x = eval x (staten states)
| staten ((a,b)::ss8) x =
if x = 1it a then b
else staten (ss) x
in
staten states x
end
end;

171

By David Burleigh. *)

val statelist = [[("p",false),("q",false)],[("p",true),("q",false)],

[("p",false),("q",true)], [("p",true), ("q",true)]];
val statefuns = map state statelist;
fun truthtable fmula = map (eval fmula) statefuns;

val nd = fand(lit "p",lit "q");
val or = for(lit "p", 1lit "q");=09

(x A formula datatype and its implementation.&nbsp; By
David Burleigh. *)

datatype formula = 1lit of = string | fand of formula * formula | for of formula * formula| fimp of form

formula | feq of formula * formula
fun eval (fand(x,y) :formula) statefun = statefun
x andalso statefun y | eval (for(x,y) :formula) statefun

statefun x orelse statefun y | eval (fimp(x,

not(statefun x) orelse statefun y | eval (feq(x,y) = :formula)
statefun = (statefun x) = (statefun y) | eval =
(fnot(x) :formula)

statefun = not(statefun x) | eval (a :formula) statefun

= statefun a

fun state (s::ss :(string * bool) list) x =
let val states = s::ss;
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let fun staten [] x = eval x = (staten states) | =
staten((a,b)::ss) x if x = 1lit a then = else staten (ss) x; staten states =
X;

val statelist = [[(&quot;p&quot;,false), (&quot;q&quot;,false)], [(&quot;p&quot; ,true), (&qu=
ot;q&quot;,false)],<BR>&nbsp;&nbsp;

[ (&quot ; p&quot; ,false) , (&quot;q&quot; ,true)], [(&quot;p&quot; ,true), (&quot=
;q&quot; ,true) 1] ; </FONT>&nbsp;</DIV>

<DIV><FONT color=#000000></FONT>&nbsp;</DIV>

<DIV><FONT color=#000000>val statefuns = map state =
statelist;</FONT></DIV>

<DIV><FONT color=#000000></FONT>&nbsp;</DIV>

<DIV><FONT color=#000000>fun truthtable fmula = map (eval fmula)
statefuns;</FONT></DIV>

<DIV><FONT color=#000000></FONT>&nbsp;</DIV>

<DIV><FONT color=#000000>val nd = fand(lit &quot;p&quot;,lit
&quot;q&quot;) ;<BR>val or = for(lit &quot;p&quot; 1lit
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Some funny stuff here . ..

10.2.24
X X—-YX X—>(Y—>Z)X X—-YX X—)(Y—)(Z—)W))
Y Y -7 Y Y—>Z->W
Z Z —-W
W
X->W

X —Y)— (X > W)
K- > 2) = (X —=Y) = (X > W)
Xo¥ = (Z=W)= (X =¥ =2) = (X —=Y)— (X = W)

The weighing problem

Weigh four against four. If they don’t balance, weigh two (potentially) heavy and
two (potentially) light against two normals and a heavy and a light.

1993:10:6

fn,ry=fn—-1r—=1)+rf(n—1,r)

Equivalence relations give rise to partitions

The way to explain how equivalence relations give rise to partitions is to suppose
that you start with a set X with an equivalence relation on it. You pick an element
of X and stick it in a bin. Thereafter you pick up an object and stick it in the bin
(if any) containing things to which it is related. If there aren’t any start a new bin.
Compscis understand that sort of thing.

oKk ko SRRk KRR R KR KRR SRRk ok

First check that you know what is meant by the word ‘partition’. This matters,
since people use it in different ways: number theorists talk of partitions of members
of IN (and that stuff is a lot of fun too). However here we are concerned with
partitions of sets. A partition of a set X is a collection of subsets of X which are
disjoint (make sure you know what that means) and between them contain every
member of X.

Suppose R is an equivalence relation on a set X. We must find a partition of X
that corresponds to R in a natural way. The partition we want is the partition of
X into R-equivalence classes.

For x € X, the R-equivalence class of z, (written “[z]g”) is {y € X : yRx}.

We want to know that the collection of all equivalence classes is a partition of X,
that is to say, every € X belongs to an equivalence class, and any two equivalence
classes are either identical or disjoint. The first is easy: every x belongs to [z]g
(even if it is its sole member). The second needs a bit of work.

Let us suppose there are two equivalence classes which overlap but are distinct.
Then there are  and y (which are not R-equivalent) and there is a z such that
z € [z]r N [y]g- But then xRz and yRz and so on, so by transitivity and symmetry
2Ry, so x and y belong to the same equivalence class, so [x]g = [y]r as desired.

The difficulty with this problem is to work out exactly what it is you have to
prove, since once you understand it it is all so obvious. One thing worth making
a big fuss about is that the notation ‘[x]z’ for equivalence classes can be a wee bit
misleading, because any member of an equivalence class can be used to grab it in
this fashion: the various z’s in it are all, well, equivalent!
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1992:11:8

First of all, the word ‘cover’ in here is a red herring, and we can just as well think of
partitions of P into antichains. Why? Well, if we have a cover of P by antichains,
we can wellorder the cover, and delete from any later member of the cover any
element of P that has already appeared in an earlier member of the cover. This
may even remove elements of the cover altogether. At all events, we can be sure
that there will be at least one cover of minimal size that is a partition, so wlog we
can assume that we are dealing with a partition.

“Length of a longest chain in P” is a bit naughty, because it could mean either
“maximal chain” or “chain of maximal length”. In the partial order whose Hasse
diagram is

there are two maximal chains, one of length three (has three elements) and the other
of length four(has four elements). However whoever it was that dreamed up this
question probably meant “chain of maximal length” rather than “maximal chain”.
Let us procede on that assumption.

So what we are trying to prove it that for any (finite!) partial ordering (P, <p),
the least n € IN such that there is a covering of P by antichains (call it ng) is also
the length of a chain of maximal length in P (call that ny).

If IT is a partition of P into antichains, and C is a chain in P, clearly every
element of IT must meet C', and no two elements of IT can contain the same element
of C, so ng < ny.

There is a canonical partition of P into antichains, as follows. The rank p(x)
of an element x of P is defined by recursion on <p by p(z) = sup of {(p(y)) + 1 :
y <p x}. We then partition P according to the ranks of its elements. Think of
an element of P of maximal rank, n, say. It must have something below it of rank
n—1, and so on down. That way we show there is a chain in P of length n. Clearly
no chain in P can be longer, so this is of maximal length, namely n;. Fix one such
chain and call it C.

Now let IT be an arbitrary partition of P into antichains. Each antichain must
contain at most one element of C" if it contained more it wouldn’t be an antichain!
So there must be at least as many antichains in II as there are elements of C, namely
ni. So ny S no.

1992:10:8

Part the first: a message from AGT

There are (TJ,gle) ways to select r fruits from a greengrocer who sells k£ kinds,
so thats it. For k; > 0, put [; = k;_1 and note the [ — i sum to r — k.

For lower bounds on codes, just pick greedily. Each codeword picked rules out
b = size of B(x,2e+ 1) where e is number of errors you hope to correct. So you can
get a gode of size N/b, where N is total number of words.

Second part:

n(r, A) is one less than the smallest number we cannot express as a sum of r

things in whose denominations belong to A.
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The tricky part is to work out precisely how to prove this triviality. The first
thing that leaps to mind is that we should attempt to prove it by induction. The
trouble with proving things by induction is that we have to do induction on some
integer vbls and (perhaps) UG on others. Therefore, the first thing to do is to
put back all the implicit quantifiers that have been left out. This gives us

(Vk € IN)(Vr)(VA)(|A] = k — n(r, A) < (k;:r>

All the initial quantifiers are universal so it doesn’t matter which order they are
written in. So what do we do? We can do UG on r by fixing r and then proving the
theorem by induction on k, or we can prove by induction on k that for all r ...or
we can prove it by induction on 7.
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Commentary on Peter Robinson’s proof of Inclusion-
Exclusion

This proof is elliptical but perfectly correct. It’s elliptical beco’s he has a lot of
material to get thru’ and not much time, and alse beco’s he wants you to put in
some work. Like me, he is a director of studies and probably believes like me that
students should be introduced—very early on—to the idea that Life is Hard. I think
its present form is the result of many years of people honing the proof to get it over
and done with as quickly as possible: surgeons in the days before ansesthetics had
the same problem. I append some comments my supervisees have found helpful.
I’'m assuming you understand the result and have some idea of why it should be
true. Let’s read it. (Look for “The principle states that ...”). Vertical bars either
side of a notation for a set form a notation for the number of elements of that set.
This is standard. The thing on the left hand side of the equation is the number of
things that belong to the union of the A;. The family of As is indexed: each A
has a pointer pointing at it from an index set—which in this case is called ‘S’.
So in English the equation reads something like

“The number of things in the union of the As is minus the sum—over
nonempty subsets T' of S—of minus-one-to-the-power-of-the-number-of-
things-in-7" times the number of things in the intersection of all those
As whose subscripts are in T'.”

Or—plainer still—for each nonempty T° C S, take the intersection of all the As
whose subscripts are in T' (those As pointed to by elements of T') take its cardinality
and take it negative or positive depending on whether T" has an odd or even number
of elements. Add them all together, for all such T', and make the answer positive.

The first thing to take note of is a bit of overloading. Primarily we write ‘A’
to denote one of the As, and the subscript is a member of the index set. However
we are now going to write ‘Ap’, where 1" is a subset of S not a member, and this
expression will denote the intersection of all the As whose subscripts are in T'. It’s
easy to detect which of these two usages are in play at any one time, beco’s the
indices themselves are lower-case Roman letters and the sets of indices are upper-
case Roman letters. This is a common use of the difference between upper and
lower case Roman letters. Notice that Ay is the whole universe of discourse—<2.
This probably bears thinking about, so we pause for a brief digression on the empty
disjunction and the empty conjunction. Any disjunction D can always be tho’rt
of as D V false. so the empty disjunction is just false. Analogously the empty
conjunction is true: any conjunction C' can be tho'rt of as C' A true.

Now indicator functions. You will need to know about these for a variety of
reasons. For example they crop up in 1b computation theory where they are called
characteristic functions. Each subset B of (2 has its own indicator function,
written ‘Ig’. This is the function which (on being given z € Q) returns true or
false depending on whether or not x € B. Except that it returns ints instead of
bools. This piece of casting is so that we can use arithmetic operations on the
truth-values. It’s universal practice in machine code Hacky but clever. This ensures
that

o Ipnc(z) = Ia(x) - Ip(x) (PR alludes to this on the line beginning “indicator
functions”, tho’ he leaves out the ‘z’) and

o I5(x) =1—1Ip(x).

Notice that PR uses a convention (standard, and not explained here) that A; is
the complement of A,. (“Overlines mean complementation”).
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For the third displayed line (the one beginning with the big ) consider what
happens when you muliply out things like (1 — a)(1 — b)(1 — ¢)(1 — d): you get 1—
lots of things like —abc and +bd which are positive or negative depending on the
number of factors. “But shouldn’t it start with a ‘1—’ before the big 7" i hear
you cry. It should indeed, but that 1— is in fact included beco’s one of the T's you
sum over is the empty set! Very cunning.

The next nonindented line begins “Now sum over ...”. What’s going on here?
I agn.. 7 (@) looks nasty so just ignore the subscript for the moment. The sum
of Ip(x) over all x € Q is simply the number of things in B, or—using the vertical
bar notation—|B|. This gives the left hand side of the equation on that line.
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10.4 Answers to some of Peter Robinson’s exer-
cises

Here is why Euclid’s algorithm works and what it means. Anything that divides x
and y divides z — y, so if i want to find HCF(z, y) i should keep repeating the step
of replacing the larger of 2 and y by |(z — y)|. The HCF of the pair of numbers in
hand is a loop invariant, and when the process stops with both elements the same
we have found the HCF.

If the bigger number is much bigger than the smaller one then we could end
up subtracting the smaller one many times, and we can save ourselves time by
conflating lots of these subtractions together by dividing the bigger number by the
smaller and keeping only the remainder.

Remember there is no sensible notion of betweenness for integers mod n.

10.4.1 Exercises pp. 5-6

4 is the only one i hadn’t seen before.

RTP: 5237+ 4 30+l

Check that it is true for n = 0. Suppose true for n, and aspire to deduce it
for n + 1. For this it will be sufficient to show that the difference 237+4 4 3n+2 —
(23n+1 + 3n+1)

is divisible by 5. Collect like terms to get
23n+4 _ 23n+1 + 3n+2 _ 3n+1)

23n+4 _ 23n+1 + 3n+2 _ 3n+1)

7. 237z+1 +2. 3n+1

5. 23n+1 + 2. (23n+1 + 3n+1)

Both things being added up are multiples of 5.
question 8: see 10.3

10.4.2 Exercises pp. 12-13
1. e No: try (3,6)(2,5)
e No: try (2,4)(2,5)
e Yes. Think: disjoint multisets!

2. Euclid’s algorithm gives us
57 =44+ 13
44 =3.13+5
13=25+3
5=3+2
3=2+1
2=1+1

We now work downwards to get, one after the other, the numbers on the LHS
of these equations expressed as differences of multiples of 44 and 57.

13 =57—44
5=44—3.13 = 44 — 3(57 — 44) —4.44-3.57
3=13-2-5= (57 —44) — 2. (4.44 — 3.57) —7-44-10-57
2=5-3=4.44—-3.57—7-57+9-44 =13-44—10-57

1=3-2=7-57—-9-44-13-444+10-57 =17-57—-22-44



10.4. ANSWERS TO SOME OF PETER ROBINSON’S EXERCISES 179

This gives the solution z = 17;y = —22. Then
57-174+44-(-22) =1

57-x +44.y =1 ...and subtract to get
57- (17 —x) =44 - (22 + y). This gives
(22 4+ y)/57 = (17 — x)/44. Call this quantity k. Then

y=>5Tk —22 and x = 17 — 44k as desired.

Why is k£ an integer? Beco’s 44 and 57 are coprime. 44 divides the LHS and
it doesn’t divide 57 so it must divide 22 + y.

3. It has no solution in integers beco’s (1992, 1752) = 24. The rest of the question
is a rerun of the last one.

4. Ternary Euclid. Look at the first two variables—in this case 56x 4+ 63y. Do a
Euclid on them to discover that the HCF is 7. That means that all you are
ever going to get out of 56x + 63y is a multiple of 7, so replace 56z + 63y by
7a and solve 7Ta 4 72z = 1.

6. Use the hint. Any prime factor of N must a a prime bigger than p,. Any
prime must be congruent to 1 or —1 mod 4. N itself is congruent to —1 mod
4 so at least one of its factors is a prime congruent to —1 mod 4, which is to
say a prime of the form 4k + 3, and it is bigger than p,,, n was arbitrary, so
there are arbitrarily large primes of this form.

fun factor(n,2) = if n<3 then [n]
else if n mod 2 = 0 then 2::factor(n div 2,2)
else factor(n,3)
|factor(n,a) = if n<a*a then [n]
else if n mod a = 0 then a::factor(n div a,a)
else factor(n,a+2);

fun out(0) = ""

|out(x) = out(x div 10) “chr(48+(x mod 10));
fun foutput(x::[]) = out(x)

[foutput (x::xs) = out(x) ~ "*" ~ foutput(xs);

fun findfactor(n) = foutput(factor(abs(n),2));

(* test data: fermat prime 27(27°5)+1 *)
findfactor (floor (exp(exp(5.0*%1n(2.0))*1n(2.0)))+1);

8. P. Satangput’s ML function that implements Euclid

fun dogcd(m,0,a,b,c,d) = [a,b,m]
| dogecd(m,n,a,b,c,d) dogcd(n ,m mod n,c,d,a-cx(m div n), b-d*(m div n));

fun gcd(m,n) = dogcd(m,n,1,0,0,1);

9. (a) Show that fuix = fk* for1 + fe_1 " fn-

Let’s take the hint. (Bear in mind that in any problem with lots of integer
variables there may be only one variable you can do the induction on!)
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We shall prove by induction on k that for all n, frir = fo-frno1+fo_1-fn-
Best to check first that this is true for k = 1. If we take fo = f; = 1 this
becomes f,+1 = fn_1 + fn which is of course the recursive declaration
of the Fibonacci numbers.

Suppose true for k. Then foiry1 = fotk + fnirr—1. Rearrange this
last term on the RHS to f(,,_1)4+« (the induction hypothesis is that the
identity holds for all n!) to get
Intk+1 = otk + ook

:fk 'fn'f’fkfl'fn'*‘fk'fn"‘fkfl ‘fnfl

= fk . (fn—l + fn) + fk—l . (fn + fn—l)

= fr+ for2 + fo—1 far1
as desired.

(b) First we prove by induction on n that (VI)(fn|fn1). It’s true for I = 0.
We want f,,|(fn.i+1). Using part one to expand the RHS we reduce the
problem to showing fp|(fn * fri+1 + fa—1 - fn1). Obviously fn|fn - fri+1
and f,|fn—1+ fn. by induction hypothesis.

(c) (“Deduce also that (fm, fn) = (fm—n), fn)”), substitute m —n for n and
n for k in part one to get

A fm = fn : f(mfn)le +f(n71) ) f(mfn)

Then for any z, if #|f, and |f(,_n) then z divides fn « fim—n)11 +
fin—1) - fim—n) and therefore z|f,,. One such  is (f(m—n), fn) Whence
(f(m—n)v fn)|fm (f(m—n), fn)‘fn holds anyway giVing (f(m—n)a fn)|(fma fn)
For the other direction suppose z|f,, and z|f,. We can rearrange the
equation A to get

Im = o fim—n)+1 = fin-1) * f(m—n)

Then x divides the LHS and so z|f(,—1) - f(m—n). This isn’t quite what
we wanted: we needed x| f(;;,—n). But we deduce this once we know that
x does not divide f,_1). That will follow once we can show that f,
and f(,41) are always coprime. That is proved by an induction so easy
i sha’n’t write it out.

So we have proved z|f,, and z|f, implies that x|fq,_,). In particular

(fms fu)l fem—n). Inany case we have (fm, fn)|fr giving (fim, fo)[(fim—n)s fn)-
We have already proved (f(m—n),fn)l(fm, fn) so we infer (fm, fn) =

(f(mfn)v f’rl)
(d) Show that fu, - fulfmn iff (m,n) = 1.
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10.4.3 Exercises pp. 19-21

1.

10.

11.

Every power of 10 is congruent to 1 mod 9. So if we express a number as
a sum of multiples of powers of 10 its residue mod 9 is just the sum of the
coefficients of the powers of 10 that we have used.

Odd powers of 10 are congruent to —1 mod 11, and even powers are congruent
to 1 mod 11.

The probability is 1. A number is divisible by 99 iff it is divisible by 9 and
by 11. Rearranging the digits makes no difference to divisibility by 9, and
reversing the digits makes no difference to divisibility by 11.

ISBN numbers

e Since (11,40) = 1 we can divide thru’ by 11 getting 7z = 1 (mod 40).
We then use Euclid, but we can do it by inspection. 6.7 = 42 = 2, so
12.7 = 84 (=4) so 14.7 = 8 mod 40 and 13.7 =1 mod 40. So z is 13.

e By inspection 54 + 30 = 84 which by a happy accident is 12.7 so y = 7.
It would be a bit of a bugger otherwise since 12 and 54 aren’t coprime.

e Chinese remainder theorem here ...

20!- 2129 is 21!- 2119, We want to use Wilson’s theorem and we are doing this
mod 23 so we will turn 21! - 21? (mod 23) into

% (mod 23)

and since division is OK as long as the base of the modulus is prime. 22 = -1
(mod 23) and 1/(-1) = -1 so this becomes

2212119 . (—1) (mod 23)

Now we can use Wilson’s theorem to turn 22! into -1. The two minus signs
cancel and we are left with 21°. This is (—2)'% which in turn is —2'% which
is —16-16-16-16-8. 16 = -7 so this is —7-7-7-7-8. 72 is 49 which is 3; 9.8
= 72 which is 3. So i make it -3.

28 is congruent to —1 mod 257. The monstrous number is an even power of
28 and so is congruent to 1 mod 257.

7

Let’s try to factorise n” — n and see what happens. It becomes

nin—Dn+1Dn*>+n+1)(n*—n+1)

The first three factors guarantee that the product is a multiple of 6. and as
long as n is congruent to 0, 1 or 6 mod 7 they ensure it will be a multiple of
7 as well. That leaves only the cases where n is congruent to 2, 3, 4 or 5 mod
7 and we can check by hand that in the even cases n? +n + 1 is a multiple of
7 and in the odd cases n? —n + 1 is.

There is a cuter proof (Thank you, Nicola Whiteoak!). Think about (n” — n)
(mod 7). Check that for n = 1,2,3,4,5,6, n” = n mod 7. Or we can use
Fermat’s little theorem.

3901 = 83.46.¢(m) = 82.46. Seek multiplicative inverse of 1997 mod 3772. It

1S ceeeeiiiiiis
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12.

13. @t is alleged to be the square root of @ mod p as long as p = 4k +3 and is a
prime. If this is so then o **+1) (= a?*+2Jet’s abbreviate it to b’) should be
congruent to a mod p. We know at least—from Fermat’s little theorem—that
a***3 = a (mod p). This gives a**** = a? (mod p) which gives b> = a2 1dots
not quite working

If a**1 is a sqrt of a then a?**2 should be a and a?**' should be 1. Well,
a***2 is 1, by Fermat’s little theorem, so a?**1 is at least a sqrt of 1.

(AxCYU(BxD)=(AUB) x (CUD)?

Remember, sets are extensional: two sets with the same mebers are the same
sets. So it will be sufficient to check whether or not these two sets have the same
members. We will need to arm ourselves with two functions fst and snd. ..

x belongs to the LHS iff

reAxC V xeBxD

iff (fst(x) € AAsnd(z) € C)V (fst(x) € B Asnd(z) € D)
x belongs to the LHS iff

fst(x) € (AU B) Asnd(z) € (CUD)

Now we can do some abbreviations:

‘fst(z) € A to ‘@’

‘fst(x) € B to ‘D’

‘snd(x) € C to ‘¢’

‘snd(z) € D to ‘d’

The two conditions reduce to (a A ¢) V (bAd) and (a VvV b) A (cV d) which are
clearly distinct.
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Question 5 page 15 of the second set

For the first line to imply the second assume the first line, namely that there
is g: A/R — B/S such that gop = go f, and assume that a; and as satisfy the
antecedent of the second line.

So (a1,az) € R. This is the same as saying that p(a;1) = p(az). (consider the
definition of p). So gop(a;) = gop(az). But gop = qo f, so substituting g o f for
gop we get go f(a1) = go f(az) which is to say that ¢(f(a1)) = ¢(f(az)) which—by
definition of ¢—says that (f(a1), f(az)) € S.

For the second line to imply the first line declare g by: gla|r =: [f(a)]s. Line
2 tells us that it doesn’t matter which element of an equivalence class we consider
when trying to determine what g of that equivalence class is, so this definition is
legitimate.
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10.4.4 Some relevant ML code

Please find attached (and copied below) a better prime number builder (see
notes in code). I’m intrigued as to exactly how this works and why it is
better. If you have any time before the supervision I would be grateful if
you could have a look at it.

Andrew Rose

(*  You may recall that I sent you some code last term
which produced prime numbers.
I thought of a different method using integer
streams (ML Tick 6 & 6%).
I asked both versions (old version included) to
produce the first 887 prime numbers.
The old version took 11.5 seconds.
The new version took 1.5 seconds!
Unfortunately, the new version seems to be very
space inefficient. Trying to generate more primes
with the new version causes it to crash CML (windows
closes it down!).

*)

datatype stream = Item of int * (unit->stream);

fun cons (x,xs) Item(x,xs);

fun head (Item(i,xf)) = i;

fun tail (Item(i,xf)) = xfQ);

fun makeints n = cons(n, fn()=> makeints(n+1));

fun nth(s,n) = if n=1 then head(s) else nth(tail(s),n-1);

fun ton(n,s,xs) = if head(s)>n then
XS
else
head(s)::ton(n,tail(s),xs);

fun filter f xs = if f(head(xs)) then
cons (head(xs) ,fn()=>(filter(f) (tail(xs))))
else
filter (f) (tail(xs));

fun notdiv n x =
if (x mod n)=0 andalso n<>x then false else true;
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fun sqr(x:int) = x*x;

fun makeprimes(n) =
let fun xmakeprimes(n,acc,prms)=
if n=acc then
ton(sqr(nth(prms,n+1))-1,prms, [1)
else
xmakeprimes(n,acc+l, (filter (notdiv (nth(prms,acc+1))) (prms)))
in
xmakeprimes(n,1,makeints 1)
end;

fun pIsPrime(n) =
let
fun xpIsPrime(n,sf) =
if sf=n then
true
else
if n mod sf = 0 then
false
else
xpIsPrime(n,sf+1)
()
()
(%)
in
xpIsPrime(n,2)
end

’

fun pBuild(n) =
let
fun xpBuild(n,sf,acc) =
if n=0 then
acc
else
if pIsPrime(sf) then
xpBuild(n-1,sf+1,sf::acc)
else
xpBuild(n,sf+1,acc)
(%)
(k%)
(k%)
in
rev(xpBuild(n,2,[1))
end

)
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—————— =_NextPart_000_0006_01BD26BA.23FD0940
Content-Type: application/octet-stream;
name="Primes.ml"
Content-Transfer-Encoding: 7bit
Content-Disposition: attachment;
filename="Primes.ml"

(* You may recall that I sent you some code last term
which produced prime number.
I thought of a different method using integer
streams.
I asked both versions (old version included) to
produce the first 887 prime number.
The old version took 11.5 seconds.
The new version took 1.5 seconds!
Unfortunately, the new version seems to be very
space inefficient. Trying to generate more primes
with the new version causes it to crash CML (windows
closes it down!).

*)

datatype stream = Item of int * (unit->stream);

fun cons (x,xs) Item(x,xs);

fun head (Item(i,xf)) = 1i;

fun tail (Item(i,xf)) = x£f(Q);

fun makeints n = cons(n, fn()=> makeints(n+1));

fun nth(s,n) = if n=1 then head(s) else nth(tail(s),n-1);

if head(s)>n then
Xs
else
head(s)::ton(n,tail(s),xs);

fun ton(n,s,xs)

if f(head(xs)) then
cons (head(xs) ,fn()=>(filter(f) (tail(xs))))

fun filter f xs

else
filter (£f) (tail(xs));
(ke *)
(k= Prime Number Generation Code----------——- *)

fun notdiv n x =
if (x mod n)=0 andalso n<>x then false else true;

fun sqr(x:int) = x*x;
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fun makeprimes(n) =
let fun xmakeprimes(n,acc,prms)=
if n=acc then
ton(sqr(nth(prms,n+1))-1,prms, [1)
else
xmakeprimes(n,acc+l, (filter (notdiv (nth(prms,acc+1))) (prms)))
in
xmakeprimes(n,1,makeints 1)
end;

fun pIsPrime(n) =

let
fun xpIsPrime(n,sf) =
if sf=n then
true
else
if n mod sf = 0 then
false
else
xpIsPrime(n,sf+1)
(k%)
(%)
(k%)
in
xpIsPrime(n,2)
end

)

fun pBuild(n) =

let
fun xpBuild(n,sf,acc) =
if n=0 then
acc
else
if pIsPrime(sf) then
xpBuild(n-1,sf+1,sf::acc)
else
xpBuild(n,sf+1,acc)
()
(%)
(*x)
in
rev(xpBuild(n,2, [1))
end
(ko *)



188 CHAPTER 10. DISCRETE MATHS

Joseph Marshall’s prime finding and factorization program.

fun DivBy(m, []1)=false
| DivBy(m,1::1s)=if((m mod 1)=0) then true
else DivBy(m,1s);

fun PrimelList(n)=
let fun PLCalc(n,m,ls)= if(m>n)then 1ls else
if DivBy(m,ls) then PLCalc(n,m+1,1s)
else PLCalc(n,m+1,m::1s)
in PLCalc(n,2,[])
end;

fun Factorize(n)=
let val flist=PrimeList(n)
in
let fun FCalc(m, [],fl)=f1l
| FCalc(n,pf::pfs,fl)=if((n mod pf)=0) then FCalc(n div
pf,pf::pfs,pf::£f1)
else FCalc(n,pfs,fl)

in
FCalc(n,flist,[])
end
end;

(k  mmmm *)
(* PRIME FACTORS *)
(* ANDREW ROSE *)
(* 20/11/97 *)
(k ————m *)

(x The code below defines the following functionms...

pIsPrime - Tests to see if a number is prime
pBuild(n) - Builds a list of the first n primes
pFact (n) - Finds the prime factors of a list

pFactFromList(n)- Finds the prime factors of a list
given a list of primes. If the list
of primes is exhausted before all the
factors have been foundd then the last
factors are found using pFact.

*)

fun pIsPrime(n) =
let
fun xpIsPrime(n,sf) =
if sf=n then
true
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else
if n mod sf = O then
false
else
xpIsPrime(n,sf+1)
(k%)
(%)
(*x)
in
xpIsPrime(n,2)
end

)

fun pBuild(n) =

let
fun xpBuild(n,sf,acc) =
if n=0 then
acc
else
if pIsPrime(sf) then
xpBuild(n-1,sf+1,sf::acc)
else
xpBuild(n,sf+1,acc)
(*%)
(%)
(%)
in
rev(xpBuild(n,2,[1))
end

’

fun pFact(n) =

let
fun xpFact(n,sf,acc) =
if sf > n then
acc
else
if (n mod sf) = O then
xpFact(n div sf, sf, sf::acc)
else
xpFact(n, sf+1, acc)
(*x)
(%)
(*%)
in
xpFact(n,2, [1)
end

exception BotchUp

fun pFactFromList(n,pList) =
let
fun xpFact(n,sf,acc) =
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if sf > n then

acc
else
if (n mod sf) = O then
xpFact(n div sf, sf, sf::acc)
else
xpFact(n, sf+1, acc)
(*%)
(%)

(%)
fun xpFactFromList(n, [],acc) = raise BotchUp
| xpFactFromList(n,sf::[],acc) =
xpFact(n,sf,acc)
| xpFactFromList(n,pList,acc) =
if hd(pList) > n then

acc
else
if (n mod hd(pList)) = O then
xpFactFromList(n div hd(pList), pList, hd(pList)::
else
xpFactFromList(n, tl(pList), acc)
(k%)
(%)
(*x)
in
xpFactFromList (n,pList, [1)
end

-------------- 4F9F38BD7423--

(AxCYU(BxD)=(AUB) x (CUD)?

Sets are extensional: two sets with the same members are the same set. So
let’s see which things belong to the LHS and to the RHS. ‘fst’ and ‘snd’ are the
obious operation for taking ordered pairs apart.

x € LHS iff
re€AxCVaxeBxD iff

(fstz € AAsndx€C)V(fst x € BAsndz € D)

and
x € RHS iff
fstz € (AU B) Asndz € (CUD) iff

(fstx € AV fstax € B) A (sndx € C V sndx € D).

We can introduce some abbreviations to make this legible: abbreviate

‘fstx € A to ‘a’
‘fstx € B to 'V’
‘sndz € C to ‘¢’
‘sndxr € D to ‘d’
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and then the LHS and the RHS become

(anc)V(bAd) and
(aVb)A(cVvd)

which are clearly inequivalent.



