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1 Introduction

The purpose of this paper is to explore the connections between permu-
tation groups, definability, and the axiom of choice (AC). The fact that
these three topics are closely related is perhaps rather well known, but
it is possible to bring out into the open some of the precise connections,
which may be spelt out in quite a systematic way. To start from a par-
ticular point of view, in the original models for the negation of the axiom
of choice there was an explicit use of permutation groups. I refer to the
Fraenkel-Mostowski method. Moreover, this was developed to a high de-
gree of elegance, particularly in the work of Mostowski where he was able,
by careful choice of the group and the ‘support structure’, to illustrate non-
implications between various weak versions of AC. For instance, he found
a model in which every set can be linearly ordered (the ordering principle)
but AC fails (Mostowski, 1939), and (1945) he investigated the connec-
tions between versions of AC for families of finite sets. More sophisticated
constructions were used by other authors, for instance Liuchli (1964), who
gave a model in which any family of non-empty finite sets has a choice
function, but the ordering principle fails.

The Fraenkel-Mostowski method was makeshift in the sense that at the
time when it was devised no-one knew how to construct models of Zermelo—
Fraenkel set theory in which AC was false. For this reason, a related system
in which models could possess non-trivial €-automorphisms was used. Af-
ter the advent of forcing, most results obtained by FM methods could be
transferred straight to ZF. To begin with, these were all done on an ad hoc
basis, but then more precise methods of direct transfer were discovered.
The first general result of this sort was the Jech-Sochor, Theorem (Jech
and Sochor, 1966), and the method was considerably extended by Pincus
(1972), relying principally on a careful analysis of the Halpern—Levy model
(Halpern and Levy, 1971).
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132 Permutations and the aziom of choice

Since in ZF there can be no non-trivial €-automorphisms of the uni-
verse, if we are to use permutational methods the permutations must lie
elsewhere. In Cohen’s work he viewed these as acting on the ‘label space’.
In the more streamlined boolean-valued treatment of forcing due to Scott
and Solovay (described by Bell (1985)), the permutations are automor-
phisms of a complete boolean algebra. Here they extend not to automor-
phisms of the universe, but rather to automorphisms of the boolean-valued
universe. If the intuition behind the Fraenkel-Mostowski method was that
to negate AC we need to find a symmetrical family of sets such that any
choice function for it has to be asymmetrical (and hence excluded), the
modified intuition for Cohen models is that we should find a family which
with boolean value 1 is sufficiently symmetrical, but such that any choice
function is not. This cannot be directly because of lack of symmetry in the
true ZF universe, but it can be because of lack of symmetry in its boolean
counterpart, or perhaps better, because of lack of definability. This is where
the other theme, of definability, comes into the picture.

In Section 2 we give a recap of the Fraenkel-Mostowski method, illus-
trating by giving a standard construction required later. Next in Section 3
we examine some classical independence proofs related to weak versions
of the axiom of choice, and show how a uniform treatment can be given
by using universal-homogeneous structures. This follows ideas of Pincus
(1976). A particularly beautiful illustration of the relationship between
- AC models and permutation groups comes about in the Mostowski—
Gauntt theory of finite versions of the axiom of choice, where the per-
mutation groups are finite. We describe the corresponding ‘Galois theory’
for this situation in Section 4, emphasizing the different ways in which this
works out corresponding to implications between the various modified fi-
nite versions of the axiom of choice studied. Then in Section 5 we explore
a fascinating area where the connections with model theory seem to be
very strong, and describe work still in progress (Creed, to appear; Truss,
in press) concerning set-theoretic analogues of the model-theoretic notion
of ‘strongly minimal set’, where we aim to perform a ‘classification’ of so-
called amorphous and o-amorphous sets.

2 Definability, choice, and Fraenkel-Mostowski mod-
els

I shall now recall the classical construction of Fraenkel and Mostowski,
which is used to form models in which the axiom of choice is false. The
method predates Cohen’s techniques by many years, and was at that time
the best that could be done in obtaining = AC models. It was carried out in
the context of a modified set theory which can accommodate the existence
of ‘atoms’ (or urelemente). These are objects which are not sets, but which
can be members of sets. The point of allowing atoms is the following.
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The key idea in obtaining a model for - AC is to obtain a set which is
reasonably ‘symmetrical’, but such that any choice function for its members
must be rather ‘asymmetrical’. Since atoms are by their very nature set-
theoretically indistinguishable, the notions of symmetry and asymmetry of
sets built up from them make good sense, and if we have so arranged things
that our universe contains only symmetrical objects, a set may lie in the
model without there being any choice function for it.

The Fraenkel-Mostowski method takes this approach fairly literally;
that is, there really is a symmetry group acting, and we do apply a crite-
rion of how symmetrical sets should be for them to lie in the model. The
group elements are taken to be automorphisms of the set-theoretical uni-
verse. This explains why in this approach it is necessary to assume there
are atoms. For, in ordinary ZF set theory, one can prove by transfinite
induction on rank that the only €-automorphism of the universe is the
identity. This is because if ¢ is an €-automorphism then for every set z,
zg = {yg:y €z}

We work therefore in the theory FM, which is obtained from ZF by
modifying the axiom of extensionality to allow the existence of atoms. It
now says that if two sets are non-empty, and have the same members, then
they are equal. The empty sets are then either the ‘true’ empty set, or
atoms. To distinguish which are which we adjoin a unary predicate symbol
U(z), to express ‘z is an atom’. Jech (1970) shows how to find a model
for FM built out of certain of the sets of a model for ZF (which we may
think of as adjoining the desired atoms ‘at the side’), so there is no problem
about the existence of such a thing (relative to that of a model of ZF).

Let 9N therefore be a model of FMC ( = FM + AC) in which the family
U of atoms forms a set (though there are versions of the method where
U is a class). Suppose that G is a group of permutations of U, and that
Z is a filter of subgroups of G closed under conjugacy. These are then
the ingredients necessary for construction of an FM model. Before we
can do this we first have to say how G will act on the members of 7.
This is uniquely determined by the requirement that it should respect the
membership relation, so as above we have to let zg = {yg : y € z} for
each z. Once (G has been allowed to act on the whole of 9, we at once
obtain stabilizers in the usual way. It is convenient to distinguish setwise
and pointwise stabilizers, which are written as Gz} =det {9 € G : 29 = z}
(the setwise stabilizer of z) and G(z) =det {9 € G 1 yg = yforally € z}
(the pointwise stabilizer of ). The resulting FM model 0 then consists
of those members of 9T which are hereditarily symmetric with respect to
#. Thus we may write M= {z € Mz C N and Gy} € F} (which is a
definition by transfinite induction).

It is necessary to check that this gives a model of FM. That means
that all the axioms of FM are to hold when relativized to 1. Now by
definition, 91 is certainly transitive, meaning that any member of a member
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of N is itself in N, and from this extensionality (modified of course) and
foundation hold. All the ‘standard’ sets, those whose transitive closures
contain no atoms, are automatically in 9, so the axiom of infinity holds,
and the axioms of union and power set are straightforward to check (where
the power set of X € M in M equals the intersection of the power set of
X in 9 with M). It is for the axiom of replacement that the closure of #
under conjugacy is required. Details are given in Jech (1970, Lemma 100).

The idea behind the failure of the axiom of choice in M (for suitable
choice of group and filter), is that many sets will have been put into 9 on
the grounds that they are ‘symmetrical enough’ (that is, their stabilizer
lies in &), but that any well-ordering for them (or choice function) would
have to be asymmetrical, and hence will be absent. Let us give a classical
case, for constructing a model containing what in Truss (in press) I call a
‘strictly amorphous set’, due to Fraenkel (1922) (though it was Mostowski
(1938) who actually showed that U is amorphous there).

Here we take U to be infinite, and let G be the group of all permutations
of U (in M). For # we take the filter generated by the stabilizers of the
members of /. More precisely

F = {H £G: HAQU(A finite and H > G(A))}.

Since g7 G (49 = G(ay), it is immediate that & is closed under conjugacy.
This defines the model. The idea is that U will be the strictly amorphous
set in O, so first we should check that U does lie in 91. Each member of
U lies in N since it has no members itself, and its stabilizer was explicitly
put into the filter. It follows that U is in M, now that we have shown that
all its members are, since its stabilizer equals G. It is at the nest step that
many sets of 9N have been omitted. In fact the only subsets of I/ which
are in O are those which are finite or cofinite ( = complement of finite).
For suppose that X C U lies in 7 and is infinite. There must therefore be
a finite subset A of U such that G(a) € Gyx;. Since X is infinite there is
z € X — A, and as G4 acts transitively on U — A, X must contain the
whole of U — A, so is cofinite.

Saying that a set is amorphous means that it is infinite, but is not the
disjoint union of two infinite sets. What we have therefore seen is that U is
amorphous in M. The existence of an amorphous set clearly contradicts the
axiom of choice, so that AC is false in 9. One way of viewing amorphous
sets is that they are infinite sets which are ‘Dedekind finite’ in a very strong
sense, and this is how they are viewed for instance in Levy (1958) and Truss
(1974a). Recall that a set is said to be Dedekind finite if it has no countably
infinite subset. The model just described, and that of Mostowski (1939),
are the classical examples of models containing infinite but Dedekind finite
sets.

A stronger statement is also true of U, as is expressed by saying that it
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is strictly amorphous. This just means in addition that in any partition of
the set into infinitely many pieces, all except finitely many of the pieces are
singletons. Note that this is analogous to the notion of a strictly minimal
set in model theory, indicating the first of the many connections between
axiom of choice properties and ideas in model theory. If the fact that U is
amorphous in 91 corresponds to the transitivity of G4y on U — A, the fact
that it is strictly amorphous corresponds rather to its primitivity there.
The easy proof is omitted.

To analyse the properties of a model of this sort in more detail, one
really needs a ‘support structure’. This consists of a mechanism for relating
properties of arbitrary sets in the model to the behaviour of G and &. It
is conceptually easiest to handle when there is some global form of AC
available, as is the case in L, (the ‘constructible universe’), since then one
can assert the existence of a (definable) class which supplies the support
for all sets simultaneously. This is not really necessary however, and local
choice, that is choice for arbitrary families of non-empty sets (rather than
choice for the the class of all sets) is quite adequate. The idea of a ‘support’
s defined as follows. We say that one set, 2, supports another, y, if Gy <
Gy}, that is to say, any member of G which fixes every element of z also
fixes y. The key point which makes the reduction work is that any family
all of whose members are supported by one fixed set can be well-ordered
in the model. This is because (as is easy to see) a set can be well-ordered
in an FM model if and only if its pointwise stabilizer lies in F.

Now by definition, any set in our model has a support which is a finite
subset of /. What we want is to be able to make a simultaneous choice of
supports for all sets. Since any set will have many supports (for instance,
if A supports = and B 2 A then B also supports A), this is not always
immediate. If z has a minimal support, then things generally work out
well, and that is indeed what happens here. The relevant lemma is as

follows:

LEMMA 2.1. For any finite subsets A and B of U,
Giang) = (G(a),Ga))-

REMARK. To see that this is sufficient to obtain minimal supports, let z
be any set in 9. Then there is some finite A C U such that Gz} 2 Ga)-
Let such A be chosen of least possible cardinality. Then it s contained in
any other support B for z, for as G(anp) = (G(a),G(my), AN B is also a
support for z, so by minimality of |Al, A C B. The precise use to which
minimal supports are put will be illustrated in Section 3.

Proof of Lemma 2.1. That Ganp) 2 (G(A),G(B)) is immediate. Con-
versely, let g € G(ang)- Let h € G(p) be such that (A-B)hN(AUB)g™! =




136 Permutations and the aziom of choice

@. Then hg € G(anp) and (AU B) N (4 — B)hg = @. Define k by

zhg ifre A- B,
gk = ¢ z(hg)™! ifze (A B)hg,
i otherwise.

Then k € G(py and hgk € G(4), so that
g=h" (hgk)k™* € (G(a), G (m))- o

Since it is part of our thesis that the notions of definability and choice
are closely related, let us remark that there is an alternative description
of this model. We may say that it consists precisely of those members of
O which are hereditarily definable over U, with standard sets also allowed
as parameters. Here when we talk about definability over U, we mean
that members of U may be employed as parameters of the definition. And
by a ‘standard’ set we just mean one whose transitive closure contains no
atoms. The relevant material about definability was all discussed in My-
hill and Scott (1971) (where it was ordinals which were allowed as extra
parameters, but the same techniques apply here). The facts that all the
members of U, and U itself, are then in this model are immediate. More-
over it is rather clear that it is the same model as was previously defined
permutationally. The construction is more direct, one could say; for here
we explicitly ‘put into’ the model exactly the sets we want—U/ , the mem-
bers of U, and unavoidably (in view of the axioms of set theory) the finite
and cofinite subsets of U. But no other subsets of U. It has to be said
however that the models are generally easier to work with in terms of the
permutational definition.

The great advantage of the Fraenkel-Mostowski method is its simplicity.
In a ZF framework one has to work quite a lot harder to achieve the same
effect. Either a permutational approach, or one using ideas of definability
is possible. Even in the latter case, many of the arguments work out best
using permutations—as one can see by looking at some of the key papers
(Cohen, 1966; Levy, 1966; Solovay, 1970). In a Fraenkel-Mostowski model
one can concentrate on the issues concerned with the axiom of choice which
are genuinely features required in the construction, avoiding additional
complications needed to make the forcing work. And one can argue, as
is done in Truss (in press), that for certain questions, FM is in any case

the ‘right’ theory to be working in when focussing on the model-theoretic .

rather than the set-theoretic aspects.

3 Classical independence proofs

Levy (1965) summarized several of the independence questions which at
that time were still unresolved between weak versions of the axiom of choice.
Many of these have since been settled.
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The main ones considered are as follows:

C,: The axiom of choice for families of n-element sets (1 <n <Ny,
which says that any family of n-element sets has a choice function.

Cew: The axiom of choice for families of non-empty finite sets.

OP: The ordering principle: any set can be linearly ordered.

OE: The order-extension principle: any partial ordering can be extended
to a linear ordering.

BPIT: The boolean prime ideal theorem: any boolean algebra has a prime

1deal.

The principal implications between these are as follows:
AC = BPIT = OE = OP = C.,. (%)

None of the reverse implications is provable (in ZF) as was shown by
Halpern, Felgner, Mathias, and Léauchli, respectively. The proofs used
involved a variety of techniques, but an elegant idea of Pincus's means
that a quite uniform treatment is possible, involving the model-theoretic
idea of ‘universal-homogeneous structure’. As illustration, let us consider
the question as to whether the axiom of choice for families of finite sets
implies the ordering principle. This was settled by Lauchli (1964) using a
Fraenkel-Mostowski model. In his key lemma he showed that there is a
group G having the following properties:

(i) if A C 9 is finite there are g, h € G(4) and distinct a,b,c € € such
that ag = b, bg = ¢, and bh = ¢, ch = ¢;
(i) if A C € is finite then G{a} = G(a) (pointwise stabilizer = setwise
stabilizer);
(1) if A, B C Q) are finite then G(Ar]B) = (G(A),G(B)).

His proof was quite involved, and an alternative method, using a com-
bination of forcing and the Fraenkel-Mostowski construction was given in
Truss (1974a), using an idea of Gauntt’s (Gauntt, 1970). Then in Pincus
(1976) it was shown how to do the same thing in a purely FM setting by the
use of universal-homogeneous structures. Since this also settles a question
raised by P. M. Neumann at one of the Oxford—Queen Mary College series
of seminars, let me describe the idea. Neumann's question was the follow-
ing: note that if G is a permutation group on the set €, and G preserves
a linear ordering on £, then no member of G has a non-trivial finite cycle.
Is the converse true? That is to say, if no member of G has a non-trivial
finite cycle, is there necessarily a linear ordering on § preserved by G7
Negative answers to this were rapidly supplied by Cameron and others. In
fact Lauchli’s group will suffice, (ii) precisely saying that no member of
G has non-trivial finite cycles, and (i) telling us that G cannot preserve a
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linear ordering. The third condition is not needed at all for this particular
result.

I shall now present a simplified proof of Lauchli’s result based on Pin-
cus’s idea, and then describe constructions using various other universal-
homogeneous structures (without giving full details), some of which settle
the non-implications mentioned in (x).

THEOREM 3.1. There is a permutation group G on a countably infinite set
Q which preserves no linear ordering on { and such that no member of G
has a non-trivial finite cycle.

Proof. (Pincus) Consider structures of the form (Q : fy, fa, f3,...), where
for each n > 1, f,, is a choice function for the set [{}]™ of n-element subsets of
Q2. Moreover suppose that |2 = Rg and that (Q2: f1, f2, fs,...) is universal-
homogeneous in the usual sense, that is, it is obtained In a generic fashion as
a countable union of finite substructures. Note that strictly speaking these
structures are not first-order, but they can easily be replaced by equivalent
first-order structures as in Pincus (1976) by instead using for each n an
n-ary function f, which chooses one of its arguments, and is symmetric
under interchange of arguments. Let G = Aut {Q : f1, f2, f3,...). Then it
is immediate that no member of G can have a finite non-trivial cycle, since
if A is a finite orbit of g € G with |A| > 1, then g cannot preserve f 4 on
A

Now let us check that G satisfies Lauchli’s property (i) above, and
hence that it can preserve no linear ordering on ). Let A be the given
finite subset of £, and choose distinct a,b, and ¢ not in A. Let ©; =
AU {a,b,c} and turn ©; into a structure of the same type by defin-
ing fl forn < |9 + 3 by f"X|(X) = flanx(ANX)if AN X # 2,
fo{a,b} = a, fi{b,c} = b, fi{c,a} = ¢, and fi{a,b,c} = a. Note that
as we have defined it, (Q1, f1, f3, f4, .- .) need no longer be a substructure
of (Q, f1, f2, f3,...). But as (£, f1, fa, fa,...) was chosen to be universal-
homogeneous, by changing the choice of a,b, and ¢, we may suppose that
it ¢s. It remains to find appropriate g and h. If we define g; and h; to fix
A pointwise, and so that ag; = b,bgy = ¢ & bhy = ¢,ch; = a, then g; is an
isomorphism from AU {a,b} to AU {b,c}, so by homogeneity extends to
the required automorphism g of {2, and similarly for h. O

i

Next we discuss the other non-implications mentioned above. In each
case the construction involves consideration of a suitable universal-homo-
geneous structure naturally tailored to the problem in hand. This may be
defined by Fraissé’s method using a suitable amalgamation class of struc-
tures. In addition there has to be an analogue of Mostowski’s ‘support
lemma’, which, rather than appealing to the condition given in Pincus
(1976), one can verify separately in each case without too much difficulty.
Felgner’s proof (Felgner, 1972) of OE % BPIT used a Cohen model, but
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(iv) describes what may be viewed as the ‘natural’ corresponding universal-
homogeneous structure for providing an FM proof. Most of the proof that
this construction works is complete, but it remains to verify all cases of OE
in the model. In addition we mention two other universal-homogeneous
structures needed for consistencies in Section 5.

(i) U has the trivial structure. Here the automorphism group is just
Sym(U).

(ii) U carries the structure of a countable-dimensional projective geome-
try over a finite field, Fy.

(iii) U = (Q,<). The automorphism group consists of the order-preserv-
ing permutations.

(iv) U is a countable atomless boolean algebra with a linear ordering
extending the partial ordering of the algebra.

(v) U is a countable universal partial ordering (U, <) with an (indepen-
dent) linear ordering <.

(vi) U is as in the proof of Theorem 3.1.

As mentioned before, a key point in using these structures to obtain the
desired consistency is an appropriate support lemma, which enables us to
assign minimal supports to all members of the model, and hence to relate
the structure of general sets to that of the family of finite subsets of U.

LEMMA 3.2. For each of the permutation groups just listed, and for any
finite subsets A and B of U (except that for (i), A and B have to be
subspaces too, and for (iv) they have to be subalgebras),

Gang) = (G(a), Gm))-

Proof. The result was proved for the first case in Lemma 2.1, and the
proof of (iii) is essentially the same. For the other cases some modification
is required. For instance for (i) we take h € G(p) to be such that (A-B)h
is disjoint from the span of (AUB)g™!, and k to be some member of G such
that zk = zhg if z € A — B, zk = z(hg) ' if z € (A~ B)hg, and zk =z
if z € B. But we cannot any longer insist that it is the identity for other
points (since it must preserve the geometry). Cases (iv), (v), and (vi) are
discussed in Felgner and Truss (to appear), Jech (1973), and Pincus (1976)
respectively. O

Now let us see how the models resulting from these structures are used
to establish the stated FM consistencies. In each case we suppose that 9
is a model of FMC in which U is the set of all atoms, and U is countable.
Since the structures described above all have countable domains, we may
suppose that U is indexed by any one of them, and we get a natural action
of the automorphism group of the structure on U. Let us denote this by




140 Permutations and the aziom of choice

G. The supports are taken to be finite, that is % is the filter of subgroups
of G generated by {G : z € U}. Let M be the resulting FM model.

THEOREM 3.3. The Fraenkel-Mostowski models defined naturally from
the six structures listed have the following properties:

(i) U is strictly amorphous;
(ii) U is amorphous but not strictly amorphous, and carries a non-degen-
erate modular geometry, (we say that it has projective type);
(iii) BPIT holds but AC does not;
(iv) BPIT fails;
(v) OP holds but OE does not;
(vi) C<w holds but OP does not.

Proof. (i) has already been shown in Section 2, and that U is amorphous
in (ii) follows from the fact that the pointwise stabilizer of any finite subset
of U acts transitively on a cofinite subset. The geometry on U is preserved
by definition of G. Note that we cannot now however index it by the
one-dimensional subspaces of an Ry-dimensional vector space over F,. The
indexing has been ‘lost’ in passing from 9 to 9. But the non-degeneracy
and modularity have not.

(iii) The proof that BPIT holds in 91 is beyond the scope of this brief
survey and involves a certain amount of combinatorics (Halpern and Levy,
1971; Jech, 1973), though an alternative proof, going by way of the com-
pactness theorem and using ideas of Ehrenfeucht and Mostowski, was given
by Pincus (1976). That AC is false in 91 is however easy to see, since any
subset of U must be a finite union of intervals and points, having finite
support A (and as G acts transitively on the open intervals defined by A).
This is the prototype of an o-amorphous set (see Section 5), and we de-
duce easily that U has no countable subset, and in particular, cannot be
well-ordered.

(iv) Since U is indexed by a countable boolean algebra (with linear
ordering) and G preserves the boolean algebra structure, it is still a boolean
algebra in M. To show that BPIT fails in O the algebra U itself is used, and
it is shown to have no prime ideal in 97. We remark that the construction
is specifically designed so that OF should hold in 9. With this object, an
extension of the natural partial ordering (as a boolean algebra) of U was
explicitly put into 9. It is anticipated that it will follow from this, and the
existence of minimal finite supports, that all partial orderings in 9 can be
extended to linear orderings.

(v) The fact that any set has a unique finite support in the model means
that any set can be put into 1-1 correspondence with a subset of @ x e(U)
for some ordinal e, where e(U) is the family of finite subsets of {/. But the
linear ordering < of U can be lifted to a linear ordering of a x e(U), thus
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verifying OP in M. To see that OF fails, we show that the partial ordering
< on U (which in 9 is the countable universal partial ordering) has no
extension to a linear ordering in 9. For if <* were such an extension, it
would have to have finite support A, say. By universality and homogeneity
there are z,y, 2,t exceeding all members of A in both < and =< such that
the only relations between them are given by z < y, 2 < ¢,z <t <y < 2.
By looking at the isomorphic substructures AU{z, z}, AU{z, ¢}, AU{y, 2},
AU {t,y}, and using homogeneity again, and the fact that Gra) € Gigys
we find that either all or none of x <* z, 2 <* ¢, y <* 2, ¢ <* ¥ hold. Since
z € y we cannot have both ¢t <* z and y <* ¢. Since z < t we cannot have
both £ <* y and y <* z. Thus we have the desired contradiction.

(vi) That any family of finite sets has a choice function in M follows
by using finite supports, and using the choice functions f, for the set of
n-element subsets of U/ which have been explicitly included. To see that U
cannot be ordered in the model, suppose on the contrary that < is a linear
ordering of U supported by A C U. Then by property (i) we know that
there are g, h € G(4) and distinct a,b,c € Q2 such that ag = b, bg = ¢, and
bh = ¢, ch = a. But as G4 preserves <, a < b b<c< c < a,and as
£ is meant to be a linear ordering, this gives a contradiction. O

Let us remark on the transfer of these results to ZF. In the early days of
forcing, these transfers were done separately for each model. Then in the
Jech—Sochor Theorem (Jech and Sochor, 1966) a method for automatically
deriving a ZF consistency corresponding to an FM consistency was given,
for statements of a certain special form (‘boundable’ statements). This
was subsequently extended by Pincus (1972). The basic idea is that the
‘totally indistinguishable’ atoms should be replaced by some ‘sufficiently
indistinguishable’ sets. These may be reals, sets of reals, sets of sets of
reals,. . ., depending on the statement to be transferred. For instance, since
an amorphous set cannot be linearly ordered, it is hopeless to try to transfer
the consistency of the existence of an amorphous set by replacing the atoms
by reals, since any set of reals can be ordered. The next thing to try is
to represent them as a set of sets of reals, and this turns out to be good
enough, in each of (i) and (ii).

For (iii), (iv), and (v), it is actually simpler in some respects for the ZF
case than for FM. The point is here that there is a (‘generic’) linear ordering
on the structure, and if we take the atoms to be represented as reals, it may
be taken as the usual ordering. In the case of Mostowski’s ordered model
(iii), this is all that is needed. In the next two instances we have to put on
additional structure, which for (iv) is a boolean algebra structure whose
partial ordering relation restricts that on R (but is otherwise ‘generic’), and
for (v) is a generic partial ordering of R (meaning one which is independent
of the usual ordering).
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As remarked by Mathias ( 1974) there are a number of non-transferable
FM consistencies. These seem mainly to be based on the statement ‘the
power set of any well-ordered set can be well-ordered’, which implies AC
in ZF, but not in FM (Rubin and Rubin, 1976). I conclude this section
by considering one such statement. The point of the example is not so
much that the statement is non-transferable, but that in the FM case, its

" truth in a model is guaranteed by a simple group-theoretical condition, and
there is a corresponding condition in the ZF case which instead guarantees
the truth of a slightly weaker statement. Perhaps rather than saying it is
non-transferable, we should say that its naturally transferred version is an
appropriate weakening of the original. The first statement is as follows.

(*) For any set X, if the set [X]? of 2-element subsets of X has a choice
function, then X can be well-ordered.

Now this particular statement implies AC in ZF, but not in FM. To
derive AC from it in ZF, we may prove from it that the power set of
any well-orderable set can be well-ordered, and then appeal to Rubin and
Rubin (1976, p. 76) to derive AC. The weaker statement which we claim
corresponds to (x) in the ZF setting is this:

(#+) For any set X, if [X]2 has a choice function, then X can be mapped
1-1 into a set of sets of ordinals.

THEOREM 3.4. In a Fraenkel-Mostowski model N defined by U, G, and
&, if & contains a dense set of groups which are generated by involutions,
then (x) holds.

Proof. Suppose the given statement is true, and that F is a choice function
in 9N for [X]2. Let GixyNGiry 2 H € F, where H is generated by
involutions. We show that Gix) =2 H. Ifnot, let g H — Gx). Write g as
a product of involutions. At least one of these must be in H — G(x), so we
may assume that g> = 1. Let z € X, zg # z. Thus F{z,zg9} = y € {z,2g},
so ({z,zg},y) € F. Asge H < Giry, ({z9,20%}, yg) € F. As zg? =z,
Y9 =y, a contradiction. Therefore X is pointwise fixed by H, and we
deduce that X can be well-ordered in 91.

As examples of models where this occurs we may take |U| = k for any
infinite cardinal x, G = Sym(U), and let # be generated by

{G(A) : A G U, PAJ < K}.
This generalizes Fraenkel’s model above (which was the case k = No). [J

The analogous result in ZF is obtained by regarding the relevant models
of ZF as also being formed by passing to a symmetric submodel. That is,
if we work in the boolean-valued universe VB, where B € V is a complete
boolean algebra, we may suppose that G is a group of automorphisms of
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B, and that & is a filter of subgroups of G closed under conjugacy. The
resulting symmetric boolean extension of V consists of all boolean terms
which are hereditarily symmetric with respect to %, and the corresponding
ZF model is obtained as usual by choice of a generic ultrafilter on B. See
Jech (1973) for more details.

THEOREM 3.5. In a Cohen model defined by B, G, and &, if # contains
a dense set of groups which are generated by involutions, then () holds.

The proof, which we omit, is similar to that of the previous theorem.
See Truss (1978) for instance.

In this section I have tried to illustrate how certain consistencies can be
achieved by examining appropriate universal-homogeneous structures, and
building Fraenkel-Mostowski models based on them as in Pincus (1976).
Another possible question is to start with the universal-homogeneous struc-
ture, and to ask what the properties of the resulting model then turn out
to be. Two examples which might be worth investigating are the random
graph, and the countable atomless boolean algebra. One could ask then
for a closer tie-up between the properties of the structure one started with,
and those of the model.

4 Finite versions of the axiom of choice

A beautiful illustration of the relationship between choice and symmetry
arises in the consideration of the finite versions of the axiom of choice stud-
ied initially by Tarski and Mostowski, and later by others. Here, since it is
provable in ZF that any finite family of non-empty sets has a choice func-
tion, by a ‘finite’ version of the axiom of choice we must mean that there is a
choice function for a family of finite sets. Mostowski realized that in trying
to choose ‘effectively’ a member of a finite set {or any set, come to that),
what is essentially involved is achieving a reduction in symmetry. Before
the choice is made, there is no particular reason to prefer one member of the
set to another, so they all have an equal status, but in making a selection,
some reason has to be found for preferring one element to another. As a
result of this observation, he formulated various combinatorial conditions
on appropriate finite permutation groups which characterize implications
between different finite versions of the axiom of choice, very much in the
spirit of Galois theory. I briefly recall the main idea of elementary Galois
theory, to illustrate the analogies with the present question.

Consider the solution of algebraic equations where ‘radicals’ are per-
mitted. This means that, as well as performing standard algebraic ma-
nipulations such as addition and multiplication, we are allowed to extract
roots—square roots, cube roots, and so on. The key observation made by
Galois, which made his analysis possible, was that the extraction of a root
precisely corresponds to a reduction of symmetry among the roots. To
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begin with, there is nothing to choose between the three roots o, 5, and
7, of a cubic equation, shall we say, and this is more formally expressed
by saying that the ‘data’ consisting as it does of the elementary symmetric
functions o+ 8 + v, af + ay + Bv, af~ is unchanged under the action of
all permutations of {c, 8,v}. Now any other symmetric (rational) function
of {a, 8,7} can be expressed in terms of the three particular symmetric
functions so given, and the key to solving the equation is finding a (more)
asymmetric function whose square is symmetric; here (a—3)(f—7)(v— )
will do; and then a totally asymmetrical function whose cube has the same
symmetry as (a — 3)(8 —v)(y — a); here a + fw + yw? will do, where w is
a primitive cube root of unity. This computation corresponds to the choice

of subgroups
Sy > Az > 1

and the type of radical extracted to the index of the relevant subgroup in
the next larger one.

We now introduce the principal variants of the finite axiom of choice
we study:
Cr: Any family of n-element sets has a choice function.
C2: Any linearly ordered family of n-element sets has a choice function.
Cr: Any well-ordered family of n-element sets has a choice function.
C¥: Any countable family of n-element sets has a choice function.

Let us first make some easy remarks about these.

LeMMA 4.1. Cp is false; Cy is true; Cp = C2 = Cf = C¥; if k divides n
then C, = Cg, and similarly for C, C¥, and C¥.

Proof. (Last part) We let mk = n, and suppose that X is a family of k-
element sets and Y is a fixed m-element set. Then {z xY 1z € X} isa
family of n-element sets. By C,, it has a choice function f. Define g by
g(z) =& if Ing(zxY)=(&,n). Then g is a choice function for X. O

This proof is due to Tarski, who derived various basic results about
implications between the C,,, which were greatly extended by Mostowski
(1945). Finally Gauntt (1970) proved that one of Mostowski’s conditions,
D(n,Z) (see below), is necessary and sufficient for YmeZz C,,, — C,, to
be provable. Following a suggestion of A. Levy, I extended these results in
various directions (Truss, 1973) (and he independently undertook a general-
ization, following a slightly different approach (Levy, 1973)). For instance
an analysis of the C2, and C7, and the connections between them, was
given, and ‘mixed’ kinds were allowed. Also Z could be infinite, as I now
discuss. ‘

If Z is infinite, the natural composite finite choice axiom to take is
YneZ C,. But this is weaker than the principle we actually wish to con-
sider, which is

Cz: If X
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Cyz: If X is a family of sets such that Vo€ X |z| € Z, then X hasa choice
function
(similarly for C%,C%,C%). That C, = VneZ C, is clear, but the converse

is false for infinite Z, since the existence of separate choice functions fp for
{z € X : |z| = n} for each n € Z does not at all mean that a simultaneous

choice for all n € Z is possible.

So much for the finite versions of the axiom of choice considered. We
next introduce the group-theoretical conditions used by Mostowski (1945)
and Gauntt (1970) to analyse the interconnections between them.

D(n,Z): For any fixed-point-free subgroup G of S, there are a subgroup
H of G and proper subgroups K1,..., K of H such that 3 |H : K;| € Z.
L(n, Z): For any fixed-point-free subgroup G of S, there are proper sub-
groups K1, ..., Kr of H such that }7|G : Kil € Z.

K(n,Z): For any fixed-point-free subgroup G of S, there are a subgroup
H of G™, some m, and proper subgroups Ki, ..., K, of H such that 5 |H :
K,;l e Z.

M(n,Z): If n = p1 4 -+ + p, is an expression for n as the sum of (not
necessarily distinct) primes, then there are a; = 0 such that > oup; € Z.

In addition, in Truss (1973) I considered versions of these where S, is
allowed to act on the structure built up from an n-element set by taking
power sets w times. The notation is as follows. Let e(X) be the set of
finite subsets of the set X, and e, (X) be given inductively by eo(X) = X,
ent1(X) = elen(X)), eu(X) = U, cw€n(X). We choose some fixed n-
element set X,, such that each member of e, (Xn) ‘appears’ only once. For
instance X,, may consist of any n distinct infinite subsets of w. There are

three further conditions which we wish to consider.

A(n, Z): For any fixed-point-free subgroup G of Sym(Xy) there is Y in
ew(X,) such that |Y| € Z and Vn€Y Gy} N G LGy

B(n, Z): For any fixed-point-free subgroup G of Sym(X,,) there is ¥ in
e.(Xn) such that [Y| € Z, Gy} = G and VneY G £ Gy}

C(n,Z): For any fixed-point-free subgroup G of Sym(X,,) there is ¥ in
€4 (Xn.m) for some m such that Y| € Z and YneY G™ & Gy where G™
acts on Xn.m in the natural way.

The main results about these, obtained by combining the results of
Mostowski (1945), Gauntt (1970), Truss (1973) are as follows.

THEOREM 4.2. The following are true:
(i) D(n,2) & A(n, 2) < (Cz — Cn) & (Cz — C3);
(i) L(n,Z) & B(n,2) & (C — )& (C3 - Cy) e
(Cy — C2) & (Cy — C3) & (C3 = C2) & (C7 = CR)s
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(iii) M(n,2) & K(n,Z) & C(n,2) & (Cz—-0C) &
(CZ b 4 Cz);

(iv) C% = C,, Cz »C3, Cy-»Cr

where by an implication such as C z — C}, we mean ‘is provable in FM’ (or
ZF actually).

The idea behind the proofs is to show that the effective choice of an
element from a set X corresponds to the selection of less and less symmet-
rical ‘objects’. These may be elements of the set, subsets, sets of sequences
of elements of the set, and so on, in short, members of e, (X). Rather
than giving details of this, I shall illustrate how it works out in one or two
cases, parallelling the Galois theory example given above. Observe first
that L(4,{2,3}) is true, which means that Cls3p — Ci is provable. (On
the other hand, L(n,{2,3,...,n — 1}) is false for n > 5. The alternating
group A, provides a counter-example, as it has no subgroup of index less
than n). I tabulate below an appropriate chain of subgroups and corre-
sponding choices in e, (Xy).

Sl4 {a.b.c;d} {{{a,b}, {e,d}}, {{a,c}, {b,d}}, {{a, d}, {b,c}}}

applying C% to the set of 3 2+2 partitions

Cy Wr Cy {{a‘! b}, {C: d'}}
, applying C3
Cg X Cg {l’l, b}

l applying C3 again
{ 1} X 02 a

The key difference here between D(n,Z) and L(n, Z) is that at each
stage in applying L(n, Z) (<> B(n, Z)) to a set derived from a well-ordered
family of n-element sets, there is only one element corresponding to each
member of the family, so that it is still well-ordered. If only the weaker
condition D(n, Z) holds (¢ A(n, Z)) we have to be satisfied with several
sets corresponding to each original set, so that the family to which finite
choice is to be applied need no longer be well-orderable. Thus the example
Just given can be modified to show that C2 — C4 by choosing a member
from each pair of doubletons on the first line, and then one from each dou-
bleton, after which there is sufficient asymmetry to select a single member
of {a,b,c,d}.

The reason Mostowski failed to prove that C; — C, = D(n,Z ) was
that he concentrated on the case of X well-ordered, and so the best he
could hope for was Cz — C,, = K (n,Z). The first value of n for which
K(n,Z) & ~D(n,Z) can hold is 15, where Z — {3,5,13}. Observe that

B i
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K(n,Z) < M(n,Z), which holds here:

16 = 3+3+3+3+3 = 54545 = T+5+3

31=3 51=5 5.1=5

= 7+2424+2+2 = 114242 = 1342
7+32=13 114+2=13 13.1 =13.

We now give Gauntt’s verification of - D(15,{3,5,13}) (Gauntt, 1970).
Let

(1234567)(891011121314),
(810)(9 12)(11 15)(13 14),
(911)(1013)(1215)(148), and
(10 12)(11 14)(13 15)(8 9).

& oo o 8
1

Let G be generated by a, b, ¢, and d and let K be generated by b, ¢ and d.
Since b, ¢, and d commute pairwise, K is ahelian of order 8. Now

e lba=c, alca=d, a'da=(1113)(128)(1415)(910) = bd.

Hence a normalizes K. Therefore G = (a)K, so |G| = 56. Moreover
G is clearly a fixed-point-free group of permutations of {1,...,15}, and
b~'ab = bab = acb ¢ (a) . Hence G has at least 7 elements of order 7. By
Sylow’s Theorem, G has 48 elements of order 7. If H is a proper subgroup
of G whose order is divisible by 7, then again by Sylow’s Theorem, H has
only 6 elements of order 7. Hence G has no subgroups of order 14 or 28.
It follows easily that 3 |H:K;| # 3,5, or 13.

Despite the failure of D(15, {3,5,13}), M(n, Z) is known to be sufficient
for Cz — C, if n € 20 (except n = 15), or if n is prime, or if n =
22,24,25,26, 30,33, 34, 36,42, 44, 45, so the delay in establishing the correct
equivalence here is understandable.

Now I consider some slightly different versions of AC, namely of the
so-called aziom of dependent choices, DC. In this case we make a sequence
of choices, each of which may depend on previous ones. The way this works
out when the sets are to be finite is as follows.

DCgz: If T is a finite-branching tree in which every node has exactly n
immediate successors for some n € Z, then T has an infinite branch.

Note that in any finitely branching tree, every level is finite, so the
axiom of choice for countable families of finite sets implies DCz. We may
ask however whether, for example, C4§ — DCy (Cp — D5 is clear, by the
way). In fact C§ -+ DCz, and we even have

¥nC;, -» DC, (m>1).
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Notice that DCy is not the same as Yn€Z DCyz, even for finite Z. For

example, DCyz,3} is not the same as DG, & DC;3. This is because DCy3 3
applies to trees where the branching may vary between 2 and 3, whereas

DC; and DCj can only be applied to trees with constant branching degrees.
Extending Theorem 4.2 in this case we have

THEOREM 4.3. With the notation of Theorem 4.2, we have

(i) D(n, Z) = (CZ —DGC,),
(i) L(n,Z) & (DCy — DCh) & (DCz - C2) &
YmeZ (DC,, — CL,
(iii) DCz = Cry Cy -» DC,,

and, in addition, the following conjecture:

CONJECTURE 4.4,

YmeZ (DC,, — DC,) & for some m e Z, (DCr, — DCy).

I now sketch the essentials of the construction of a Fraenkel-Mostowski
model in which Cj holds but DG fails (Truss, 1976). We take for set U/

of atoms an infinite binary tree, and let @ be the group of permutations
of U generated by the action of the cycli
successors (so that it is a direct 1i

, and act on each subtree starting
from the nth level in the same way, then clearly G = G, and we can show

that Gy < @5(G,,), for all m, so that {G, : n ¢ w} generates a proper
filter #. In the resulting model, U itself then provides a counterexample
to DCy, and the point of the Frattini-like construction of the filter is that
this is sufficient to guarantee the truth of Cj.

(z,2), and G is generated by G x G (where here the action of the two Gs

is taken on the left and right subtrees) and y, where ¥y Ha, by = (b,a).
Thus

(r,z) = (z,z71).(1, 22)
= (y_1<$=1>ﬁ1y(w11>)<11$)2

8o (z,z) is a product of a commutator and a square, as desired.
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5 Set-theoretic analogues of model-theoretic notions

We have seen above how appropriate model-theoretic constructions may
correspond to constructions for independences between weak versions of
the axiom of choice. I now consider what has for model theory become
a very significant notion, since the Baldwin-Lachlan Theorem (Baldwin
and Lachlan, 1971), and which has given a lot of impetus to the study of
models of small Morley rank, namely the notion of a strongly minimal set.
The corresponding notion in set theory already existed, though the name
of ‘amorphous’ did not emerge until later. The definitions are as follows.
A model is said to be minimal if it is infinite, but is not the disjoint union
of two definable infinite sets, and strongly minimal means that this persists
even under elementary extensions. The corresponding set-theoretic notion,
(which is vacuous in the presence of the axiom of choice) is that a set is
said to be amorphous if it is not the disjoint union of any two infinite sets
(definable or not).

In Cherlin et al. (1985) an analysis of strongly minimal sets is given
which involves consideration also of strictly minimal sets, being those which
carry no non-trivial O-definable equivalence relation. The idea is that gen-
eral strongly minimal sets may be constructed from these by adjoining ap-
propriate ‘fibres’. Correspondingly there is a notion of strictly amorphous
set, being one which carries no non-trivial partition at all.

Let us note that our definition of ‘amorphous’ is in truth analogous
rather to a strengthening of ‘strongly minimal’ which could be called higher-
order strongly minimal, since we are working in set theory, and no restric-
tion is placed on the type of variable used in any definition. It is for this
reason that it turns out that the only examples of amorphous sets are those
which correspond to Ng-categorical strongly minimal sets.

The aim of Truss (in press), only partially realized, is to give a ‘classifi-
cation’ of amorphous sets. Now we have to be clear about what is meant by
this. Usually, a classification theorem for a class of structures will isolate
invariants (‘classifiers’) corresponding to the structures so that two struc-
tures receive the same classifier if and only if they are isomorphic. This is
no good here, since it is easy, essentially by the construction given in Sec-
tion 2, to construct Fraenkel-Mostowski models containing arbitrarily large
sets (or even proper classes) of amorphous sets which look essentially in-
distinguishable set-theoretically, for example which are strictly amorphous.
What is rather wanted is a notion of ‘externally’ isomorphic, or what comes
down to the same thing, elementarily equivalent, inside a suitable structure.
With this idea, it is argued in Truss (in press) that there is just a set of
classifiers, which has cardinality 2R°. This is so far only proved with regard
to certain special classifiers, sufficient to capture the ‘bounded’ amorphous
sets.

An amorphous set U/ is said to be bounded if it has a strictly amorphous
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partition into finite sets. We gave an example of a strictly amorphous set
in Section 2, and a modified construction produces a variety of bounded
amorphous sets. One of the main results of Truss (in press) is that there is
only one bounded amorphous set corresponding to each classifier. For the
reasons given above, one has to be careful about what exactly is meant.
The precise statement is an example of a ‘reconstruction’ result, which
aims to characterize the properties of a model internally. Thus, a certain
inner-model construction is performed, giving rise to a submodel 91 of a
model 9. The desire is to show that in a sense, 9 has not ‘forgotten’
where it came from. That is, there is a notion of forcing in 91 such that on
adjoining an M-generic filter #, we return to 9; or less ambitiously, when
we perform the same construction by which 91 was formed from 97 inside
M[F], we obtain N again. A method like this was used in Truss (19745) to
obtain (admittedly a very weak) reconstruction result for Solovay’s model
(Solovay, 1970). In fact it seems true to say that it is generally the case
that very strong hypotheses have to be imposed on 91 in order to make the
reconstruction work.

The main subdivision of the class of all amorphous sets is as follows.

(i) U is bounded (as just defined).

(i) U is said to be of projective type if there is some non-degenerate
pregeometry (as defined by Cameron (1990) for instance) on U sat-
isfying certain conditions (such as the exchange property). Observe
that from this it will follow that U is unbounded. This case splits
into two, depending on whether there is or is not a bound on the car-
dinalities of the finite fields associated with geometries on (partitions
of) U.

(iii) U may be unbounded but not of projective type.

Theorem 3.3 (i), (ii) illustrated two of these cases. Here is another.

THEOREM 5.1. There is an FM model in which the set of atoms forms an
unbounded amorphous set which is not of projective type.

Proof. We give just one possible construction. Let 9t be a model for FMC
in which the set U of atoms has cardinality Ry and let U = {u, : n € w}.
Let GG be the group of all permutations of U/ with finite support, and for
each k 2 0 let m; be the partition

{{'U:U, ULy ,'LL2k_1}, {UZ" yUok 4,y :u2.2k—1})
{ug.2%, Uggk gty - US2k—1},-- -}

of U. Let G) be the setwise stabilizer of 7 in G, and let % be the filter
generated by {Gg : k 2 0} U{Gy : v € U}. Then % is closed under
conjugacy, since G contained only elements of finite support (and this was
why we had to restrict to that subgroup), so we obtain a corresponding
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FM model 2. To see that U is amorphous in 91 note that for any k,
M{Gi i < kYNNG, : j < 2%} acts transitively on {u; : ¢ > 25}, and the
arguments previously used apply. Clearly U has partitions into 2k_element
sets for each k, so U is unbounded amorphous in 9. ]

The proof of the following result is given in Truss (in press).

THEOREM 5.2. Suppose that the set U of atoms is strictly amorphous, and
that W C V{(U) is a transitive model of FM containing U for which the
standard sets fulfil AC. Then W is equal to the Fraenkel subuniverse of
W w], where w is a W-generic well-ordering of U in type w.

Here by a ‘W-generic well-ordering in type w’ we mean a well-ordering
obtained in the natural way from a W-generic subset of the notion of forcing
P in W consisting of all finite sequences of distinct elements of U, partially
ordered by end-extension. Similar work is carried out by Creed (to appear)
with regard to the notion of an o-minimal set. According to the definition
of Pillay and Steinhorn (1986), a structure 2 is o-minimal if it is linearly
ordered, and the only definable subsets of 2 (with parameters allowed)
are finite unions of intervals with endpoints in AU {£oc}. The analogous
definition of U being o-amorphous is that U is linearly ordered, and the
only subsets of U are finite unions of intervals with endpoints in U U{+occ}.

What is the correct notion of ‘strictly o-amorphous’? Note that any
o-amorphous set can automatically be split into arbitrarily many infinite
subsets, just by taking intervals. So it may seem as if something a bit more
complicated is required, and one possible definition is as follows: (X, <) is
said to be strictly o-amorphous if it is o-amorphous, and there is no disjoint
pair (a, b), (c, d) of isomorphic or anti-isomorphic non-empty intervals. This
however is easily seen to be equivalent to saying that there is no partition
of U containing infinitely many non-singleton finite sets. One of the main
results of Creed (to appear) is then that there is essentially only one strictly
o-amorphous set, subject to the same provisos as Theorem 5.2.

What about an analogue of Theorem 5.17 The notion of a bounded
o-amorphous set may be introduced much as before, but now things work
out quite differently.

THEOREM 5.3. (Creed) Every o-amorphous set is bounded.

The reason for this is roughly speaking that any non-trivial partition of
U into finite sets provides us with a partition into finitely many intervals,
and one of these can be canonically selected. If U were unbounded o-
amorphous, we would then be able to select a nested w-sequence of intervals,
which is clearly impossible in an o-amorphous set.

Finally I mention that if in the definition of U being o-amorphous we
relax the requirement that the endpoints of the intervals should lie in U,
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then the class of sets thus obtained is greatly enriched, and many interesting
configurations are possible. It is unclear at present however whether it will
be feasible to carry out any sort of ‘classification’ in this case too.
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