Random Thoughts on Machines and
Computability

Thomas Forster

December 2, 2021

Contents
[1__Functions in intension and in extensionl 3
1.1 ...and Why I was a traumatised Child|. 3
1.2 Functions in intension and in extension, and Slide Rules| 4
12 Revelation and Computability| 5
3 _DFAS4 11
BI1 Wordladdersl 11
8.2 What can DFAS remember? 12
3.3 HowtoPumpaWasp 13
[3:4 The Easy Way info the Pumping Lemma] 14
[3.5 How to spot a regular language] 14
3.6 A Riff on van der Waerden’s Theoreml 15
3.6.1 A new Way of proving van der Waerden?| 17
[3.7 NFAs are nondeterministic not probabilisticl|. 17
3.8 Polynomial growth?|, 18
3.9 numerating Sl 18
13.10 Any connection between Quantifier Elimination and Automaticity?| 20
13.11 Regular Languages for Numerals| 21
4 Context-free Languages and PDASs| 22
4.1 Interleavings| 23
4.2 A thought about regular and context-free languages] 23
K43 Products of PDASYo oo 24
4.4 Re-use of variablesl L. 25
[Computable Functions] 27
b.1 A conversation with two of my Queens’ 1B CS students| 27
b.1.1 Turing Degrees| o000 28
5.2 Inverting Partial Computable Functions| 28
.3 This should be an exam question| 29
b.3.1 Over dinner at the Boffafest: discriminators|. 29

|6 Supervision Notes on the Part II Automata and Formal Lan- |

| guages Course| 32
6.1 Sheet 1l 32
6.2 Sheet 20o 38
[6.3 CS 2017 Part 1B Exercise sheet ex 121. 41
64 Sheetd 47
G5 _Sheetdl oo 53

6.5.1 Question 4, starred part| 53
6.5.2 Question 8 Lo 54
6.5.3 Question 9] oo 55
6.5.4 Question 11} oo 55
|7 Discussions of questions on examples sheets for Part II Maths |

|__Languages and Automata from previous years| 56

[7.0.1 Question 12 on Sheet 2 2018/9 56

I8 Old Tripos Questions for Part 1l Maths Languages and Au- |

57

. 1 201770 . . e e e 57
RI1 20017:4:4Hl 58

8.1.2 2017:3:11Hl 58

0.2 2018l . ..o e e e 60
821 20018 1:12GHo 60

5.0 20190 . .o e e 60
8.3.1 Paper 1, Section [I 12H| 60

8.3.2 Paper 2, Section IT4H| 61

0.4 20201 . ..o e e 61
841 Paper 1: 12Fo oo 61

8.4.2 Paper3: 12Fo L. 61

9 _Some Answers| 62
110 Appendix on The empty string| 62

If i had a blog, i would put this in it. It’s a collection of random stuff
that occurred to me while I was supervising Languages and Automata, and 1B
Computation Theory for the Compscis. Read it at your own risk.

The usual breadth-first-search proof that every semidecidable set is the range
of a total computable function actually proves that to any computable function
there corresponds a total computable function with the same multiset of values.

1 Functions in intension and in extension

1.1 ...and Why I was a traumatised Child

Why is the area under the hyperbola log(n)? I was taught this at school and
i'm trying to reconstruct it. And i am trying to reconstruct it beco’s i didn’t
like the proof they showed me.

I think it goes as follows. Think of IR*—the plane. The operation that
stretches distances parallel to the z-axis (let’s be posh and give its proper name:
the abcissa) by a factor of m and shrinks distances parallel to the y-axis (the
ordinatfﬂ) by a factor of m. It must preserve area. Not entirely sure how to
prove that but never mind. (It certainly preserves the area of rectangles with
their sides parallel to the two axes and that’s probably enough). It’s going to
have to preserve the hyperbola too, so it had better send the point (a,1/a) to a
point on the hyperbola. It will send it to (an,1/an) which is on the hyperbola
so that’s OK. Actually that was obvious, wasn’t it, beco’s the hyperbola is the
locus of points p in the plane s.t. that the product of p’s distance to the z-axis
and its distance to the y axis is a constant. Duh.

The hyperbola is the graph on the plane of the function x — 1/z. Now
consider the figure under the hyperbola bounded by the four points (1, 0), (1, 1),
(m,0), (m,1/m). When we do the transformation the four points go to (m,0),
(m,1/m), (m2,0), (m?,1/m?). This new figure has the same area as the old,
and the figure formed by joining them, namely the figure bounded by (1,0),
(1,1), (m?,0), (m?,1/m?), which is the area under the hyperbola up to m? is
twice the area under the hyperbola up to m.

That’s clearly the way to go. That must be what they did.

More generally ... consider the figure under the hyperbola bounded by the
four points (1,0), (1,1), (n,0), (n,1/n). When we do the transformation that
shrinks/expand by a factor of m the four points go to (m,0), (m,1/m), (mn,0),
(mn,1/mn). This new figure has the same area as the old. So we have shown
that—for any m and n—the area under the hyperbola from 1 up to n is the
same as the area under the hyperbola from m to mn. So the area under the
hyperbola up to mn is the sum of the area under the hyperbola up to m and
the area under the hyperbola up to n. Looks like logarithms to us, guv. Yes.
Now we argue that, up to a constant factor, the log function is the only function
that has this multiplicative property. I'm not quite sure how you prove that
last bit but that’s not actually the problem. For me, at any rate. The problem
(for me) is that we have shown that the two functions (log, and the area-under-
the-hyperbola) have the same extension; we haven’t shown that they have the

INo reason why we should rerserve the letters ‘z’ and ‘y’ in this way for input and output.
Roll on A-calculus.

same intension. I was probably expecting some clever syntactic manipulation.
I think i would have been more satisfied with some reasoning concerning how to
differentiate/integrate converses of analytic functions but of course they don’t
do that at A-level.

Come to think of it, why can’t you derive it by using the chain rule? Differ-
entiate €/°9(*) wrt ‘z’. You must get €/°9(*) times whatever dlog(z)/dx is. And
the answer had better be 1; so dlog(z)/dx had better be 1/z.

Why didn’t they do that?

1.2 Functions in intension and in extension, and Slide
Rules

The function-in-intension/function-in-extension distinction looks clear enough
when one is given paradigmatic examples: programs vs lookup tables. However
these concepts have blurred edges, as one can see if one thinks about devices
such as a slide-rule. (I am hoping both that your childhood was neither so
deprived that you ever had to use one, nor so deprived that you don’t know
what they are!)?

Is a slide rule a function in extension or a function in intension? Well, it’s
much more like a function in extension than a function in intension. But’s it’s

21 keep one in my room in college, if you want to see one. I offered it to DPMMS for their
cabinet of curiosities, but they turned up their noses.

not just one function in intension: it’s a cleverly designed, cleverly packed family
of functions-in-extension. However it does look a bit like a function-in-intension
(or perhaps a bundle of them) beco’s there is an activity that looks like running
a function on (or using) a slide-rule. If you want to extract information about
a function from a slide rule you act on it in some way, or get it to act, and that
makes it feel a bit more like a machine. I remember writing an essay (when
i was a philosophy student) under the title “Does an adding machine add?”
The point being that a pen doesn’t write, it’s the person holding the pen who
writes—by use of the pen. Who is doing the adding? Is it the adding machine?
Or the person by use of the adding machine? Of course that was in 1968, and
there are no adding machines any more. Or rather there are, but they’re all
digital. The question is the same tho’.

This raises a question about packing. A function-in-extension is a lookup
table. Now a lookup table is no different (in the relevant respects) from a
.jpg file. It can be compressed in the same sort of way as an image file, by
exploiting regularities. The more cleverly you compress the lookup table the
more the result of that compression looks like a function-in-intension. Probably

still a good essay question! A sly drool is of course an analogue device not a

digital one, and that is one reason why it is hard to think about. It is discrete
mathematics we are concerned with here, not continuous mathematics. We
haven’t got a good theory of analogue computation.

I mention these issues around slide rules not to say that the intension/extension
distinction is obscure, but to say that—despite slide rules—it is a useful one;
there are plenty of situations where it is clear which of the entities in the picture
are the intensions and which are the extensions.

2 A semiserious talk about Revelation: dedi-
cated to Nathan Bowler

Not sure whether to call it ‘Revelation and Recursiveness’ (with the alliteration)
or something that doesn’t abuse the word ‘recursive’. Anyway ...!

A semidecidable set is one to which the external world has acquired complete
information at the end of time. A set is semidecidable if there is a procedure
that emits all its members.

There are two relevant theorems, due to Craig and Kleene respectively:

(i) Every theory with a semidecidable set of axioms has an axioma-
tisation (in the same language) that is decidable.

(ii) For every theory T in a language £ with a decidable axiomati-
sation there is an extension £’ of £ and a theory T” in L that is a
conservative extension of 7" and is finitely axiomatisable.

(The discussion of Computability and Revelation that follows started off as
the author’s attempt at an amusing (and possibly helpful) non-mathematical il-

lustration of the difference between decidable and semidecidable sets. It appears
to be spiralling out of control.)

According to Islam, Mohammad is the last prophet; there are to be No
Further Revelations. Thus the set of revelations-according-to-Islam is finite, and
therefore decidable. The set of its deductive consequences is semidecidable—at
least; it may additionally be decidable...we don’t know.

In contrast to Islam, both Christianity and Judaism hold out at least the
theoretical possibility that there will be further revelatiorﬁ Thus, in contrast
to the situation with Islam, whose revealed set of truths is finite and therefore
decidable, we cannot be sure that the set of truths that are (to be eventually)
revealed by Christianity or Judaism is any better than semidecidable.

Now the set of deductive consequences of any semidecidable set is itself
semidecidable. (Why?) So the set T¢ of deductive consequences of Christian
Revelation is a semidecidable theory. Now we can appeal to fact (i) above to infer
that there is a decidable set Az of revelations and deductive-consequences-of-
revelations from which all of T follows.

It’s worth thinking a little bit about how we obtain this decidable set Az¢,
and what the decision procedure is. A decidable set is one to which we have
access in the sense that its characteristic function is total computable. (Not
that this carries any guarantee that we are acquainted with any means of com-
puting this characteristic function!) Now: in the real world there is a difference
between sequential access devices and random access devices . .. and this distinc-
tion might be useful here: Az is not a random access device, it’s a sequential
access device.

Once we have milked this example for all the insights it can afford us about
the sequential/random distinction we can procede to consider the implications
for us of point (ii). There will be a new language and a finitely axiomatisable
theory 7 in it which is a conservative extension of Azc. Did i say ‘will be’?
There is already. Now what would theologians not give to get their hands on
this text??

I think that if we are to understand what in God’s name is going on it could
be a very good idea to understand how (i) and (ii) are proved, and persuade
ourselves that they work for all theories, not just those with mathematical
subject matter. For my part I would be very glad to be pushed into such
an investigation. I sort-of understand (i), but I have never worked through a
proof of (ii).

Here is a proof of (i).

REMARK 1 (Craig)

If a theory T has a semidecidable set of axioms, then a decidable Axp set of
azioms can be found for it (in the same language).

3Spoiler: our chaplain at Queens’ points out that this is contestable: the writer of the
Book of Revelation ends his disquisition with a curse on the head of anyone who lets out any
further revelations. One can easily see how the author of that book could feel he had had
enough visions to be going on with thank you very much.

Proof:
Let 9T be a volcano that emits axioms of T, and notate the nth axiom
emitted by 9t as ¢,,. Then we obtain a decidable axiomatisation Axy for T as

{C N\ ¢i) = ¢n:necN}

0<i<n

We need to spell out why this axiomatisation is decidable. Let (¢, : n € IN)
be the stream of axioms emitted by the volcano that is zigzagging over the
computable function f whose range is the set of axioms. (Of course in our
present setting these are the Revelations that pop up from time to time, so we
don’t have to worry about any zigzagging). The axioms in the decidable set are

(A 6i) = ¢

<n

The decision procedure for this set of axioms is as follows; on being presented
with a formula ...

If the formula is the first thing emitted by the volcano, accept; else
If the formula is not a conditional, reject;

If its antecedent A is not a list-conjunction ask whether or not A is
the first thing emitted by the volcano. If it isn’t, reject;

If the antecedent is a list conjunction of length n check that, for
each ¢ < n, the ith thing in the list is the ith thing emitted by the
volcano and that the consequent is the nth thing emitted by the
volcano. Accept iff this condition is satisfied.

It may be worth noting that if (¢; : i € IN) is the sequence of revelations
presented to us in time, and our axioms are the conditionals outlined above
then this axiomatisation stands a good chance of being independent. It may
be a fair assumption (i’d have to ask the theologians) that—for all i—¢; does
not follow from earlier ¢;. After all, if ¢; follows from the earlier ¢; then—in
fairness—it can hardly be said to be a revelation, can it?E| If this assumption
holds good then none of the axioms

{C N\ ¢i) = ¢n:neN}

0<i<n

follow from any of the others: the axiomatisation Ax¢ is independent.
Suppose I am given a formula and i wish to know if it is an axiom of the

decidable axiomatisation. I might have to wait for the volcano to emit n axioms

from the semidecidable set, where n depends on the length of the candidate.

4Perhaps the Revelations are not flagged as such...? Perhaps checking that something is
a revelation involves establishing its independence from earlier revelation. . .?

How long might that take? One’s first thought is that it might take a ridiculously
long time. (Indeed it might). So long, in fact, that there is no computable bound
on the time taken. But that doesn’t follow. The question is not:

(1) If f“IN is not recursive can we bound time taken to learn that
z € f“IN by a computable function applied to z?

but rather

(2) How long does a volcano for f take to emit = values? Can we
bound this time by a computable function applied to x?

The answer to (1) is—obviously—*“no”, and for the usual reasons; the answer
to (2) might be ‘yes’!

If a theory has a semidecidable set of axioms then in some sense it has
finite character; remark [1| captures part of this sense by telling us it will have
a decidable set of axioms. In both these descriptions the finite character is
expressed in a metalanguage. The following remark tells us that this finite
character can be expressed in a language for 7'

I suppose the point that is disquieting me is the thought that the finite
object that is the Turing machine or register machine that guards the decidable
axiomatisation is one that we can’t locate in finite time. Or can we? It’s finite,
so we must have found it at some finite stage. It’s just that we don’t know when
we’ve found it. We have lots of candidates of course but we never know when
we have reached a stage when no revision is necessary. A detailed discussion
may be in order.

REMARK 2 (Kleene, [2])

If T is a recursively axiomatisable theory in a language L with only infinite
models, then there is a language L' O L and a theory T' in L' and T' is finitely
axiomatisable and is a conservative extension of T.

]

(We can uniformly expand any L-structure that is a model of T into a £'-
structure that is a model of T".)

(The idea in the proof is to formalize the inductive clauses of the truth
definition for T'. The basic references are [2] and [I]. There is a very clear review
of both papers by Makkai [3] that also provides a sketch of the proof.) You may
have seen (or be about to see) some examples of this phenomenon in Part II
Logic and Set Theory. Bipartite graphs, algebraically closed fields. .. Another
illustration of this process is afforded by the way in which the (pure) set theory
ZF (which cannot be finitely axiomatised) corresponds to the class theory NBG,
which can be finitely axiomatised. Why would one expect this to be true in
general? A theory that is recursively axiomatisable is underpinned by a finite

Proof: Omitted.

5] am omitting the proof since i cannot find a proof that doesn’t use truth-definitions, and
i haven’t got time or space to go into them.

Might it be easier
to prove Kleene’s
theorem for auto-
matic theories than
for arbitrary recur-
sively axiomatisable
theories...?

engine that generates all the axioms. It ought to be possible to hard-code this
engine into the syntax, if necessary by enlarging the language. I have the feeling
that it should be possible to do this without invoking truth-definitions. I keep
hoping that someone will show me a proof.

The sequential/random distinction can be applied to abstract devices as
well. How long does it take to read an entry e in the device? Well, at least
e, so one doesn’t really want to say that a random access device is one whose
characteristic function is computable in constant time and a sequential device
one whose characteristic function has strictly (perhaps steeply) increasing cost
function.

A possible distraction: every decidable—indeed every semidecidable—set is
the range of a primitive recursive function. But of course that doesn’t mean
that every characteristic function is primrec.

we need a section entitled:

Characteristic Functions and the sequential/random Distinction

Of course one can make the exact same point about the revelation of Mathe-
matics.

A fatal flaw!

The set of truths revealed by Christianity or Judaism looks semidecidable but
actually it needn’t be. Suppose, once it’s all revealed, it turns out not to be
semidecidable; that doesn’t contradict what we know. All we know so far is
that we have access to a finite initial segment of it. But then we have access to
finite initial segments of—all sorts of things: the set of codes for total functions;
we are daily unearthing new members of the highly undecidable set that is True
Arithmetic. And who is to say that we won’t have unearthed every last one of
them by the end of time? (Does this even make sense?)

This prompts us to think about the following situation. There is a set X,
concerning which positive information about membership is revealed to us in
finite dribbles. Possibly negative information too, but let’s not assume that.
The nature of the dribbling is such that at the end of time we have complete
information about membership of X; every member has been dribbled. (perhaps
‘leaked’ is better). Does this mean that X was semidecidable? One wants to say
not: the dribbles might be no more than leaks—crumbs capriciously dropped
from the table of a highly noncomputable gatekeeper for a highly undecidable
set. The important question is whether or not the leaks were the result of the
activity of a finite engine. If they aren’t then we cannot infer that the set of
revelations is semidecidable.

The wider point here is this: one tends to say that the hallmark of the
semidecidable set is that each and every one of its members gets revealed to
us at some point before the end of time. That is the intuition one tries to get

across to students, but it’s not the whole story. It’s a necessary condition all
right, but it’s not sufficient. It’s necessary also that the revelation be done by
a humble finite engine. For consider the set of gnumbers of total computable
functions. The oracle for this set could divulge all its members to us over
time—in increasing order indeed—and we would know all its members and all
its nonmembers by the end of time, but that doesn’t make it semidecidable.
The oracle is not a finite engine!

Another way to see it. God could recite to us the members of the complement
of the HALTing set—in increasing order, one at a time, at noon every day like
the shipping forecast. That doesn’t make that set semidecidable.

So no Templeton money. Chiz.

But what about the engine that reveals mathematics to us over the ages? It’s
a natural process. If all of physics is computable then the argument /construction
that i have tried to run for theology actually works. So there really is a finite
body of first-order mathematics from which all the first-order mathematics that
we will ever know can be deduced.

10

3 DFAs

Regegegexp quarks quarks!!
A chorus of DFAs. (with apologies to Aristophanes)

I have always thought that set of acceptable acronyms is in some sense dense
in the semantic space of words: you can get any acronym to mean anything, or
something arbitrarily close to anything. Here is a story from Flight magazine
171 number 5089 in 2007.

“Those clever people at DARPA want to demonstrate technology for a fixed-
wing UAV that can stay aloft for five or more years. The programme is called
VULTURE for Very high altitude ULTra-long endurance Unmanned Reconnais-
sance Element.”

“I don’t think VULTURE sounds right ... Gives the wrong impression”
“So ...what would you have called it?”

“Something with a more soaring theme ... maybe ALBATROS—Airborne
Long Beyond Any Time Reasonable Or Sane”

To settle the conundrum we asked Budgie News random acronym guru Max
Cue to come up with some other solutions:

PARROT—Permanently AiRborne Ridiculously Over the Top
DODO—Decidedly Over-Designed Observer

BUDGIE—Big Unmanned Definitely Guaranteed to Injure Eventu-
ally.

And of course to deal with the mind-boggling boredom of operat-
ing and monitoring the system, he suggests a parallel training and
support unit called BLUE TIT(S) ...

Big Loitering Unmanned Experiment Temporary Insanity Training
System.

3.1 Word ladders

Can I extract an execise out of this, I wonder?
You know about word ladders: things like
SKY
SAY
SAD
SAT
SET
SEE
SEA
set in stone on the waterfront in Wellington: 20201111_162558. jpg

11

20201111_162558.jpg

Or

WORD
WORE
GORE
GONE
GENE

which i found in Towards a Theoretical Biology. (Kim Sterelny has had
my copy for years. Grrr) makes a point about genes being words in a suitable
language.

Tan Stewart (in Nature’s numbers p 41) makes the point that if you want a
word-ladder that takes you from SHIP to DOCK, then you must, somewhere en
route, have a word with two vowels (at least if every legal word has a vowel)—
beco’s the vowels in SHIP and in DOCK are in different places. I wondered if
there is a theorem lurking in there. ...

Now! let L be any language you please, regular. context-free, whatever. The
relation between two words of L of being connected by a word-ladder (of words
all in L, of course) is obviously an equivalence relation. My question is: does
this equivalence relation actually do anything? Can i extract from it an exercise
for my students? Can you?

3.2 What can DFAs remember?

Perhaps the paedogogical point to make it that altho’ a DFA can remember
only a finite amount of stuff it can nevertheless remember it for an arbitrarily
long time. Worth thinking about this distinction. Space and time are not
interchangeable!

e One thinks of this in connection of vowel harmony in the phonological
rules of natural languages. In languages with vowel harmony, https://en.
wikipedia.org/wiki/Vowel_harmony in any one word the vowels must either
all be (for example) front vowels (Kirribilli) or all be back vowels (Wooloomoolod?]
but not Nullarbor which is not an aboriginal word.). Lots of Australian Abo-
riginal languages have vowel harmony. The language of legal sounds (strings-of-
phonemes) for any natural language is always a regular language. This is beco’s
the sounds that you are allowed to use depend only on the last k£ phonemes you
have seen, for some fixed k. The rules might tell you that if all the vowels in
the last 5 characters were back vowels then the next character has to be a back
vowel too (if it is a vowel). This can propagate out to arbitrary length.

e Think about the latch. https://en.wikipedia.org/wiki/Flip-flop_
(electronics)| Often pointed out that it underlies memory devices. It’s very
easy to design a (finite state!) machine that remembers the last string of three
identical characters that it saw.

e A simple case. Let X be an alphabet with 0 € ¥ and 1 € X. Of course it
may have lots of other stuff too. We can design a two-state machine that is in

6There really is a place called Wooloomooloo; i didn’t make it up—nor did Python: https:
//en.wikipedia.org/wiki/Bruces_sketch

12

https://en.wikipedia.org/wiki/Vowel_harmony
https://en.wikipedia.org/wiki/Vowel_harmony
https://en.wikipedia.org/wiki/Flip-flop_(electronics)
https://en.wikipedia.org/wiki/Flip-flop_(electronics)
https://en.wikipedia.org/wiki/Bruces_sketch
https://en.wikipedia.org/wiki/Bruces_sketch

one state when the last character from {0,1} that it read was 0 and is in the
other state when the last character from {0,1} that it read was 1. Notice that
what we have here is really a kind of superposition of two machines, one of which
recognises strings whose last character from {0,1} was 0 and the other one of
which recognises strings whose last character from {0, 1} was 1. Fortunately for
us these two machines have the same transition table (they differ only in their
accepting states) so we can superimpose them to get a single machine which has
two accepting states.

e In this connection consider the language over the alphabet {a,b} where
no block of k (k fixed in advance) consecutive characters contains three evenly
spaced ‘a’s or three evenly spaced ‘b’s. This is obviously regular, beco’s you
only have to remember the last k characters. (Brief reality check: you need at
most 2* states, and the ‘2’ comes beco’s there are two characters.) But what
happens if you discard the k bound, and reject any word that has three evenly
spaced ‘a’s or ‘D’s, irrespective of how widely spaced they are? Is that a regular
language? If it is, it will be for entirely different reasons. (And of course there’s
nothing special about the number three here). This is a hard question!

There is a distant connection with the Ackermann function which i will tell
you about below, section [3.6

3.3 How to Pump a Wasp

One sense in which DFAs do not have memory is that, altho’ in some sense
they know what state they are in (at least to the extent of actually being in
that state) in no sense do they have any awareness of having been in that state
before. It is this idea that lies behind the pumping lemma.

(I suppose the corollary ought to be that, for machines that do not obey the
pumping lemma, there ought to be a way of thinking of them as being able to
remember what states they have been in earlier. However i have never found a
way of telling that story in a way that makes sense.)

I remember, when i was a neuro student, being very struck by this passage
in D. Wooldridge: “The Machinery of the Brain”, (McGraw Hill 1963) p 82. I
made a note of it at the time, and i have never forgotten it.

“When the time comes for egg-laying, the wasp sphex builds a bur-
row for the purpose and seeks out a cricket which she stings in such
a way as to paralyse but not kill it. She drags the cricket into the
burrow, lays her eggs alongside, closes the burrow, then flies away,
never to return. In due course the eggs hatch, and the wasp grubs
feed off the paralysed cricket, which has not decayed, having been
kept in the wasp equivalent of deep freeze. To the human mind, such
an elaborately organized and seemingly purposeful routine conveys
a convincing flavour of logic and thoughtfulness—until more details
are examined. For example, the wasp’s routine is to bring the paral-
ysed cricket to the burrow, leave it on the threshold, go inside to
see that all is well, emerge, and then drag the cricket in. If, while

13

the wasp is inside making her preliminary inspection, the cricket is
moved a few inches away, the wasp on emerging from the burrow,
will bring the cricket back to the threshold, but not inside, and will
then repeat the preparatory procedure of entering the burrow to see
that everything is all right. If again the cricket is removed a few
inches while the wasp is inside, once again the wasp will move the
cricket up to the threshold and re-enter the burrow for a final check.
The wasp never thinks of pulling the cricket straight in. On one
occasion, this procedure was repeated forty times, always with the
same result.”

Clearly you can apply the Pumping Lemma to the wasp! [To my shame, it
is only recently that i have made the connectionﬂ]

3.4 The Easy Way into the Pumping Lemma

Forget the symbols and the statement, get the idea.

Suppose you have a machine with 17 states, and you give it a string of
length 23, and it’s ended in state s. It’s gone through a loop. Now identify
the substring that sent it through that loop. You can “pump up”that substring
that sent it through the loop, by putting in as many copies of that substring at
that point as you like—even zero! When you feed the machine the pumped-up
string it will end up in the same state s as before. Obvious, isn’t it!?

What use is this? You have some language L in mind. You take a string
for L that is longer than the number of states in the machine you are trying
to refute. The machine reads your string and ends in an accepting state S.
You now pump up the string. Pumping up the string doesn’t affect whether or
not the result is accepted by the machine (as we have seen) but it might affect
whether or not the pumped string is in L. That is the possibility you have to
trade on.

3.5 How to spot a regular language

I am in a darkened room, whose sole feature of interest (since it has neither
drinks cabinet nor tea-making facilities) is a wee hatch through which somebody
every now and then throws at me a character from the alphabet ¥. My only
task is to say “yes” if the string of characters that I have had thrown at me so
far is a member of L and “no” if it isn’t (and these answers have to be correct!)

After a while the lack of tea and drinks cabinet becomes a bit much for me so
I request a drinks break. At this point I need an understudy, and it is going to
be you. Your task is to take over where I left off: that is, to continue to answer
correctly “yes” or “no” depending on whether or not the string of characters
that we (= first I and then you) have been monitoring all morning is a member
of L.

7And yet more recently still that i discovered this: https://www.youtube.com/watch?v=
xdFyQJyo3Ps

14

https://www.youtube.com/watch?v=xdFyQJyo3Ps
https://www.youtube.com/watch?v=xdFyQJyo3Ps

What information do you want me to hand on to you when
I go off for my drinks break? Can we devise in advance a
form that I fill in and hand on to you when I go off duty?
That is to say, what are the parameters whose values I need
to track? How many values can each parameter take? How
much space do I require in order to store those values?

The point is that thinking about the problem in this way can help make it
clear whether or not the language you are looking at is regular. If you can bound
in advance the number of bits of information that you want from me, then we
know that the language is regular because the machine that i am emulating in
my person has only finitely many states.

3.6 A Riff on van der Waerden’s Theorem

I think i owe you a health warning about the thought-experiment in section|3.5
The thought experiment is very useful, and when it tells you that a language
ought to be regular (beco’s you need to maintain only a finite amount of infor-
mation) then you can trust it. However there are examples of languages that
are regular for quite deep and obscure reasons which nevertheless appear to be
non-regular according to the thought experiment. And it is one such that is the
topic of this section. Let me explain.

Let your alphabet be, say, ¥ = {a,b,c,d}, and consider the language L
consisting of those strings from >* which do not contain five evenly spaced as,
nor five evenly spaced bs, nor five evenly spaced cs, nor five evenly spaced ds.
The thought experiment strongly suggests that L is not regular, because it looks
as if you need to store the whole of the string-seen-so-far. After all, the spacing
could be as wide as you please, and the a that you are about be given through
the hatch might line up with four earlier widely-spaced beans i mean as to make
five. How do you exclude the possibility that the bean you have just received
isn’t the same colour as the very first bean you received and as three other
evenly-spaced beans in between?

Indeed it even looks as if there is a straightforward application of the Pump-
ing Lemma to prove that this language L is not regular. Suppose L is regular;
let w be some word in this language; divide it up into wiuws where u is the
pumpable bit in the middle. Then wju™ws is in L for any n. Now certainly
wiubwsy contains (in u°) five (indeed n) evenly spaced as (or bs, or whatever),
and therefore cannot be in L, contradicting the pumping lemma.

Nevertheless the language is actually finite and is therefore regular after all!
This is very far from obvious(!)

van der Waerden’s Theorem is the following:

“Let ¥ be an alphabet with |X| = s and let k& be a natural number. Let L
be the language over 3 consisting of those strings w s.t. for no letter z € X
does w contain k evenly spaced occurrences of . Then L is actually finite, and,
from s and k we can actually compute an upper bound on the the length of the
longest string in it.”

15

For the moment I am asking you to take this fact on trust (we shall see a
proof soon) but for the moment its significance is that the language L is finite,
and therefore is regular, even though the thought-experiment suggests that it
isn’t.

What has gone wrong?

The point is that not every regular language is pumpable. At least not in
any useful sense. You can always take the middle bit (the y in zyz) to be
empty—but then in that sense everything is pumpable. Only infinite regular
languages are pumpable. The DFA for a finite language cannot go through a
loop on its way to an accepting state.

van der Waerden’s theorem concerns the situation where you have a po-
tentially infinite supply of beads—of k different colours, k finite—and you are
laying them down in a line, each the same distance from its neighbours. If i
want my bead display to have, say, n evenly spaced beads of one colour, is there
a j so large that whenever i put down j of these beads in a line, all evenly
spaced, then there are n evenly spaced beads of one colour? Van der Waerden
says there is always such a j. The standard proof of van der Waerden gives a
function that bounds the length of the string you need. It’s a nice (very nice)
proof, but the function it gives is an Ackermann function, something that isn’t
primitive recursive. This contradicts what for years i used to tell my students,
namely that unless you go out of your way to look for trouble you will not
encounter any functions IN — IN that aren’t primitive recursive. There are no
naturally-occurring computable functions IN — IN that are not primitive recur-
sive. Well, that’s not quite true, as this example shows. All the same it is true
that if you work very hard on optimising the proof then you can get a primitive
recursive bound. But you have to work very hard, as i say, and I for one have
never read the details.

Joe Hurd has supplied me with the following direct proof of van der Waerden.
which I think is the standard proof, since it sounds remarkably like a proof i
heard Imre give years ago. I've hacked it about.

We start with two colours—red and blue—and try to find three evenly spaced
beads of the same colour. So, assume we have a colouring function ¢ : IN — {red,
blue}.

We imagine a finite string of beads, of indeterminate length, It has a start
point but the end point is in the far distance somewhere. A block is a contiguous
set of beads, and the string of beads is partitioned into blocks. How many
different ways are there of colouring blocks of length 5?7 (Don’t worry for the
moment why we have picked on 5). 2% = 32. So—think pigeonhole—consider
the first 33 blocks of length 5: Bj,...Bs3. There must be a block that is
repeated, say B = B; = B; for 1 <1 < j < 33.

Now B (up to red-blue symmetry) must have one of the following forms:

red red xxx*

blue red red XXX
red blue red XXX XXX

XXX XXX

*oxxx

*

16

where xxx can be either colour, and the * is the focus of the block. The
focus is the address that will supply us with the third of our evenly spaced beads
of the one colour. If the focus in B is red, then we have found our three evenly
spaced reds, so assume the focus in B is blue.

Now consider By, where k = j + (j — i), (so we are considering the three—
evenly spaced—blocks B;, B;{(j_;) and B;a(j_; and look at the point n in By
with the same position as the focus in B. Call n the superfocus.

If n is blue, then it lines up with the blue foci in B; and Bj to give us three
evenly spaced blue beads.

If n is red, then it lines up with the first red in B; and the second red in By,
to give three evenly spaced red beads.

Either way this tells us that that if we have 33 + 33 = 66 blocks each of
length 5—making 330 beads—then we must have three evenly spaced red beads
or three evenly spaced blue beads. 330 is ridiculously large—you can check that
9 beads are enough. However it’s a proof of concept, and it shows us how to do
an induction.

Details of the induction will follow!

As you can see from the proof of the induction step (or will be able to see
once i have written out the bloody details!) the proof involves a double induction
rather like the double induction used to prove the totality of the Ackermann
function. The outer loop is the induction on the length of the monochromatic
strings, and the inner loop is on the number of colours.

3.6.1 A new Way of proving van der Waerden?

To return to start of this section, and the language L There is a possibility
here that i haven’t explored.

Van der Waerden’s theorem says that (i abbreviate) the set of counterex-
amples is finite. (Every sufficiently long string contains four evenly spaced a or
etc etc). Let L(I, ¢) be the language over a c-sized alphabet consisting of those
words that do not contain [evenly spaced tokens of any of those characters.
These languages are all finite and they all have regular expressions. I'm not
asking for those regular expressions, but it would be nice to know if there is a
way of obtaining the regular expression for L(l,c) from regular expressions for
assorted L(I',¢') for smaller I’,¢’. If there is, there would be a proof by induc-
tion that all the L(l,c) are regular. We would then be in a position to use the
Pumping Lemma to show that since L(l,c) it regular it must be finite.

So the project is to prove that if all L(I’¢) have regular expressions for I, ¢
suitably bounded then so does L(I, ¢).

/

3.7 NFAs are nondeterministic not probabilistic!

You could decorate the directed arrows in an NFA with probabilities, so that,
for each state o and each letter [, the real numbers on all the edges exiting o
and labelled ‘I’ add up to 1. If you are then given a probability distribution
on the letters of the alphabet you can say things about the probability of your

17

being in any particular state long-term. The study of this sort of thing is called
‘Markov processes’ (i think). But it is nothing to do with our concerns here!

3.8 Polynomial growth?

Let L be an infinite regular language. Is there anything we can say about the
growth rate of |L NX"| (the number of words in L that are of length n)? It can
be exponential: (a|b)* is an example. Or the set of binary representations of
multiples of 3. Does the pumping lemma tell us anything...? Well, the lim inf
is linear. And it might be no more than that: 0*.

3.9 Enumerating DFA’s

[also 2017 paper 1 section IT 11H]

A question on Maurice Chiodo’s Languages-and-Automata sheet (and it’s
probably on Languages-and-Automata sheets anywhere in the universe) invites
his victims to produce a function that enumerates all the deterministic finite
state machines. Yawn, yawn. Of course there are only countably many of them
yawn yawn and of course one can set up a specification language for them and
then order the specifications lexicographically etc etc yawn yawn yawn!

But this is actually slightly problematic (as we progressives are fond of say-
ing). Part of the description of a DFA is the alphabet of characters that it reads.
For any DFA that alphabet is finite. We want a uniform description of the DFAs
(that, after all, was the point) so we have to enumerate—somehow—all the al-
phabets the DFAs might use. Each alphabet is a finite subset of some cosmic
collection of all characters in God’s mind’s eye, and there could be, well, God
knows how many. So we have to assume that there are only countably many
characters. So we dole out to each machine a finite subset of this countable
set. A subset? One doesn’t want to have two machines which can be turned
into each other by a permutation of the cosmic alphabet? So we have to fix an
enumeration of the cosmic alphabet and then think of each machine’s alphabet
as an initial segment of it.

To be fair to the examiners they tell you to assume that there is, indeed,
precisely one cosmic alphabet, and that it is precisely IN.

The DFA is to be identified with a finite set of states and binary relation
on that set, plus a few other minor details. It has n states. OK, what order
do we write them in? We can distinguish the states by the words that lead us
thither from the start state. Associate to each state the first such word, in the
lexicographic order on words. But for that we need to have an order on the
alphabet. So every alphabet has to be canonically ordered and—since we are
looking for a global enumeration of all DFAs—this means that the union of the
alphabets has to be wellordered. That’s why the examiners told you that you
may take the alphabets all to be subsets of IN.

Give an example of a regular language such that every DFA that recognises
it has more than one accepting state. Is the minimum number of accepting

18

states possessed by any machine that recognises L an interesting parameter of
L?

The language over {0, 1} that has, say, an even number of 0s and of 1s or an
odd number of both. Something along those lines. Should be possible to cook
up a language s.t. no machine that recognises it has only one accepting state.
I'm wondering if examples of this kind can be processed into languages over
larger alphabets whose characters are words in the original alphabet. Then you
get a machine with only one accepting state and the old language is a quotient.
A vague thought.

What is the correct notion of product of machines with only one accepting
state?

On of my students pointed out to me that the concept of the e-closure of a
state is useful. The e-closure of a state o (or do we mean of {c}?) is the set of
states one can reach from o by following e-transitions. He’s probably right, but
i’d never tho’rt about it beco’s e-transitions are The Work Of The Devil, as any
fule kno.

Here’s how to see what the finite state machine is that recognises the lan-
guage you wish to show to be regular. Consider the example of the set of strings
in {‘0’,‘1’}* that denote (in the ordinary semantics) numbers divisible by 3.

You are in the following situation. You are given a string w from this alpha-
bet, and are told that you will be given a character, either ‘0’ or ‘1’, to append
to the string w, after which you will have to say whether or not the new string
w’'—which is w with the new character stuck on the end—denotes a number
divisible by 3. What do you want to know about w??

But actually, it’s slightly worse than that, because ...altho’ what you ac-
tually want to know about w is whether or not the new string w’—which is
w with the new character stuck on the end—denotes a number divisible by 3,
nevertheless knowing a value of some parameter F' on the basis of which you
can answer whether w’ denotes a multiple of 3 or not ...is not enough! You
also have to be able to compute the value of F for the any string w” obtained
by sticking characters on the end of w’, beco’s you are going to be asked the
very same questions about them as you were being asked about w’.

So the question is: “What is this parameter F'?” 1 have heard people use
the word ‘maintain’ in this connection: “What information about the string-
one-has-so-far-seen does one have to maintain?”

In general the challenge is this: Given a language L C ¥*, can i find a finite-
valued parameter F' such that... Whenever i know the value of F(w) then, for

any c € X, i can both

(i) answer the question “w :: ¢ € L?”; and
(ii) compute the value of F(w :: ¢).

(Here i am using the Standard ML notation of double colons for consing).
The finitely many values of F' become the states of the DFA.

19

3.10 Any connection between Quantifier Elimination and
Automaticity?

If you are doing CS IB Logic and Proof you will have encountered Quantifier-
elimination in the final section of Larry’s Logic-and-Proof notes. A theory
obeys quantifier-elimination iff every formula (of the appropriate language) is
equivalent to one without quantifiers. The theory DLO of dense linear order has
Quantifier Elimination. IHlustration: (3z)(z < z < y) is equivalent to x < y.
Not many theory have QE (that’s not quantitative easing btw) but it’s very
useful when a theory does.

Presburger Arithmetichttps://en.wikipedia.org/wiki/Presburger_arithmetic
is a theory with signature (IN,+,<,0,1). There is also, for each concrete k, a
unary function div k. It does not have QE. However, if we add, for each concrete
k, a unary predicate is-divisible-by-k we have a theory that does have QE. This
is in Marker’s book: https://www.springer.com/gp/book/9780387987606

I have this cute thought-experiment that tests whether or not a language is
regular; is there a tweak to it that gives us something that tests whether or not
a language is context-free?

Fox Thompson makes a rather good point. Consider additions written in
unary notation, things like 111+111 = 111111. Is the set of those assertions that
are true a context-free language? Pretty clearly yes: build a PDA that pushes
1s on the stack (ignoring ‘+’) until it sees a ‘=", after which it pops 1s off the
stack, and accepts with an empty stack. But what about true multiplications?
I bet they’re not a CFL ...

Observe that there is a 2-state Mealy machine that adds two binary strings.
Its alphabet is ({0, 1} x {0, 1})U{EQOF}. It has two states: carry and don’t-carry.
The initial state is don’t-carry, and its transition table is

If in state and reading go to state and emit
carry (0,0) don’t-carry 1
carry (0,1) carry 0
carry (1,0) carry 0
carry (1,1) carry 1
carry EOF don’t-carry 1
don’t-carry (0,0) don’t-carry 0
don’t-carry (0,1) don’t-carry 1
don’t-carry (1,0) don’t-carry 1
don’t-carry (1,1) carry 0
don’t-carry EOF don’t-carry null

Take a moment or two to think about the challenge of designing a Mealy
machine to multiply two bit strings.

Mind you, we didn’t define automatic structure in terms of Mealy machines
but rather in terms of FSAs. So what one should really be doing is defining a

20

https://en.wikipedia.org/wiki/Presburger_arithmetic
https://www.springer.com/gp/book/9780387987606

finite state machine whose alphabet is {0, 1, EOF }3. It will have three ports not
two, and it will have an accepting state which it reaches if the string of entries
in the third port is the sum of the string of entries in the first two ports. (It will
also need a fail state. The reader might like to supply details of this machine.)

3.11 Regular Languages for Numerals

I remember talking to Jack Button about how there might be a good exam
question about this, and promising not to improperly alert my students to this
possibility. Well, a question on this topic has now come up! It’s 2020 paper 3
12F.

Whether or not the set of notations for members of an infinite set is a regular
language or not isn’t controlled to any great extent by the set. Consider powers
of 2. The set of base-2 notations for powers of 2 is obviously a regular language;
initially i expected that the set of base-10 notations for powers of 2 would
likewise be regular but it is not. Suppose it were. Then there are [decimal]
natural numbers a, b, ¢ such that any word of the form ab™c denotes a power
of 2. Let us notate the power of 2 thus denoted as ‘t,,’, and write ‘3’ for the
length of b. Then t,,4; — 10° - ¢, is less than some quantity k& determined by b
and ¢ and not depending on n, thus:

tpa1 — 10% -, < k.

Divide through by t,:
tog1/tn —10° < k/t,,.

Now consider what happens when n gets large; the RHS eventually becomes
less than 1, so we must have

tni1/tn = 10°

which is impossible beco’s the LHS is a power of 2 and the RHS is a power of
10.

So it’s just not true that, for any n and any b, the set of base-b notations for
powers of n is a regular language.

In contrast, for any n and any b, the set of base-b notations for multiples of
n is a regular language.

Perhaps there is a point to be made about the difference between exponen-
tiation and multiplication Is the set of base-b representations of powers of
a a context-free language?

There’s certainly a point to be made about whether or not a set of natural
numbers corresponds to a regular language is not a property of the set but a
property of the representation of it. But that is an old point. Easy to check
divisibility by 7 in octal but hard in decimal. For divisibility by 11 it’s the other
way round.

21

4 Context-free Languages and PDAs

This came up in connection with stratification, substitution and weak stratifi-
cation. Typing and substitution are good things for CompScis to think about.
A stratifiable expression of the language of set theory (only predicate symbols
are ‘="and ‘€’) is one where all the variables are decorated with integers in such
a way that if ‘x € y’ is a subformula then the decoration on ‘z’ is one less than
the decoration on ‘y’ and if ‘x = y’ is a subformula then the decoration on ‘x’
equals the decoration on ‘y’. Such a decoration is a stratification. A formula
is weakly stratifiable iff you can stratify its bound variables (The free variables
can go to hell). Thus ‘@ € x’ is not stratifiable but it is weakly stratifiable.
The collection of stratifiable formulee is not closed under substitution (‘z € 2’
is a subformula of ‘x € y’ after all) but the set of weakly stratifiable formulee is
closed under substitution.

The class of wifs of the language of set theory is context-free. (I think
this is a known standard fact) Is the class of stratifiable formulae context-free?
Presumably not, tho’ i’d like to see a proof one way or the other. The class
of weakly stratifiable formulae? I'm guessing not, but—again—i’d like to see a
proof one way or the other.

A challenge from my colleague Marcel Crabbé. Consider the following lan-
guage L over {a,b}. It contains a, b and ab. Also, if w and u are in L then
so are [w/a]u and [w/blu. LE., any letter in any word can be replaced by any
word. Is this language regular? Context-free?

It’s pretty obviously not regular (tho’ i don’t know how to prove it) and i'm
guessing it’s not CF either.

Marcel says (and i quote):
“Consider the language on the alphabet {a,b} consisting of: a, b,

ab and all the strings resulting from substitution of a grammatical
expression for a or for b in a grammatical expression.

For example, a, ab, b, ababb and aabaabab are ok, but ba is not.

Is there an alternative (more appealing) description of this lan-
guage?”

Not clear whether he requires that a substitution should replace all oc-
curences of the variable being replaced, or whether we are free to replace only
some of them.

How about

S— A|B|AB

A—alS

B—b|S
Marcel sez:

“Yes, but how do you get ababab, abbabbbb. .. Note also that abbab is NOT
grammatical.”

22

We get ...

length 1: a, b
length 2: ab but no others
length 3: [ab/alab = abb and [ab/blab = aab but no others.

I think Marcel is wrong: once one gets these two we can substitute abb for the
first @ in aab. But then perhaps he insists that all occurrences of a variable
should be substituted (or none).

4.1 Interleavings

The interleaving of two CFLs is not reliably a CFL. a™b™ and ¢™d™ are both
CFL. If their interleaving were CFL then we could intersect it with the regular
language a*c*b*d* to get a™c™b™d™ which (being the intersection of a regular
language with a CFL) would be a CFL, but it ain’t.

Worth pointing out that the operation I(L, M) of interleaving is associative
and commutative. Also the operation L — I(L, L) is idempotent. ..oops, or is
it?

4.2 A thought about regular and context-free languages

I think this is the question:

Suppose L is a context-free language that is not regular. Can you always
find a finite sequence of operations (which may depend on L) each of which
preserves regularity (eg complementation, that sort of thing) so that when you
apply them to L you reach a language that is not context-free?

Andyf}

I am running this past you, beco’s when i think of the intersection of the class
of people who understand coinduction and the class of people who understand
context-free languages, your name comes up. I hope you don’t mind!

Every regular language is context free, but not every context-free language
is regular. This is because the class of regular languages over a fixed alphabet
is closed under complementation and intersection whereas the class of CF lan-
guages is not. Does this leave open the possibility that there is a coinductive
definition of the set of regular languages over an alphabet? It seems to me that
would look something like this.

We have a countable alphabet ¥ and the set of words over it, which we
call ¥* as usual. P(X*) is the set of languages over X, tho’ of course we are
interested only in those languages that are over a finite subset of o. The set of
functions ¥ — ¥ acts on P(X*) in an obvious way: let us call this alphabetic
variance. (e.g., the transposition (a, b) turns the language a*b* into b*a*.) Then
the set of regular languages over ¥ is closed under the usual things (Kleene

8Prof Andy Pitts

23

closure, juxtaposition/concatenation ...) plus of course alphabetic variance.
The conjecture will now be something like

The class REG of regular languages over Y. is the largest subset
of the class CFL of context-free languages over Y that contains
the singleton languages, the empty language and is closed under
alphabetic variance, Kleene closure, concatenation, intersection and
complement.

Do we need to include complementation here? We get it for nothing when
we define REG as the smallest set containing . ..and closed under Closure
under complementation is an admissible rule in the jargon of logicians.

And that old fact that i’ve never really paid any attention to until today—
that the intersection of a REG and a CFL is a CFL. Might that come to life
here..?

If the conjecture is correct it would mean that if L, and Lo are two languages
in CFL \ REG then, if we take REG U{L; } and form the closure under Kleene
closure, union, intersection, juxtaposition and alphabetic variance (and comple-
mentation?) then we find that it contains Ls.

That sounds very strong!

Do you know anything about this?

later

27/xi/18. Donald Hobson says that there isn’t enuff information in 0"1" to
be able to parlay that into computing the complement of {ww : w € ¥*}. T
think his point is that each word of 01" contains only log n bits of information
and that is not enough. I bet he’s right, but i’m not sure how to turn this into
a rigorous argument.

4.3 Products of PDAs?

We prove that the intersection of two regular languages is regular by considering
the product of two DFA’s. The product of two DFAs is a DFA. Similarly NFAs.
So can we prove that the intersection of two context-free languages is context-
free by considering the product of two PDA’s? Evidently not: we can find two
CFLs whose intersection is not CF. The conclusion is that there is no robust
notion of a product of two PDAs ...the attempt to create a product results in
something with two stacks. But perhaps there is a good notion of a product of
a PDA with a NFA. After all, the intersection of a CF language with a regular
language is CF. And an NFA (and a fortiori a DFA) is a degenerate PDA. . . with
an inactive stack.

The intersection of a regular language and a CFL is recognised by an NFA
and a PDA running in parallel. That complex makes good sense beco’s PDAs—
like NFAs—(and unlike Turing or register machines) have this nice feature that
they don’t run for arbitrary periods after reading a character. They do one
thing and then come back for more. Since they (like NFAs) are clocked one can
describe the simultaneous running of two NFAs in parallel harness as the running

24

of a single machine—an NFA. Presumably one can describe the simultaneous
running of an NFA and a PDA in parallel harness as the running of a single
machine of some kind ... presumably a PDA. But PDAs are nondeterministic.
What happens if you do the power set construction to a (nondeterministic)
PDA? Does that even make sense?

Is the intersection of two CFLs nice in any way? Perhaps it’s recognised by
a machine with two unlinked stacks (“chinese walls”).

Apparently every context-free language over a singleton alphabet is regular.
If L obeys the pumping lemma must its complement do so as well?

a™b™c" is the intersection of two CFLs and can be recognised by a machine
with two stacks. But a machine with two stacks can recognise also a”b"c"d"
and even ab"c"d"e™. It would be nice to find a way of adding noninteracting
stacks so that one needed three stacks to recognise a™b™c"d" and four stacks to
recognise a”b"c"d"e™.

We really need the notion of a disjoint union of two PDAs. Think about the
PDA that recognises {a’b/c* : i = j Vi = k}. After pushing all the as onto the
stack you have to guess whether you should be counting bs or counting cs. But
then (as Tom Carey says in a supervision) you do the two things simultaneously,
so really you make two copies of the machine and run them in parallel. Now a
disjoint union of two PDAs is a gadget that has two stacks that don’t (indeed
can’t) communicate. A useful idea perhaps.

Have to be careful how you formulate the thought that the set of regular lan-
guages over an alphabet is the largest subset of the set of context-free languages
closed under inter alia complementation and homorphism. Have to assert it for
each alphabet separately.

Write up relation between productions and transitions in DFAs ...

I think each nonterminal corresponds to a state, and each production corre-
sponds to a transition from one state to another by means of an input character.
This should give us a steer on how to connect CFGs with PDAs.

4.4 Re-use of variables

The language of first-order logic is context-free. If you “improve” it by for-
bidding re-use of variables it ceases to be context free. Down the back of the
sofa i found this gem from an unidentified student of mine. I have edited and
abbreviated it slightly. I wish i knew who this student was ...

Question

Is the language of first-order logic context-free? What if we forbid a quantifier’s
bound variable from appearing outside its scope? (For example, ((Vx)p(z) =
(My)q(y)) is OK, but ((Vz)p(z) = (Vz)g(x)) and ((x = 3) = (Vz)p(z)) are not.)

25

Answer

It is context-free. Suppose we have some function symbols Q = {f1,..., f,} and
predicates (relation symbols) II = {ry,...,m,} with arities «(f;) and «a(m;).
The definition of the language L of first-order logic is almost a description of a
CFG as-is, so there is not much to do except rewrite the definition in a more
formal syntax.

Our alphabet of terminals 3 (not to be confused with the signature X!) is

E:{x7l7:7:>7(7)7J-,v}UQUH.

Now we just define nonterminals P (representing primes), V' (variables), T
(terms), A (atomic formulae), and the start symbol F' (formulae), together with
the following productions:

P — ¢ | 'P
V. — zP
T — V | ATT..T | ... | fuIT...T
——— ———
a(f1) times a(fn) times
A — L | T=T | mTIT...T | ... | #n TT...T
—— ——
a(my) times a(my) times

F — A | (F=F) | (YW)F

So L is a CFL. However, it is not a regular language, because of the matching
brackets, as we by now understand.

What if we implement the restriction on bound variables? This language £’
is no longer a CFL; we can show this by supposing it were, and applying the
CFL pumping lemma to a sufficiently long word of the form w = tuvyz =

(...(((Vz) L= (V2') L) = (V") 1) = (V2") L) = ...).

Suppose we had tufvy*z € £’ for all k. If uy contains V, we're dead, as
pumping will only produce legal words if uy contains some (Vz”..."), contra-
dicting the non-reuse of variables. Similarly, we can’t have uy containing x
as these only show up in quantifiers. So wy contains only (,),’, L,=. Labo-
rious case analysis shows that any other possibility generates illegal strings on
pumping, except if uy =" ..., in which case tvz has a reused variable. Note
that we can’t have e.g. v = (and y =); even if tu*vy*z is bracket-matched and
human-parseable for k # 1, it does not lie in £’. Indeed, for bracket consistency,
uy needs: number of ‘(’ = number of)’ = number of ‘=’. This simplifies the
checking substantially.

26

5 Computable Functions

A union of a semidecidable family of semidecidable sets is semidecidable. Ob-
vious why it’s true and obvious how to prove it. And of course an arbitrary
union of semidecidable sets is not reliably semidecidable. Obvious counterex-
ample: let the nth semidecidable set be the first n natural numbers not in the
halting set. Each of these sets is semidecidable but for silly reasons (every finite
set is decidable) and this fact is crucial for the trick of making the union not
semidecidable. Must find something intelligent to say about this.

Realistic machines wot actual people write actual code for have registers
whose contents can be seen as booleans or as natural numbers ad Iib. This
equivocation on datatypes is actually quite important in real-life assembly-
language programming. It’s probably worth making a fuss about the fact that
the binary boolean operations on bit-strings all correspond to primitive recur-
sive operations on the corresponding numbers. The proof probably looks quite
nasty, but it can do you no harm to think about why this should be true and
how you might prove it ... a simple example: explain bitwise and as a primitive
recursive operation on the corresponding natural numbers.

Consider the equivalence relation on natural numbers of encoding functions
with the same graph. Can the quotient have a semidecidable transversal?

If you apply one church numeral to another you get exponentiation, but
which way round? Is n m equal to n™ or m”. It’s easy! n 1 f is obviously f,
so n m must be m”.

5.1 A conversation with two of my Queens’ 1B CS stu-
dents

Suppose we have an oracle O for the HALTing problem. Let TOT be the set
of numeric codes for total functions. We persuaded ourselves that we can solve
the membership question for TOT as long as we have access to such an oracle
O for the HALTing problem. I said at the time that there must be a mistake. I
have now found the mistake!

Let {n} be the function encoded by the number n, as usual.

Suppose we have an oracle O for the HALTing set. (Here the HALTing set is
the set {(p,?) : p HALTs on i}.)

We define a function T (‘T” for Total) such that T(n) performs as follows:
run {n} on the increasing stream of naturals, asking O at each input ¢ whether
or not {n} HALTs on input 7. If O tells us that {n} HALTs on input ¢ then we
procede to i + 1; if O says ‘No’ we HALT. Thus T(n) returns the least i s.t.
{n}(i) 1 if there is one and loops forever if there isn’t. Evidently {n} is a total
function iff ¥(n) | ...and this is something we can ask O. The way to check
whether or not {n} is total is to ask O whether or not T(n) J.

So! We have reduced TOT (the set of indices for total computable functions)
to the HALTing set!!

27

Except we haven’t! The final querying of whether or not T(n) | cannot be
done by O, because ¥ is not a computable function! We need something a lot
more powerful than O. However we do get something. What this tells us is
that we can compute TOT if we have an oracle not for the ordinary HALTing
problem but the HALTing problem for functions that are allowed to call an oracle
for the HALTing problem (for computable functions).

5.1.1 Turing Degrees

There are these things called Turing degrees. They are equivalence classes of
functions. If i can compute f given an oracle for g, and i can compute g given
an oracle for f, then f and g have the same degree. The unsolvability of the
HALTing problem really shows that, for any degree d, the degree of functions
that-are-allowed-to-call-an-oracle-for-a-function-in-d is above d. This degree is
notated d’. (This notation is standard) The degree of computable functions is
0; the degree of the HALTing set is 0. So it seems that the degree of TOT is
< 0”. That, at least, is what i understand Martin Hyland to say.

Can we prove a converse? Given an oracle for TOT can we solve ;{n}®(m) |?
where O is an oracle for the halting problem?

5.2 Inverting Partial Computable Functions

The process of mathematising the concept of computable functions proceeds—
at least initially—Dby erecting a recursive datatype of function declarations: find
some functions that are uncontroversially computable, and close under oper-
ations that uncontroversially preserve computablity, and keep fingers crossed
that every function one might consider computable gets swept up. One helpful
thought is that the inverse of a computable function ought to be computable.
Clearly one can invert total computable functions. If f : IN — IN is total com-
putable then f~!(n) = least k s.t. f(k) = n if there is one, and undefined
otherwise. This f~! is partial computable. It might not be total but it most
assuredly is computable.

This simple-minded construction relies on f being total. Presumably one
cannot reliably invert partial computable functions. There is an obvious strategy
for finding a k s.t. f(k) = n if there is one: zigzag thru’ all inputs until you
get the output n. But that is nasty, hacky and exquisitely sensitive to the way
in which one zigzags; the answer you get is certainly not guaranteed to be the
smallest.

Let the hard inverse of a partial computable function f : IN — IN be the
function An. least m s.t. f(m) = n if there is one, fail otherwise. There seems
to be no reason why this hard inverse of f should be computable merely on the
basis that f is. Indeed it is natural to harbour a very strong suspicion that
there are computable partial functions whose hard inverses are not computable.
So strong in fact that I for one for years never felt the need to go to the effort of
finding one. It was only when explaining to my students a history of the project
to mathematise the idea of computable function that it occurred to me that i

28

really should exhibit such a computable partial function, in order to make the
point that one can’t just simple-mindedly close under (hard) inverse. Here is
one, supplied by Michael Beeson.

Define the partial function f by

f(2x) = if {«}(x)] then x else fail;
fRx+1) ==

Then f is partial recursive, and surjective. f~!“{x} is either {2z + 1} or
{2z,2x+1}. The hard inverse of f, on being given z, returns either 2z:+1 (which
it does if {z}(x) 1) or 2z (if {z}(x) |). Since this solves the diagonal HALTing
problem for us we conclude that the hard inverse of f is not computable.

5.3 This should be an exam question

Suppose <; and <, are two wellorderings of IN, both with decidable graphs
and both of order type w. Clearly they are isomorphic, and the isomorphism
is unique, but is it computable? There is an obvious algorithm for finding it,
by a series of finite approximations, as follows. We line up (IN, <;) on the left
pointing skywards and (IN, <5) on the right pointing skywards. At stage n we
pair off the numbers 0 — n on the L with 0 —n on the R in an order-preserving
way. Initially we pair 0 on the L with 0 on the R. Then we add the 1’s. If
1> 0A1>300r0>; 1A0>51 then we just pair off the two 1s, but if not
then we have to re-pair. Thus we have to adjust from time-to-time but each
number has to be re-paired only finitely often. Specifically a number n has to
be re-paired only when we find m > n s.t. m <y n or m <3 n, and there are
only finitely many such m. Simply from the information that the two orders
are decidable we cannot find a bound on how often a number gets re-paired so
we cannot know when it has settled down. The best we can do—it seems—is to
get the isomorphism to be 3V. However, if the two orders nearly agree then the
settling down will take place quite quickly, and we might be able to bound the
time it takes for the pairing for a given number to settle down. So the bijection
might be computable. Here’s a thought. Think about the WQO (IN, <; N <5).
So if the rank of the tree of bad sequences in (IN, <; N <) (its maximal order
type) is small enough the bijection will be computable?

Does this give a metric on wellorderings of IN? The distance between two
wellorderings is the maximal order type of the intersection? Does this obey the
triangle inequality? What notion of addition do we have? Hessenberg? It’s an
odd sort of metric beco’s its values are countable ordinals not reals.

5.3.1 Over dinner at the Boffafest: discriminators

Suppose f : IN — IN total computable with no odd cycles. Then a function

d:IN — {0,1} with (Vn € IN)(d(f(n) = 1 — d(n)) is a discriminator for f.

Clearly every total computable f with no odd cycles has a discriminator.
Conjecture: there is a recursive f with no recursive discriminator.

29

Thinking about how A-calculus crops up in Computation Theory ...

Suppose i am trying to many-one reduce K to TOT. I want to know if p(7) |. T
cook up a function that, on being given input n, throws it away and runs p on
i. Sounds like the K combinator to me! [This is why i still supervise]

Another thought on many-one reduction

Many-one reducibility says “There is a computable total function f : IN — IN
with the property that if © € A then f(z) € B.” The idea is that such an f, used
in conjunction for a gatekeeper for B (a function that says ‘yes’ to members of
B but otherwise says nothing) gives you a gatekeeper for A that is no more
uncomputable than the gatekeeper for B. The existence of such a computable f
means that if you can recognise members of B then you can recognise members
of A.

f has to be computable but it doesn’t have to be defined on the whole of
IN. If the candidate c is a member of A, then f(c) has to be defined and be a
member of B. So we must have A C dom(f). Except in trivial cases A will not
be semidecidable, whereas dom(f) will always be semidecidable, so the inclusion
will be proper: there will be candidates ¢ on which f halts but f(c) € B so you
might as well have had f(c) 7. Either way ¢ does not get authenticated as a
member of A.

However there is something slightly nonconstructive about this. Note that
dom(f) might have to be a proper superset of A; f has to come up with an
answer for the input ¢ without being told whether or not ¢ € A. It is true that
we need f(c) only if ¢ € A but if dom(f) = A precisely then f isn’t computable
...so, for at least some ¢, f has to give an answer which is then not used.

Contrast

(Vn)(3m)(n€ A —-m € B) and (Vn)(n € A — (Im)(m € B))

The m is of course f(n)

They are not constructively equivalent, the first being stronger than the
second. The core fact here is that p — (Jz)F(z) and (3z)(p — F(x)) are
not constructively equivalent—the second is stronger than the first. Given the
parallel between 3 and vee we can see the propositional version:

A—-(BV(C).—. (A= B)V(A—=C)

is not constructively correct.

(Vz)(A(z) — (B(z) V C(z)). = .(Vz)(A(z) = B(x)) V (Vz)(A(z) — C(z))

is not even classically correct.

Another point i find myself having to make about many-one reduction
Suppose you are trying to reduce A to B where A and B are classes of functions.
I have a gatekeeper/gremlin for B. T have to turn a candidate for membership

30

in A into a candidate for membership in B. This is done by some computable
function ... which i ahve to be able to run. However the output of this reducing
function—even tho’ it may itself be a function—isn’t one i have to worry about
running. The gremlin might run it. Or it might not. The gremlin might just
lay its hands on it and feel the vibrations. It doesn’t matter. What the gremlin
does is of no interest to us.

31

6 Supervision Notes on the Part II Automata
and Formal Languages Course

Worth emphasising to beginners that the way in which we (or at least many of
us, i for one) think of—visualise—the natural numbers, as a snake wandering
through space ...has the potential to seriously mislead. The temptation is to
think of a subset X C IN as the snake with some of its nodes lit up. This
is OK if X is decidable but not otherwise. The snake makes you think that
IN and all its subsets are random access devices, or at least (if you don’t like
that—and you mightn’t) that it’s a sequential access device. You can access
members of a decidable subset X C IN by using the enumeration in increasing
order. However, if X is merely semidecidable then it’s still a sequential access
device all right, but the order in which you get access to the elements is not in
order of magnitude! Also if a set is merely semidecidable then its complement
is not (even) a sequential access device.

6.1 Sheet 1

Before i get to discussions of individual questions i want to recap what students
should have in their knapsack by the end of the first supervision. Thus the
following paragraphs will contain the points that I made to you in supervision.
Well, tried to! I didn’t manage to make every point to everyone.

There have been two big theorems so far. You do not need at this stage to
be able to prove them but you do need to be able to state them correctly and
understand them.

One of them is the equivalence of the two conceptualisation of computable
functions: the two concepts that Dr Button calls ‘partial computable’ and ‘par-
tial recursive’ or what i prefer to call the syntactic and the semantic concepts.
The proof i favour relies on bringing out into the open Kleene’s T" function.

The other is Rice’s theorem. The proof is hard work—i was initially quite
taken aback at the thought that this result could be shoehorned into a C course
but it seems to have worked! It’s not realistic to expect you to have mastered
the proof this early in the piece but i want you to at least understand what it
says, so you can see why the teaching committee put it in. You need the ideas
of a function-in-intension and of function-in-extension.

A few thoughts on the definition of “recursive” and “recursively enumerable”
sets. When i prompted you for definitions of these terms you were able to come
up with them. However, in asense it’s not the literal text of the definition that
is the point. It’s good practice in mathematics—when you are given a definition
of something—to ask yourself “Why am i being given this definition? What is
it for?” The point in this case is that these definitions are an attempt to use the
novel sexy concept of computable function to capture pre-theoretic intuitions
of decidable and semidecidable sets. When you come (as you very soon will) to
the concept of many-one reducibility it is essential to ask yourself “What is this
definition intended to capture?”

32

Now for the sheet

Q1 and Q2

The point of the first two questions is to get your hands dirty writing register-
machine code. You don’t want to write register machine code for a living; i did
for a while, and—altho’ it was a character-forming experience that i was glad
to have had—I'm glad i don’t have to repeat it. The point here is that any
function IN — IN that can be computed at all can be computed by a register
machine, and it’s good for you to get a sense of what this fact feels like under
the hands, as it were ...so you know it viscerally and not just intellectually.

Q3 and Q4

Next he wants you to write some function declarations. This is—analogously—
to give you a feel for the fact that any function IN — IN that can be computed
at all can be “declared” by means of the basic functions, composition, primitive
recursion and minimisation. It’s not obvious why this should be so and you’ll
have to wait to see a proof of it, but you can get a taste here and now.

(By the time you are reading this you will have seen a proof in lectures).

Notice that all the functions in Q3 are in fact primitive recursive.

Q5

The point is to make you think about zigzagging, a strategy which will be useful
in the weeks to come. Incidentally don’t get into the habit of calling it a diagonal
process. 1 don’t know where Dr Chiodo got this unfortunate terminology from,
since i’ve never encountered it anywhere else. ‘Diagonal’ refers to constructions
such as Cantor’s proof that the reals are uncountable, and you should not use
the word to denote any other type of construction. There is a genuine diagonal
construction in Q9 below.

Q6 and Q8

These two questions have similar character. The facts you are invited to prove
are basic uncomplicated facts that help you to get your thoughts straight. A
point about question 8: It’s obvious how to compute the inverse of a computable
permutation of IN. How do you find f~1(17)? Easy: you compute f(0), f(1)
... until you get the answer 17. But this is clearly an invocation of minimisation.
This floats the possibility that there might be a primitive recursive permuta-
tion of IN whose inverse is not primitive recursive. And in fact there are such
primitive recursive permutations. They are all of infinite order. (Why?) Here
be dragonsﬂ

9But no dragon icon; i looked for IATEX dragon icons but i couldn’t find one. If you know
of one do please tell me.

33

Q7

Question 7 is making the point that the kind of computability that we are con-
sidering here—finite, discrete, deterministic but with no finite bound on the
resources (time or space) used—is actually rather unnatural. It would seem
to be more natural, more realistic, to study computation with bounded re-
sources, seeing as how we are finite beings with bounded resources. However
the study of computation without restraints (which is the subject of this part
of the course) is much better behaved than the study of computation within
restraints. For example the class of functions that are computable-in-principle-
no-quibbling-about-resources is clearly closed under composition, whereas the
class of functions computable under restraint (whatever your notion of restraint)
might well not be. It’s worth recording in this setting that there are a million
and one different concepts of computation-with-bounded-resources (in contrast
to the concept of finite deterministic discrete unbounded computation where all
the concepts turn out to be the same) and—worse—it seems to be hard (puz-
zlingly hard) to tell when two of them are the same. As i say, here be dragons;
lots of ‘em.

Q9

This question makes two points. One is that it’s pretty obvious how to obtain
(from m, a code for a machine) the code for the machine that computes m(z)+1.
If we think about this process it becomes clear that it is a computable function
IN— IN. So it’s a point about Church’s thesis. However it is also a sleeper for the
diagonal arguments we will encounter later one. Rehearse diagonal arguments
from Numbers and Sets (uncountably many reals. . .)

Q10*

“Show that there is an r.e. set I such that, for every n € I, f,, 1 is
primitive recursive and, moreover, every primitive recursive function
on 1 variable occurs as f,, 1 for some n € E.

This is quite subtle. Although it is not clear in general whether a function
(given somehow) admits a primitive recursive declaration, it is always clear
whether or not a given function declaration (which is a piece of syntax) matches
the template of primitive recursion.

I am going to give a fairly detailed discussion of this because i tripped myself
up preparing a model answer, and convinced myself that it couldn’t be done.
And if i can get it wrong (and i'm supposed to know this stuff) then you can
probably get it wrong too.

It’s probably clear to you, Dear Reader—since you went to the lectures and
i didn’t—that f, 1 is the function computed by the nth machine and not the
nth function declaration.

34

The correct way to proceed is to first think of the function that enumerates all
the primitive recursive function declarations. This is obviously a decidable set,
and can be enumerated by a total computable function. Every time this function
gives an output you proceed to turn its output (which is a primitive recursive
function declaration) into a description of a register machine that computes that
function. This is straightforward, and we needed this ability when we proved
that every partial recursive function is partial computable. The set of codes of
these descriptions is now the set E that we desired.

But i started doing it the wrong way, and convinced myself that the question-
setter had got it wrong. Suppose you start by enumerating all the register
machines, and then hope to obtain F by retaining only those numbers that
are codes for register machines that compute functions that admit a primitive
recursive function declaration. The problem is that there is no algorithm that
will look at a code for a register machine and tell its handler whether or not the
function computed by that machine can be declared as a primrec function. It’s
not even going to be r.e. beco’s—even if you can guess a primrec declaration
for the function computed by the register machine in your hand—you still have
to prove that the function thus declared is, in fact, computed by that machine.
And there is no reason to suppose that can be done in finite time.

If—like me—you haven’t been to the lectures then it is possible to misread
this question (as i have been doing) by thinking that f, 1 is the nth function
declaration in a listing of the function declarations. This is a misreading, but
it enables one to make the point that the set E of function declarations that
are primitive recursive is a a straight-up decidable set, co’s you can see at a
glance whether a function declaration contains any gadgetry that isn’t primitive
recursive, and you don’t need to go scouring the universe for an equivalent
function declaration with a fancy property.

It’s worth noting that the two sets-of-codes have different properties: the
second one is obviously decidable, whereas the first is prima facie merely semide-
cidable. I can’t see offhand a proof that Dr Button’s set F is not decidable, but
i bet it isn’t.

Q11

It’s not immediately obvious how to show that Cantor’s pairing function is a
bijection between IN and IN x IN but it becomes easier once you spot that the
first term in the definiens is the x + yth triangular number, and that the y that
you are adding to it doesn’t take you as far as the next triangular number. This
enables you to show that the pairing function is surjective, as follows. Think
of a number, any number—don’t tell me what it is—and look for the largest
triangular number < it. That gives you = + y (since that triangular number
is the z + yth triangular number). And the difference between that triangular
number and the number you first thought of is y. So you have now decoded
your number as an ordered pair.

One of my students proved, by dint of some clever rearragements, that (as
long as > 0) (z,y) +1 = (x — 1,y +1). You have to do some work when

35

2 = 0. But i think my proof is better.

Typing and Computation

Abstract Computability is not normally taught in a strongly typed context, a
context where one worries about what types things are. (You may have noticed
that nobody has mentioned typing in the course you have just sat thru’, whether
you are a 1B compsci having done Computation Theory, or a Part II mathmo
doing Automata and Formal Languages.)

Natural numbers, as you meet them at school, or in your 1A year, either in
Comp Sci DM or mathmo Numbers-and-Sets “support” (as they say) addition
and multiplication and exponentiation. They do not “support” pairing and
unpairing: a natural number is not a pair of natural numbers. Nor do they
“support” application: you cannot apply a natural number to a natural number.
The really disconcerting thing about Computation theory is the abstract data
type of natural number (according to Comp Th) does support application and
pairing-and-unpairing. And one of the ways in which it disconcerts it that this
violates a typing intuition which is never spelt out. Mathematics is actually
quite strongly typed, but thisfact is never brought out into the open. And
because it is never brought out into the open one is not aware of when it is being
violated. One is disconcerted by the violation of course, but one is not aware
of the fact that it is that violation that gives one the feeling of disconcertment
that one experiences.

There is a reason for this. Think about the proof of the unsolvability of the
halting problem. This depends—crucially—on the fact that your data objects
are simultaneously both machines (or gnumbers of machine) and inputs to those
machines. You have to apply a machine to its own navel, i mean gnumber. It’s
probably worth thinking a bit about what the abstract data types are of the
objects in play here. Are there two data types, numbers and machines? Or
is there a single ADT of dual aspect? I've long had the idea that a strongly
typed theory of computable functions would render the diagonal arguments
unworkable. There’s nothing wrong with the data object being simultaneously
a program and a natural, as long as you don’t allow it to be both at the same
time. There’s this weirdo gadget called “Linear Logic” which is an example from
a suite of gadgets called Resource Logics, which consider reasoning in situations
where you have constraints on what you can have simultaneously in your head.
For example in some of these logics you can use each assumption precisely once.
Thus you can’t prove (A — B) — (A — (A — B))!

The point being made here in Q11 is that Cantor’s pairing function—and
its inverses—are so smooth that for many purposes you can think of tuples of
natural numbers just as being natural numbers themselves. So—if you want—
you can think of a function of k variables as a function of one variable. If f
is a function of k£ variables then in some sense it is the same function as the
unary function g that accepts a single argument, which it thinks of as a k-tuple,
decomposes it accordingly, and feeds the k components to f. This possibility
of thinking of polyadic functions as monadic functions is central to A-calculus,

36

and A-calculus is something you definitely want to look at if you want to take
the material in this course further (tho’ it’s not lectured and is not examinable)

This is additional to the fact that you can think of natural numbers as ma-
chines (since you can set up—once for all—a coding of machines as natural
numbers). This Janus-faced nature of natural numbers is essential to many
proofs in Computation Theory, such as Rice’s theorem and many others. Nat-
ural numbers can even be taken to be the “booleans” (truth-values) true and
false (or T and 1)—0 and 1 often being reserved for this purpose. The con-
nectives A, V, -, — etc then become computable functions ...in fact primitive
recursive functions.

Numbers can also be times, if we think of our processes as clocked. See
volcanoes below.

The fact that numbers can code strings becomes important in Q11 on the
next sheet.

37

6.2 Sheet 2

For the first part.... There are various questions that can be answered swiftly
using Rice’s theorem. I think it’s clear from the overall context that he does
not want you to use Rice’s theorem, but instead to get your hands dirty doing
actual problem reductions.

Question 1

Perhaps worth commenting that the concept in play here is disjoint union. The
nastiness of the disjoint union of two sets (of naturals) is the precise least upper
bound of the two nastinesses.

When i mentioned this to one of my students he immediately asked me the
parallel question about cartesian productﬂ and i had to confess to my shame
that i had never thought about it. You might like to think about it: if A and B
are decidable (semidecidable) must A x B be decidable (semidecidable)? And
vice versa. .. 7?7 In particular can you many-one reduce A Ll B to A x B or vice
versa? I'm going to put the answer at the end of this file, in section [9}

Another student asked me: OK any two sets have a lub wrt nastiness; do they
have a glb? I didn’t know that either! There’s certainly no obvious candidate
for a glb. It turns out these glbs do not always exist. I think of this as an
illustration of something one keeps finding in recursion theory, namely that if
there isn’t an obvous way of doing the thing you want, then there is no way of
doing it at all.

Question 2

If you are alert you will spot that all three parts can be dealt with by the one
trick: find a set of the flavour you want: r.e., recursive, whatever, and consider
the set of singletons of its members. Every singleton is recursive, so every set—
of whatever flavour—can be expressed as a union of countably many recursive
sets.

[Actually, one smartie-pants—who has been given name suppression—noticed
that the empty set is a recursive set that is a union of a countably infinite family
of recursive sets!]

Some of you—much to your credit—think there must be something wrong
with this question, that it is cheating, and you suspect that you must have
misunderstood something. It isn’t cheating, and you haven’t misunderstood
anything. Dr Chiodo (for it is he who was the Evil Genius who devised this
question) is making the point that you need to put restrictions on the index
set (of the family of recursive sets) whose sumset you are forming if you are
to get anything sensible. In this connection you might like to look at question
13 on Dr Chiodo’s version of this sheet from earlier years (still on the dpmms
home page) this sheet ... which is not as scary as its asterisk might lead you to
suppose.

10He’d been thinking about category theory.

38

I think the question should be tweaked. A question that wrong-foots the
good students but not the weak ones isn’t doing its job.

Question 3

I'm trying to think how to make this obvious. You want the intersection of
this family to be a set that is not r.e. What is your favourite example of a set
that is not r.e.? Yes, it’s the complement of the HALTing set. So you want the
complement of the HALTing set to consist of numbers that have passed infinitely
many tests. If {i}(¢) never halts, what tests has i passed? When you put it like
that it becomes obvious: the nth test is: “Is {i}(¢) still running after n steps?”

Hmmmm. .. When i wrote that i was assuming that the ‘W’ in ‘W,,” was
just a random letter but it now occurs to me that he might have meant literally
‘W,,” as in “the domain of definition of the nth function”. But that’s doable.
We just have to let our index set consist of some of the j € IN s.t. W; is a set
of the form {i: {i}(¢{) is still running after n steps}.

To be precise, we obtain the index set I C IN as follows. For each n, obtain
the set A, = {i: {i}(¢) is still running after n steps} and let j be the
index of a function that halts on any member of A,, and on nothing else. The
process that obtains j from n is clearly finite and deterministic etc etc so its
output is an r.e. set by Church’s thesis. So the set of all such j is r.e. and is
the I C IN that we want.

Question 4

It’s obviously at least semidecidable (r.e.) so how do we show that it is not
actually decidable (recursive)? One thing you can do is wheel out Rice’s theorem
to say that the complement cannot be semidecidable (r.e.). This certainly works,
but the result is that you have evaded the purpose of the exercise, which was to
force you to get your hands dirty doing a bit of problem reduction. Why is the
complement of this set not semidecidable? Beco’s, if it were, the complement of
the HALTing set would be semidecidable too, and it ain’t. Your job is to show
how to exploit a gremlin that can detect members of the complement of this set
and put it to work recognising non-members of the HALTing set.

I noticed that lots of you fell into a trap i can only call an error of attachment.
You spotted that you had to cook up a function that halted on at least six inputs
iff some given candidate for non-membership of the HALTing set was, indeed, not
a member of the HALTing set. However you got distracted by the number 6. You
wanted a function that did something different to the smallest 5 inputs from
what it did to others. That isn’t neccessary. Given n, you want the function
that ignores its input and just runs n on n.

39

Question 5

A riff on Problem Reduction

The way to sell these reduction problems to students is to say: suppose i have a
gremlin that knows the characteristic function of X. Can i use it to calculate the
characteristic function for Y7 I keep it in inhumane and degrading conditions
in the back of my shop and never let it out or see daylight or let anyone know
it’s there. (It’s been trafficked from a village in Gremlinland). I put a brass
plate on my door saying i can calculate the characteristic function for Y. The
challenge for the student is: What do i ask the gremlin?

One thing that has struck me in supervisions devoted to this sheet (and
problem reduction in particular) is the tendency of students to take a reduce-
this-problem-to-that-problem challenge too literally, in that they are actually
looking for a register-machine computable function, or even—heavan forfend!—
a register machine program. I think this is beco’s your point of departure is
the definition of many-one reducibility rather than the intuition behind it. The
way to reduce A to B (or is it the other way round? i always forget) is to ask
yourself: if i had a machine that recognises As can i use it to recognise Bs? You
then apply Church’s thesis.

(Narrate it by making use of the old joke about “thereby reducing
it to a problem already solved”)

(b) (first part)

The HALTing problem (well, one version of it) is: Does program p HALT on 7
To use an oracle for TOT to solve the {p}(i) instance of the HALTing problem
you consider the function that throws away its input and then runs p on 1.

(b) (second part)

To use an oracle that can tell whether or not a function HALTs on infinitely
many inputs to solve the HALTing problem you consider the function that, for
input n, runs p on i for n steps, returns YES if it is still running, and loops
forever if not.

Actually that was overkill, wasn’t it? You can use the same function as you
did in the first part of 5(b)! Quite a number of you spotted this but weren’t
happy about it ...how can the one function do both tasks? Well, there may be
lots of ways of reducing A to B, and so there’s nothing obviously absurd in the
idea that a function that reduces A to B might also reduce it to C.

(c¢) Obviously not. If any of them were, you would be able to solve the
HALTing problem—as you have showed. (Reminder: don’t just appeal to Rice’s
theorem).

(d) To use an oracle for TOT to determine whether or not a function has

an infinite domain you use a volcano. A VOIC&H(E for a function f is an engine
that runs a machine for f on all possible inputs in zigzag parallel with itself, so

1 This is not standard terminology.

40

that you can put it in the corner of your room and watch it emit values of f
while you relax with a cuban cigar and a bottle of claret.

(Notice that the volcano function that you test with your gremlin not only
has the same set of values as your input function, it has the same multiset of
values.)

Question 6

Well, the empty set is recursive, so for the first part find m s.t. the mth function
is everywhere undefined. As Prof Pitts says, the Register Machine from Hell,
with number 666, never halts. So set m =: 666; then every function has a
domain-of-definition which is a superset of W,.

For the second part let m be any code for a total computable function. Then
T, is the set of codes for total functions, and we proved earlier that this is not
r.e.

Question 7

Let g be total computable. (Don’t be distracted by information about how
many arguments it takes). The challenge is to show that if you have a gremlin
that can tell when a given function-in-intension f has the same graph as g then
you can put that gremlin to work telling you when a function is total.

The difficulty the student experiences here is in accepting the idea that you
might want to run a function and then throw away its output. “How on earth”
(one wonders) “can it be necessary to perform a computation if you don’t need
the output?” It’s reminiscent of the oddity in question 4 where you have to
throw away your input. Good housekeeping seems to require that you shouldn’t
throw away anything that might be informative. There’s a kind of cortical
censorship that prevents you from considering this possibility. .. (Orwell would
have called it crimestop). But—unfortunately—here that is exactly what you
have to do. You might need to be told that a computation HALTs but that might
be all you need to know about it. Get used to it, beco’s problem reduction is
full of tricks like that.

You have a gremlin whose eyes light up when it is shown code for a function
that has the same graph as g. I want to know if f is total. We need to find
a function that agrees with g iff f is total, co’s that’s the function we want to
show to the gremlin. What function agrees with g iff f is total? Obviously

An.if f(n)] then g(n) else fail
There is a connection here with

6.3 CS 2017 Part IB Exercise sheet ex 12

“Let I be the A-term Ax.x. Show that n I =1 holds for every Church numeral
n.

41

Now consider B = Afgz.gz I (f(gx))

Assuming the fact about normal order reduction mentioned on slide 115,
show that if partial functions f, g € IN — IN are represented by closed \-terms
F and G respectively, then their composition (fog)(x) = f(g(x)) is represented
by B F G”

The point there is that if f is a function that ignores its input and re-
turns something anyway than the naive composition combinator won’t crash if
g crashes, when really it should. So you test to see if g(z) crashes and, if it
does, you crash too. In detail: g : IN — IN and « : IN. Then g(x) (which is the
first thing we do) either crashes or—if it doesn’t—it returns a Church numeral
... which it then applies to I, getting I of course, which it then applies to f,
getting f (as we were asked to show in the first part of the question) which we
then apply to z.

Robert Honig writes:

Ok, so I asked Prof Pitts and I think we got to the groundﬁ of this.

I misunderstood the definition of normal-order reduction. The correct defi-
nition fully reduces M before N in (Az.M)N, so, if G x has no S-nf, then G x I
has no S-nf.

Here’s the relevant extract from his response:

“I agree that there is more to say about why G x having no S-nf implies
G 2 I (F (G z)) does not have one either, beyond the fact mentioned on Slide
115 of the notes.

In lectures I snuck in an extra slide after 115, giving a syntax-directed induc-
tive definition of normal order reduction, ->_NOR—see last page of https://
www.cl.cam.ac.uk/teaching/1920/CompTheory/lectures/lecture-10.pdfl

If you accept that inductive characterisation, then:

if G x has no -nf,

then, by the fact on p.115, the sequence of steps of ->_NOR starting
from G z is infinite;

but then by the first rule for generating a step of ->_NOR out
of an application, we get an infinite sequence of steps of ->_NOR
starting from G z I (F (G z)), and so, by the p.115 fact again,
Gz I (F (G x)), has no f-nf.”

[RH sez: So the crux lies in the inductive definition of normal-order-reduction.
(So my mistake was to initially only think of the prose definition, which is am-
biguous.) That inductive definition contained a mistake, which has now been
fixed:

I think the inductive definition on slide 116 has a small mistake that makes
it non-deterministic: The second application reduction rule,

12This is his literal translation from the German: Grund. That’s the word you use in
German for the root of a problem. Always learn from your students!

42

https://www.cl.cam.ac.uk/teaching/1920/CompTheory/lectures/lecture-10.pdf
https://www.cl.cam.ac.uk/teaching/1920/CompTheory/lectures/lecture-10.pdf

(\z.M)M' ->_NOR MM’ /x]

should only apply when (Az.M) is in S-nf. (Because otherwise we can do left-
most reduction.) Thus, I think it should read

(Az.N)M' ->_NOR N[M'/x]

7

Question 8(c) (multiples of 3)

Design a DFA that accepts strings from {0, 1}* that evaluate to multiples of 3.
There is a standard way of reading bit strings as numbers, so you do that, but
you do seem to have a choice about how you obtain a string of length n+1 from
a string of length n: do you append the new character on the right or on the
left? To me, it seems obvious that you should append the new character on the
right, as the least significant bit. That way the number represented by the string
of length n + 1 is either 2n or 2n + 1 depending on whether you are appending
a ‘0’ or a ‘1’. (n is the number represented by the n characters shown to us so
far). And you can calculate the residue mod 3 of the number represented by
the first n + 1 characters (which is—as we all agree—what you need to keep
track of) just by knowing n mod 3. On the other hand if you append on the
left instead of the right, you need to know not only n mod 3, you also need to
know the parity of n. This is beco’s if you plonk a ‘1’ on at the front you are
adding a power of 2, and it is congruent to 1 or to 2 depending on the parity of
the length of the string-so-far!! You don’t get a different regular language but
you do need six states rather than three.

Either way you get strings that have leading zeroes, but that doesn’t seem
to matter.

One might have to think about the regular expressions you get for the two
machines. I fretted about it for a bit but i now can’t see anything to worry
about. You get the same regular expression ...eventually; Kleene’s algorithm
will give you regular expression from the two DFAs but they will simplify to the
same shortest regular expressions. Don’t ask.

Michael He makes a useful contribution here. He says: if i read the strings
the wrong way, appending on the left instead of on the right, i still have only
three states, it’s just that they are more complicated.

What are these three states? Prima facie i have six states:

(i) odd length, residue 0;
(ii) odd length, residue 1;
(iii) odd length, residue —1;
(iv) even length,residue 0;
(v) even length, residue 1;
(vi) even length residue —1...

..and these have to be paired up somehow. I think they go:

43

(ii)—(v), (iii)—(iv) and (i)—(vi). (The two with residue 0 have to be paired
off co’s we want only one accepting state, and the rest follows from that.) Call
them A, B and C respectively. A is fixed by 0, C is fixed by 1. 0 swaps C and
B. 1 swaps B and A.

This is actually quite a nice illustration of how one machine can be a quotient
of another. There is an algebraic theory of DFAs but it’s only for people with
strong stomachs.

adj228 does it the wrong way round, appending on the left instead of on
the right. He says his language is the reverse of mine. He and mn492 say that
a number in base 2 is a multiple of 3 iff it has the same number of odd bits
set as even bits set. That’s not true actually, but something like it is true...I
think it’s necessary and sufficient for the difference between the number of odd
bits that are set and the number of even bits that are set to be a multiple of
3. Either way the reverse of a binary representation of a multiple of 3 is also a
binary representation of a multiple of 3.

I think that must be right. Think about test for divisiblity by 11 for numbers
written in base 10.

Multiples of 3 in Base 2; an answer from Maurice Chiodo,
doctored by me

“A: Construct a DFA D with:
Alphabet {0,1}.
States {1,2,3} (corresponding to remainders 0 mod 3, 1 mod 3, and 2 mod 3
respectively).
Start state 1.
Accept state 1.
(Notice that this means that we consider the empty string to denote zero. I'm
happy with that but you might not be)lﬂ

Transition function: (1,0) — 1; (1,1) — 2; (2,0) — 3; (2,1) — 1; (3,0) — 2;
(3,1) — 3.
Note that I am accepting “leading 0’s”; e.g., 000101 is a binary representation
for 5.
The remainder of the long binary integer is 1 mod 3. (Use the DFA just con-
structed, and see which state you end up in).

Now, a regular expression for this language will be Rﬁ
recursive definition

. Recall we have the

R o= R 4 B D) R

,J i, k.J

So thus we are looking for

3 2 2 2)\ % 2
R = B + R RS,

13The footnote that used to be here, a discussion of the semantics of the empty string, has
grown beyond all reason and has been moved to section

44

We build this up inductively:

Rfi =e+0
R =1
Ry =0
RY) =1
Rg)% =¢
RY) = 0
Rgol =0
R} =0
R =41

Now for the next step:

RY = R + RO)(RO))* R“: o
Rglg = R§°; + R(O)(R(O)) R(O) =...=1+0"1
R} = R+ RE) (R >§%— =0
R = Rgog + R(O)(R§ D*RY =...=1+1(0)"
RY) = R{) + R (Rf{) R<0; =... =e+1(0)*1
R%—R%+R mﬂ)ﬁ%— =0
B8 = R RO R
Rs 2= (0) (0)(R§(H) go% = =0
Rl TR A = = e

Recall that we need only build Rfi, Rﬁ?), R(2 and R:(fl in the final stage.

So:
2 1 1 1
R = RY) + RU)(R

(RSD)* RN = ... = 0+ (0°1)(1(0)*1)*(1(0)")
W%WﬁR@%@%-—(X@W
RY) = R{) + RY)(RY))*RY) = e+1+0(1()*1)*0
RY) = R + ROY(RE)): 51% =...=0(1(0)*1)*(1 + (0)")

)

Finally, we get
RE) = (0+(0°1)(1(0)*1)*(1(0)"))+((0°1)(1(0)*1)*0) (1-+:0(1(0)*1)*0)" (0(1(0)*1)* (1+(0)*))

which is the desired regular expression (though you may wish to double-check
my working here. ..)

There is an easier way to do this, via ‘elimination of states’ (See Hopcroft,
Section 3.2.2.) Doing this yields:

(0+11+10(1 +00)*01)"

or, even shorter still,
(04 1(01*0)*1)*

However, this was not taught in the lectures”.

45

Question 9, 10

Ad coda to ¢9...

Of course, in principle, the DFA obtained from an NFA by the subset con-
struction might be exponentially larger. One of my students was asking me:
is there a natural example of an NFA whose corresponding DFA genuinely is
exponentially larger? I couldn’t think of one offhand, but on reflection, the
following might be an example.

Suppose we have a deterministic machine 91 for a language L. We can obtain
from it an NFA for the set of all substrings of strings in L by putting in lots of
“fast-forward” arrows. I hate to think what that looks like when you make it
deterministic. Do you get exponential blowup...? Worth a thought.

Question 11

The ultimate point of this question is that each regular language stands in the
same relation to some DFA as each r.e. set stands to some register machine.
(Even tho’ that is not what you are explicitly asked to prove) Every regular
language is the set of strings that cause some DFA to be in a accepting state;
analogously every r.e. set is the set of those natural numbers that cause some
register machine to HALT. The parallel is important and will help you orient
yourself. It won’t help you prove anything but it does give you a sense of what
is going on. Later we will see how this parallel extends to context-free languages
and PDAs.
It’s worth asking how good are the parallels between the rows:

Register Machines «~ Semidecidable Sets
Pushdown Automata «~ Context-free Languages
DFAs «~ Regular Languages

Is is possible to see DFAs as degenerate PDAs and it is also possible to think of
DFAs as degenerate Turing Machines (which are of course equivalent to Register
Machines). A Turing machine can be seen as Mealy/Moore machine with an
external memory device that compels it to read its own outputs: a Turing
machine is an autocoprophagouﬁ Mealy/Moore machine.

This question makes rather heavy weather of the fact that any regular lan-
guage, thought of as a set of numerical codes for strings, is decidable (“recur-
sive”). Every regular language L has a DFA 9t of its very own (it will have
several of course) and if we want to know whether or not a candidate string is a
member of L we just feed it to 9t and we get an answer—in time linear in the
length of the string. So, by Church’s thesis, there is a computable total function
IN — {yes, no} which tells you whether or not a natural number is a code for a
member of L. Indeed there is even a computable function that takes a descrip-
tion of a regular language (as a DFA, an NFA, or a regexp or a grammar@ and

1 That’s today’s long word
15No time for regular grammars in this course but if you want to pursue this stuff you will
need to know about regular grammars.

46

returns code for the total computable characteristic function as above. So yes,
DFAs are weaker than register machines: they have no memorieﬂ We will
see soon how you can sex DFAs up by giving them some memory, but less than
register machines. Don’t miss next week’s thrilling installment on PDAs!

6.4 Sheet 3
Question (1)

Some of you asked about the motivation for the last part. The question first
appeared on an example sheet devised by Dr Chiodo. He is interested in privacy,
and questions of Ethics in Mathematics. (He has lectured courses on this). In
his idiots’-guide-for-supervisors he writes:

“Such a machine/expression would be used as part of a script to
scrape webpages for personal details (name, address, date of birth,
etc.) These are used because they are extremely fast, and can scrape
large (or many) webpages quickly. Perhaps raise with the students
the question of whether it is a good idea to be making tools to scrape
the personal details of vast numbers of people from the internet.”

Question (3)

There is a subtlety here that one shouldn’t entirely ignore. Quite which machine
turns out to be minimal for a language depends on what the alphabet is. The
language in part (a) contains only strings of as but nothing has been said about
the alphabet. If the machine is expecting to receive characters from ¥ = {a, b}
rather than from ¥ = {a} then it has to have a state to run and hide in when
it gets a b.

Question (4)

Let R, S, T be regular expressions. For each of the following statements, either
prove it or find a counterexample.

(a) L(R(S +T)) = L(RS) + L(RT)
(b) L((R*)") = L(R")
((RS)") = L(R"S")

(d) L((R+9)7) = L(R") + L(57)

(e) L((R*S")") = LR+ S)")

If you make the mistake i initially made, and read the R’s, ‘S’s and ‘T’s
as characters from an alphabet rather than as regular expressions then it’s all
terribly easy. However, that was a mistake!

The way to show that two sets are the same is to show that they have the
same members, and the way to show they have the same members is to take an
arbitrary member of one and show that it belongs to the other, and vice versa.
It can be quite a good idea to prove these inclusions by induction on the length

)
b) £
(c) £
d) ¢

)

A,\/—\/_\

16Tho’ see the earlier discussion (section) of what DFAs can remember.

47

of the strings. An induction on the structure of regular expressions can be good
too

The equations that either have only one word in them, or lack asterisks, are
OK. So there is no problem with (a) or (b). The others require thought. It’s
comparatively easy to demonstrate the falsehood of the false equations: it is
sufficient to exhibit a counterexample. (01)* # 0*1* is a counterexample to (c);
(0+1)* # 0* + 1* is a counterexample to (d).

Some of you have asked me about Part (¢). Dr Chiodo said in his idiots’-
guide-for-supervisors that the answer is (i quote) elementary. Well yes, but
elementary doesn’t always mean straightforward. A string on the LHS can be
thought of (is obtained) as a series of blobs where each blob is some- Rs-followed-
by-some-Ss. Put a ‘(" and a ‘)’ round each blob and concatenate the blobs. So
the brackets delineate the blobs and tell you how your string came to be a
member of the LHS. Now throw away the brackets. You now have a thing on
the RHS. For the other direction start with a thing in the RHS. It’s a series of
blobs each of which is a-few-Rs or a-few-Ss. Put a ‘(’ and a ‘)’ round each blob.
You now have something that lives on the LHS.

Question (6)

Some of these things are regular, some not. You use the pumping lemma to
show that something is not regular. To show that something is regular you
can exhibit a DFA or a regular expression. Sometimes one is much easier than
the other. “Contains a substring of five consecutive 0’s”? Obviously a regular
expression. “Has an even number of 0’s and an even number of 1’s”? Of course
you want a machine.

Question (6e)
Liam Goddard puts it very well. The language in question is the union

U {a"b* :n >k}

k<1001

of {a™b :n > 1}, {a"b? : n > 2}, {a"b® : n > 3}, ...all of which are regular,
and there are only finitely many of them.
Question (6f)

The primes do not contain infinite arithmetic progressions!

Question (7)

We all know the pumping lemma. What is rather special about {a"0" : n € IN}
is that every w € {a™b"™ : n € IN}, however decomposed into zyz with y nonzero
gives zy"z ¢ {a™b™ : n € IN} for every n. Of course every finite subset of
{a™b" : n € IN} is regular, but if L is any infinite subset of {a"b™ : n € IN} then

48

any word in L can be pumped to obtain something not in {a™b™ : n € IN} and
therefore a fortiori not in L.

Question 8

There is a trap here that some of you fell into. It’s certainly true that at least
some of the strings in this language can be pumped up to obtain other strings
in this language, but that isn’t enough to show that the language is regular.
Regular implies pumpable but not vice versa. As it happens this language is
not regular.

The easiest way to show that is to recall that the complement of a regular
language is regular, and that therefore the difference of two regular languages
is regular. If {a™b™ : m # m} were regular, so, too, would be a*b* \ {a"b™ :
m # m}, and that is {a"b" : n € IN} and we know that that is not regular.

However it is possible to do it without trading on this fact. And (as so
often!) it’s more instructive to do it the wrong way. It’s a lot harder, and it
throws up some interesting concerns. For example Jamie Hiley says:

“Consider L = {a"b™ : n # m}. Assume it is regular, then there
exists N as in the pumping lemma. Take w = a™b™ € L where
m # N is to be decided. Then by the PL have w = xyz where
z=aP,y=a%for 0 <p < Nand 0 < p+qg < N. Moreover
xz = a¥79™ € L. But by choosing m = N — ¢ # N this is a
contradiction and hence L is not regular.”

He then asks “Am I allowed to let m depend on ¢? If not I can make the
choice m = n + n! work but am curious”.

There is something here to worry about, as Jamie correctly suspects. One
way of thinking of applications of the Pumping Lemma is as a game played
between you and the machine—or, perhaps between you and the machine’s
minder, a shady character who takes the machine around fairgrounds making
fraudulent claims that it can recognise a language L which he says is regular,
but isn’t. Your first move is to ask how many states the machine has. You get
an answer, which Jamie calls N. You now cook up a word w € L with |w| > N.
You do this beco’s you know that w can be decomposed into zyz in such a way
that you can pump up y. So the deal is this: you tell the machine what w is,
and the machine has to tell you what z, y and z are. The point here is that:
you don’t get to choose y; it’s the machine (or the minder) that tells you what
Yy is.

Now let’s look at Jamie’s proof. He wants to choose m depending on ¢g. But
he has to choose m before he gets told what ¢ is! That is: m is part of Jamie’s
move, but ¢ is part of the machine’s reply to that move. So, no: he can’t do
that. However, this is not a huge problem, since if you choose the number of bs
to have enough small factors then you can pump up the number of as to match
the number of bs, and therefore land outside L. (As he says)

49

Question (9)

Obviously! If Ds is not minimal then there is D3 which is, and you take its
complement and that will be smaller than D;, contradicting assumption.

Question (10)

I think this is quite hard. If L and M are languages over the one alphabet
accepted by machines 91; and 9, then the difference L\ M is accepted by the
product 9M; - My. (You know what I mean). Having L belong to an alphabet
3 and M belong to an entirely different alphabet I' stuffs up the proof without
altering the fact that L \ M is regular. So why don’t we just say that both
L and M are over the alphabet ¥ UI'? We can, of course, but there is some
housekeeping to do. The machine 9; that recognises L (as a subset of ¥*) has
no arrows in its innards labelled with characters from '\ ¥. To turn it into a
machine that processes strings from ¥ UT" we have to add, for each of its states
and for each character ¢ in I' \ ¥, an arrow to a terminally unhappy state. So
far so good. We do the analogous thing for 1, of course. We now have two
modified machines 90 and 90,. We take the product 9, - . (Think about
what has happened, in 9}, to the terminally unhappy states in 9,; they have
become blissed out states that accept everything.) I wonder what sort of smiley
one should notate them with?! Perhaps

e

The time has now come to think through the question of which strings are
accepted by 9] - MM,. We shall continue to think of this as 0} and 9, being
run in parallel.

e What happens when we feed to this consortium a string that con-
tains characters from I' \ £? As soon as we hit such a character 9t}
goes into a terminally unhappy state and forbids the consortium to
accept.

e As soon as it hits a character that is in ¥ \ T’ the consortium
member MY, goes into a blissed-out state, so that all decisions about
whether to accept end-extensions of that string are made by the
other consortium member, 9] .

Which is exactly what we wanted.

Question (11)

We covered most of this in sheet 2, but i do have the extra thought.... You
remember the test for divisibility by 11 for numbers notated in base 107 There
is an analogous test for multiples of 3 for numbers written in base 2. What is it?
I mention this beco’s it might give you another regular expression for multiples
of 3 written in base 2. Worth a try.

50

Just occurred to me. What happens if you write this regular expression
backwards?

Generally i see no reason why Kleene’s algorithm for obtaining a regular
expression from a DFA should give you the shortest such expression. In fact it’s
pretty clear that it doesn’t.

Question (13)

This harks back to Q11 of sheet 2.
The reverse of a regular language is regular, as any fule kno. Therefore, if
the displayed language were regular, so—too—would be the language

{1I"0w: w € {0,1}* An € K}

and also the intersection of that second language with the regular language 1*0,
which is
{1"0w : n € K}

and it’s easy enuff to show that that ain’t regular. A machine that recognised
it would accept all and only those strings of the form 10 where n € KK, so it
would solve the HALTing problem. In your dreams innit.

(It is possible to do it without turning the language back-to-front, but this
is the cutest proof known to me).

Now to show that the original language can be pumped. What do we mean
by that? We mean that any sufficiently long word in this language can be split
into wyvws in such a way that, for all n € IN, wyv™ws is also in the language.
(Brief reality check: the reverse of a pumpable language is pumpable.)

Notice that the claim is not that however you split a suff long word into
three bits you can pump up the middle bit s.t. etc etc, merely that there is a
way of splitting up such a word into threee bits s.t. etc etc.

A string consisting entirely of 1s can clearly be pumped. So what do we do
with a string that contains a 07 Such a string is w1™ for some n € IK and some
w € {0, 1}* whose last element is 0. Then you just pump up the w!

I think one of the points being made here is that you use the pumping lemma
to show that a language is not regular, not to show that it is.

Question (14)

Beware! He’s asking you about the empty language, not the language containing
only the empty string!

Question (15)*

I don’t think this is hard enuff to justify a star, but i might just be cruel and
old-fashioned enuff to think students should have to do a bit of work every now
and then.

o1

The complement of a DFA D is obtained from D by turning all accepting
states into nonaccepting states and vice versa . We have a concept of the product
of two machines (for accepting the intersection of two languages)lﬂ Consider
then the product of D; with the complement of Dsy. Does this machine accept
any strings? You can ascertain this by a breadth-first search for an accepting
state starting at the start state. It takes linear time. Piece of cake.

Question (16)*

I don’t think this is hard enuff to justify a star, but—again—i might just be
cruel and old-fashioned enuff to think students should have to do a bit of work
every now and then. (“We lived at the bottom of a lake...” —“Luxury!”)

As Alistair Bill points out, if X is finite, as it might be {u,v,w} then X*
has the regexp (u|v|w)*, but of course it might not be.

The strings in X differ only in their length, so this is not really a question
about strings but about natural numbers. Think of X as a subset of IN, and then
X™* becomes the closure of X under addition. If you think about this for a bit it
becomes obvious that X* contains all sufficiently large multiples of LCM(X)EI
The set of all strings-of-1s whose lengths are a multiple of a natural number k
is a regular language, and any language with finite symmetric difference from
this is also regular. Piece of cake.

If there is a moral to this it’s probably something along the lines of: never
pass up a chance to discard irrelevant information. (Remember how you had to
ignore the number 5 in question 4 of sheet 27)

It also gives you something of the flavour of research mathematics. You
encounter a problem and it seems to be about dingbats, but it’s actually about
wombats.

Actually there might be another moral. Some of you were worried by the
prospect of forming the highest common factor of an infinite set of natural
numbers. You are right in your suspicion that there is something to think
about here; after all, HCF is (in the first instance) an operation on two numbers.
Since it is associative it can be extended so it is defined on all finite multisets
of numbers. (It’s an important triviality that any associative binary operation
on a set can be naturally extended to an operations of lists from that set, not
just ordered pairs.) You were encouraged to worry about infinite sums and
products in Analysis II, so justification is neeeded if one is to apply it to infinite
sets. The justification here is rather different from the justification of infinite
sums in Analysis IT; it’s OK, but not just (as some of you said) because HCF is
monotonic (decreasing) wrt C (on subsets of IN) and every set of naturals has
a least member, so you learn your eventual answer in finite time. [actually even
montonicity is not enuff: what is needed is continuity at limits] That doesn’t
make it computable, and it’s a distraction. More to the point is that

171 don’t think either of these facts were lectured, so perhaps that is why the question gets
a star
18Tho’ i can’t offhand see a cute upper bound. It would be nice to have one.

92

HCF(X) = LCM{y : (Vx € X)(y|x)}

And clearly the LCM on the RHS is the LCM of a finite set, since only
finitely many things can divide everything in X. (They’ve all got to be smaller
than min(X).)

Harking back to the first part of the course ...How hard is it to find the
HCF of an infinite set of naturals anyway? Let n € IN, ask for HCF({n}“IN).
Is this function computable? It shouldn’t be hard to show that it isn’t.

6.5 Sheet 4

I haven’t yet renumbered these questions to make them compliant with the
number in 2021/2

There is a question that makes the point that if L is a context-free language
then the set of all substrings of members of L is likewise context-free. It doesn’t
say that every subset of a CF language is CF! That second thing sounds the
same, but it isn’t! ...and that’s for the obvious reason that every language is a
subset of ¥*, the universal language, and that language is context-free.

6.5.1 Question 4, starred part
Show that {a,b}* \ {ww : w € {a,b}*} is context-free.

Dr Chiodo gives a grammar:

S — A|B|AB|BA;
A = CACla;

B — CBClb:

C —alb

He supplies us this grammar, but I think a determined student would prob-
ably be able to work out for themselves that something along those lines might
work. The hard part comes in showing that it not only might work, but that it
does in fact work.

Every string corresponding to an A or a B (let’s call them A strings and B
strings) is of odd length and therefore can’t be of the form ww. However we
do have to show that every string AB is not of the form ww. Every A-string is
of odd length and has an ‘a’ at its heart; every B-string is of odd length and
has a ‘b’ at its heart. In fact the A-strings are precisely the set of those strings
of odd length with an ‘a’ in the middle and the B-strings are precisely the set
of those strings of odd length with an ‘0’ in the middle. We want the set of
AB strings and BA strings to be precisely our putatively context-free language,
and if the A string and the B string that go into our AB string are the same
length we get what we want. However in an AB string (mutatis mutandis a
BA string) the A and B moieties might be of different lengths. But this is OK!
Suppose A has become the three string (-a-) and B has become the five-string

]

(--b--). Now comes the clever bit. AB is the 8-string (-a---b--), and you think
of it as the concatenation of two 4-strings. Now the first 4-string has ‘a’ as its
second member and the second 4-string has ‘b’ as its second member—so they
are distinct!!

Let’s write this out properly for the general case. Suppose we have a string s
of even length, that is: an AB string or a BA string, is without loss ofgenerality
an AB string. It’s of length 2n +1 + 2k + 1, where the first 2n + 1 characters
are an A string and the following 2k + 1 characters are a B string. s is of the
form ww’ where w and w’ are both of length n+ k + 1. w is a string whose nth
element is ‘a’ and w’ is a string whose nth element is ‘b’, giving w # w’'.

There is an extra wrinkle however, which Mr Cowperthwaite of Girton men-
tioned in a supervision. The grammar does not invite us to add AA or BB to
the list of words it generates. How can we be sure that this omission is safe?
Might there not be two A words A and A’ such that AA’ is not of the form
ww but which nevertheless cannot be obtained as an AB nor as a BA? Well,
suppose we have a word W which can be obtained as a concatenation AA’" of
two A words but cannot be decomposed into an A word followed by a B word
or vice versa. In particular if we chop up AA’ into-one-character-followed-by-
|AA’| — 1-characters then this decomposition is not an A word followed by a
B word nor vice versa. So the first character of AA’ must be the same as the
|AA’|/2th character. And the same must go for the second character! So our
candidate was of the form ww after all.

6.5.2 Question 8

Most of you did this by the technically defensible way of taking a grammar such
as
A—=SS|S+S5]8%|(9)

which has the effect that (((((((@))))))) is a regular expression—and of course
you can pump up something like that. You probably heeded the siren voices
asking you to look at the brackets. However (he says severely) (((((((a)))))))
is not morally correct. What am i complaining about? Well, if i were to ask
you what alphabet the regular expression (a|b)cx (for example) comes from, you
would say ¥ = {a,b, c} wouldn’t you? You woudn’t say ¥ = {a,b, ¢, (,)} would
you? My take is that the parentheses are not part of the alphabet, and they are
only there for punctuation. How many letters does the english alphabet have?
Yes, twenty six, not thirty-two ...with *.”, <’ 77?7 and ‘I
You should have a grammar like

A = (9)(S) [(S)+(5) [(5)

or perhaps

A — (S| (S+58)] (5

where parentheses are inserted only round strings that are being incorpo-
rated into longer strings. This grammar doesn’t tell you that (((((((a))))))) is a

o4

regular expression. No more it should, co’s morally (((((((@))))))) isn’t a regular
expression, now, is it!? You knew that all along—admit it. The only reason why
you need the brackets is for punctuation when composing things with binary
constructors. Accordingly you should put them in only when composing things
using binary constructors.

But of course the path of virtue is not terrible easy. Now we need the concept
of a homomorphic image of a language. Suppose 31 and X5 are two alphabets,
and f:3; — Yo and L C ¥y. Then (i think!) L is regular iff f“L; is regular.
And apparently it works for context-free languages too. This is related to the
fact that there is a good notion of homomorphism of DFA (and probably NFAs
too). By this means we can show that if the language of regular expressions
were regular so too would be the matching bracket language, and it ain’t, as
any fule kno.

6.5.3 Question 9

Ly == {a™b"c" : n,i € N} and Ly := {a"b'c’ : n,i € IN}. Clearly both are CF
and clearly their intersection isn’t. Charlie Brooker says: We know that L; U Ly
isn’t CF, but is L; U Ly CF? And which of the two complements L; and Lo
are CF? Off the top of my head i have no idea, but it’s a very good follow-up
question. Of course if you want a direct proof that the complement of a CF
language is not reliably CF you look at the last two parts of question 4 on this
sheet.

Incidentally one point that this makes is that there is no good notion of the
complement of a PDA (nor a good notion of the product of two PDAs) in the
way that there is a good notion of complement of a DFA.

6.5.4 Question 11

The key to this question is finding a specification of the Abstract Data Type
of PDA’s that allows that an NFA is just a degenerate PDA. You are by now
familiar with a product construction for DFAs. Tweak it a bit so you have a
good notion of a product of two NFAs, and then combine that with your ADT
for PDAs that allows that an NFA is just a degenerate PDA. Then tweak your
notion of product of DFAs so you have a notion of a product of an NFA and
a PDA. The significance of product here is that the intersection of two regular
languages Ly and Lo is the language recognised by the product of the two DFAs
that recognise L1 and Lo.

I have to admit that this is a very logic-y question. To do it you have to think
quite hard about specifications of Abstract Data Types, and this is something
that mathematicians don’t normally expect to have to do. One tends to expect
that the specifications of the abstract data types that we use have been sorted
out before we sit down to work.

I should really do this myself one day! This is definitely a conceptual problem
(and therefore an example sheet question) rather than a technical performance-
art one (which is why it isn’t an exam question!)

%)

7 Discussions of questions on examples sheets
for Part 11 Maths Languages and Automata
from previous years

If you want to try some old tripos questions warn me in advance and i’ll work
up some discussion answers.

7.0.1 Question 12 on Sheet 2 2018/9
For the punchline, look up: “There Are No Safe Virus Tests” William F. Dowl-
ing, The American Mathematical Monthly 96, No. 9 (Nov., 1989), pp. 835-836

Question 13 on Sheet 2 2018/9

Let’s sharpen this up a bit. Reader: go forth and find a family (A, : n € IN)
of decidable (OK, you can call them recursive if you like) sets that are nested:
n <m — A, C A,, whose intersection is not semidecidable (OK, not r.e.)
Start by asking yourself what your favourite example is of a set that is not
semidecidable.

96

8 0Old Tripos Questions for Part II Maths Lan-
guages and Automata

https://tartarus.org/gareth/maths/tripos/II/Automata_and_Formal_Languages.
pdf

8.1 2017

2017 paper 1 section II 11H
It’s an old example sheet question: section [3.9] p.

2017 paper 3 section II 11H

(a) Given A, B C N, define a many-one reduction of A to B. Show that if B is
recursively enumerable (r.e.) and A <., B then A is also recursively enumerable.

(b) State the s-m-n theorem, and use it to prove that a set X C IN is r.e. if
and only if X <, IK.

(¢) Counsider the sets of integers P,Q C IN defined via

P :={n € IN : n codes a program and W, is finite}

Q :={n € IN : n codes a program and W,, is recursive}.

Show that P <,, Q.

I have no idea how to do this. Go to the author and play the Helpless

01did™]

A message from Maurice Chiodo. He says:

“Look at question 13 of example sheet 2. In the crib sheet, i discuss approxi-
mating recursive sets by finite sets.

Here is the way to answer part (c) of that question:

- First, fix a register machine T which halts on the Halting Set IK.

- Take W,

- Start enumerating elements of W,

- Each time you find a new element (say the kth element) in W,,, form the
k-step approximation Ay to the halting set IK (that is, take the machine T', run
it on all inputs from 0 to k, doing k steps of computation on each input).

- Tt is clear that Ay is finite, and we can construct Ay uniformly from & (I
just showed how, and remember you have the machine 7" for K in your pocket).

- Now take the union B = | J Ay, over all the k that are enumerated from the
re set W,. (B approximates the Halting Set IK)

- It is clear that we can construct B from the re set W,.

- If W, is finite, then B is finite, and thus recursive.

- If W, is infinite, then B = IK, and so B is not recursive.

This is your many-one reduction :)”

19T do quite a good Helpless Oldie, if i say so myself; i’ve had years of practice.

o7

https://tartarus.org/gareth/maths/tripos/II/Automata_and_Formal_Languages.pdf
https://tartarus.org/gareth/maths/tripos/II/Automata_and_Formal_Languages.pdf

2017 paper 3 11H—Duh!
from 2021.

I should’ve looked—i had an answer on file already!!

Part (b)
This is the bit i have difficulty remembering

REMARK 3 A <, K iff A is semidecidable.

Proof:

L—-R

Since IK is semidecidable it is the domain of a partial recursive g. If A <,,, IK
in virtue of f (that is to say: f:V — V is total computable and the range of
fTA is included in IK) then A is the range of go f, which makes A semidecidable.

For the other direction, suppose A is semidecidable. Define a binary partial
(computable) function f by

f(e,x) =: if e € A then 1 else 1

By the S-m-n theorem there is now a computable function g such that, for all
x and e, {g(e)}(z) = f(e,z). From this we have (Ve)({g(e)}(g(e)+— e € A).
Thus (Ve)(e € A «— g(e) € IK). (Here we take IK to be the diagonal halting
set). But now A <,,, K in virtue of g.

Part (c)

The question to ask yourself is: “I have a candidate k& for membership of P.
What computable function f is such that & € P iff f(k) € Q7" Somehow—in
a computable way—i have to obtain from k something which is in Q if k£ € P.
What is that something?

I think you want the function that does the following. Input m. If {m}(m) |,
run the volcano for {n} until it has output m things. Then halt. This function
is trying to output IK and it will succeed if W, is infinite; if W, is finite then
our function has finite range. If W, is infinite then W of our function is the
halting set, wot ain’t recursive.

8.1.1 2017:4:4H

Part (b)
As Sam Watts says, L\ M is regular if L and M are, and the reverse of a regu-
lar language is regular. So, if this language is regular, sois {1"0w : w € {0,1}* An € IK},
and therefore so too would be {10 : n € IK} and that clearly isn’t regular, co’s
any machine that recognised it would solve the Halting problem.

8.1.2 2017:3:11H

I couldn’t do this bit. But then (according to the examiners’ post mortem) nor
could any of the candidates. However my supervisee Andrew Slattery could.

98

May he live for ever. I gave him a chocolate but it should’ve been two; what a
star. This presentation is mine, but it’s his answer.

Suppose i have a gremlin in my attic that will, on being given n € IN, think
for an indeterminate time and say ‘yes’ if W, is recursive but will remain silent
if it isn’t. I have to obtain from this gremlin a gremlin that will, on being given
n € IN, think for an indeterminate time and say ‘yes’ if W,, is finite but will
remain silent if it isn’t.

Here’s how i do it.

The function A,, (for ‘Andrew’) is defined as follows. I equip myself with a
volcano Vi for the machine that computes An. if {n}(n) | then n.

Someone comes in off the street and shows me a natural number m and
wants to be told that W, is finite—if it is, that is.

I build a volcano V,,, for the function {m}. The kth time V,,, emits something
that it hasn’t emitted befor@l run V¢ until it emits its kth value, and I emit
that as A,, (k).

(This question is in a context where the S-m-n theorem is being waved
about. It’s the S-m-n theorem that tells you that the function that accepts m
and returns A,, is computable. I tend to think of it as Church’s thesis that
guarantees computability of this function but you could say that it’s the S-m-n
theorem that guarantees it and that the job of Church’s thesis is to make the
S-m-n theorem obvious.)

This describes A,,. Notice that i am not proposing to run it; i merely need
the code for it, since i intend to show the code to my gremlin. It may seem odd
that it is essential that one should cook up code to do something-or-other, but
then doesn’t need to run it. Computation theory is full of weird things like that.
My gremlin can tell me if the range of A,, is decidable. Clearly if the range of
{m} is finite then the range of my function is finite and my gremlin will detect
this fact. The only circumstances in which the range of A,, is decidable is when
it is finite. This is beco’s if the range is infinite then the range of A,, is the
halting set (so my gremlin will say nothing). Thus {m} has finite range iff my
gremlin says that the range of A,, is decidable.

Being a wally i had entirely forgotten that i had written out an answer
to this question a year earlier!!!

Problem reduction exercises are always hacky and ad hoc (“ad hack” the wags
say). There are a few tricks you can try but none of them really amount to a
technique. You just have to snoop around looking for unlocked windows.

This particular problem reduction exercise is this: given a machine that,
given n, will go PING! if W), is decidable (we know it is at least semidecidable),
use it to answer questions of the kind: “Is W, finite?”

20When i wrote this i was assuming that W, is {n}“IN, the set of values of the function
{n}. My understanding was that the ‘W’ came from German Wertebereich which (ought to
mean) domain of values. But perhaps it means: domain on which {n} is defined Either
way this construction works.

99

To do this tweaking we have to be able to do the following: given m, come
up (computably!) with n s.t. W, is recursive iff W,, is finite. So: if W, is
infinite then W,, must fail to be decidable. What is your favourite example of a
semidecidable set that is semidecidable but not decidable? As Imre would say:
“Switch brain off and do the obvious thing”. Yes, IK. Duh.

So, given m, i compute n as follows. I get a volcano V' (a machine running in
parallel with itself that emits numbers without being asked) that emits members
of W,,. While this is going on i am trying to compute members of IK. I do
this by running {k}(k) for lots of k in parallel. Which k? Well, at each stage
i am running {k}(k) in parallel on all the k that are below the largest number
emitted by V so far. This process i have described is parametrised by m and
so represents a function from IN to IN. The set of numbers i get is of course
semidecidable and is W,, for some n, and, yes, i can compute this n from m.

By assumption i have a machine 9%, wot i have trafficked from Eastern
Europe and am keeping in inhumane and degrading conditions in a mouldy
and rat-infested attic, where I use it to answer questions of the form “Is W,, a
decidable set?” I now force open the jaws of my machine and insert the number
n that i got from the preceding paragraph. What might W,, be? It might be
finite, and if it’s finite, well, it’s finite. But it might be infinite. But if it’s
infinite it must be IK, and so is not decidable! So if 9 says that W,, is recursive
it must be that it is finite, but that means that W,, was finite!

8.2 2018
8.2.1 2018:1:12G

I like to use the word gatekeeper in connection with <,,. The point is that,
if A <,,, B then if you have a gatekeeper for B (someone who can recognise
members of BIE[) then you can tweak it into a gatekeeper for A. That’s why
<,, matters.

Andrea Szocs points out that, the way @ is defined, X ®Y is IN\ (Y @ X).
This is a perfect example of the kind of hacky fact that an assembly language
programmer might make use of, but which a mathematician need take no ac-
count of. It’s not a fact about the @ operation (which is of course disjoint union)
but about the particular implementation of & that we have been told to use.

8.3 2019
8.3.1 Paper 1, Section II 12H

For the last part you are going to need seven states, beco’s you need to keep
track of the remainder mod 7 of the number-in-hand. One way of locating the
machine that does this is to recall that if you write a number in octal then it is
divisible by 7 iff the sum of its digits is a multiple of 7. (why?) The other way

21Bouncer’ is also a possibility, but we’re in Cambridge, so perhaps porter would be better!

60

of doing it (not exploiting the sum-of-digits trick) is to have one state for each
remainder-mod-7. That’s seven states too. Seven is clearly best possible.

8.3.2 Paper 2, Section II 4H

There is a subtlety in the last part. What you want to say of course is

f(0) =0[f(1) = 0; f(S(n) = S(f(n))

... but that doesn’t match the template. You have to use the auxilliary primrec
function g(x,y) = y.
Then you can say

f(0) = 0; £(S(n)) = g(f(n),n)

8.4 2020
8.4.1 Paper 1: 12F

(a) Define a register machine, a sequence of instructions for a register machine
and a partial computable function. How do we encode a register machine?

(b) What is a partial recursive function? Show that a partial computable
function is partial recursive. [You may assume that for a given machine with a
given number of inputs, the function outputting its state in terms of the inputs
and the time ¢ is recursive.]

(¢)

(i) Let ¢ : IN — IN be the partial function defined as follows: if
n codes a register machine and the ensuing partial function f, ; is
defined at n, set g(n) = f,,1(n) + 1. Otherwise set g(n) =0. Is g a
partial computable function?

(ii) Let A : IN — IN be the partial function defined as follows: if
n codes a register machine and the ensuing partial function f, ; is
defined at n, set h(n) = f, 1(n) + 1. Otherwise, set h(n) =01if n is
odd and let h(n) be undefined if n is even. Is h a partial computable
function?

ANSWER

(i) Observe that g is a total function. Observe also that the way ¢ is defined—
it diagonalises out of the family of computable functions—it can’t be computable
if it’s total. (Apply it to its own index). But it is total by construction; so it
cannot be computable.

(ii) I think the same trick of self-application will help in this second part
too, but i haven’t yet seen how. It’s obviously not recursive, but ...

8.4.2 Paper 3: 12F
Look at section B.111

61

9 Some Answers

The answer to my query at the end of question 1 on Sheet 2 (p seems to
me to be as follows.

Evidently if A and B are both semidecidable—so that, if a € A and b € B,
then we will learn this fact in finite time—then we learn in finite time that
(a,b) € A x B—if it is. For the other direction, reflect that ...if A x B is
semidecidable then how do we learn that a € A? Well, if it is, then—for any
b € B—(a,b) € A x B. So we just zigzag across attempts to prove that (a,b)
over all b € IN and we will eventually be told that {(a,b) € A x B for some b and
that will tell us that a € A.

10 Appendix on The empty string

What does one want to say about the start state, the state it is in when it
hasn’t been fed anything? Is that to be the same as the accepting state or not?
To what natural number does the empty string from {0,1} correspond? If it
corresponds to 0 then the start state is the same as the accepting state. If it
corresponds to anything (and how big an ‘if” that is is a matter for discussion)
then it must correspond to 0. That’s because when we append a ‘0’ to it we
have the string 0 which of course corresponds to the natural number zero, and
this appending-of-‘0’ corresponds to multiplying-by-2, and an appending-of-‘1’
corresponds to multiplying-by-2-and-then-adding-1. Both these thoughts tell us
that the empty string must point to the number 0.

But, says Harry Roberts, it doesn’t prima facie mean anything at all, so it’s
by convention that you decide it means 0. His thought then is (I've monkeyed
around with this a bit) is that if you wake the machine up, and then press
before you have entered a character from the alphabet {0,1} you'd get an
error message. He’s right. In fact if, at any point in a sequence of keystrokes:
...character, [a , character, ... 1 press [a without immediately
preceding it with a character i’ll get ...what? Harry says i’d get an error
message. I might, i suppose. But it wouldn’t be from the DFA, it would be from
the DFA’s minder, the operating system. Actually the O/S probably wouldn’t
even bother to send me an error message, on the grounds that the simplest thing
to do in these circumstances is to ignore the ectopic carriage return altogether.
But i think it’s important that the error message [if there is one] will come from
the user interface not from the machine.

How perverse is Harry being? Suppose i were to pretend that i don’t know
what multiplication by 0 is, and that x - 0 (for 2 € IN) is prima facie undefined.
I could probably be talked into agreeing (with a becomingly modest display of
reluctance, of course) to a convention that says that z -0 = 0, on the grounds
that it makes the distributivity etc etc work. But we all think that that is
perverse . ..don’t we?

Yes it is perverse, but perverse rather than actually false. If i define an

62

operation of multiplication on (IN'\ {0}) x (IN'\ {0}) then how i extend it to the
whole of IN? is entirely up to me. Isn’t it...?

And it’s surely not by convention that we think that when, in the course of
doing a proof by resolution, we have resolved to the empty disjunction, then we
have proved the false?

OK, so is it OK to think that the empty string denotes 07 I have been gaily
saying that it is, but Angus Matthews has been impressing on me that it depends
on what you want to do with it. What we have here is a homomorphism from
strings (of Os and 1s) to natural numbers, and we want the homomorphism
to behave nicely so that—for example—concatenation of strings corresponds
nicely to something arithmétic. Mostly it does, but allowing the empty string
to denote 0 buggers up the homomorphism. The problem is that s :: {0} (which
is s with the singleton string {0} consed on the end) denotes (as it were) 2s
whereas s :: € (s with the empty string consed on the end) is of course just s.
(If we cons them the other way round it’s all right, but that’s no consolation).
So—in this context—the difference between {0} and e actually matters.

References

[1] Craig and Vaught, “Finite axiomatizability using additional predicates”,
JSL, 23 (1958), pp. 289-308.

[2] S.C. Kleene, “Finite Axiomatizability of theories in the predicate calculus
using additional predicate symbols” Memoirs of the AMS, 10.

[3] M. Makkai. Review of [2] JSL 36 (1971), pp. 334-335.

63

	Functions in intension and in extension
	…and Why I was a traumatised Child
	Functions in intension and in extension, and Slide Rules

	Revelation and Computability
	DFAs
	Word ladders
	What can DFAs remember?
	How to Pump a Wasp
	The Easy Way into the Pumping Lemma
	How to spot a regular language
	A Riff on van der Waerden's Theorem
	A new Way of proving van der Waerden?

	NFAs are nondeterministic not probabilistic!
	Polynomial growth?
	Enumerating DFA's
	Any connection between Quantifier Elimination and Automaticity?
	Regular Languages for Numerals

	Context-free Languages and PDAs
	Interleavings
	A thought about regular and context-free languages
	Products of PDAs?
	Re-use of variables

	Computable Functions
	A conversation with two of my Queens' 1B CS students
	Turing Degrees

	Inverting Partial Computable Functions
	This should be an exam question
	Over dinner at the Boffafest: discriminators

	Supervision Notes on the Part II Automata and Formal Languages Course
	Sheet 1
	Sheet 2
	CS 2017 Part IB Exercise sheet ex 12
	Sheet 3
	Sheet 4
	Question 4, starred part
	Question 8
	Question 9
	Question 11

	Discussions of questions on examples sheets for Part II Maths Languages and Automata from previous years
	Question 12 on Sheet 2 2018/9

	Old Tripos Questions for Part II Maths Languages and Automata
	2017
	2017:4:4H
	2017:3:11H

	2018
	2018:1:12G

	2019
	Paper 1, Section II 12H
	Paper 2, Section II 4H

	2020
	Paper 1: 12F
	Paper 3: 12F

	Some Answers
	Appendix on The empty string

