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I should perhaps admit that in this file I have recycled some material from Logic,
Induction and sets. It doesn’t matter, and i’m mentioning it only in case there are people
who have read that book and are waiting for an opportunity to say that I am guilty of
autoplagiarism. “Why not rewrite it?” you might ask. Because it was perfect already.
But that of course is a piece of plagiarism too (from Schonberg, as it happens). Funny,
isn’t it, that there is nothing about the action of copying/quoting that makes it wrong;
it’s just that you’re supposed to say when you’ve done it. Perhaps the next time I rob a
bank 1’1l just put my hand up to say i’ve done it and they’ll let me keep the money.
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Chapter 1

Introduction

Warning! Discrete Mathematics is a grabbag of tricks. It doesn’t really have a unifying
theme, being defined by what it excludes rather than what it contains: it’s that part of
first-year university mathematics that isn’t continuous, that isn’t the stuff that used to be
called “calculus”—differentiation and integration. However, on the whole, what gets
put into a course like this is not so much a body of knowledge and skills bound together
by some internal logic (even negative logic) of its own, but rather the background
mathematics that the lecturer thinks that the well-equipped computer science students
have to have in their knapsacks. Quite what you need in your knapsack depends to a
certain extent on what epoch you are going to live and work in. Nowadays you are less
likely to need familiarity with different ways of representing numbers (binary, HEX,
octal, decimal) than you would have done thirty years ago, but you are more likely to
need to know about cryptography. Some topics which is some sense “ought” to be in
a discrete maths course tend to get hived off into other courses; finite state machines
often get treated separately and my notes on them are still in a separate file.

So this is a course on those bits of background mathematics that don’t involve inte-
gration and differentiation, and which I think might be useful to you: it isn’t supposed
to have a consistent theme beyond that, so don’t worry if you can’t find one. One rather
nice side-effect of this is that there is no obviously best book either, and you can do a
lot worse than follow the habit I have had for many years of looking in the second-hand
books section of charity shops and buying anything that looks like a book on first-year
university mathematics. There are lots of such books (because lots of different com-
munities need to do first-year mathematics: engineers, students doing psyschology,
science, economics, computer science, medicine ...) and in places like that they can
be quite cheap. There is of course always the danger that if you buy three of them you
end up with three different systems of notation, and it has to be admitted that this is a
pain. On the other hand, this pain is nothing more than the fact that there are lots of
different and pairwise incompatible notations, and that is something—sadly—you are
going to have to get used to!

In fact the single most important lesson for you to learn from this course is confi-
dence in manipulating the mathematical symbols you will need later. We will banish
mathsangst.
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It is true that this material was assembled originally for the delectation of first-year
students at Queen Mary. However it is now used by first-year students at Cambridge
...and in their second term of studies. In their first term they will have been exposed
to a certain amount of logic, and—in particular—to ML.

You should now read (or reread!) ‘Alice in Wonderland’ and ‘Through the Looking
Glass and what Alice found there’, preferably the edition [4] with Martin Gardner’s
annotations, entitled ‘The Annotated Alice’. Lewis Carroll was one of the nineteenth
century writers who started the process that led later to the mathematisation of logic
that in turn led to modern mathematical logic and computer science. In fact, while we
are about it, anything else by Martin Gardner that comes your way should be snapped
up and devoured.

The chief difficulty that students have with Discrete Mathematics is the lack of
theorems, a lack of deliverables. The real lessons you will take away from this course
is a not a knapsack full of theorems, but a new way of thinking about the materials.
This lack of deliverables can be very disconcerting, and it often has the effect that
students can be quite lost and yet not realise it. There is a difference between—on the
one hand—thinking “Yes, I feel comfortable with this stuff: it looks OK” and—on the
other—genuinely understanding it in the sense of being able to apply it to any purposes
of yours that might crop up. If my experience of teaching this stuff is anything to go by
there seems to be a very strong tendency to mistake the first for the second. The danger
then is that once you realise that you hadn’t, after all, understood the first three weeks
of material, you suddenly find yourself three weeks behind and stuff is still coming at
you at the same rate as before. The way to combat this tendency is to make sure you
know what you are letting yourself in for, and know how it differs from things in which
you have got embroiled in the past.

1.1 Some Puzzles to Get You Started
Don’t look down on puzzles:

A logical theory may be tested by its capacity for dealing with puzzles,
and It is a wholesome plan, in thinking about logic, to stock the mind with
as many puzzles as possible, since these serve much the same purpose as
is served by experiments in physical science.

Bertrand Russell

EXERCISE 1 A box is full of hats. All but three are red, all but three are blue, all but
three are brown, all but three are white. How many hats are there in the box?

EXERCISE 2 The main safe at the bank is secured with three locks, A, B and C. Any
two of the three system managers can cooperate to open it. How many keys must each
manager have?
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EXERCISE 3 A storekeeper has nine bags of cement, all but one of which weigh pre-
cisely 50kg, and the odd one out is light. He has a balance which he can use to compare
weights. How can he identify the rogue bag in only three weighings? Can he still do it
if he doesn’t know if the rogue bag is light?

EXERCISE 4 A father, a mother, a father-in-law, a mother-in-law, a husband, a wife, a
daughter-in-law, a son-in-law, a niece, a nephew, a brother, a sister, an uncle and an
aunt all went on holiday. There were only four people! How can this be.ﬂ

EXERCISE 5 There were five delegates, A, B, C, D and E at a recent summit.

B and C spoke English, but changed (when D joined them) to Spanish,
this being the only language they all had in common;

The only language A, B and E had in common was French;

The only language C and E had in common was Italian;

Three delegates could speak Portugese;

The most common language was Spanish;

One delegate spoke all five languages, one spoke only four, one spoke only
three, one spoke only two and the last one spoke only one.

Which languages did each delegate speak?

EXERCISE 6 People from Bingo always lie and people from Bongo always tell the
truth.

o [fyou meet three people from these two places there is a single question you can
ask all three of them and deduce from the answers who comes from where. What
might it be?

o [f you meet two people, one from each of the two places (but you don’t know
which is which) there is a single question you can ask either one of them (you
are allowed to ask only one of them!) and the answer will tell you which is which.
What is it?

EXERCISE 7
Brothers and sisters have I none

This man’s father is my father’s son

To whom is the speaker referring?

EXERCISE 8 You are told that every card that you are about to see has a number on
one side and a letter on the other. You are then shown four cards lying flat, and on the
uppermost faces you see

1T think you have to assume that the aunt is an aunt in virtue of being an aunt of another member of the
party, that the father is a father of another member of the party, and so on.
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It is alleged that any card with a vowel on one side has an even number on the
other. Which of these cards do you have to turn over to check this allegation?

EXERCISE 9 A bag contains a certain number of black balls and a certain number
of white balls. (The exact number doesn’t matter). You repeatedly do the following.
Put your hand in the bag and remove two balls at random: if they are both white, you
put one of them back and discard the other; if one is black and the other is white, you
put the black ball back in the bag and discard the white ball; if they are both black,
you discard them both and put into the bag a random number of white balls from an
inexhaustible supply that just happens to be handy.
What happens in the long run?

EXERCISE 10

8
116 q 97
4 7 6
28 7 5
5 1 8
8 1 2
5 1138 4
403 5 711
6

EXERCISE 11 Hilary and Jocelyn are married. One evening they invite Alex and Chris
(also married) to dinner, and there is a certain amount of handshaking, tho’ naturally
nobody shakes hands with themselves or their spouse. Later, Jocelyn asks the other
three how many hands they have shaken and gets three different answers.

How many hands has Hilary shaken? How many hands has Jocelyn shaken?

The next day Hilary and Jocelyn invite Chris and Alex again. This time they also
invite Nicki and Kim (also married). Again Jocelyn asks everyone how many hands
they have shaken and again they all give different answers.

How many hands has Hilary shaken this time? How many has Jocelyn shaken?

EXERCISE 12 You are shown 99 boxes, each of them containing some blue balls and
some red balls, which you allowed to count. You are then told that you may take 50 of
the boxes, and the idea is to select your boxes so that you end up with at least half the
blue balls and at least half of the red balls.

Can you do it?

These two are slightly more open-ended.

EXERCISE 13 You are given a large number of lengths of fuse. The only thing you
know about each length of fuse is that it will burn for precisely one minute. (They’re
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all very uneven: in each length some bits burn faster than others, so you don’t know
that half the length will burn in half a minute or anything like that). The challenge is to
use the burnings of these lengths of fuse to measure time intervals. You can obviously
measure one minute, two minutes, three minutes and so on by lighting each fuse from
the end of the one that’s just about to go out. What other lengths can you measure?

EXERCISE 14 A Cretan says “Everything I say is false”. What can you infer?

Those exercises might take you a little while, but they are entirely do-able even
before you have done any logic. Discuss them with your friends. Don’t give up on
them: persist until you crack them!

If you disposed of all those with no sweat try this one:

EXERCISE 15 You and I are going to play a game. There is an infinite line of beads
stretching out in both directions. Each bead has a bead immediately to the left of it and
another immediately to the right. A round of the game is a move of mine followed by
a move of yours. I move first, and my move is always to point at a bead. All the beads
look the same: they are not numbered or anything like that. I may point to any bead I
have not already indicated. You then have to give the bead a label, which is one of the
letters a—z. The only restriction on your moves is that whenever you are called upon
to put a label on the neighbour of a bead that already has a label, the new label must be
the appropriate neighbour of the bead already labelled, respecting alphabetical order:
the predecessor if the new bead is to the left of the old bead, and the successor if the
new bead is to the right. For example, suppose you have labelled a bead with ‘p’; then
if I point at the bead immediately to the right of it you have to label that bead ‘q’; were
I to point to the bead immediately to the left of it you would have to label it ‘o’. If you
have labelled a bead ‘z’ then you would be in terminal trouble were I to point at the
bead immediately to the right of it; if you have labelled a bead ‘a’ then you would be
in terminal trouble if I then point at the bead immediately to the left of it. If you have
labelled some bead ‘j’ and some bead to the right of it ‘q’ then the beads between the
two has to be given labels between ‘k’ and ‘p’. We decide in advance how many rounds
we are going to play. I win if you ever violate the condition on alphabetic ordering of
labels. You win if you don’t lose.

Clearly you are going to win the one-round version, and it’s easy for you to win the
two-round version. The game is going to last for five rounds.

How do you plan your play?
How do you feel about playing six rounds?
It may surprise you (and it would probably surprise most people) to be told that all

these puzzles are mathematical, even tho’s they don’t involve any numerical calculation
.... Welcome to Discrete Mathematics!
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Chapter 2

Read this first!

I am not going to expose you to any new Mathematics in this chapter, but that doesn’t
mean you should skip it. Read it first, to prepare you for what is to come. I am a
great believer in Naming the Devil: philosophers have argued for a long time about the
relation between thought and language but we do all agree that many things become
easier to see and recognise once you have a name for thenﬂ In recent years I have
learnt some wonderful neologisms like—for example—deadnaming, mind-projection
fallacy—and the new vocabulary has helped me organise my thoughts. In the next
few sections I shall be introducing you to some terminology. You won’t have to prove
anything using it, but it will help you once you come to proving other things, and it
will help you get your bearings.

2.1 The Existential Other

Many of my students ask me how to write an exam answer. Robert Craft asked Stravin-
sky whom he wrote for; Stravinsky replied “For myself and the Hypothetical Other”.
That should be the audience for which you write your exam answers, and explanations.
Who is your Hypothetical Other?

There are many approaches to this, but one that will help you in practising to write
answers—or take notes—is to write something in the form of an explanation for a
suspicious person of at least normal intelligence. If you have an annoying younger
sibling who won’t take anything on trust, then write it for them. Or it could be your
supervision partner who slept in and missed the supervision at which you learnt these
cool things that you now have to explain to them. Or you could try writing a message to
your future self, for when you come to revise the material you are taking notes on you
will surely have forgotten at least some of it. The key idea is to write for an audience.
The point of having an audience in mind is that—when you wonder “Shall I put this in

!In [12]] Oliver Sacks wrote “Muscular Dystrophy ... was never seen until Duchenne described it in the
1850’s. By 1860, after his original description, many hundreds of cases had been recognised and described,
so much so that Charcot said “How come that a disease so common, so widespread, and so recognisable at
a glance—a disease that has doubtless always existed—how come that it is only recognised now? Why did
we need M. Duchenne to open our eyes?” ”

13
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... 7 Shall I leave that out?”—your knowledge of the audience tells you which way to
jump.

Bearing this in mind will help you write answers to these questions which might
enable your tutor to get a clear picture of what you understand and what you don’t.

2.2 Here are some things you will need

EXERCISE 16

1. Factorise x* — y?.
2. What is the sum of the first n natural numbers?

3. If you toss a coin and roll a diﬁ how many different results can you get? How
about two coins and two dice? How about four dice? Make explicit to yourself
the way you calculated these answers.

4. How many ways are there of arranging n things in a row? Can you explain why?
5. The expression ‘(':) ’: what does it mean, and what is its value?

6. What is a function? Explain injective and surjective. Let A = {a, b}; B = {1, 2,3},
What are the members of A X B? Of B X A?. Identify these members (to your
annoying younger sibling). How many functions are there from A to B? From B
to A? Identify these functions (to your annoying younger sibling)

7. What is a prime number?

8. (a) xO: is this the same as (xX*)*? Can you simplify either of these further?
(b) What is x°? Do you remember why?

9. We will also assume you know about matrix multiplication, tho’ not much will

hang on it.
Multiply the matrix
1 20
2 1 3
0 3 1
by the matrix
2 1 1
0 1
1 0 1

explaining the steps.

Much if not all of this will be explained below

2Yes, “die’ is the singular of ‘dice’!
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2.3 Things you are not going to need and which we won’t
cover

Complex numbers, truth tables ...

2.4 Things you mightn’t need

Some of the following you won’t need directly in Cambridge 1a Discrete Mathematics.
However you will need them for other courses, and if you haven’t got them under
control it might be an early sign of trouble ahead not just in DM but also in the other
courses for which you will need them.

o Sums of Arithmetic Progressions, sums of Geometric Progressions,
o Consider the power series
T+x+x2+23 434 +50° +8x0 + 1347 ...

where the coefficient of ‘x™’ is the nth Fibonacci number. Do you know how to
sum it?

o Expansion of (1 + x)";

e There is a society that values boys so highly that every couple in that society goes
on producing babies until they produce a boy, at which point they stop. Does this
society end up producing more boys? Or more girls? Or what?

2.5 Philosophical Introduction: the Paedagogical Diffi-
culties

It might seem odd to kick off a file of course materials on Discrete Mathematics with
a section that has a title like this, but there is a reason. Some proofs just are hard,
and people experience difficulty accordingly. But there are bottlenecks where people
experience difficulties with the underlying concepts, and particularly with the notation.

The hard part of doing discrete maths isn’t learning the proofs of the theorems. By
and large the proofs are not particularly difficult at this level—though they can appear
daunting. The hard part is making a certain kind of mental jump. Once you have made
this jump, everything is easy. Let me explain.

Mathematicians often complain that lay people think that mathematics is about
numbers. It isn’t, and they are right to complain. Not just because it’s a mistake, but
because it’s a mistake that throws people off the scent. Mathematics is a process of for-
malisation and abstraction that can be applied to all sorts of things, not just numbers.
It just so happens that the only bits of mathematics that the average lay person encoun-
ters is mathematics as applied to numerosity, which is where numbers come from. In
fact we can apply mathematical methods to all sorts of other ideas. (Geometry, for
example).
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2.5.1 Variables and Things

In applying mathematical methods to a topic we find that we take a number of steps.
One of them is summarised in a famous remark of the twentieth century philosopher
W.V.Quine: “To be is to be the value of a variable”. You are probably quite happy if I
say

“Let x be a number between 1 and 1000; divide it by 2 ...”
or (if you are old enough to have done geometry at school)
“Let ABC be a triangle; extend the side AB ...".
In contrast you are almost certainly not happy if I say
“Let R be a binary relation on a set X; compose it with its inverse. .. ”.

Why is this? It is because numbers (and perhaps triangles) are mathematical ob-
jects in your way of thinking, whereas relations aren’t. And what has this got to do
with being the value of a variable? Quine’s criterion for a species of object to be a
mathematical object (in the way that numbers—or perhaps triangles—are) is that vari-
ables can range over mathematical objects. From your point of view, the utility of the
observations of Quine’s is that it enables you to tell which things you are comfortable
thinking of mathematically.

Computer Scientists in their slang make the distinction (from the point of view of
a programming language) between first class objects and the rest. First class objects
are the kinds of things that the variables of the language can take as values. Typically,
for a programming language, numbers such as integers or floating-point reals will be
first-class objects, but operations on those numbers will not.

This distinction between first-class objects and the rest is echoed in ordinary lan-
guage (well, in all the ordinary languages known to me, at least) by the difference
between nouns and verbs.

Let us take a live example, one that bothers many beginners in Discrete Mathe-
matics. Relations are not mathematical objects for most people. (“Let R be a binary
relation on a set X...”’!) In consequence many people are not happy about being asked
to perform operations on relations. The problem is not that they are unacquainted with
the fact that—for example—the uncle-of relation is the composition of the brother-of
relation with the parent-of relation. This is, after all, something you can explain easily
to any foreigner who asks you what the word ‘uncle’ means! The problem is that they
don’t know that this fact is a fact about composition of relations. This is because they
don’t think of relations as being the kind of things you perform operations on, and that
in turn is because they don’t think of relations as things at all!

You are quite happy applying operations to numbers. The conceptual leap you
have to make here is to be willing to apply operations to relations. Although thinking
of them as things (rather than as relations between things) and then thinking of them as
the substrates of operations are two steps rather than one, it’s probably best to think of
them as two parts of a single move.
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But relations are only one example of entities that you are now going to have to
think of mathematically. Others are sets, functions and graphs.

This business of manufacturing new kinds of thing for us to think about and do
things to has been much discussed by philosophers ever since the days of the Ancient
Greeks. I first encountered the word for this process—‘hypostasis” when I was a phi-
losophy student. But it’s not just philosophy students who need to think about it—as
you can see!

Null objects

Another sign that a species of object (number, set, line .. .) has become a mathematical
object for you is when you are happy about degenerate or null objects of that species.
You may remember being told in school that the discovery that zero was a number
was a very important one. An analogous discovery you will be making here is that
the empty set is a set. (Perhaps this is the same discovery, since numbers like 1, 2,
3, ...(though not 1.5, 5/3, n ...) are answers to questions about how many elements
there are in a set. “0” is the answer to “How many things are there in the empty
set?”.) If you think that the empty set “isn’t there” it’s because you don’t think that
sets have any existence beyond the existence of their members. Contrast this with the
relaxed feeling you have about an empty folder or file in a directory on your computer
(as it might beThings_I_learnt_from_Twitter.xls). Files and folders on your
computer are things that—for you—are unproblematic objects of thought in a way that
makes it possible for you to think of empty ones. You are happy to perform operations
on them, after all. . . reading them, writing to them, copying them . ... To that extent you
are thinking of them as mathematical objects: the ability to be relaxed about the empty
set is one of the things you will acquire when you start thinking of sets as mathematical
objects.

We build formula by taking conjunctions or disjunctions of collections of formulz.
What is the conjunction of the empty set of formulae? The disjunction of the empty set
of formule? Never mind about the answer to this just yet (though we will soon); for the
moment I am trying to impress you with (i) the novel idea that the question is a sensible
one and (ii) that accepting the fact that it is a sensible question is part of thinking of
sets as mathematical objects, which in turn is part of doing Discrete Maths.

(My Ph.D. thesis has the shortest title on record: “N.F.” A title is a string of charac-
ters. So the shortest possible title is the empty string of characters. Note that having the
empty string as your title is not the same as having no title!) TTBA “untitled”. When
we get on to Languages and Automata you will have to distinguish between the empty
language (the language that has no formule in it) and the language whose sole formula
is the empty string!! I want you to understand this distinction.

2.5.2 Envoi

I’'m inflicting on you this brief digression on Philosophy and Foundations because ev-
ery student, in mastering the skills and ideas of Computer Science, has to go through
a hugely speeded-up version of the journey that Mathematics and Philosophy went
through in dreaming up these objects in the first place.

Integrate this last para into the
preceding para
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2.6 The Type-Token distinction

The terminology ‘type-token’ is due to the remarkable nineteenth century American
philosopher Charles Sanders Peirce. (You may have heard the tautology (A — B) —
A) — A referred to as Peirce’s Law). The two ideas of token and type are connected
by the relation “is an instance of”’. Tokens are instances of types.

It’s the distinction we reach for in situations like the following

° (1) “I wrote a book last year”
(ii) “I bought two books today”

In (ii) the two things I bought were physical objects, but the thing I wrote in (i)
was an abstract entity. What I wrote was a type. The things I bought today with
which I shall curl up tonight are tokens. This important distinction is missable
because we typically use the same word for both the type and the token.

e A best seller is a book large numbers of whose tokens have been sold. There is
a certain amount of puzzlement in copyright law about ownership of tokens of a
work versus ownership of the type. James Hewitt owns the copyright in Diana’s
letters to him but not the letters themselves. (Or is it the other way round? )

o [ remember being very puzzled when I was first told about printing. I was told
that each piece of type could only be used once. Once for each book, in the sense
of once for each print run Not once for each copy of a book. The copies from
any one print run are all tokens of a type.

e [ read somewhere that “ ...next to Mary Woollstonecroft was buried Shelley’s
heart, wrapped in one of his poems.” To be a bit more precise, it was wrapped in
a token of one of his poems.

e You have to write an essay of 5000 words. That is 5000 word tokens. On the
other hand, there are 5000 words used in this course material that come from
latin. Those are word types.

e Grelling’s paradox concerning the words heterological and homological. : a
heterological word is one that is not true of itself. ‘long’ is heterological: it
is not a long word. ‘English’ is not heterological but homological, for it is an
English word. Notice that it is word types not word tokens that are heterological
(or homological!) It doesn’t make any sense to ask whether or not ‘italicised’ is
heterological. Only word tokens can be italicised!

e What is the difference between “unreadable” and “illegible”? A book (type) is
unreadable if it so badly written that one cannot force oneself to read it. A book
(token) is illegible if it is so defaced or damaged that one cannot decypher the
(tokens of) words on the page.

o We must not forget the difference between a program (type) and the tokens of it
that run on various machines.
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e Genes try to maximise the number of tokens of themselves in circulation. We
attribute the intention to the gene type because it is not the action of any one
token that invites this mentalistic metaphor, but the action of them all together.
However it is the number of tokens that the type appears to be trying to maximise.

The type-token distinction was independently rediscovered by the people who brought
us object-oriented programming. Their distinction between class and object is the
same as the type-token distinction, and the divergence in notation is (presumably)
caused solely by lack of communication between the various cultures that need this
idea.

2.7 Copies
Buddhas

It is told that the Buddha could perform miracles. But—Iike Jesus—he felt they were
vulgar and ostentatious, and they displeased him.

A merchant in a city of India carves a piece of sandalwood into a bowl. He places
it at the top of some bamboo stalks which are high and very slippery, and declares
that he will give the bowl to anyone who can get it down. Some heretical teachers
try, but in vain. They attempt to bribe the merchant to say they had succeeded. The
merchant refuses, and a minor disciple of the Buddha arrives. (His name is not
mentioned except in this connection). The disciple rises through the air, flies six
times round the bowl, then picks it up and delivers it to the merchant. When the
Buddha hears the story he expels the disciple from the order for his frivolity.

But that didn’t stop him from performing them himself when forced into a corner.
In Siete Noches [1] (from which the above paragraph is taken) J. L. Borges procedes
to tell the following story, of a miracle of courtesy. The Buddha has to cross a desert at
noon. The Gods, from their thirty-three heavans, each send him down a parasol. The
Buddha does not want to slight any of the Gods, so he turns himself into thirty-three
Buddhas. Each God sees a Buddha protected by a parasol he sentE]

Apparently he did this routinely whenever he was visiting a city with several gates,
at each of which people would be waiting to greet him. He would make as many copies
of himself as necessary to be able to appear at all the gates simultaneously, and thereby
not disappoint anyone.

Minis
Q: How many elephants can you fit in a mini?
A: Four: two in the front and two in the back.

Q: How many giraffes can you fit in a mini?

3 As is usual with Borges, one does not know whether he has a source for this story in the literature, or
whether he made it up. And—again, as usual—it doesn’t matter.
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A: None: it’s full of elephants.

Q: How can you tell when there are elephants in the fridge?
A: Footprints in the butter.

Q: How can you tell when there are two elephants in the fridge?
A: You can hear them giggling when the light goes out.

Q: How can you tell when there are three elephants in the fridge?
A: You have difficulty closing the fridge door.

Q: How can you tell when there are four elephants in the fridge?
A: There’s a mini parked outside.

Sets

If A is a set with three members and B is a set with four members, how many ordered
pairs can you make whose first component is in A and whose second component is in
B?

Weeeeell ... you pick up a member of A and you pair it with a member of B ... that
leaves two things in A so you can do it again . ... The answer must be three!

Wrong! Once you have picked up a member of A and put it into an ordered pair—
it’s still there!

One would tend not to use the word token in this connection. One would be more
likely to use a word like copy. One makes lots of copies of the members of A. Just
as the Buddha made lots of copies of himself rather than lots of tokens of himself. I
suppose you could say that the various tokens of a type are copies of each other.

It is possible to do a lot of rigorous analysis of this distinction, and a lot of re-
finements suggest themselves. However, in the culture into which you are moving the
distinction is a piece of background slang useful for keeping your thoughts on an even
keel, rather than something central you have to get absolutely straight. In particular we
will need it later (see page[83)) when making sense of ideas like disjoint union.

2.8 The Use-Mention Distinction

We must distinguish words from the things they name: the word ‘butterfly’ is not
a butterfly. The distinction between the word and the insect is known as the “use-
mention” distinction. The word ‘butterfly’ has nine letters and no wings; a butterfly
has two wings and no letters. The last sentence uses the word ‘butterfly’ and the one
before that mentions it. Hence the expression ‘use-mention distinction’.

Haddocks’ Eyes

As so often the standard example is from [2].
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[...] The name of the song is called “‘Haddock’s eyes’.”
“Oh, that’s the name of the song is it”, said Alice, trying to feel interested.

“No, you don’t understand,” the Knight said, looking a little vexed. “That’s
what the name is called. The name really is “The aged, aged man’.”

“Then I ought to have said, ‘That’s what the song is called’?” Alice cor-
rected herself.

“No you oughtn’t: that’s quite another thing! The song is called ‘Ways
and means’, but that’s only what it is called, you know!”

“Well, what is the song, then?” said Alice, who was by this time com-
pletely bewildered.

“I was coming to that,” the Knight said. “The song really is ‘A-sitting on
a Gate’ and the tune’s my own invention”.

The situation is somewhat complicated by the dual use of single quotation marks.
They are used both as a variant of ordinary double quotation marks for speech-within-
speech (to improve legibility)—as in “Then I ought to have said, ‘That’s what the song
is called’?”—and also to make names of words or strings of words—‘The aged, aged
man’.... Even so, it does seem clear that the White Knight has got it wrong. At the very
least: if the name of the song really is ‘The aged aged man’ (as he says) then clearly
Alice was right to say that was what the song was called. Granted, it might have more
names than just that one—‘Ways and means’ for example—but that was no reason for
him to tell her she had got it wrong. And again, if his last utterance is to be true, he
should leave the single quotation marks off the title, or—failing that (as Martin Gardner
points out in [4])—burst into song. These infelicities must be deliberate (Carroll does
not make elementary mistakes like that), and one wonders whether or not the White
Knight realises he is getting it wrong . ..1is he an old fool and nothing more? Or is he
a paid-up party to a conspiracy to make the reader’s reading experience a nightmare?
The Alice books are one long nightmare, and perhaps not just for Alice.

Alphabet soup
People complain that they don’t want their food to be full of E-numbers. What they
mean is that they don’t want it to be full of the things denoted by the E-numbersE]

Some Good Advice

Q: Why should you never fall in love with a tennis player?

A: Because ‘love’ means ‘nothing’ to them.

4Mind you E-300 is Vitamin C and there’s nothing wrong with that!
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Apple Crumble

“Put cream on the apple crumble”
“But there isn’t any cream!”
“Then put ‘cream’ on the shopping list!”

‘Think’
“If I were asked to put my advice to a young man in one word, Prestwick,
do you know what that word would be?”
“No” said Sir Prestwick.
“ “Think’, Prestwick, ‘Think’ ”.
“I don’t know, R.V. ‘Detail’?”
“No, Prestwick, ‘Think’.”
“Er, ‘Courage’?”
“No! “Think’!”
“I give up, R.V., ‘Boldness’?”
“For heavan’s sake, Prestwick, what is the matter with you? ‘Think’!”
“ ‘Integrity’? ‘Loyalty’? ‘Leadership’?”
“ “Think’, Prestwick! ‘Think’, ‘Think’, ‘Think’ ‘Think’!”

Michael Frayn: The Tin Men. Frayn has a degree in Philosophy.

Ramsey for Breakfast

In the following example F.P. Ramseyﬂ uses the use-mention distinction to generate
something very close to paradox: the child’s last utterance is an example of what used
to be called a “self-refuting” utterance: whenever this utterance is made, it is not ex-
pressing a truth.

PARENT: Say ‘breakfast’.
CHILD: Can’t.

PARENT: What can’t you say?
CHILD: Can’t say ‘breakfast’.
The Deaf Judge

JUDGE (to
PRISONER): Do you have anything to say before I pass sentence?

PRISONER: Nothing

JUDGE (to

>You will be hearing more of this chap.
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COUNSEL : Did your Client say anything?
COUNSEL: ‘Nothing’ my Lord.

JUDGE: Funny ...I could have sworn I saw his lips move. ..

The N-word

One standard way of creating a [token of a] name for a word is to take a token of it
and put single quotes either side of it—as indeed we have been doing above ... *“My
client said ‘nothing’” my lord”. Naturally in these circumstances one wants to say that
the word in question is mentioned not used. However there are circumstances in which
it is felt (by some) that the word enclosed in single quotes is, nevertheless, in some
sense, being used. This tends to happen when the word being mentioned is heavily
taboo-ed and has to be kept at barge-pole distance, in particular with words that we are
not permitted to use. Such words can of course still be mentioned; after all, how can
one tell a new user of the language that they are not to use the word without somehow
denoting it—that is to say, mentioning it? If you mention a word you need a name for
it, but a name that we use to mention it cannot be one obtained by putting single quotes
round it. There is a slang American word for disparagingly denoting people with black
skins; it has six letters and begins with ‘n’. I can allude to this fact, and mention the
word in so doing—as I have in fact just done. But if my way of mentioning it was by
enclosing a token of it in single quotes the sky would probably land on my head. My
defence would be that I am not using the word, but mentioning it. I'm not going to risk
it, co’s I want a quiet lifeﬂ Call me a coward: I plead guilty as charged.

This is tied up with all sorts of complex and interesting issues in philosophy of
language which you will have to come to grips with in the fullness of time. You could
try googling ‘referential opacity’ if you want to read ahead. Clearly one must not use
the N-word; it seems that one may not even mention it except in a referentially opaque
way.

The predicament of speakers in situations where the mentioned word is heavily
taboo-ed is put to good comedic effect in Scene Five of The Life of Brian http:
//montypython.50webs.com/scripts/Life_of_Brian/5.htm, where Matthias,
son of Deuteronomy of Gath, is to be stoned to death for using the name of Jehovah.
In his defence he mentions the name:

MATTHIAS: Look. I—1I’d had a lovely supper, and all I said to my wife
was, ‘That piece of halibut was good enough for Jehovah.’

So: there are some words that one wishes to mention—if at all—only by using only
those names of it that do not contain embedded occurrences of it—embedded within
single quotes for example. Prima facie there is a question about how a word can acquire
other safe names in this way, and there is presumably a literature on this question . .. but
I don’t know any of it. Remove this disclaimer

Sseehttps://www.theguardian.com/media/2020/aug/08/bbc-presenter-quits-in-protest-after-n-word-allegedly-used-in-attac
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Banach-Tarski

There aren’t many good mathematical jokes, God knows, but this is one of them. ..
Give a good anagram of ‘Banach-Tarski’.

and the answer is
‘Banach-Tarski Banach-Tarski’

... the point being that the Banach-Tarski paradox (look it up) concerns the possibility
of chopping up a solid sphere into finitely many pieces and reassembling the pieces to
make two new spheres each the same size as the original.

Fun on a Train

The use-mention distinction is a rich source of jokes. One of my favourites is the joke
about the compartment in the commuter train, where the passengers have travelled
together so often that they have long since all told all the jokes they know, and have
been reduced to the extremity of numbering the jokes and reciting the numbers instead.
In most versions of this story, an outsider arrives and attempts to join in the fun by
announcing “Fifty-six!” which is met with a leaden silence, and he is tactfully told
“It’s not the joke, it’s the way you tell it”. In another version he then tries “Forty-two!”
and them train is convulsed with laughter. Apparently that was one they hadn’t heard
before

A good text to read on the use-mention distinction is the first six paragraphs (that
is, up to about p. 37) of chapter 1 of Quine’s [11]].

Related to the use-mention distinction is the error of attributing powers of an object
to representations of that object. I have always tended to think that this is a use-mention
confusion, but perhaps it’s a deliberate device, and not a confusion at all. So do we
want to stop people attributing to representations powers that strictly belong to the
things being represented? Wouldn’t that spoil a lot of fun? Perhaps, but on the other
hand it might help us understand the fun better. There was once a famous English
stand-up comic by the name of Les Dawson who (did mother-in-law jokes but also)
had a routine which involved playing the piano very badly. I think Les Dawson must
in fact have been quite a good pianist: if you want a sharp act that involves playing
the piano as badly as he seemed to be playing it you really have to know what you are
doinéﬂ The moral is that perhaps you only experience the full frisson to be had from
use-mention confusion once you understand the use-mention distinction properly.

We make a fuss of this distinction because we should always be clear about the
difference between a thing and its representation. Thus, for example, we distinguish
between numerals and the numbers that they represent. (Notice that bus “numbers” are
typically numerals not numbers, in the sense that the thing that identifies the bus is the
character (the numeral) on it, rather than the number denoted by that numeral. Not long
ago, needing a number 7 bus to go home, I hopped on a bus that had the string ‘007’ on

7For sophisticates: this is a joke about dereferencing.
8Wikipzdia confirms this: apparently he was an accomplished pianist.
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the front. It turned out to be an entirely different route! And this despite the fact that
the numerals ‘007” and “7° denote the same number. Maybe this confusion in people’s
minds is one reason why this service is now to be discontinuedﬂ) The other day i
discovered the delightful [10] where the point is made that telephone number are not
really numbers, in that you would never perform arithmetical relations on them. Why
might you divide a telephone number by 2. They;re just numerals, like the things on
buses. If we write numbers in various bases (Hex, binary, octal ...) the numbers stay
the same, but the numerals we associate with each number change. Thus the numerals

‘XT°, ‘B’, ‘117, 13’ “1011° all represent the same numberm Hotter temperatures is not a
use-mention issue; it’s a typing
issue

Hotter Temperatures on the Way

No! Hotter weather on the way. Temperatures are not hot. They are numbers. Numbers

are big or small, or lucky or unlucky. Rockets is not a use-mention is-
sue; it’s an ambiguous parsing
Rockets issue

Missing: Number of children fleeing care in Cambridgeshire rockets

Cambridge News, 17:44, 21 Feb 2017
http://www.cambridge-news.co.uk/news/cambridge-news/missing-number-children-fleeing-care-1263

TheE] story is not that there are children fleeing their care home by Cambridgeshire
rocket—concerning tho’ that is (they must be in a hurry); the story is rather that the
number of such children has been mislaid:

[{x : child(x) A x is fleeing care in a Cambridgeshire rocket}|
has been mislaid.

The person in charge of data capture has left it on a train. Or in a rocket, perhaps.

Littlewood

“A minute I wrote (about 1917) ended with the sentence ‘Thus o should be made as
small as possible’. This did not appear in the printed minute. A speck in the blank
space at the end proved to be the tiniest ‘c”’ I have ever seen (the printers must have
scoured London for it).”

This appeared on page 38 in the chapter of [8]: A Mathematician’s Miscellany
entitled ‘Howlers, Misprints etc.” Whose howler? The printers’ of course, in the course
of setting up the type. But also Littlewood’s in recounting it: the word following
the ‘tiniest” should have been enclosed in single quotes ...as it is above, tho’ not in
Littlewood’s text—neither in the original document (obviously) nor in the write up in

(8]

9But it’s obvious anyway that bus numbers are not numbers but rather strings. Otherwise how could we
have a bus with a “number” like ‘7A’?

10Miniexercise: What is that number, and under which systems do those numerals represent it?

""Thank you, Ted Harding!
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2.9 Intension and Extension

The intension-extension distinction is an informal device but it is a standard one which
we will need at several places. We speak of functions-in-intension and functions-in-
extension and in general of relations-in-intension and relations-in-extension. There
are also ‘intensions’ and ‘extensions’ as nouns in their own right.

Consider two properties of being human and being a featherless biped—a creature
with two legs and no feathers. There is a perfectly good sense in which these concepts
are the same (or can be taken to be, for the sake of argument: one can tell that this
illustration dates from before the time when the West had encountered Australia with
its kangaroos!), but there is another perfectly good sense in which they are different.
We name these two senses by saying that ‘human’ and ‘featherless biped’ are the same
property-in-extension but are different properties-in-intension.

A more modern and more topical illustration is as follows. A piece of code that
needs to call another function can do it in either of two ways.

If the function being called is going to be called often, on a restricted
range of arguments, and is hard to compute, then the obvious thing to do
is compute the set of values in advance and store them in a look-up table
in line in the code.

On the other hand if the function to be called is not going to be called
very often, and the set of arguments on which it is to be called cannot
be determined in advance, and if there is an easy algorithm available to
compute it, then the obvious strategy is to write code for that algorithm
and call it when needed.

In the first case the embedded subordinate function is represented as a function-in-
extension, and in the second case as a function-in-intension.

Functions-in-extension are sometimes called the graphs of the corresponding functions-
in-intension: the graph of a function f is {{x,y) : x = f(y)}, where we write ‘(x,y)’ for

Provide forward reference the ordered pair of x and y. One cannot begin to answer exercise|39|on page[/7|unless
one realises that the question must be, “How many binary relations-in-extension are
there on a set with n elements?” (There is no answer to “how many binary relations-
in-intension ... ?”” Explain to the Hypothetical Other why this is so.)

One reason why it is a bit slangy is captured by an apercu of Quine’s: “No entity
without identity”. What this obiter dictum means is that if you wish to believe in the
existence of a suite of entities—numbers, ghosts, functions-in-intension or whatever
it may be—then you must have to hand a criterion that tells you when two numbers
(ghosts, functions-in-intension) are the same number (ghost, etc.) and when they are
different numbers (ghosts, etc). We need identity criteria for entities belonging to a
suite if we are to reason rigorously about those entities. And sadly, although we have a
very robust criterion of identity for functions-in-extension, we do not yet have a good
criterion of identity for functions-in-intension. Are the functions-in-intension Ax.x + x
and Ax.2 - x two functions or one? Is a function-in-intension an algorithm? Or are
algorithms even more intensional than functions-in-intension?

[Ooops, I mentioned A-calculus there before telling you what it is. Ax.F(x) is the
function that, when given x, returns F(x). (You may have seen the notation ‘f : x —
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F(x)’ too.) When we apply a function Ax.... to an argument a we knock the ‘Ax’ off
the front and replace all the “x’s in the dots by ‘a’s. Thus Ax.x> applied to 2 evaluates
to 2% which is 4.]

The intension-extension distinction turns up nowadays connection with the idea of
evaluation. In recent times there has been increasingly the idea that intensions are the
sort of things one evaluates and that the things to which they evaluate are extensions.
Propositions evaluate to truth-values. Truth-values (true and false) are propositions-
in-extension.

We do need both. Some operations are more easily understood on relations-in-
intension than relations-in-extension (composition for example) Ditto ancestral (see p.

3

perhpas move this earlier?

Properties-in-extension are just sets. Relations-in-extension and functions-in-extension

are sets of tuples.

2.10 Semantic Optimisation and the Principle of Char-
ity

When a politician says “We have found evidence of weapons-of-mass-destruction programme-

related activities”, you immediately infer that they have not found weapons of mass
destruction (whatever they might be). Why do you draw this inference?

Well, it’s so much easier to say “We have found weapons of mass destruction”
than it is to say “We have found evidence of weapons-of-mass-destruction programme-
related activities” that the only conceivable reason for the politician to say the second is
that he won’t be able to get away with asserting the first. After all, why say something
longer and less informative when you can say something shorter and more informative?
We here, doing a course in Discrete Mathematics, will tend to see this as a principle
about maximising the amount of information you convey while minimising the amount
of energy you expend in conveying it. We will be doing a teeny weeny bit of optimi-
sation theory (in chapter [7) but only a very teeny-weeny bit (just enough for you to
develop a taste for it) and certainly not enough to come to grips with all the complexi-
ties of human communication. But it’s not a bad idea to think of ourselves as generally
trying to minimise the effort involved in conveying whatever information it is that we
want to convey.

Quine used the phrase “The Principle of Charity” for the assumption one makes
that the people one is listening to are trying to minimise effort in this way. It’s a useful
principle, in that by charitably assuming that they are not being unneccessarily verbose
it enables one to squeeze a lot more information out of one’s interlocutors’ utterances
than one otherwise might, but it’s dangerous. Let’s look at this more closely.

Suppose I hear you say

We have found evidence of weapons-of-mass-destruction programme-related
activities. €))]

Now you could have said

We have found weapons of mass destruction. 2)
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...but you didn’t—even though it’s shorter. Naturally I will of course put two and
two together and infer that you were not in a position to say (2), and therefore that
you have not found weapons of mass destruction. However, you should notice that (1)
emphatically does not imply that

We have not found weapons of mass destruction. 3)

After all, had you been lucky enough to have found weapons of mass destruc-
tion then you have most assuredly found evidence of weapons-of-mass-destruction
programme-related activities: the best possible evidence indeed. So what is going
on?

What’s going on is that (1) does not imply (3), but that (4) does!

We have chosen to say “We have found evidence of weapons-of-mass-
destruction programme-related activities” instead of “We have found weapons
of mass destruction . (@)

Notice that (1) and (4) are not the same!

Now the detailed ways in which this optimisation principle is applied in ordinary
speech do not concern us here—beyond one very simple consideration. I want you to
understand this optimisation palaver well enough to know when you are tempted
to apply it, and to lay off. The formal languages we use in mathematics and
computer science are languages of the sort where this kind of subtle reverse. -
engineering of interlocutors’ intentions is a hindrance not a help. Everything is to
be taken literally.

2.10.1 Overloading

Not quite the same as ambiguity.

+ on reals and on natural numbers are different operations. They look sort-of simi-
lar, because they obey some of the same rules, so there is a temptation to think are the
same thing—and certainly to use the same symbol for them. A symbol used in this way
is said to be overloaded, and it’s not quite the same as the symbol being ambiguous
because there is a connection of meaning between the two uses which there might not
be when a symbol is being used ambiguously.

An example one of my students was using the oter day: writing ‘n + A’ for the
set of all numbers of the form n + x where x is in A. Soon we will learn to write this
set as {n + x : x € A}. Overloading is a way of being thrifty in our use of notation.
The drawback is that it gets us into the habit of expecting to find ambiguities even in
settings where there are none. This leads us to...

2.11 Fault-tolerant pattern-matching

My brother-in-law once heard someone on the bus say “My mood swings keep chang-
ing.” He—like you or I on hearing the story—knew at once that what the speaker was
trying to say was that they suffer from mood swings!
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This is an example of something we do all the time. It’s fault-tolerant pattern
matching. There are things out there is the world that we need to recognise, for good
or ill. Things we might want to eat or to mate with, things that might want to eat us.
We need to be able to spot these things, and we need to be able to spot them even if
they imperfectly presented to us on account of the signal to noise ratio being less than
it should be. We need to be able to match the patterns that we see in the outside world
to the template in our heads, and because real signals are noisy, we need to be tolerant
of faults and noise. Hence the expression fault-tolerant pattern matching.

Reinterpreting silly utterances like this so that they make sense is something that we
are incredibly good at. And by ‘incredibly good’ I mean that this is one of the things we
can do vastly better that computers do (in contrast to the things like multiplying 100-
digit numbers in our head, which computers can do very much better than we can). In
fact we are so good at it that nobody has yet quite worked out how we do it, though
there is a vast literature on it, falling under the heading of what people in linguistics
call “pragmatics”. Interesting though that literature is I am mentioning it here only to
draw your attention to the fact that learning to do this sort of thing better is precisely
what we are not going to do. I want you to recognise this skill, and know when you are
using it, in order not to use it at all!

Fault-tolerant pattern matching is very useful in everyday life but absolutely no
use at all in the lower reaches of computer science. It is all too easy for fault-tolerant
pattern matching to turn into overenthusiastic pattern matching—otherwise known as
syncretism: the error of making spurious connections between ideas. A rather alarming
finding in the early days of experiments on sensory deprivation was that people who are
put in sensory deprivation tanks start hallucinating: their receptors expect to be getting
stimuli, and when they don’t, they wind up their sensitivity until they start getting
positives. Since they are in a sensory deprivation chamber, those positives are one and
all spurious . .. we have been overinterpreting.

2.11.1 Overinterpretation

Why on earth might we not want to use it?? Well, one of the differences between the use
of symbols in mathematics (e.g. in programming languages) and the use of symbols in
everyday language is that in maths we use symbols formally and rigidly and we suffer
for it if we don’t. If you write a bit of code with a grammatical error in it the O/S will
reject it: “Go away and try again.” One of the reasons why we design mathematical
language (and programming languages) in this po-faced fault-intolerant way is that that
is the easiest way to do it. Difficult though it is to switch off the error-correcting pattern-
matching software that we have in our heads, it is much more difficult still to discover
how it works and thereby emulate it on a machine—which is what we would have to do
if we were to have a mathematical or programming language that is fault-tolerant and
yet completely unambiguous. In fact this enterprise is generally regarded as so difficult
as to be not worth even attempting. There may even be some deep philosophical reason
why it is impossible even in principle: I don’t know.

Switching off our fault-tolerant pattern-matching is difficult for a variety of reasons.
Since it comes naturally to us, and we expend no effort in doing it, it requires a fair
amount of self-awareness even to realise that we are doing it. Another reason is that
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one feels that to refrain from sympathetically reinterpreting what we find being said to
us or displayed to us is unwelcoming, insensitive, and somehow not fully human, and
that one will be told off for it. Be that as it may, you have to switch all this stuff off all
the same. Tough!

So we all need some help in realising that we do it. I’ve collected in section[2.12]a
few examples that have come my way. I’'m hoping that you might find them instructive.

2.11.2 Scope ambiguities

Years ago when I was about ten a friend of my parents produced a German quotation,
and got it wrong. I corrected hin{T_ZI and he snapped “All right, everybody isn’t the son
of a German Professor””) (My father was Professor of German at University College
London at the time). Quick as a flash I replied “What you mean is ‘Not everybody is
the son of a professor of German’.”.

I was quite right. (Let’s overlook the German professor/professor of German bit).
He said that Everybody Isn’t the son of a professor of German. That’s not true. Plenty
of people are; I am, for one. What he meant was “Not everybody is ...”. It’s the dif-
ference between “(Vx)(—...)” and “=(Yx)(...)”"—the difference is real, and it matters.

The difference is called a matter of scope. ‘Scope’? The pointis thatin “(Vx)(—...)”
the “scope” of the ‘Vx’ is the whole formula, whereas in ‘=(¥x)(...) itisn’t.

For you, the moral of this story is that you have to identify with the annoying ten-
year old rather than with the adult that he annoyed: it’s the annoying 10-year-old that
is your role model here!

It is a curious fact that humans using ordinary language can be very casual about
getting the bits of the sentence they are constructing in the right order so that each bit
has the right scope. We often say things that we don’t literally mean. (“Everybody
isn’t the son of ...” when we mean “Not everybody is ...”) On the receiving end,
when trying to read things like (Vx)(Jy)(x loves y) and (Jy)(Vx)(x loves y), people
often get into tangles because they try to resolve their uncertainty about the scope of
the quantifiers by looking at the overall meaning of the sentence rather than by just
checking to see which order they are in!

All that glisters is not gold
Every Frenchman is not racist.

EXERCISE 17
Match up the formule on the left with their English equivalents on the right.

(i) (Vx)(Ay)(x loves y) (a) Everyone loves someone

(ii) (Yy)(@Ax)(x loves y) (b) There is someone everyone loves
(iii) (Ay)(Vx)(x loves y) (c¢) There is someone that loves everyone
(iv) Ax)(Vy)(x loves y) (d) Everyone is loved by someone

In the real world people make mistakes and say things that aren’t exactly what they
mean ( “Everybody isn’t the son of a German Professor”) so listeners have to get quite

121 was a horrid child, and I blush to recall the episode.
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good at spotting these errors and correcting them. So good, in fact, that we don’t notice
we do it. In mathematics (and, in particular, with programming languages) errors of
the kind we are so skillful at correcting are never allowed to occur in the texts in the
first place, so there is no need to have lots of clever software to detect and correct
them. The fault-tolerant pattern-matching skill is no longer an asset and its deployment
merely distracts us from the task of reading the formula in question. The result is that
when we encounter a formula with nasty alternations of quantifiers and tricky scoping
(such as the Pumping Lemma from Languages-and-Automata which is lying in wait
for you even as we speak) we think “This looks ghastly; it can’t be what he means.
Life isn’t that bad: let’s reach for the rescoping software” whereas what we should be
doing is just trying to read it as it is. Sadly life—or at any rate the Pumping Lemma—
really is that bad! The Pumping Lemma is less than completely straightforward to read
even with the best of intentions (it has more quantifiers in it than we are used to) and
attempting to read it without first switching off your rescoping software is a sure recipe
for disaster.

While we are on the subject of scope, we should take the opportunity to think about
the following illustration, which often confuses beginners:

(Ax)(F(x)) = p and (VX)(F(x) = p)

are equivalent! How can this be? Surely the two quantifiers ‘Y’ and ‘1’ mean
different things?! Look carefully ...in particular look at the scope of the quantifiers in
the two formul@. In the formula on the left the scope of ‘3’ contains only ‘F(x)’. In
the formula on the right the scope of the ‘Y’ is the whole formula.

2.12 Howlers of Overinterpretation

Ax.Ay.2

What is Ax.1y.2? Overinterpretation will probably make you think this should simplify
to 2; it doesn’t. It really just is the function whose constant value is the function
whose constant value is 2. What happens if you apply this function to 3? It’s actually
idiotically simple. It’s the result of applying to 3 the function whose constant value
is the function whose constant value is 2. And please do not make the mistake of
thinking that the function with constant value 2 (the one that returns 2 whatever it
is given as argument) is the same as the number 2. There is an important difference
between a pint of Guinness and the magic Guinness glass (given by the Leprichaun
to the Irishman who released him from a bottle wherein he’d been trapped since the
Bronze Age) that automatically refills itself with Guinness every time anyone drinks
from it. This difference is not quite the same as the difference between 2 and Ax.2 but
it might help to remind you of that difference.

We do need to distinguish between an object and the unary functions whose con-
stant value is that object. However I don’t want to think about a nullary function (a
function with no input) whose [constant] value is x: that would start to sound too much
like medi@val theology. Nevertheless you might need to think about this kind of thing
in the years to come.
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The square of a relation

What is the square of the < relation on IN? Well, one thing it ain’t is {(x, y) : x> < y?},
which is the answer one of my students gave once. You get into this mess if you forget
what the square of a relation is, and fault-tolerantly match to something you do know,
such as squaring of numberﬂ

Actually it’s a perfect example of the kind of mess you can get into if—before
taking on board the idea of overinterpretation—you free-associate rather than actu-
ally think. You have to learn how not to overinterpret—and to be born again as a
mathmo/compsci—before it is safe to free-associate like this.

The Power Set of the empty set

The Power set of a set is the set of all its subsets.

The empty set is the set with no elements. We write it as ‘@’ or occasionally as ‘{}".
I say the empty set because there is in fact only one empty set. There is the criterion of
identity for sets: two sets are the same set if they have the same members. (Not true for
multisets or lists for example). So what is the power set of the empty set? Let’s take
this question slowly, in stages, and answer it carefully by reading entirely literally all
the definitions we need to refer to. Recall that the power set, P(X), of a set X is the set
of all subsets of X. Y is a subset of X (written ‘Y C X’) if everything that is in Y is in
X. So in order to devise the power set of the empty set we are going to open up a bag
and put into it everything we can find that is a subset of the empty set.

Q: So what are the subsets of @?

Were you about to say “none”? If you were about to say that, then I want to smack
your wrist. Obviously the empty set is a subset of itself—just look at the definition!! So
why did you leave it out? Because it didn’t sound like a sensible answer. Why didn’t
it sound like a sensible answer? Because somewhere in your mind is the unspoken
assumption that if I ask you for the something-or-others of X, you should come up with
something new. “He can’t be wanting me to mention X co’s he already knows that.”’
But recall the definition of ‘subset of : x C y holds precisely when everything that is in
x is also in y. So every set is (trivially) a subset of itself. So in particular the empty set
is a subset of itself.

Very well, we are agreed there is one subset of @, namely @ itself. Also, by
extensionality (see page[37]for a definition of extensionality) it is the only subset. (That
bit, at least, is unproblematic.)

Q: OK, So what is the power set of the empty set?

Were you about to say @? If so 'm going to smack your wrist yet again. You were
probably thinking something like ... the empty set is {} so the set containing the empty
set must be {{}} and the curly brackets can’t be doing anything so that must be the same

31f you want to know what the square of a relation is, it’s the result of composing (see section [3.2.1) a
relation with itself. The square of the parent relation is the grandparent relation.
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as {}”. This mistake arises from your overinterpretation of data that you feel to be
suspect, namely {{}}. But if you are careful, you will see that it isn’t suspect at all, and
it won’t be hard to explain this to yourself. The set that contains all the subsets of the
empty set has as one of its members (its sole member as it happens) the empty set. So
itisn’t empty! So it can’t be the same as the empty set. (This uses the Principle of the
Indiscernibility of Identicals. Look it up.)

So the mistake of thinking that P(&) = @ arises from thinking that the expression
(@} is a bit of suspect data to which you need to apply your fault-tolerant pattern-
matching software. The idea that ‘{@} is a bit of suspect data is a separate mistake
that deserves an analysis of its own. The trap is the trap of thinking that because the
empty set has nothing inside it then it actually isn’t there at all. Why do you think this?
Because you are not happy with the idea of a set being empty. But—I put it to you—
there is nothing any odder about the idea of an empty set than there is about the idea of
an empty folder, or an empty file (we had this thought on p. 2.5.1). It’s no odder than
the idea that zero is an integer. “How many strawberries have you got in that punnet?”
“None, sadly!”. Once you are thinking about sets properly this difficulty goes away.

The Power Set of {1, 2, 3}

I once had a student who, when asked in an exam to write down all the subsets of
{1,2, 3}, supplied only {1, 2}, {1, 3} and {2, 3}. My guess is that

o She omitted {1, 2, 3} on the grounds that ‘subset’ probably meant ‘proper subset’.
‘We saw this mistake earlier;

o She omitted the singleton subsets because she was probably thinking something
like “Why would anyone want to write down ‘{1}’? That’s silly. Anyone writing
that down probably really means ‘1°, and that isn’t a set, so I can leave it out”.

e She left out the empty set because she didn’t think it was there. We’ve seen this
too.

Miniexercise: So just what exactly is the power set of {1, 2, 3}, Dear Reader?

Affirming the Consequent

Years ago I was teaching elementary Logic to a class of first-year law students, and I
showed them this syllogism:

“If George is guilty he’ll be reluctant to answer questions; George is re-
luctant to answer questions. Therefore George is guilty.”

Then I asked them: Is this argument valid? A lot of them said ‘yes’.

We all know that an obvious reason—the first reason that comes to mind—why
someone might be reluctant to answer questions is that they might have something
to hide. And that something might be their guilt. So if they are reluctant to answer
questions you become suspicious at once. Things are definitely not looking good for
George. Is he guilty? Yeah—string him up!

where?
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But what has this got to do with the question my first-years were actually being
asked? Nothing whatever. They were given a premiss of the form P — Q, and another
premiss Q. Can one deduce P from this? Clearly not. Thinking that you can is the
fallacy of affirming the consequentE]

There are various subtle reasons for us to commit this fallacy, and we haven’t got
space to discuss them here. The question before the students in this case was not:
do the premisses (in conjunction with background information) give evidence for the
conclusion? The question is whether or not the inference from the premisses to the
conclusion is logically valid. And that it clearly isn’t. The mistake my students were
making was in misreading the question, and specifically in misreading it as a question
to which their usual fault-tolerant pattern-matching software would give them a swift
answer.

Cartesian Product with the Empty Set

A X B (the “cartesian product of A and B”) is the set of all ordered pairs whose first
component is in A and whose second component is in B. So A X @ is the cartesian
product of A (a set) with the empty set, which is to say the set of all ordered pairs
whose first component is in A and whose second component is in the empty set.

What does A x @ actually turn out to be Do the sensible thing: try to form
ordered pairs whose first components are in A and whose second components are in @.
So you pick up a member of A to put into your chase (that’s the thing printers hold in
their hand and into which they put bits of type when setting something up in type) and
then you reach for a member of @. Ouch!

There is a danger of getting into a tangle by trying to find the correct description
of the set of defective ordered pairs: things that should have become ordered pairs but
never made it because—altho’ they have a first component in A—they somehow lack a
second component. A X @ certainly looks like the obvious place to put these discards
and offcuts. You might well think that such a discard-or-offcut is just a member of A,
and conclude that A X @ is A.

However there are no ordered pairs whose first component is in A and whose second
component is in @: any attempt to assemble one fails. A long way of saying this is to
say that the set of all such pairs—namely A x @—is @, and that of course is the correct
answer.

What do you do with the discards and offcuts? It doesn’t matter. It’s the ordered
pairs you are interested in. Discards and offcuts? Discard them! You certainly don’t
put them into A X @.

(When you encounter regular languages later you will meet the notation ‘LM’ for
the set of strings consisting of a string from L consed onto the front of a string from
M. What happens if L is empty? What happens if L contains only the empty string?)

14Explain the terminology. This is the first place in this text where these words appear. Affirm the an-
tecedent, infer the consequent. Need to explain antecedent and consquent and contrapositive. Perhaps a
glossary at the end.

1Sone might like to frame this question as “What does A x @ evaluate to?



2.12. HOWLERS OF OVERINTERPRETATION 35

Is the Identity Relation a Function?

“Well, functions give you back values when you feed them arguments. The
identity relation obviously doesn’t do anything so it can’t be a function!”

Is that what you were thinking? Shame on you! Of course the identity relation is a
function. Look at the definition of a function: each argument is related to one and only
one value. The identity relation relates each thing to one and only one thing, namely
itself! Duh!

Is the Identity Relation a Partial Order?

Lots of people say: ‘no’! They think that because it doesn’t order things then it can’t
be a partial order. However, if you read the definitions you will see that it is.

Can a Relation be both Symmetrical and Antisymmetrical?

[

“Well, obviously not, because the words sound as if the conditions are
mutually contradictory. On the other hand, why would they be asking me
if it was that easy? Er .. .is this a multiple choice question ... ? Will I be
penalised for guessing? ... Can I ask a friend?’

How about just answering the question? It might be quicker!

Suppose R is both symmetrical and antisymmetrical. Then, whenever x is related
to y by R, y is related to x by R—by symmetry. But if x is related to y and y to x, then
x = y by antisymmetry. So if x is related to y, x = y. So R must be a subset of the
identity relation. So perhaps the identity relation itself might be both symmetrical and
antisymmetrical, and so indeed it turns out.

And that is about all you can say!

Is the Empty Relation Transitive?

I have had students get in a tangle over the question whether or not the empty relation
is transitiv Or over the question of whether or not the relation {(1, 2)} is transitive.
It’s the same tangle. The tangle is this: for a relation to be transitive, it’s necessary for it
to contain the ordered pair (x, z) whenever it contains the ordered pairs (x, y) and (y, z).
“But what if it doesn’t contain any ordered pair?” they wail. Or “What if it contains
an ordered pair (x,y) but no pair (y,z)?” This is overinterpretation. Nobody said it
in order to be transitive it had to contain pairs (x,y) and (y, z)—or indeed contain any
ordered pairs at all. Merely that if it contained pairs (x, y) and (y, z) then it would have
to contain the ordered pair (x, z). If it doesn’t satisfy the antecedent of the conditional

16Scroll ahead to section 2?2 if you don’t yet know what a symmetric relation is and to section if you
don’t yet know what an antisymmetric relation is.
17See section if you do not yet know what transitive means.



Haven’t defined conditional or
antecedent

36 CHAPTER 2. READ THIS FIRST!

then the condition is trivially satisfied. It’s mechanical to check that the empty relation
and the relation {(1,2)} are transitive. Ian Stewart’s example If you pick a guinea pig
up by its tail its eyes fall out—is true. Conditionals whose antecedents are false are
vacuously true: in the nature of things these conditionals are unlikely to be useful but
that doesn’t make them false.

You only get into a tangle if you try to be too clever, and overinterpret.

Coda

If you get these questions wrong it’s almost certainly not because you are ignorant or
stupid, but because you are approaching them the wrong way.



Chapter 3

Sets and relations

That was an introductory pep talk. Now we start on some mathematics!

Sets are extensions. Two sets with the same members have the same set. This is the
axiom of extensionality for sets.

One could say that sets are properties-in-extension. The properties human and
featherless biped (see page[26)) are true of the same things but are not the same property.
Lists and multisets are extensional too, but we have to be careful about how we express
this fact. The lists [1;3] and [3; 1] have the same members but are not the same list.
For two lists to be the same list they not only have to have the same elements but
have to have them in the same slots. For two multisets to be the same multiset it is
necessary not only that they have the same members but that they have them with the
same multiplicity.

ordered not ordered
repetitions allowed lists multisets
no repetitions wellorderings sets

Multisets in brief

The two most natural examples of things-that-we-want-to-think-of-as multisets are (i)
the set of roots of a polynomial; and (ii) the set of factors of a natural number. The
equation x2 = 3x+2 = 0 has two solutions, 1 and 2. That is to say, the set of its
solutions is {1,2}. The equation x% — 2x + 1 has two solutions, but they are both 1,
so the set of its solutions is the set {1}. But thinking of the collection of answers as a
set conceals the fact that (in some sense!) there are two roots, which just happen to
be the same. A better way of presenting the same information would be to say that
that the collection of roots is the multiset {1, 1}. What this means of course is that the
appropriate datatype for the collection of solutions of x> — 3x +2 = 0 ismultiset not
set. What about the set of prime factors of 60? That is the multiset {2, 2, 3, 5}. Notice
that the collection of roots-of-a-polynomial, or of prime-factors-of-a-natural-number

37
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is always best thought of as a multiset rather than as a set, even if every member has
multiplicity one! The multiset {1, 2} is not the same object as the set {1, 2}, any more
than the list [1] is the same as the set {1}.

Although we are not going to see any more uses of multisets here, they are a useful
data structure and you should not forget about them entirely. My chief reason for
mentioning them here is to bring out into the open the range of different datatypes that
may come your way the better to understand what is going on. When you say that
x% — 4x + 4 has two roots, the extensional data object whose cardinality is two is a
multiset not a set. You need to always be clear about what you are dealing Witlﬂ

There is no standard notation for lists and multisets, though some programming
languages (ML for example) use square brackets for lists with semicolons as delimiters.
Thus [1;2;4] is the list whose elements are 1,2 and 4 in that order. (Why did I say
elements of the list [1;2; 4] but members of the set {1,2,4}? I'm not sure: I don’t think
there is any significance to it.)

Pure Set Theory

There is a discipline of Pure Set theory, that studies sets that can only have other sets
as members, but mostly we will be interested only in sets whose members are things
other than sets, and which are therefore of more immediate interest. Sets of numbers,
or sets of ordered pairs, or sets of matrices, or sets of sets of matrices. Generally
we are not likely to be interested in sets-of-sets-of” things for n more than about 2.
The discipline of Pure Set Theory had a vogue in the twentieth century as a purported
foundation of mathematics. The philosophers of the early twentieth century were very
struck by the fact that it seemed to be possible (and it still does) to find (what compscis
like us would call) implementations of all manner of mathematical objects into set
theory. Ordered pairs, naturals, reals, complexes, functions etc etc. It was felt that the
mere possibility of these implementations into set theory told us somehow what these
various mathematical gadgets were. Thus there came the idea that set theory could be
a foundation for mathematics. This idea has been a long time dying, and it’s far from
dead even now ...tho’ it is on the way out.

That’s not to say that the theory of pure sets is not an interesting and exciting branch
of mathematics—it is. It’s just that it doesn’t do what is claimed for it. For us the point
is that you don’t need to know any.

While we are about it, there is a distinction Pure Set Theorists make which won’t
much concern us here. Some sets are paradoxical—such as the set of all sets that are
not members of themselves. If you think about this you will tie yourself in a knot. Is
it a member of itself or not? If it is, it isn’t, and if it isn’t it is!! Clearly it can’t exist—
but then I shouldn’t have been talking about the set of all sets that aren’t members
of themselves. Set theorists tend to use the word proper class for dodgy collections
like this one. This is because they use the word class in a noncommittal way to cover
not only collections that are OK (which means the vast majority of them) but also the
dangerous collections such as the collection of all sets that aren’t members of them-

!'Say something about natural numbers as multisets of primes? Deals very nicely with hcf, lcm and
divisibility—it’s just C.



3.1. SETS FOR DISCRETE MATHEMATICS 39

selves. A proper class is a thing that’s a bit like a set except that it’s not allowed to be a
member of anything—and that’s because it’s not really there! We also talk of families
and collections when we want to be noncommittal. That explains why when we are
considering a class that cannot be a set (like the Russell class {x : x ¢ x}) we call it a
proper class. This usage of the word “proper’ is like its usage in proper subset, which
you may have seen earlier. (Miniexercise: what does “x is a proper subset of y” mean?)

I am giving the paradoxes very short shrift in this material. They are very titillating,
and although they do have connections with things you need to understand (Cantor’s
theorem and proofs of uncountability and—Iater on—the Unsolvability of the Halting
Problem) they are of little direct relevance and they will most assuredly do your head
in should you spend any time on them. There is a theory that it’s not possession of
language or tools or representational art that distinguishes Homo sapiens sapiens from
Homo sapiens neanderthalensis (let alone the other species of the genus Homo) but the
ability to lose sleep over the paradoxes. However you shouldn’t make that a reason to
study them. After all, if you’re reading this, the chances are that you are already known
to be a specimen of Homo sapiens sapiens.

3.1 Sets for Discrete Mathematics

There are hardly any theorems in set theory that we need to know, and, of those that
we are going to prove, one of them (Cantor’s theorem) is very easy. (In fact, one of
the things that disconcerts first-year students is that there are no tangible deliverables
in first-year Discrete Mathematics). What is going to take up most of our time is the
task of coming to grips with the notation, which was never designed to make it easy for
new entrants to feel at home! (In fact it was never designed at all.) The other theorem
that I’'m going to prove (the Inclusion-Exclusion Principle in section isn’t really
very hard either, but if one tries to prove it properly one has to absorb a lot of notation,
which makes working through it a very useful discipline. That’s the peak, and the rising
ground starts here.

3.1.1 Representing Sets Graphically

You have probably encountered Venn diagrams. They are a useful way of illustrating
equalities and inequalities between unions, intersections and complements of sets. A U

BUC = AN BnN C and suchlike.
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Venn diagrams won’t prove equalities and inequalities, but they can be a useful
picture to draw if you are in doubt about them, and can sometimes help you visualise
things and think them through. Of course if you are going to use them to check an
equation or inequation, you have to draw your sets properly: the circle for A must
overlap with the circle for B, and neither must be included in the other, lest you appear
to have a proof that A C B or vice versa. If you are drawing a picture to check an
equation that mentions three sets A, B and C, you will want to draw the three circles
so that all eight unions/intersections/differenceSEI are present, and this can in fact be
done. Here we come to our first cautionary tale. You can draw three circles so that all
unions/intersections/differences are present, but you can’t draw four. Try it and see.
The appearance of the number 3 here is to do with the fact that the surface of the paper
on which you are drawing your picture has two dimensions. If you want to draw four
regions for A, B, C and D then they can’t all be convex. (Type ‘Anthony Edwards’
(or ‘A.W.F. Edwards’) and ‘Venn diagram’ into your favourite search engine. Yes, and
if you happen to be in Cambridge go and look at the windows in Caius dining hall.)
If you want four convex regions showing all unions/intersections/differences then you
have to go up a dimension. You can imagine four spheres in space intersecting in all
possible ways. Although this fact is a very cute piece of Discrete Mathematics in its
own right the reason I am dragging it in here is to provide illustration to warn you about
the way in which notations which are handy and attractive sometimes fail to give you
the whole picture.

While we are about it there is another reason why you shouldn’t think of Venn
diagrams as the be-all and end-all of Set theory. Venn diagrams are no good for repre-
senting more than two levels of sets. One can indicate a point c inside a region called
C but one cannot indicate members of c—should ¢ be a set in its own right—nor can
one indicate things that C is a member of. This is a grave limitation on Venn diagrams
as ways of illustrating facts in set theory. Examples of important constructs using three

2Why are there eight? If you don’t already know, this will be explained in section
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levels which therefore cannot be represented: (X, X, P(X). (We define these in
section[3.1.9p[A8])

Notice that I have just—quite automatically—exploited a common convention that
we use a lower case letter (in this case ‘c’) for a variable to range over elements of a set
denoted by the corresponding uppercase variable (in this case ‘C’). Some people use a
convention that if we are to have a third level—things that C is to be a member of—we
use a calligraphic font: C.

Moral: Venn diagrams are fine, but don’t allow the comfortable feelings you have
about them to constrain your imagination when it comes to sets.

3.1.2 Notating Sets

The simplest of the many notations we have uses curly brackets in connection with
commas: thus {1, 2,4} is the set whose members are 1, 2 and 4.

Please note: these curly brackets are not mere punctuation, as ‘(’ and ‘)’ are in
English. They are part of the grammar. ‘{’ and ‘}’ cannot be replaced by ‘(" and )’ to
make things easier to read. And they cannot be omitted without changing the meaning.
Remember the discussion of the power set of the empty set on page [32}

There are actually two fundamentally different ways of notating sets. The system of
the previous paragraph takes notations for the individual members of a set, puts them
in a row, and places curly brackets round them. The result is a notation for the set
whose members we have listed. The other notation for sets also uses curly brackets,
but doesn’t mention the members explicitly in the way we have just seen: instead it
mentions them indirectly (in a way that assembler programmers might recognise as
bearing a haunting similarity to indirect addressing). The notation

{x: F} 3.1

denotes the set of all things satisfying the condition F that we find after the colon. This
piece of notation is a set abstract. Thus the set abstract

{(x:x=2Vvx=4}
denotes the set of all things that are equal to 2 or to 4—so we could have written it as
{2,4}

Similarly the set abstract
{x:xeAV xeB}

has a shorter notation too, and one that you know: A U B. This indirect notation, using
variables and the colon, enables us to write down notations for infinite sets—in contrast
to the first notation (curly brackets plus commas), which obviously enables us to point
to finite sets only.

We saw the intension/extension distinction in section [2.9] One could say that the
curly bracket notation in ‘{2, 3,5} is extensional and the notation in ‘{x : ¢} is inten-
sional, but this observation is impressionistic. If the reader finds it unhelpful (s)he is
free to ignore it. . . the intension/extension distinction is always slightly slangy.
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Colons and Vertical Bars

Some people write ‘{x|F}’ for the set of things that are F. The vertical bar has uses
already—we will write ‘[x|” for the number of thingsE] in the set x, and ‘|x|” for the
absolute value of a complex number x—indeed also the length of the vector x—and all
these are uses you will most certainly encounter (there is yet another use: some people
write ‘f|X’ for the restriction of the function f to the set X, though this is probably
an attempt to write ‘f [ X’ when they haven’t got the ‘|’ sign) and we don’t want to
introduce further confusion by giving it a fourth use. I shall adhere to the alternative
notation that uses a colon: {x : F(x)} as above. However you should be warned that
many people prefer the notation with the vertical bar.

3.1.3 Curly Brackets

So far we have seen two styles of notation for sets:

(1) The extensional (“explicit”) notation, as in ‘{a, b}’ for the pair of a and b;

(i1) The intensional (“indirect”) notation, as in ‘{x : x > 2}’.

There isn’t a huge amount to say about the first notation, but the second needs
quite a lot of discussion and explanation, because there are enhancements of it which
put things other than variables to the left of the colon. These enhancements are in
widespread use, and you will have to master them . . . and they take a bit of getting used
to!

The following expression turned up in an example sheet. It’s an (admittedly fairly
extreme) example of the kind of notation you are going to have to be happy with.
I’'m going to gradually work through it, using it as a peg on which to hang various
definitions.

2zeIN|z<5 A 20/ze{weN:w<z}) (3.2)

Notice that in formula[3.2]the thing between the left {” and the ‘| isn’t just a naked
variable as it was in formula [3.1] This exploits two conventions which we explain in
the two sections following, sections [3.1.4]and [3.1.3]

3.1.4 (Booleans to the left of a colon)

Often instead of writing things like
{(x:xe AND}

(where @ is some condition or other) we move the membership part of the condition to
the left of the colon thus:
{(xeA: D}

For example, where A = IN and @ is (dy)(x = 2 - y): instead of writing

{x:xeINA@y)(x=2-y)} 3.3)

3Make a note of this announcement, co’s T am not planning to repeat it!
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we can write
{(xeIN:@y)(x=2-y)} (D

which means exactly the same thing. The difference is merely one of emphasis: the
second notation suggests somehow that the natural numbers is a kind of context or en-
vironment for what happens after the colon. And, yes—in case you were wondering—
this last thing is, indeed, the same as

INA{x: @n(x=2-y)} (@)

This looks perverse, but there is reason to it, which we have just alluded to. We
use it in situations where one feels that the set A provides a context. For example the
expression {x : x> < 26} denotes the set of all numbers whose square is less than 26.
We might be interested in the set of all real numbers whose square is less than 26, in
which case one would write

(x: x> <26 AxeR} (3.4)

or one might be interested in the set of all natural numbers whose square is less
than 26, in which case one would write

{x: x¥* <26 A x e N} (3.5)

but—because in circumstances like this one usually is thinking of R or IN as a
universe of discourse, the place where it is happening—one would write these as

(xeR : x* <26} (3.6)

and

(xeN : x* <26} (3.7)

where the thing to the left of the colon is not a variable but a boolean with a variable
in it.

We have to use this move-to-the left trick to have a sensible notation for A X B as a
set abstract. The usual answer is

AXB:={x,y): x€e ANy € B}
although both
{u: (Ax € ATy € B)(u = (x, y))}

and
{u: fst(u) € A A snd(u) € B}

are of course correct too.

Before you go any further check your understanding by doing this exercise:

EXERCISE 18
Write out the set in formula in primary ( “extensional”) notation.
Why do I not ask you to write out the set from formula in extensional notation?
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There is a similar notation for the quantifiers: often one writes ‘(Yn € IN)(...)’
instead of ‘(Vn)(n € N — ...)’ and ‘(dn € IN)(...)’ instead of ‘(An)(n €e N A ...)’ and
here, too, there is a suggestion that IN is a kind of environment or local universe or
context. We can use the same notational device in connection with A-terms too. Thus,
Ax € X.{x} is the function that sends members of X to their singletons. This function
will reappear in the proof of Cantor’s theorem in section[3.3.3]

Here is a live example from an actual example sheet

{f+N—={0,1}|(Yn e N)(f(n) < f(n+ 1)}

The thing to the left of the colon (well, the vertical bar) is a boolean, but not a
boolean like ‘x € IN’. It’s an assertion that f is a function from IN to {0, 1}. This set
abstract could more clearly be written as

{f+(f: IN=H{0, ID A (Yn e N)(f(n) < f(n+ 1))}

The convention my colleague was appealing to is that, if ® and ¥ are both booleans
with ‘x’ free, then {®(x) : W(x)} is just {x : ®(x) A ¥(x)}. Notice too (and do not be
alarmed by) the dual use of the colon!

This was on a first year example sheet, so you should aim to cope with this kind of
notation. Incidentally, can you describe this set in words? How many members does it
have?

3.1.5 Function symbols to the left of a colon!
We can even write formule (1) and (2) as

{2y:yeN} (3.8)
This is possible because there is a convention that allows us to write

fo) :yeXj

to mean the set of values of the function f for aguments in X, and {2y : y € IN} is just
a special case of this.
Thus we can write things like

(¥ eN : x* <26} (3.9)

Formula [3.9] denotes the set that you get from the set denoted by formula [3.7] by
replacing every number in that set by its cube.

As we will see later, functions(-in-extension) are sets of ordered pairs. If we want a
notation for the set of all ordered pairs satisfying a condition ¢ on its two components
we would definitely prefer writing

(€, ) 2 dx, )

to

{p : @) Ay)Ist(p) = x Asnd(p) =y A ¢(x,y))}

and these two mean the same thing.
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Index sets
Now, if {f(y) : y € X} is a set, so is
Jiroyiyexy

s

yeX

and this is sometimes written

and when we do this we often speak of X as an index set

e-introduction and elimination

The last point the questionmaster was trying to get across is that w € {x : ¢(x)} is the
same as ¢(w). Being a member of the set of all green things is just the same as being a
green thin

Or rather, since the example is

20/ze€{weN|w<z) (3.10)

the point is that being a member of the set of green slimy things is the same as being
green and slimy. Thus (by e-elimination) formula is just the same as

20/zeIN A 20/z<z (3.11)
This will simplify formula[3.2]to

{2zeIN:z2<5 A 20/zeN A 20/2<L 7} (3.12)

So we ascertain what

{zeIN: z2<5 A 20/zeN A 20/z <z} (3.13)

is and then multiply everything in it by 2. A simple case analysis shows that the only
natural number z below 5 such that 20/z < zis 5. So the set of is {5}. (Not 5 itself!
That’s another point the questionmaster was trying to make!)

Finally multiply everything in {5} by 2 to obtain {10}.

It gets worse

You will even see things like

{(£n : O(n)} (&)

There are more casual notations to be seen, but I won’t expose you to them. The
general idea at this stage is: do not be casual; you shouldn’t use slang until you have
learned to talk proper!

4The study of proofs as mathematical objects is beyond the scope of these notes, but you will probably
encounter it in a Logic course in your second year. If w € {x : ¢(x)} is the same as ¢(w) then we have a rule of
inference that says we can deduce w € {x : ¢(x)} from ¢(w). We will call this rule the rule of e-introduction
since it introduces the symbol ‘€’ into the conclusion. The equivalence can be used to draw an inference
in the opposite direction: the rule of e-elimination, whereby in inferring ¢(w) from w € {x : ¢(x)} we have
discarded an occurrence of ‘e’. Hence the title of this subsection.

say more about this
need lots more exercises here
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3.1.6 Two important Properties of Relations

A binary relation on a set X is reflexive if it relates every member of X to itself. (A
relation is irreflexive if it is disjoint from the identity relation: note that irreflexive is
not the same as not-reflexive!) That is to say, R is reflexive iﬂE] Vx € X)({x,x) € R).
Notice that this means that reflexivity is not a property of a relation, but of the structure
(X, R) of which the relation is a component.

A relation R is transitive if VxVyVz R(x,y) AR(y,z) — R(x, z) (or, in brief, R%C R).

A relation R is symmetrical if VxVy(R(x,y) «— R(y,x)) or R = RL.

Beginners often assume that symmetrical relations must be reflexive. They are
wrong, as witness “rhymes with”, “conflicts with”, “can see the whites of the eyes of”,

ELENT3

“is married to”, “is the sibling of”” and so on.

3.1.7 Exercises

EXERCISE 19 Give two set abstracts for the set of those natural numbers that are
perfect squares, one using the existential quantifier 1 and the other using the trick
introduced in this section of moving some information to the left of the colon

EXERCISE 20 A circle is the set of points in the plane (that’s R? for the moment) that
are a fixed distance from the centre. Write down a set abstract denoting a circle. It will
have two freéﬁ variables in it (“parameters”). (It is customary to write d(x,y) for the
distance between points x and y.)

An ellipse is the set of points in the plane the sum of whose distances from two points
(the foci—fi and f> in the picture) is a constant. (In the picture above a + b = ¢ + d).
Write down a set abstract denoting an ellipse. It will have three free variables in it
free? (“parameters”).

3T think this is the first place where i have used this standard abbreviation: ‘iff” means if and only if”.
6“free’ not explained yet.
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EXERCISE 21 A parabola is the set of points the sum of whose distances from a given
point and a given line is a constant. Write down a set abstract denoting a parabola.

3.1.8 Variables and binders

Some people make explicit the presence inside F' of the variable that is to the left of
the semicolon, the business variable (or eigenvariable if you want a fancy name for it).
Thus you might see ‘{x : F(x)}" or (since some people don’t) ‘{x : F}’. Both of these
are shorthand for set abstractions. In the first case you are being told that the variable
‘x’ really does appear inside the expression that F represents, and in the second case
you aren’t being told this. But usually you will be given the formula in full rather than
a shorthand for it.
Several subtleties arise at this point.

1. (Vacuous quantification and abstraction)

What does ‘{x : A}’ mean, if the variable ‘x’ does not appear in A at all? Well, it
means either the empty set or the universe, depending on what A is. After all, if
x is not mentioned by A, the yes/no answer to “Is x in the set?” does not depend
on x; they’re either all in, or none. Similarly (Yx)A (when ‘x’ does not occur in
A) is just the same as A. Similarly Ax.f (when ‘x’ does not occur in ¢) is just the
constant function that always gives the result z.

2. (alpha-conversion). There is no difference between {x : F(x)} and {y : F(y)}.
Those of you who have done a bit of logic will recognise this as the same phe-
nomenon that (Vx)(F(x)) and (Vy)(F(y)) are in some sense the same formula.
You may feel that this is a slight bug in the design of our language: it makes
distinctions that we don’t need. We will find the same phenomenon arising in
lambda calculus, and there there is a known alternative which does not have this
bug: combinatory logic. There is no space to discuss these matters here. Suffi-
cient unto the day is the evil thereof.

degrees of freedom?

Make a point about all these
geometrical set abstracts are
quantifier-free!
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3.1.9 Variables, free and bound; Binders

There is a connection here with two other ideas which are probably new to you with
this course. Quantifiers and A-terms. You can take a formula with an ‘x’ free in it (such
as ‘x > 3’) and prefix it by a quantifier, like ‘¥’ or ‘3’. Or you can take a term with
‘x’ free in it (such as ‘x + 5’) and prefix it with ‘Ax’. Another thing you can do is wrap
it in a set abstraction using curly brackets: ‘{” and ‘}’. This gives you expressions like
{x : x > 3} or (Vx)(x > 3) or Ax.(x + 5) in which the variable ‘x’ is no longer free.
So the curly-brackets-in-pairs, the quantifiers, and the letter A are all called binders.
Often having a word enables you to keep track of the connection of ideas.

Of course the thing to the right of the dot might be another lambda term. I shall
also adhere to the universal practice of writing ‘Axy.(...)" for ‘Ax.(4y.(...))’. Lambda
calculus is a great improvement on the old system, under which people would write
things like ‘y = F(x)’ and ‘y = x?’, relying on an implicit convention that—where
‘x’ and ‘y’ are the only two variables used—then y is the output (the vertical axis
used to be called “ordinate”) and x is the input (the horizontal axis used to be called
“abcissa”). This convention—and others like it—have served us quite well, but in the
information technology age, when one increasingly wants machines to do a lot of the
formula manipulations that used to be done by humans, it turns out that lambda notation
and notations related to it are more useful. Another reason for using lambda calculus
rather than the assumption that x is an input and y an output is that life is simpler and
syntax is easier to describe if all variables are equivalent in the sense that they don’t
come equipped with baggage. We want (Vx)(®) to mean the same as (Vy)(®) and we
want this interchangeability to apply across the board. We will see more of A-calculus
in section 3.3.11

You will need to be alert to the difference between ‘f : x — y’and ‘f : x — y’. The
only different in the writing is a serif but the difference in meaning is huge. ‘f : x — y’
says that the function f, when given an argument like x, returns an output like y. So, in
a typical use of this idiom, ‘x” will be a variable, and ‘y’ will be a complex expression
probably containing ‘x’. ‘f : x — y’ says that f is a function that accepts members of
x and gives back members of y.

Have a look at section 2.12]

Sumset, Power set etc

We will now briefly go over some notations that you are probably familiar with, just
in case you aren’t! You know what ‘C’ means. Care to guess what ‘2’ means? (It’s
pronounced ‘superset’.)

There are other notations along these lines that you will need to know if you do not
know them already.

Sumset: Jx:={y: (@) € zA z€ x)}; and

Intersection (N x:={y: (Vz)(z€ x > y € 2)}.

P(x) is the power set of x: {y : y C x}.

Set difference: x \ y is the set of things that are in x but not in y.
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The symmetric difference: xAy, of x and y, is the set of things in one or
the other but not both: (x \ y) U (y \ x). This is sometimes written ‘XOR’.

EXERCISE 22 (Computer Science Tripos 2009 paper 1 question (c))
If (JA) N (UB) = D does it follow that AN B = @?

3.2 Relations and Functions

Relations-in-extension and functions-in-extension are sets of tuples. What is a tuple?
An n-tuple is just a list of length n. [Z]

For the rest of this section we are going to think of relations generally as relations-
in-extension: sets of tuples. Quite a lot of what we are going to do makes sense when
done to relations-in-intension as well, but the default will be that all relations under
discussion are relations-in-extension.

The n-tuples that will be most important to us are those where n = 2. We call
these tuples ordered pairs. An ordered pair has two different—we used the word
slot earlier. If p is a pair, we can write £st(p) and snd(p) for the first and second
components of p (the things in the first and second slots of p). We will also write ‘¥’
for the n-tuple ‘(xy...x,)’. This is because I write ordered pairs, triples, and so on
with angle brackets: (x,y). However, the world being the deeply flawed place it is, you
will find people using round brackets for this, and writing the ordered pair of x and y as
‘(x,y)’. I avoid it because this notation is used for several other things already, but not
everybody feels like me, and you must not panic when you see it notated differently.

e (x,y) might be the open interval {ze R: x <z <y}.
While we are about it [x,y] is (in the same tradition) the closed interval
{ze R : x <z <y}, and (x,y] is (in the same tradition) the half-open interval
{ze R: x <z <y}, and [x,y) similarly.

e (x,y) might also be the permutation (sometimes called a transposition) that
swaps x and y and fixes everything else.

All this is in small print because mostly you don’t really need it: it’s here only to put
things in context. However when we come to chapter ] you will encounter the usage
(x,y) for the highest common factor of x and y.

3.2.1 Relations

The arity of a function or a relation is the number of arguments it is supposed to have.
It is a significant but generally unremarked fact that one can do most of mathematics
without ever having to consider relations of arity greater than 2. Relations of arity two
are binary.

We write R(x,y) to mean that x and y are related by R. Sometimes we write it
as xRy instead. This is infix notation. Infix notation is universally used with order
relations. We always write ‘x <y’ rather than ‘< (x, y)’, though there is no significance

7Some programming languages—ML for example—distinguish between n-tuples and lists of length n. We
won’t make this distinction, and we don’t at this stage need to go into why they do. I might put a discussion
of this into appendix 8.1

This seems to be the place
where these things are defined
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to this fact. I respect this tradition, but I tend not to use infix notation otherwise. One
reason for this is that there is no way of writing ternary etc relations as infix!

Relations being sets, you can do anything to relations that you can do to sets: all the
boolean operations: union, intersection, set difference and so on. But there are some
extra operations you can do to relations which don’t arise in this way. Composition
and inverse; mere sets do not have composition and inverse, but sets of ordered pairs
do. And just as there are special sets (the empty set, the universal set) there are also
some special relations: one example is the identity relation. It’s often written ‘Ax’ or
‘1x’ (where X is the intended domain) or even just ‘1’. For any set X there is also the
universal relation on X, which is X X X. There doesn’t seem to be a standard notation
for this construct. For my part i intend to stick to ‘1’ or ‘1x’ when we need to be clear
that it is X that we are restricting the identity relation to.

3.2.2 Composition and inverse

x is related to y by R-composed-with-S if there is a z such that x is related to z by
R and z is related to y by S. In symbols, in infix notation

XRoSye— (A)(xRz A zSy)
So R o S is the composition of R with S. Often written R - S.
If we don’t want to use infix we can write the biconditional as
RoS(x,y) e« (IDR(x,2) A S(z,¥)

I will try to stick to ‘o’ here because I want to go only using ‘- for multiplication of
numbers. (Notice that we really do mean ‘3’ not ‘V’: for a woman to be your aunt it is
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sufficient for her to be the sibling of even one of your parents; she doesn’t have to be a
sibling of both of them!)

[Miniexercise: How can your aunt be a sibling of both your parents, without any
laws being broken?]

Notice that I haven’t mentioned ordered pairs here, and this definition of RoS works
for relations-in-intension just as well as for relations-in-extension. In fact it’s probably
more natural to think of composition as something one does to relations-in-intension.

EXERCISE 23 [fRCAXBand AN B =@, whatis Ro R?

You might wonder what the composition of two ternary relations is. Don’t: we
won’t need it. But do bear in mind that R o S is not in general the same as S o R: the
sibling of your parent is probably not the parent of your sibling. Come to think of it, is
it legally possible for them to be the same? There’s a mini exercise!

IfRoS =S oR we say that R and S commute. This word ‘commute’ is probably
more usually used of functions:

If (Vx)(f(g(x) = g(f(x))) we say f and g commute.

(see the end of section[3.2.8])

There is a style of picture which, although you will not explicitly need to know
about it, you may find helpful. For example, when people say that the following dia-
gram “commutes”

A » B
b \ ¢
D

C >

they mean thatcoa =d o b.

RoRis written RZ, and similarly R is RoR" for all natural numbers n. Remember
that 1 is the identity relation, and R o 1 is just R, so one can think of 1 as R?, which is
pleasing. The inverse or converse of R, written ‘R™!", is {(x, y) : (y, x) € R}. However,
do not be misled by this exponential notation into thinking that R o R™! is the identity.

(What can you say about R if R o R is the identity? On this last point see exercise
[38| part (v). If you matched (v) up correctly by a process of elimination then you will
have checked the correctness of your answer independently.)

Do not be confused by the difference between the converse R~! of a relation R and
its complement: (X X X) \ R, the set of ordered pairs not in R. Just to check, have a
quick look at the following

Lots of examples here please

binary operations
too!

commute
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EXERCISE 24

Is the converse of the converse of R the same as R?

Is the complement of the complement of R the same as R?

Is the complement of the converse the same as the converse of the complement?

It’s pretty obvious that RUR™" and RN\ R™" are symmetric relations. How about R XOR
R'and RoR™'?

3.2.3 Digraphs and Matrices for Relations-in-Extension

A digraph (short for “directed graph”) is a set of vertices joined by lines that may have
directions on them. So there might be an arrow from a to b and an arrow from b to a.
Normally we do not allow there to be edges from a vertex back to itself, but in settings
where we do allow such edges in digraphs, we call them “digraphs with loops™.

Have a look at

https://www.dpmms.cam.ac.uk/~tf/cam_only/discrete-trial-101-test.
pdf

It is sometimes convenient to think of a binary relation as a matrix whose entries
are 1 and O (proxies for true and false). This has an advantage, namely that under
this scheme the matrix product of the matrices for R and § is the matrix for Ro S. (If
you want the entries to be true and false (instead of their proxies of 1 and 0) you
have to take multiplication to be A and addition to be V (in your definition of matrix

More chat here multiplication).
If this is the matrix for the relation R C A X B

R|by by bs
a|T T F
wm|F F T
a3 | T F T

and this is the matrix for the relation S € B X C

S cl € C3
b | T T F
b| T F F
b3y | F T F

then we obtain the matrix for R o S by matrix multiplication ...
You might like to fill in the question marks yourself ...

EXERCISE 25
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However, in principle it is not a good habit to think of binary relations as matrices
in this way, because it forces one to decide on an ordering of the underlying set (after
all, we have to decide on an order in which to write down the rows and columns)
and this choice of an order makes this representation less general than the picture of
binary relations-in-extension as sets of ordered pairs. (If you look at the table (3.2.5) of
compatibility between blood groups, the suggestive distribution of crosses is suggestive
only because the columns are written in the same order as the rows.)

Despite this, it can be useful at times, since it does give a nice picture of converses:
the matrix of inverse/converse R~! of R is the transpose of the matrix corresponding to
R (so a symmetrical relation is one whose matrix is equal to its own transpose—and
this is true however you order the elements of the domain) and this fact may help you
break into this set of ideas.

This possibility of representing binary relations as matrices with values in {0, 1} or
in {true, false} serves also to make the point that you must always be prepared to re-
think the data structures that you use in writing programs. Sometimes you might want
to think of relations as matrices, sometimes as digraphs, sometimes as God-knows-
what. And the same goes for other data structures too; this trick of trying to think of a
object that is prima facie of one data type as actually belonging to another is essential
if you are to exploit all your algorithms fully. If you can contort your problem into a
problem about graphs then you can use a graph algorithm on it; if you can contort it
into a problem about matrices then you can use a matrix algorithm on it.

Most of the applications of matrices belong in what one might loosely call ‘Contin-
uous Mathematics’ rather than Discrete Mathematics (specifically in connection with
Vector Spaces) and we do not cover Vector Spaces here.

But perhaps the real significance for us of these two possible ways of conceptual-
ising relations-in-extension is that the choice between them illustrates very well what
a course like this is for. You may well, Dear Reader, yet have—at some point in the
future—the experience of being paid money to write a computer system that reasons
about, processes, computes with etc, certain real world phenomena. (In my case it was
writing an advanced flight telecommunications network). Before you even start writing
any code you need to get straight how you are going to conceptualise the objects you
are supposed to reason about. There are these relations-in-extension you are going to
compute with. Do you want to think of them as digraphs? As Boolean matrices? Or
(heavan forbid) something I haven’t yet thought of? You need to be relaxed about all
these possibilities.

3.2.4 Other properties of relations
A binary relation R is extensional if
(V0¥ (x =y e (V2)(R(x,2) «— R(y,2)).

Notice that a relation can be extensional without its converse being extensional: think
“square roots”. An extensional relation on a set X corresponds to an injection from X
into P(X), the power set of X. (“injection” is a synonym for ‘injective function’). For
us the most important example of an extensional relation will be €, set membership.
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Two sets with the same members are the same set. Warning: an extensional relation is
not the ame as a relation-in-extension!.

EXERCISE 26 (%)

Look up ‘monophyletic’. Using only the auxilliary relation “is descended from”
give a definition in first-order logic of what is is for a one-place predicate of lifeforms
(reptile(x), whale(x) ... ) to be monophyletic.

EXERCISE 27 Show that, for allR, S and T,

(i) RCS 5RoT CSoT;
(i)RCS 5ToRCToS;
(iii)Ro(SUT)=(RoS)U(RoT);
(iv(RoS)y ' =8"1ToR.

Which of the following are true?

(i) RCS - R1cs;
(i)RCS >R 1287!;
(ii)R=R1 > ICR.

Finally, it may be worth making the point that not all relations are binary relations.
There is a natural three-place relation of betweenness that relates points on a line, but
this doesn’t concern us much. Of more interest (it lurks in the background in chapter
H]is the three-place relation of “later than” between hours on a clock. We cannot take
this relation to be binary because if we do, it will simply turn out to be the universal
relation. Every time on the clock is later than every other time if you wait long enough!
However, with a three-place relation we can say “Starting at 12 o’clock we first reach
3 o’clock and then 6 o’clock” (which is true) and “Starting at 12 o’clock we first reach
6 o’clock and then 3 o’clock™ (which isn’t). Or we can think of it as “starting at x and
reading clockwise we encounter y first and then z”)

EXERCISE 28 (*#)

Consider the clockface below. Write down the graph of the three-place order rela-
tion on the four positions on the face.
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Another ternary relation you will soon meet is the transition relation in nondeter-
ministic finite state automata, but we are not going to cover that here.

3.2.5 Partitions and Equivalence Relations

DEFINITION 1
A partition I1 of a set x is a family[ﬂ of nonempty subsets of x any two of which are
disjoint, that collectively exhaust x, so that | JTI = x

The members of the partition are called its pieces.

If Ty and 11, are partitions of x, we say that I1; refines I1; if every piece of I1 is a
subset of a piece of I1.

Do not confuse this capital ‘IT" with the capital ‘I’ used to denote the product of all
numbers in a set! mutually inverse

EXERCISE 29 Which of the sets in the left column are partitions, and of which set(s)
in the right column (if any) are they partitions?

() {{1}5,{2,3},{1,2}} (a){1,2,3}
(i) {{1},{2,4},{3}} (b){1,2,3}
(iii) {{1,2},{2, 4}, {3}} (c){1,2,3,4}
(iv) {{1,3},{2,4}} (d){1,2,4,3}
(v) {{1},{3},{2,4}} (e){1,3,2, }
(vi) {{1},D, {3}, {2,4}} (H12,1,3,4

8My students have asked me about the use of the word ‘family’, as used here. ‘Family’ is a synonym
for ‘set’; we use the word for the purposes of what H.W. Fowler called ‘elegant variation’. It has no special
meaning. I suppose it might be worth saying that one typically would not use the word ‘family’ for a set in
a context where that set was going to be a member of something, so a family is usually a top-level object—
from the point of view of the topic-in-hand—as it is here, indeed. But this isn’t a hard-and-fast rule, merely
a practice that i have observed through introspection! I've never seen it spelled out.



Refer back to definition[I]on p
55l

56 CHAPTER 3. SETS AND RELATIONS

(vii){{1}, {5}, {3}, {2, 4}} (8){2,1,3,4}

EXERCISE 30 (*)
List all partitions of {a, b, c}. (You might find it helpful to draw a picture of each
—a kind of Venn Diagram.)

An equivalence relation is a relation that is symmetrical, transitive and reflexive.
There is an important connection with the partitions which is why we treat the two
together.

For example, the equivalence relation on the set {a, b, c, d, e} that relates a, b and ¢ to
each other, and relates d and e to each other, corresponds to the partition {{a, b, c}, {d, e}}
of {a,b,c,d,e}. The pieces of this partition are called the equivalence classes of the
equivalence relation. Similarly any partition of a set A gives us an equivalence relation
on A. The relation that holds between two members of A when they belong to the same
piece of the partition is an equivalence relation.

The following picture shows us some things we will want to define and describe.

Here we have a picture of a surjection f : A — B, where B = {d, s,t,u,v} and
A = {a,g ik ,mmn,o,p,q,r,b}. The left-to-right arrows in the picture correspond



3.2. RELATIONS AND FUNCTIONS 57

(one-to-one) with the ordered pairs in [the graph of] f. The five things that look like
parachutes falling left-to-right are examples of things often called fibres. Thus a fibre
is a thing in the target (range, codomain, call it what you like) together with all the
arrows that reach it, and the sources of those arrows, bundled into an ellipse on the left.
Since the function going from left-to-right is f we say that these fibres are fibres of f.
The set of (five) ellipses on the left is a partition of A, and each ellipse is a piece (of
that partition). There is an equivalence relation lurking here, and that is the relation
that holds between any two members of A that belong to the same piece (ellipse). It’s
perhaps a wee bit laborious to write out all the ordered pairs in this relation, co’s there
are quite a few of them. How many, exactly? We don’t seem to have used the letter ‘E’
in this picture, so we can use it to denote this equivalence relation. (The letter ‘E” is
often used to denote an equivalence relation.) Finally we say that f is a classifier for
E, by which we mean that (Vxy)(f(x) = f(y) «— E(x,y)).

Thus every surjection gives rise to an equivalence relation E, and it is a classifier
for E. There are other classifiers for E, since f o r is such a classifier whenever r is a
permutation of {d, s, ¢, u,v}. (Do 7 and then do f.)

For example, the function that sends every set to its cardinality [notated in various
ways] is a classifier for the relation of being-in-bijection-with aka equipollence.

You are not going to be asked any time soon any questions in any exam that rely
on your knowing the words ‘fibre’ or ‘classifier’ but in my experience the ability to use
them properly helps get things clear in your mind.

Just as we often write ‘<’ rather than ‘R’ or ‘S’ when we want to point to a partial
order (and write it as an infix to boot) so we often write ‘~’ rather than ‘R’ or ‘S’ when
we want to point to an equivalence relation (and write that as an infix too)

It may be helpful here to introduce some notation:
If ~ € Xx X (i.e., if ~ is an equivalence relation on X) then ...

We write ‘[x].’ for the equivalence class of x under ~. In curly bracket
notation this is ‘{x’ : x’ ~ x}’.

We write ‘X/ ~° for {[x]. : x € X}, the set of equivalence classes of
members of X. It is sometimes called the quotient of X “over” ~.

X/ ~ is of course a partition of X.

If IT is a partition of a set X, then the binary relation that holds between members
of X when they belong to the same piece of II is an equivalence direction. For the
other direction, if we are given an equivalence relation ~ on X then we can obtain a
partition IT of X ...how? Every x in X belongs to a piece of the partition (the pieces
must cover the whole of X) so ...what else do we find in the piece that contains x?
Everything that is related to x by ~! So if you start with an equivalence relation on a
set, then form the partition of that set whose pieces are the equivalence classes, and then
consider the equivalence relation of belong-to-the same piece-of-that-partition, you get
back the equivalence relation with which you started. Also: if you start with a partition
of a set, then consider the equivalence relation of belonging-to-the-same-piece-of-that-
partition, and then take the equivalence classes under that equivalence relation you find
that the partition into equivalence classes is the partition with which you started.

which i must discuss here



58 CHAPTER 3. SETS AND RELATIONS

We express this by saying that the two operations:
(i) equivalence relation — partition, and
(ii) partition — equivalence relation

are “mutually inverse”.

It has to be admitted that this takes some getting used to!

DEFINITION 2 [f an equivalence relation ~ has n equivalence classes we say that it is
“of index n”

Congruence relations

DEFINITION 3 An equivalence relation ~ is a congruence relation for an n-ary func-
tion f if, whenever x; ~ y; for i < n, then f(x1...x,) ~ fO1...Yn)-

Congruence relations will crop up in other courses too but one particular example
will be important to us here, and it’s one that may be known to you already. The
equivalence relation on natural numbers: “n and m have the same remainder on division
by p” is a congruence relation for addition and for multiplication. We will deal with
this in chapter 4]

If you know any chemistry you probably know the fact that the relation on isotopes
of “having the same number of protons” is a congruence relation for all of chemistry.
(Tho’ you don’t know that fact under that description!) This is why the name of a
chemical element covers lots of different isotopes.

(Well, that’s not entirely true. The difference between the two stable isotopes (pro-
tium and deuterium) of hydrogen are sufficient to give rise to genuine differences in
chemistry. If you give up drinking H>O and take to drinking DO instead it will even-
tually kill you. Wondering whether or not H and D are different elements is not a
totally stupid question, but it’s a question about what the identity criteria for chemical
elements are to be, rather than a substantive question in the practice of chemistry.)

Blood Groups

Here is another real-life example of a congruence relation. Consider the relation be-
tween humans “It is safe for x to receive a transfusion of blood from y.” Ignoring for
the moment the fact that there are blood-borne diseases such as HIV, CID, Hep C and
so on, we find that if x can safely receive a transfusion of blood from y, and y’ belongs
to the same blood group as y, then x can safely receive a transfusion of blood from y’.
That is to say, the equivalence relation of having-the-same-blood-group is a congru-
ence relation for the binary relation “x can safely receive a transfusion of blood from
y”. In fact this is how blood groups were discovered.

That way we can think of the relation “x can safely receive a transfusion of blood
from y” as really a relation between the blood groups, and summarise it in the following
matrix.

Columns are donors, rows are recipients.
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O- O+ B- B+ A- A+ AB- AB+
o- | X
O+ X X
B- | X X
B+ | X X X X
A- | X X
A+ | X X X X
AB-| X X X X
AB+| X X X X X X X X

The blood groups themselves (O-, O+, B-, B+, A-, A+, AB- and AB+) are the
equivalence classes under this equivalence relation.

You may be struck by the pleasing pattern made by the Xs: I certainly was. It looks
a bit like a thing they call a “Sierpinski triangle” (no: don’t google it!) What I want
you to do is follow the same path I trod when I spotted this pattern, namely:

I) Does this pattern tell you anything significant about the properties of this com-
patibility relation? I’m thinking of reflexivity, transitivity, symmetry, antisymmetry
etc. etc. When you’ve got that sorted out, procede to part I

IT) We have already seen other ways of representing binary relations. Try some of
them on this data and see if you get any pretty pictures. I tried it and I got a three-
dimensional shape. I want you to find that three-dimensional shape.

IIT) One moral I want to draw from this coursework is that Discrete Mathematics
and mere thought can be useful in developing profitable hypotheses in the sciences.
You probably know enough biology to know that characters are inherited by genes,
and that we each have two copies of each gene. Each gene can come in several forms
called alleles. Some alleles are dominant in that you express them even if you have
only one copy (brown eyes); some are recessive in that you express them only if you
have two copies (blue eyes, green eyes). The picture you have developed will suggest
to you a hypothesis about how many genes there are that control your blood group,
and how many alleles there are at each gene, and which are dominant. Formulate this
hypothesis.

Do not forget that this is a discrete mathematics question, not a biology question.
There is nothing to be gained—and time to be lost—in surfing the web for information
about blood groups.

Any one subject matter may admit lots of congruence relations, not just one. The
arithmetic of the integers invites us to look at the congruence relation of + and X of
having-the-same-remainder-mod-p, but the identity relation, too, is a congruence rela-
tion for these operations (for all operations, indeed).

The key fact about congruence relation is that is ~ is a congruence relation for
a function f then we can define on the ~-equivalence classes a function that arises
from f. Important example which we will see in much more detail in section (4.3}
congruence-mod-p is a congruence relation for + and X, so we can define addition and
multiplication on the quotient, which is to say, on integers-mod-p.

Need some exercises on equiv-
alence relations

Should cut this back a lot



Get this reference right

60 CHAPTER 3. SETS AND RELATIONS

3.2.6 Partial orders

Order relations obviously have to be transitive, and they cannot be symmetrical because
then they would not distinguish things, would they? Indeed transitive relations that
are symmetrical are called equivalence relations (as long as they are reflexive). So
how do we capture this failure of symmetry? We start by noticing that, although an
order relation must of course be transitive and cannot be symmetrical, it is not obvious
whether we want it to be reflexive or want it to be irreflexive. Since orderings represent
ways of distinguishing things, they do not have anything natural to say about whether
things are related to themselves or not. Is x less than itself? Or not? Does it matter
which way we jump? Reflection on your experience with < and < on the various kinds
of numbers you’ve dealt with (naturals, integers, reals and rationals) will make you
feel that it does not much matter. After all, in some sense < and < contain the same
information about numbers (See exercise B94I). These two ways give rise to two
definitions.

1. A strict partial order is irreflexive, transitive and asymmetrical. (A relation is
asymmetrical if it cannot simultaneously relate x to y and y to x. This of course
implies irreflexivity.)

2. A partial order is reflexive, transitive and ...well it cannot be asymmetrical
because x < x. We need to weaken asymmetry to a condition that says that, if
x # y, then not both x < y and y < x. This condition, usually expressed as its
contrapositive (Yxy)(x < y Ay < x — x = y), is antisymmetry and is the third
clause in the definition of partial order.

A relation that is reflexive and transitive (antisymmetry not guaranteed) is a pre-
order or quasiorder. For example the relation between humans “x can safely receive
blood from donor y” is a preorder. The intersection of a preorder with its converse is
always an equivalence relation. In this case the equivalence relation is the relation of
having-the-same-blood-group.

You absolutely must have these definitions at your fingertips, co’s these things
crop up all the time. Merely knowing where to look them up isn’t enough.

EXERCISE 31 Are either of the following true?
1. The identity relation is a partial order.

2. The empty relation is a strict partial order:

If R is a partial ordering of a set X, then R\ {(x, x) : x € X} is a strict partial ordering
of X, and if R is a strict partial ordering of a set X, then R U {(x, x) : x € X} is a partial
ordering of X. You obtain each from the other by unioning with the identity relation
or substracting the identity relation. Thus each concept (partial order and strict partial
order) can be defined in terms of the other. There is a scrap of logical slang that comes
in handy here: we say that each can be defined if we take the other as primitive. A
primitive is a concept in terms of which you define other concepts.

This section is a jumt
pieces all stuck togethe
needs to be sorted out
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This interdefinability of partial orders with the corresponding strict partial orders is
something that you are probably familiar with in an informal way. If you want to talk
about natural numbers it doesn’t much matter whether you use <y or <N because of
the equivalences

XSNY ¢«— X<NY V x=Yy

and
X<NY < XSNY A XF).

This line of thought can help clarify where the definition of antisymmetry comes from.
If you think of < then it is clear that a strict partial order must be asymmetrical:
Vx,y)(=(x < y Ay < X)), transitive: (Vxyz)(x < y Ay < z. = x < z) and irreflex-
ive: (Vx)(—~(x < x)) [tho’ irreflexivity actually follows from asymmetry]. The way to
understand the definition of antisymmetrical is to ask yourself: “If i have an asymmet-
rical relation, and i take the union of it with the identity relation, what condition-like-
asymmetry does the new relation satisfy?” It can’t be straight-up asymmetry beco’s x
is always related to x (co’s we took the union with the identity relation) but it will say
that x cannot be related to y at the same time as y is related to x unless x = y. And this
is antisymmetry.

Total orders are a special kind of partial order. (Do not overinterpret and assume
that partial orders cannot be total!) Again, they come in two flavours:

1. A strict total order is a strict partial order that satisfies the extra condition
(Vxy)(x <yVy < xVx=y). Because this condition says there are no more than
three possibilities, it is called trichotomy (from two Greek words meaning three
and to cut as in a-tom, lobo-tomy.) The adjective is ‘trichotomous’.

2. A total order is a partial order with the extra condition (Vxy)(x < yVy < x). This
property is called connexity, and relations bearing it are said to be connected.
(“connected” also has a meaning in graph theory, so beware)

Thus trichotomy and connexity are related to each other the way antisymmetry and
asymmetry are.

A poset (X, <y) is a set X with a partial ordering <y.

A monotone function from a poset (A, <4 ) to a poset (B, <p) is a function
f A — Bsuchthat Vxy(x <4 y = f(x) <p f()).

The word ‘monotone’ in mathematics refers to functions f which satisfy conditions
like
x<y— f(0) < fO).

We say such a function is monotone increasing with respect to <. (If instead f satisfies
x <y — f(x) > f(y) we say f is monotone decreasing with respect to <.) Of course,
it may be (as it is in fact the case here) that the partial order in the antecedent of the
condition is not the same partial order as in the consequent, so ideally we would need
a more complex form of words along the lines of “f is monotone [increasing] with
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7%

respect to < and <’”. However this ideal notation is never used, being sacrificed by
ellipses to the form of words “f is monotone [increasing]”.

We use it here because the function F that takes a set of assumptions A and returns
the set F'(A) of its logical consequences is monotone with respect to set-inclusion :

AC B— F(A) C F(B).

The definition of a partial ordering as a relation that is transitive, reflexive and an-
tisymmetrical applies equally well to relations-in-intension and relations in extension.
A partial-order-in-extension is a set of ordered pairs. Generally relations-in-extension
are sets of ordered tuples. But certain kinds of relations have other representations as
extensional objects. We have seen that binary relations can be pictured as digraphs-
with-loops as well as sets of ordered pairs. But there is more. A total ordering of a
(finite) set can be represented as a list (without repetitions) of all the members of the
set. Notice that this is a more economical representation of a total order than its repre-
sentation as a set of ordered pairs: the representation of a total ordering of a finite set X
is of length |X| whereas its representation as a set of ordered pairs has. .. You tell me!

EXERCISE 32 How many ordered pairs are there in a total ordering of a set with n
elements?

This trick doesn’t work for an arbitrary partial order that isn’t total. We can code a
partial ordering as the set of its initial or terminal segments—as a set of sets. Think of
the knot of people round an airplane lavatory on a long-haul flight at dawn. Each person
knows only the set of people who were there before they were. (And it is a set that each
knows not a list, co’s they don’t know what order the people ahead of them arrived).
This way of representing a total order—as a nest of subsets—is sometimes called an
ordernesting. (In fact, if you think of it, you will see that the usual Wiener-Kuratowski
pairﬂ is an ordernesting!). This serves to point the useful moral that many objects of
interest to us can be coded or represented in more than one way. (This point was made

also in connection with the matrix representation of binary relations in section )

Transitive closure

For any binary relation-in-extension R whatever, the relation R U 1 (remember 1 is the
identity relation) is a reflexive relation. By now you will have noticed also that for
any binary relation R whatever, the relation R U R™! is a symmetrical relation. R U 1
is the reflexive closure of R, and is sometime written r(R) to commemorate this fact.
Similarly RUR™! is the symmetric closure of R and written ‘s(R)’ similarly. The work
being done by the word ‘closure’ here is not psychobabble: you should use it to remind
yourself that what you are doing in these two cases is adding to R precisely the ordered
pairs needed to make it reflexive, or symmetric. (Of course you can add more still: the
idea here is to add the minimum necessary). An important feature of this idea is that
this process is deterministic: there is a unique minimal way to add ordered pairs to R
to obtain a reflexive relation, or a symmetric relation. In contrast if you want to add

9which you may not have met yet. ...
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ordered pairs to a partial order to obtain a total order there is no obvious right way to

do it. If the partial order is indifferent between Tweedledum and Tweedledee there is

nothing about the partial order to tell you what to do. Whereas if a relation that isn’t

transitive relates a to b and b to ¢ then we know to relate a to c in the transitive closure.
To be formal about it

DEFINITION 4

o The reflexive closure of a binary relation-in-extension R is the least (with
respect to C) set of ordered pairs that is both a reflexive relation and a
superset of R:

r(R):=ﬂ{S CRCSAICS)
and

e The symmetric closure of a binary relation-in-extension R is the least
(with respect to C) set of ordered pairs that is both a symmetric relation
and a superset of R:

SR =[S :RSSAS =571
and finally
o The transitive closure of a binary relation-in-extension R is the least (with

respect to C) set of ordered pairs that is both a transitive relation and a
superset of R:

t(R)::ﬂ{s:Rgs ASZCS)

It occurs to me that it just might be a good idea to check at this juncture that the
intersection of two transitive relations-(in-extension) is another transitive relation. Here
goes:

If R and S are transitive relations, sois RN S.
I take it we are all agreed thatif X € Yand X’ C Y’ then Xo X’ C Yo Y’. Applying
thistoRNS CRand RNS C § gives us the two inclusions This was exercise ??? on p ?7?

(RNS)o(RNS) C RoR CR
(RNS)o(RNS) € SoS CS§

whence
(RNS)o(RNS) C RNS

as desired.
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Notice that the same argument shows that the intersection of any number of
transitive relations is a transitive relation: i.e., transitivity is an intersection-closed
property of relations.

Relational algebra in this style goes back to Russell and Whitehead (1919).

Symmetric and reflexive closures of relations one can build in one hit, as above,
since they are R U 1 and R U R™! respectively. Transitive closures are a bit more of a
mouthful, which is why we left them until last.

We will show that #(R) is in fact U R"; something slightly easier to understand.
nelN
To do this it will be sufficient to show
1. U R" is transitive;
nelN

2. If S is a transitive relation D R then U R'CS.
nelN

For (1) we need to show that if {(x,y) and (y,z) are both in U R" then (x,z) €

nelN
U R If {x,y) € U R" then (x,y) € R¥ for some k, and if (y,z) € U R" then
nelN nelN nelN
(y,z) € R/ for some j. Then (x, z) € RI*k C U R".
nelN

For (2) let S D R be a transitive relation. So R € S. We prove by induction on IN
that for all » € IN, R” € S. Suppose R” C S. Then

R = RPoR C@ SoR c® So0§ c@ g.

Inclusions (@) and (b) hold because o is monotone: if X C Y then X oZ C Yo Z.
Inclusion (c) holds because S is transitive. (See the first two parts of exercise )

A picture that might help

Several levels:

At the bottom level we have objects: things that have properties. These
might be numbers, sets, people, tadpoles, booleans ...

Then, sitting above them, we have the properties that those things might
have, and the relations that might hold between them. Being even, being-
divisible-by, being green, being a parent-of, and so on.

Above them are the properties those relations (and properties) and opera-
tions have: being transitive, symmetrical, reflexive .... And operations on
those relations: converse, transitive closure etc.
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Above them are properties of properties of properties of things: intersection-

closed ... F() is an intersection-closed property of relations if an intersec-

tion of any number of relations that have property F also has property
y properly the definition F. Transitivity is an intersection-closed property of a relation, because an
rsection-closed arbitary intersection of transitive relations is a transitive relation.

intersection-closed

transitive, symmetric . ..

green, square, parent

numbers, sets, tadpoles

Hasse diagrams

1

The poset of the factors of 12 under divisibility - a Hasse diagram

The digraph picture gives rise to Hasse diagrams.

He’s German, pronounced ‘Husser’ (unless you are from North of the river Trent!)
And it’s definitely two syllables not one. German ‘Hass’ with one syllable means
hatred.
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When drawing a digraph of a transitive relation R [at least on a finite set—Ilet’s not
worry about Hasse diagrams for infinite relations!] one can safely leave out a lot of
arrows and still display the same information: all one has to draw is the arrows for a
relation whose transitive closure is R. One could restore all the missing arrows (should
one wish to) because transitivity tells one where to put them in. Thus the relation
represented by a lot of dots joined by arrows is the relation “I can get from x to y by
following the arrows”.

To be slightly more formal about it one can say that one obtains the Hasse diagram
for a transitive relation R by first drawing a digraph with one directed edge for each
pair in R. One then leaves out the loops at each vertex and—further—whenever one
has both an edge from a to b and an edge from b to ¢ one can delete the edge from a
to c. The result is a digraph picture of a relation whose transitive closure in R. Thus it
comes to pass that if R is a partial order on a finite set then there is a minimal relation
whose transitive closure is R. For each x in the domain of R put an edge from x to
each of its immediate successors—but put in no other edges! (This will even work for
IN...one can draw a Hasse diagram for IN—yes i know i said we wouldn’t consider
infinite relations!—but not for Q.)

In fact we can even leave out the heads on the arrows (so we draw in edges rather
than arrows) by adopting the convention that the end of the edge on which the arrow-
head belongs is the end that is further up the page. The result of doing this is the Hasse
diagram of that transitive relation. [one effect of this is that no Hasse diagram ever
has a horizontal line anywhere!] The appeal of Hasse diagrams relies on and to some
extent reinforces an unspoken (and false!) assumption that every partial order can be
embedded somehow in the plane. Related to this is the weaker (but nevertheless still
nontrivial) assumption that all total orders can be embedded in the real line, as instance,
the image of Justice, blindfolded with a pair of weighing scales.

Although this is clearly a false assumption that might perhaps push our intuitions
in wrong directions, it is not such a crazy idea in computer science, where linearity
of time and of machine addresses compel us to assume that all partial orders can be
refined to total orders. Any representation of a set in the bowels of a computer must
always be as a list!

I mentioned earlier that Venn diagrams are less useful than one might think, co’s
they offer us visualisations of only two levels of sets. Typically one needs more! An
example is the following old exam question from my institution:

EXERCISE 33 Let T be a set, and F a subset of P(T), the power set of T. Let G be
{tct:(Vse F)sCt). Showthat UF =(G.
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Venn diagrams are of no help here, since we are reasoning about elements of three
levels not two. The way to visualise this situation is to draw a Hasse diagram for
P(T) and mark off a region of it that is F. G is then that region of the Hasse diagram
consisting of those nodes that are above every node in F.

Chains

The restriction of a relation R to a carrier set X (which is R N X", where 7 is the arity
of R) is denoted by ‘R ['X". (We saw restrictions of functions on page {2} restrictions
of relations is a natural generalisation.) A chain in a poset (X, <x), is a total ordering
(X', <xIX’), where X’ C X. In words: a chain in a poset is a subset totally ordered by
the restriction of the order relation. An antichain in a poset is a subset of the carrier
set such that the restriction of the order relation to it is the identity relation.

H

The subset {A, B, G, H} (in green, equipped with the obvious restriction of the par-
tial order) is a chain, as is {A, C, E, H} similarly equipped. {B, C, D} is an antichain.

3.2.7 Products of orders

There is a general notion of product of structures, and you may well need to learn it
eventually. However for the moment we will restrict ourselves to the case of most
immediate interest: the products of two partial orderings.

If (X, <x) and (Y, <y) are two partial orders, then we can define partial orders on
X X Y in several ways. The product defined above is called the pointwise product.
Formally we say that the pair (x,y) is less than (or equal to) the pair (x’,y’) in the
pointwise product if x <x x" and y <y y’.

In the lexicographic order of the product we set {x,y) <, (x’,y')if x <x x’ or
x = x" and y <y y’. I have written the lexicographic product here with a lex subscript
but there doesn’t seem to be a generally agreed notation for it. Nor for the pointwise
product for that matter.

Although straightforward examples of lexicographic products are scarce, there are
a number of combinatorial devices that have the flavour of a lexicographic product. The
intuition behind lexicographic product is that you are trying to order things by looking
at the values they take under certain parameters, and that some parameters are more
important than others for this purpose. The expression ‘tie-breaker’ can be helpfully

“carrier set”

Dilworth’s theorem?

ordered pair notation for struc-
tures
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evocative here. You are trying to choose between two things on the basis of the values
they get with respect to some parameter. If two things get the same value, what do
you do? You look at their value under some other (less important!) parameter. For
example: the Olympic league table{ﬂ one grades nations in the first instance by the
number of gold medals their athletes have won, then by the number of silvers and only
if these fail to discriminate between them does one count the number of bronzes. To be
a bit more formal about it: we associate to each country an ordered triple (g, s, b) and
we then order these triples lexicographically. We then copy the ordering on the triples
back to the countries.

Other examples include the devices used to determine which team goes forward
from a qualifying group in world cup football. Prima facie this should be the team
with the largest number of points, but if two teams have the same number of points,
one looks at the number of goals the two teams have scored, and so on, examining the
values the two teams take under a sequence of parameters of dwindling importance
until we finally find one with respect to which they differ. In cricket the analysis of a
bowler who takes x wickets while conceding y runs is preferred to that of a bowler who
takes x” wickets while conceding y” runs as long as x > x" or x = x’ Ay < y’. However,
in none of these naturally occurring cases is one ordering tuples of things: rather, one
is trying to order things by combining in various ways various preorders of the things.
However, the underlying intuition is the same.

Notice that the lexicographic product is a superset of the pointwise product. If we
have two partial orders with the same carrier set and (the graph of, or extension of) one
is a superset of (the graph of, or extension of) the other, we say the first extends or
refines the second.

A total or linear order is one that has no proper refinement (Can’t add any ordered
pairs to obtain a partial ordering of the same domain).

The colex ordering of X X Y orders pairs according to last difference. The colex
ordering too is a superset (extension, refinement) of the pointwise product ordering.

EXERCISE 34 Check that the pointwise product ordering is the intersection of the lex-
icographic ordering and the colex ordering.

One naturally tends to think of preorders as preference orders, as the preorders in
the illustrations above of course are. Although naturally not all preorders are prefer-
ence orders, thinking of them as preference orders enables us to motivate the distinction
between the pointwise product of P x Q of two preference orderings P and Q (which
corresponds to impartiality between parameters P and Q) and the lexicographic prod-
uct (according to which any increase in P is more important than any increase in Q).
Naturally occurring preference orderings on products of posets tend to be complicated.
Lexicographic products are extremely unlikely to represent your views on baskets of
apples and oranges because even if you prefer apples to oranges, you would be unlikely
to prefer any increase (however small) in the number of apples you are offered to any
increase (however large) in the number of oranges—unless, that is, you had no use for

10This Jeague table for Olympics really annoys me. Of course the athletes are competing for medals, but
why on earth are countries supposed to be competing? Wasn'’t this just supposed to be fun? The whole world
comes together and plays games. .. ?
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oranges in the first place. And in those circumstances you would hardly bother to ex-
press a preference for an-apple-and-two-oranges over an-apple-and-one-orange. (You
would probably describe your tastes by giving apples more utility. Interesting stuff no
doubt, but no concern of us in first-year Discrete Mathematics.)

On the other hand, your preference ordering is likely nevertheless to be finer than
the pointwise product ordering: according to the pointwise product ordering, you
would be unable to decide between a single orange-with-a-pound-of-apples and two-
oranges-with-one-apple. You would have to be very blasé indeed not to prefer the first.
After all, to a certain extent apples and oranges are interchangeable: realistic product
(preference) orders refine the product order but are typically not as refined as a lexico-
graphic order. (We must not get too deeply into utility theory!) Note merely that it is a
sensible motivation for the study of orderings and products of orderings.

But before leaving preference orderings altogether the reader should notice at least
that preference orders have a rather odd feature not shared by partial orders in general.
A £ B £ Aand B > C does not imply A > C, though one expects it to if the ordering is
a preference ordering. This makes a nice exercise.

EXERCISE 35 Are the two following conditions on partial orders equivalent?

Vxyd)z<x£yg£x—z<y),
Vxyz)z>xgy£x—>z>y).

(This exercise uses four common conventions that it takes a logician to spell out.
(i) When ‘<’ and <’ appear in the same formula they denote a partial
ordering and its strict part, respectively;
(i1) The relations < and > are converses of each other;
(iii) that ‘x <y < 7’ is short for ‘(x < y) A (y < 2)’;
(iv) putting a slash through a symbol (as in “£”) negates it.)

EXERCISE 36 Define x Ry on natural numbers by xRy iff x <y + 1.
What are the following relations:

(I)RNR!;
(2)R\R';
(3) The transitive closure of the relation in (1);
(4) The transitive closure of the relation in (2).

Pareto

Given a subset X C (P X (), the points in X that are maximal in the pointwise product
P Xpw Q are called “Pareto-efficient points” (of X) by economists. They are some-
times called “Pareto-optimal” because if X is the set of points that are in some sense
accessible, or possible, or something of that nature, then a Pareto-efficient point in X is
one that, once one has reached it, one cannot find another point in X that makes one of
the coordinates better without simultaneously making another one worse. Pareto was
an Italian economist. Natural illustrations are defective in the way that we have seen

"The structure (IN, R) is known to students of modal logic as the Recession Frame.
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that natural illustrations of lexicographic products are defective, but they might still
help. Here are some.

(i) The critical point of a substance is that temperature and pressure at which the
difference between liquid and gas disappears. When the substance is at a higher tem-
perature and higher pressure than this it is said to be supercritical. Methane is the
compound most easily put into a supercritical state: all other compounds require ei-
ther a more extreme temperature or a more extreme pressure or both. Methane is a
Pareto-efficient point.

(ii) Each of the isotopes in the table below is a Pareto-efficient point if you plot
atomic weight against half-life. For each of these isotopes it is the case that every
heavier isotope has shorter half-life, and everything with a longer half-life has lower
atomic weight.

Isozt(())g)e Half-life (years)
Pb 00;

Bi?® 4 x 109

Th®32  1.405 x 10'0;
Uss 4.468 x 10°;
Pu?*  8.08 x 107;
Cm*  1.56x107.

Pareto-Optimal Isotopes

(Why is U2 not in this list?)

EXERCISE 37 Go to
http://nucleardata.nuclear. lu.se/nucleardata/toi/perchart.htmto
see if you can find a Pareto-optimal isotope with greater atomic weight than Cm**".

(iii) No portrait survives of the mathematician Green—after whom Green Street
in Cambridge is named, and who invented Green functions. There are more famous
people than Green of whom no portrait survives, but none of them are as recent. There
are more recent people than Green of whom no portrait survives, but they are all of
them less famous than he is.

(iv) Robert Browning is buried in Westminster Abbey. This prompted Henry James
to observe that “A good many oddities and a good many great writers have been en-
tombed in the Abbey; but none of the odd ones have been so great and none of the great
ones so odd.”

(v) The airport at Christchurch in New Zealand is Pareto-efficient with respect to
size and southerlyness. There are airports to the south of it, but they are all smaller.
There are larger airports, but they are all north of Christchurch.

However, we will not develop these ideas here, as they find their most natural ex-
pression in connection with convex optimisation rather than logic. We touch briefly on
convex optimisation in chapter 7]
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Once one has explained Pareto-efficiency one can make the point that if the values
taken by your parameters are infinitely divisible then you can have infinitely many
pareto-eflicient points. If they are discrete (like IN) then you can’t. A sleeper for WQO
theory. Don’t ask. No, really.

EXERCISE 38
Match up the properties in the left column with those in the right.

(i) R* CR; (a) R is symmetrical
(i) RNR™' = @; (b) R is antisymmetric
(i) RNR~ ' =1; (c) R is asymmetrical
(ivyR=R"'; (d) R is a permutation
(v)ROR_1 =1; (e) R is connected

(vi) RUR™! = U x U;(f) R is transitive
In (vi) U is the domain of R.

3.2.8 Functions

(One should start a section on functions by defining injective and surjective, but i’'m
guessing you know those expressions already. You can always ask Wikipadia, which
knows everything. I might supply some definitions later, if only for the sake of com-
pleteness)

The annoying feature of reflexivity we saw on page 46} —that you cannot tell by
looking at the graph of a relation whether it is reflexive or not, because you need to
know the intended domain—(which irreflexivity does not share) is also exhibited by
surjectivity, which is a property not of a function but a function-with-a-range. A
function is surjective if every element of the range is a value. Totality likewise is a
property of a function-and-an-intended-domain. A function f on a set X is total if it
is defined for every argument in X. Normally we will assume that our functions are
total unless the possibility of their being partial is explicitly flagged. (This is not so
in all CS cultures. For example in the theory of computable functions it is always
assumed—unless the word ‘total’ is there in black and white—that our functions need
not be total.)

Some mathematical cultures make this explicit, saying that a function is an ordered
triple of domain, range and a set of ordered pairs. This notation has the advantage of
clarity, but it has not yet won the day.

In contrast, injectivity of a function-in-extension is a property solely of the function-
in-extension and not of the intended domain or range. A function is injective iff it never
sends distinct arguments to the same value. You can tell whether or not a function-in-
extension is injective simply by examining the ordered pairs within it. No such exam-
ination can ever tell you whether or not it is surjective: you have to know additionally
what the intended range of the function is.

Functions of more than one variable are usually written in the style ‘f(x; ... x,)’
but some functions (such as + and X) traditionally are written in the infix style that we
saw earlier (page [49).

Move this to just after defini-
tion[d]

rewrite this para
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The properties of associativity, commutativity and distributivity that I am about to
explain seem always to be stated for functions that are written in infix notation—like +
and X on numbers (of all kinds). You know the equations

VO)(x+y=y+x)
VO)(¥y)(x Xy =yXx).

Those said that multiplication and addition are commutative. These two:

(YO + (y+2) = (x +y) +2)

(YO))(V2)(x X (y X 2) = (x X y) X 2)

say that multiplication and addition are associative. Finally

(MO)(YV)(x X (y+2) = (x X y) + (x X 2))
says that multiplication distributes over addition. Observe that A distributes over V.

An operation * is said to be idempotent if

Vx)(x % x = x)

A and V are idempotent operations on propositions. + and X are not idempotent on
numbers (of any kind). HCF is idempotent, though we will not make much use of this
fact.

Be aware that there is another use of this word ‘idempotent’. We also say that a
function f is idempotent if f(f(x)) = f(x) for all x. Constant functions are the most
straightforward example of idempotent functions. Other important examples are the
operations of transitive closure, of symmetric closure and reflexive closure all of which
are idempotent, and which we saw in section[3.2.6] The word ‘closure’ is the clue here.
In all these cases you are doing something (adding ordered pairs as it happens) until
some condition is satisfied. And once it’s satisfied ... well, it’s satisfied.

We now need the concept of a unit for a binary operation. Notice that—for exam-
ple, the following hold for natural numbers, reals etc:

(Vx)(x-1=x)and (Vx)(x+0 = x).

We express this by saying that 1 is a unit for multiplication (a “multiplicative unit”)
and 0 is a unit for addition (an “additive unit”). In general a constant c is a unit for a
commutative operation * if (Vx)(x * ¢ = x). For example @, the empty set, is a unit
for U: (Yx)(x U@ = x), and V, the universal set, is a unit for N. The propositional
constants true and false are units for A and V respectively.

Along with units come inverses—sometimes! 0 is a unit for +, and —x is the ad-
ditive inverse of x, in the sense that x + (—x) = 0. Similarly 1/x is the multiplicative
inverse of x (unless x = 0!). In general we say that f(x) is the inverse of x from the
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point of view of * if (Vx)(x * f(x) = c). (Remember that c was the unit for *.) Some-
times but not always. Notice that U and N do not have inverse functions: there is no
function f such that (Vx)(x U f(x) = @). And A and V do not have inverses either.

If the binary relation on widgets has nice properties it can be extended to a binary
relations on datatypes constructed out of widgets:

e A binary operation on widgets that is associative can be naturally extended to a
function widget-list -> widget.

o If the function is also commutative then it can be naturally extended to a function
from multisets-of-widgets to widgets.

o Ifitis (associative and) commutative and also idempotent then it can be naturally
extended to a function from sets-of-widgets to widgets, as in the illustrations
below.

For example both addition and multiplication of numbers are associative and com-
mutative (but not idempotent) so

e You can add two numbers together to get a number, so you can add together all
the numbers in a (multi)-set X of numbers to get a number.

e You can multiply together all the numbers in a multiset of numbers. (We write
the sum of all numbers in X as ‘XX’ and the product as ‘T1X’.)

e The operations N and U are associative, commutative and idempotent, so you can
form (M X and |J X if X is a finite set of sets.

e The operations A and V are associative, commutative and idempotent, so you can
form the compound propositions A P and \/ P when P is a finite set of proposi-
tions.

This raises an obvious question, or family of questions.

What happens if we apply X or 11 to the empty set of numbers?
What happens if we apply \/ or )\ to the empty set of propositions?
What happens if we apply () or | to the empty set of sets?

It’s not hard to see that, for all these questions, the answer must be the unit for the
operation in question: \/ @ = false, AD = true, 2@ =0and 1B =1, JD =D
and @ = V. The correctness of these last two equalities can be checked by literal-
mindedly unravelling the set abstracts.

2(X U {y}) is obviously Z(X) + y. So () had better be 0.
II(X U {y}) is obviously TTI(X) - y. So I1(&) had better be 1.
If you are still not convinced, consider the situation where you are trying to calcu-

late the sum of the first n elements of a list. At each stage you append an element to
the list of things you have added up. Initially you have added up no items. And what
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is the sum? Clearly it must be 0. Now think about taking the product of a list of terms.
Again, you start with the empty list. What is the product of the empty list of terms?
Clearly it must be 1.

This matters, and for two reasons. The first is that by forcing yourself to think
about what happens when you do these operations to the empty set you will make
progress on the issues discussed in section The second is that at least one of
these facts—namely the fact that the disjunction of the empty set of propositions is the
false—has genuine computational significance (in connection with resolution which
you may encounter later when you do more Logicle).

What follows now is a worked example. The exercise is to show that relational
composition is associative. I am writing it out in some considerable detail because
altho’ the result is pretty obvious it’s not at all clear to first year students what a proof
must look like.

We write ‘x Ty’ for “x is related to y by 7. We saw how to define composition of
relations around p[50] and we recap:

xX(ToS)yiff (AD)(xTzAzSYy)
We will show that Ro (S o T) =(Ro S)oT.

That is to say, forall xand y, xRo (S o T) yiff x(RoS)o Ty
(I am using capital Roman letters both as relation symbols and as variables in an
algebra.)

Now, by definition of relational composition,

XRo(SoT)y
is
A)(xRzAz(SoT)y)
and expand the second ‘o’ to get

ARz A @Aw)zSw AwTy))

We can pull the quantifiers to the front because—at least as long as ‘u’ is not free
in A—*(Ju)(A A ¢(u))’ is the same as ‘A A (Ju)@(u)’. (You haven’t seen a proof of this
but we assume that you can see that it’s true.)

This gives us

A)(@AW)(xRz A (zSw AwTy))

and
@AD@AW)XxRzA S wAwWTYy))

and we can certainly permute the two quantifiers ‘dx’ and ‘dw’ getting

@AwW)@ED)(xRz A (S wAwTy)).
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We can permute the brackets in the matrix of the formula because ‘A’ is associative
getting
@Aw)@)(xRzAzS w) AwT y).

We can import the existential quantifier again getting
@Aw)(@z)(xRzAzSw) AwTy)
and reverse the first few steps by using the definition of o to get
@AwW)(x(Ro S)w A wTy)

and
X(RoS)oTy

as desired.

\begin{grumble} This is an old example sheet question. However, the more
I think about it the odder it seems. Is this a proof? Is there really no more to the
associativity of o than the fact that A is associative? The proof above is certainly
correct, but does it enlighten? What did the person who set this question expect by
way of an answer? Did they think about it at all? I bet they didn’t ...I think what
happened is that the author thought it was a trivial fact which should accordingly be
given to beginners to chew over—perhaps as part of a rite of passage. The pictures one
draws of circles with dots inside them that are joined to dots in adjacent circles by lines
corresponding to ordered pairs in S and T looks like the kind of notation that conceals
a logical truth. Or is the associativity of relational composition something even more
banal than a logical truth? Is it actually a good thing to have a notation that conceals
it??

This example serves to remind me of how important it is for researchers to do some
teaching. There are some things about your subject that you won’t really understand
properly until you have to think about how to explain them. The above is a case in
point.

\end{grumble}

Indicator functions

Each set A has an indicator or characteristic function, written 4 or y4 (‘y’ is the first
letter of the Greek word whence we obtained our word ‘characteristic’). This is the
function that, on being given an object, returns true if the object is in A and false
otherwise. In lambda notation it is:

Ax. if x € A then true else false.

Characteristic functions make it slightly easier (very slightly!) to explain why a
set with n members has 2" subsets. To notate the same fact a different way, using the

12Cambridge CS students: you will encounter resolution in Ib Logic and Proof
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vertical bars and the curly P we have just learned, [P(X)| = 2¥I. Indicator functions
make it clear that |[P(X)| = |X — {0, 1}].

You will need to know about them for a variety of reasons, for example in section
[3.3.4] They will also crop up in second year computation theory, where they are in-
variably called characteristic functions rather than indicator functions. Yet another
example of diverse cultures being interested in the same material.

Inverses of functions

If f: A — Bisa function from A to B, and g : B — A is a function such that
(Ya € A)(g o f(a) = a) we say that g is a right inverse of f. If (Vb € B)(f o g(b) = b)
we say that f is a left inverse of g.

Warning: this is a completely different use of the word ‘inverse’ from the one in
play when we were talking about additive and multiplicative inverse earlier.

While on the subject of functions, a last notational point. In most mathematical
usage the terminology ‘f(x)’ is overloaded: it can denote either the value that the
function f allocates to the argument x or the set of values that f gives to the arguments
in the set x. Normally this overloading does not cause any confusion, because typically
it is clear from the context which is meant. f(xr) is clearly a number and f(IR) a set
of numbers. The give-away here is in the style of letter used for the argument. The
font reveals to the user the ADT of the things the variable ranges over. As you can
probably guess by now, I am a purist who doesn’t like relying on contextual cues in
this way, it prolongs our bad habit of fault-tolerant pattern-matching, and it can be
avoided—because there is a notation that disambiguates these two styles of functional
application without using information about the variable. f“x is the set of values that
f allocates to the arguments in the set x:

“x={f():yex

and f(x) will continueE] to be the value that f assigns to the argument x. This double
apostrophe notation is used for relations as well: R“X is

{y: (Ax € XH(R(y, X))}

This is why it’s OK to write ‘f~1“X” for {y : f(y) € X} even though f~' might not be
a function. Some people write x.R for R“{x}. My first thought is that they should be
shot, but there are excuse@

For us the commonest use of this notation is in settings like “ f“X C X ”, which
says that X is closed under f. Of course we can talk about sets being closed under
n-ary functions with n > 1, and if g is an n-ary function (“a function of n variables”),
then g“(X™) C X says that X is closed under g.

13You need to be warned that the ambiguous use of the “f(A)” notation to mean both f(A) and f“A
is widespread and you should expect to see it. Whether or not you propose to use it yourself is a matter
between you and your conscience; i shall not pry.

14Not many, and certainly no good one. The root of the problem is that these ideas get used by lots
of different communities each of which would rather reinvent the wheel than read a textbook written by a
different community. It’s all very annoying for the student.
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3.2.9 Some Exercises

In the following questions assume the carrier set is a fixed set X, let 1y be the identity
relation restricted to X and let U be the universal (binary) relation on X, namely, X X X.
The relations here are all relations-in-extension.

EXERCISE 39

(a) Is R\ R™" antisymmetric? Asymmetric?

(b) Is R XOR R™! symmetrical? Antisymmetric? Asymmetric?

(c) Is the composition of two symmetrical relations symmetrical?
(d) Is the composition of two transitive relations transitive?

(e) Is the converse of a symmetrical relation symmetrical?

(f) Is the converse of a transitive relation transitive?

EXERCISE 40 Can there be a function f : X — X whose graph is
(i) a reflexive relation? or

(ii) a transitive relation? or

(iii) a symmetrical relation?

EXERCISE 41 How many binary relations are there on a set of size n? How many Define fuzzy, trichotomy
of them are (a) reflexive? (b) fuzzies? (c) symmetrical? (d) antisymmetric? (e) total
orders? (f) trichotomous? (g) antisymmetric and trichotomous? (h) extensional? (i)
partial orders? Do not answer part (i); (j) strict partial orders? Do not answer part (j);
(k) permutations? (1) Circular orders (as in exercise[28))?
Without actually calculating the answers to (c), (d), (), (g), (j) or (i) ...
(m) Explain why are the answers to (d) and (f) are the same;
(n) Explain why are the answers to (g) and (c) are the same;
(o) Explain why are the answers to (j) and (i) are the same.

EXERCISE 42
If I give you a set of ordered pairs and tell you it is (A X B) U (B X A) can you tell what
A and B were?

This question is not particularly hard, but it might be a good idea to write out a
very rigorous answer, even if only just to check that you are in complete control of the
notation.

EXERCISE 43 Let us assume the following:

The enemy of my enemy is my friend
The friend of my enemy is my enemy
The enemy of my friend is my enemy.
The friend of my friend is my friend.

You might like to express these observations in first-order logic, using binary rela-
tion symbols like F(, ) and E(, ).

1. Ifyou have an enemy must you have a friend? If you have a friend are you friends
with yourself?
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2. Can you infer from the foregoing that two things cannot be simultaneously friends
and enemies? Prove or find a countermodel.

3. Explain “congruence relation for ....” Assume ‘friend-of’ to be reflexive, so it is
an equivalence relation. Think about the equivalence-classes-under-friendship.
Let’s also assume that (notwithstanding the expression “he’s his own worst en-
emy”) ‘enemy-of’ is irreflexive.

(i) How does ‘enemy-of’ “lift” to these equivalence classes? Is ‘friend-
of’ a congruence relation for ‘enemy-of’?

(ii) How many equivalence classes can an equivalence class be hos-
tile to?

(iii) Explain how your answer to (ii) partitions the domain.

4. Clearly ‘enemy-of’ is not transitive, but it does have a property that is rather
like transitivity. Can you describe this feature exactly, and state it for a binary
relation R in the style in which you know how to state that R is transitive? Look
at the footnote if you need a hinﬁ but try hard to do it without.

5. Does the feature (analogous to transitivity) from the previous part admit a notion
of closure analogous to transitive closure, symmetric closure, etc.?

3.3 Cardinals

We will say that two sets have the same cardinality (= number of elements) if and only
if (“iff”’) there is a bijection between them. We take this as the definition of cardinality.
Cardinality is what two sets have in common iff there is a bijection between them.

Why do we use the fancy word ‘cardinal’ instead of ‘number’? (I'm not doing
it just to be difficult). There are different sorts of number (something that probably
was never spelled out properly to you when you were little) and emphatically not all
numbers are cardinals. There are all sorts of questions to which the answer is a number.
For example:

(1) How many apples have you got in that basket?

(2) How much money have you got in your bank account?

(3) What is your resting pulse rate?

(4) What is your diastolic blood pressure?

(5) How long is the hypotenuse of a right-angled isoceles triangle whose
other sides are of length 1?

i1

The answer to (1) is a cardinal number. The answer to “How many ...?” is always a
cardinal—even if it’s infinite: that’s what cardinals are. The answer to (2) is an integer.
(An integer number of pennies: it might be negative!) We write the set of integers
as Z. The answer to (3) and (4) are real numbers, probably given to single precision.
There are purists (and I am one of them) who insist that the complex number 1, the

15 A binary relation R is transitive iff R C R.



3.3. CARDINALS 79

real number 1, the cardinal number 1 and the integer 1 are all in some sense different
objects. You might not be a purist, but you’d better learn how purists think, for this
distinction between (for example) the real number 1 and the cardinal number 1 is made
by plenty of modern programming languages.

(I’ve left complex numbers out of this discussion not because they aren’t important—
they 're extremely important—but because they are part of continuous mathematics not
discrete mathematics.)

Rationals are so called because they are ratios, and in fact not just any ratios
but ratios of integers. They are answers to questions of the kind “How much big-
ger/nicer/higher is A than B?” (at least if niceness, size etc is measured by an integer!).
We write the set of rationals as Q.

Real numbers measure lengths of line segments, or areas, volumes; that sort of
thing. You buy potatoes by real numbers not by cardinal number. Avocados you buy
by cardinal number. (You buy potatoes by the kilo whereas avocados are so much
each.) We write the set of reals as IR.

The Greeks discovered early on that not every real number is a ratio; specifically
they showed quite early on that V2 is not rational. (You will have heard of e and 7
and they aren’t rationals either. But proving that is harder than proving than V2 is
irrational!)

THEOREM 1 V2 is not a rational.

We first assume that it can be expressed as a rational number (the opposite of what
we believe), therefore:

V2 =a/b (3.14)

with a and b reduced to their lowest terms (no common factors)
We now square both sides of the equation to get:

2 = d?/b? (3.15)

We now multiply both sides by 57 to get:

20% = a? (3.16)

From this we can see that > must be an even number because it is equal to some-
thing multiplied by 2, and an even number multiplied by 2 is still even, as is an odd
number multiplied by 2. Indeed: a is even since the square of an odd number is odd.

Even numbers are divisible by 2 so a = 2 - ¢, for some other natural number c.
Therefore a* = 4c?, and we can substitute 4¢? for a* in to get:

2b* = 4c? 3.17)
The two sides of have 2 as a common factor so we can divide through by 2:

b* = 2¢2 (3.18)
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But using the same deduction for b as we used for a in equation in [3.16] we can
show that b is even, too!

And this is our contradiction: if a and b are both even then they share at least one
common factor (namely 2), but we said that a/b had been simplified so that a and b
had no common factors). This means that our original assumption must be wrong, and
that the square root of 2 cannot be expressed as a ratio of two whole numbers.

|

Just to check that you understand this proof, do a similar proof that V3 is irrational.

There are other kinds of numbers that we haven’t seen yet. Ordinals and integers
mod p. Quaternions. You definitely do not need to know about quaternions, and you
definitely do need to know about integers mod p. You may manage to get away without
knowing about ordinals for quite a long while yet.

There are now some trivial observations we can make about cardinality. The rela-
tion “X and Y have the same cardinality” is an equivalence relation. Most textbooks
leave this as an exercise but in my experience this is something that needs to be aired.

1. Transitivity. If X and Y have the same cardinal it is because there is a bijection
between them, say f : X — Y. Similarly if Y and Z have the same cardinal it is
because there is a bijection between them, say g : ¥ — Z. Butthengof : X — Z
is a bijection between X and Z.

2. Symmetry. If X and Y have the same cardinal it is because there is a bijection
between them, say f : X — Y. But then f~! : ¥ — X is a bijection in virtue of
which Y has the same cardinal as X.

3. Reflexivity. The identity map X — X certifies that X is the same size as X.

Notice that all we have defined is what it is for two sets to have-the-same-cardinality;
we haven’t said what cardinalities are. And what’s more, we won’t! And it doesn’t mat-
ter! All you need to know about cardinality is that two sets have the same cardinal iff
there is a bijection between them.

I think you can safely assume that the words ‘cardinal’ and ‘cardinality’ are syn-
onymous.

So what are cardinals? You probably never worried about what the number 1 was,
since all the things you wanted to do with it or to it you could do without worrying
about what it actually was. Perhaps you are expecting—now that you are doing rather
more proper maths than hitherto—that you have to start worrying about these things.
Interestingly you don’t. You can think of cardinals as equivalence classes of sets under
the equivalence relation of having-the-same-cardinal if you want to; but you don’t have
to. It’s not a good idea to start worrying about what cardinals are, it can do your head
in. Incredibly, there is a community of people who worry about whether or not the
number 1 might be Julius Casar. (I'm not making this up.) You don’t want to end up
like ther{™®]

15Do not, under any circumstances, google The Caesar Problem. No, really.
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Not all cardinals are finite

Remember, all sets have cardinals, and not all sets are finite, so not all cardinals are
finite. The finite cardinals are the natural numbers, IN, but we have to remember that
there are other cardinals as well. Some sets are infinite (IN is an infinite set) and some of
these sets are of concern to you as computer scientists. You’ve never had to think about
infinite sets before and all your reasoning about sets has relied on the tacit assumption
that all sets are finite. If some of what follows in the coming sections seems too obvious
to be worth stating, it may be that you are still making the tacit assumption that all sets
are finite.

There are infinite cardinals: that was the surprise of this section. But there are
no infinite reals, rationals or complexes, I can promise you that! (There are infinite
ordinals, and they will matter, but we are not going to deal with them here)

The Order Relation on Cardinals

We can define a partial order on cardinals. We write ‘|X| < |Y|’ to mean that there is an
injection from a set of size |X| (as it might be, X!) into a set of size |Y| (as it might be,
Y! It won’t make any difference which sets of size |X| or |Y| you choose).

Did I say ‘partial order’? Obvious that it’s transitive and reflexive. (Look back
at the demonstration on page [80| that the relation of “having the same cardinal” is an
equivalence relation). How about antisymmetrical? You are tempted to say that if there
is an injection from A into B and an injection from B into A then both injections must
actually be surjections, so we are done. (Beware! Merely finding an injection A — B
that is not a surjection does NOT show that |A| < |B|.) This argument certainly works
if A and B are finite sets, and at this stage your intuition probably doesn’t work freely
with infinite sets so finite sets are likely to be the only kind you consider, so you think
that it’s obvious that < is antisymmetrical. But actually it isn’t obvious at all. Let me
illustrate. Consider the two sets IN (of natural numbers) and Q (of rational numbers).
It is easy to describe injections from Q into IN and from IN into Q, as follows:

1. The function that sends the natural number »n to the rational number # clearly is
an injection from IN into Q.

2. Every rational can be expressed as a ratio of two naturals with no common fac-
tor, associated with a plus or minus sign. This means we can send the rational
number +(n/m) to the natural number 2 - 3" - 5, and we can send the rational
number —(n/m) to the natural number 3" - 5. (Negative rationals go to even
naturals and positive rationals go to odd naturals. And we can send the rational
number 0 to the natural number 0). It’s easy to check that this is an injection. (I
know it looks fiddly: all injections from Q into IN do!)

However it is not at all obvious that there is a bijection between IN and Q!

This is why we need the Cantor-Bernstein theorem, which tells us that < on car-
dinals really is antisymmetrical as we expected. To put it another way: if we have
injections f : X < Y and g : Y — X then there really is a bijection between X and Y.

This rather odd feature exhibited by IN and Q, namely that there are injections going
both ways neither of which is a bijection, could only happen because these two sets are

Blah congruence relation sec-
tion[3.2.3]
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infinite. If A and B are finite then if there is an injection f : A — B and an injection
g : B — Athen f (and g too for that matter) must be a surjection. More arrestingly,
consider the map An.2n : IN — IN. It’s an injection from a set to itself that is not a
surjection! Strange but true. ...

Actually we can exploit this strangeness to obtain a definition of infinite set:
An infinite set is one that is in bijection with a proper subset of itself.

In our present case, IN qualifies as infinite because it is in bjiection with {2n : n €
IN}—the evens.

Nevertheless it is true: < on cardinals really is antisymmetrical. The theorem that
states this is the Cantor-Bernstein theorem. We won’t prove it!

With a little bit of finagling (by means of an assumption called the axiom of choice
which you will not need to know about) we can tidy cardinals up so that every cardinal
is either infinite (in the above sense) or is a natural number

The name for the cardinal that the set of naturals and the set of rationals share is
‘No’. (‘N’ is the first letter of the Hebrew alphabet and Cantor was Jewish). It is the
smallest infinite cardinal, in the sense that any set that is smaller than IN is finite.

EXERCISE 44 Look again at the box of isotopes on page
Why was I right to write the half-life of Pb*® as ‘oo’ rather than ‘Ny’?

You will need to know a bit about infinite cardinals, but not much. P(IN) is of
course of size 2™ and there are 2% real numbers. (This is because every real number
can be represented as a sequence of Os and 1s, one for each natural number. So there are
No independent choices from {0, 1}, making 2™ possible outcomes. There is a certain
amount of tidying up because some reals (those rational numbers whose denominators
are powers of 2) have two representations as infinite binary numbers, but we won’t go
into that). Cantor’s theorem (which we will see in section tells you that infinite
sets come in infinitely many different sizes: Ny < 280 < 22 after all but despite
this it’s a fairly safe prediction that every infinite set you meet will be of size 8g or 280,

You may be wondering: is there an 8;? There is—and an N,, N3 and so on—but
you don’t need to worry about them until further notice. The file www . dpmms . cam. ac.
uk/~tf/countability.pdf tells you a bit more about some of this material (though
not about K1) . It’s designed for 1a maths students and so goes slightly beyond what
you are going to need immediately. However it is probably quite digestible.

3.3.1 Operations on Cardinals, and Curry-Howard

There are various natural operations on cardinals, and you encountered them long ago:
multiplication, addition and exponentiation. These operations on cardinals correspond
to operations on sets: multiplication corresponds to cartesian product and addition to

17Q: “What about rationals and negative numbers? They’re not infinite!”
A They’re numbers all right, but they’re not cardinals: see the digression above.
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disjoint union. You know about cartesian product but perhaps not disjoint union.. Refer
back to page[20] ‘Disjoint union’ is an important construct, and to understand it we
have to recall the inclusion-exclusion principle and the idea of multisets, if only to
draw contrasts. How many things in A U B? Well, as we have seen, |A| + |B| — |A N B|,
because we don’t want to count things in A N B twice. But what if we do want to count
things twice? We might want a sort of union of A and B where we want to know, in
this union, which elements came from A and which came from B. In this setting, if
something appears in AN B we want it to appear twice in the new union. This new kind
of union is called the disjoint union of A and B and is written A U B (sometimes also
‘A + B’ using overloading of ‘+’ because |A LI B| = |A| +|B|.). You can think of ALI B as
“Take everything in A, put a spot of pink paint on it, and take everything in B and put
a spot of blue paint on it; the set of all painted things is the disjoint union A LI B.” Or,
using slightly more words, but bringing to life the talk of copies from section[2.7] “For
each a in A, make a copy of it and put a spot of pink paint on the copy; and for each
b in B make a copy of it and put a spot of blue paint on the copy; the set of all things
thus painted is the disjoint union A LI B.”

Notice that this set isn’t the same as the multiset that is the union of A and B,
because in the multiset union you can’t tell which of A and B was the original home
of any element of the new union multiset. You have two copies of things that were in
A N Bbut you can’t tell them apart and you don’t know which came from A and which
from B. For example the union of the two multisets {2,2, 3} (the factors of 12) and
{3, 5, 5} (the factors of 75) is of course {2, 2, 3, 3,5, 5}. But this is the same as the union
of the two multisets {2, 2,5} and {3, 3, 5}: you can’t tell which 3 came from the 12 and
which came from the 75. This is because there is no way of distinguishing the two 3s
in the factorisation of 900.

3.3.2 Natural bijections and Elementary Cardinal Arithmetic
Commutativity of Cardinal Multiplication

Some things are important and hard, and some things are important and easy. One
important and easy observation is the fact that A X B is the same size as BX A. You may
be saying to yourself that it’s obvious, because if |A| = n and |B| = m then |[AXB| = n-m,
but that’s arguing back-to-front. The real reason is that there is a bijection between AXB
and B x A, and—if you think about it—it’s pretty obvious what that bijection is.

A brief reality check before we go any further.

EXERCISE 45 Write out a formal declaration of the obvious bijection between A X B
and B X A, using A notation and fst and snd.

The interesting thing about this bijection is that we don’t need to know anything
about A or B to specify it. This means that it’s not merely a bijection, it’s what we call
a natural bijection.

What would a bijection be that wasn’t natural? Well, there are bijections between
the two sets {a, b, c} and {1, 2, 3} (Miniexercise: how many??) One particularly obvious
one is the bijection a — 1, b +— 2, ¢ + 3. This is not “natural”, because in order to
specify it we need access to specific information about those two sets, in particular
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that the first set comes equipped with an alphabetical order and that members of the
second are numbers and are ordered by magnitude. Another example of a non-natural
bijection is the bijection between the set of all permutations of a set and the set of
total orders of that set. See exercise If T give you two three-membered sets and
no further information beyond the fact that they are three-membered, then there is no
obvious bijection for you to point to: no natural bijection. For example, no natural
bijection between the two sets {&, %,L} and {7, @, $}. You might think, Dear Reader,
that it would be natural to pair the symbols off using the order in which they appear in
this paragraph, but that isn’t natural in terms of the two sets; it natural only in terms of
the (ordered!) representation of the two sets on the page.

Is the natural bijection between A X B and B X A prompting your fault-tolerant
pattern-matching to make you think of the tautology A A B «— B A A at this point
... 7 If it does, then for once it is not leading you astray, though it may be a little while
before the connection beomes clear.

The point that I want to hang on this natural bijection is the point that the commu-
tativity of cardinal multiplication (which is something you learned at Primary School)
relies on this natural bijection.

Associativity of Cardinal Multiplication

Another fact you know about cardinal multiplication is that it is associative: (Vn, m, k)(n-
(m-k) = (n-m)- k). (It's also true for multiplication of other kinds of numbers too,
but those other multiplications mean something different). This fact too, relies on the
existence of a natural bijection, this time on one between A X (B X C) and (A X B) X C.

EXERCISE 46
Write down a Lambda term (or, if you prefer, an ML program) for this bijection.

It’s a bit fiddly to write down, but you should be able to explain what it does.
Again, if you free associate from this to the fact that A A (B A C) is logically
equivalent to (A A B) A C you will still be on the straight and narrow.

It may be worth mentioning (co’s i’ve had students who got confused by this point)
that altho’ cardinal multiplication is associative, and it arises from cartesian product
on sets, the operaton of cartesian product on sets is not associative: A X (B X C) is
emphatically not the same thing as (A X B) X C. The first one contains pairs (a, (b, c))
and the second one contains pairs ({a, b),c) and they are not the same! There is a
sense (which we will not go into) in which they contain the same information. And
it is definitely true that there is an obvious (we sometimes use the word ‘canonical’)
bijection between A X (BX C) is and (A X B) X C, and it is, of course, the map that sends
things like (a, (b, ¢)) to things like ((a, b), c).

Associativity and Commutativity of Addition

Clearly A LI B is the same size as B LI A (The lambda term says: “Swap pink and blue
spots”). And A U (B U C) is the same size as (A LI B) LI C. It can do no harm to spell out
the bijection. In A LI (B LI C) there are things with only pink spots on them. (They were
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all in A). Then there are things that have both a pink spot and a blue spot (they started
off in B) and finally there are things with two blue spots on them, and they had started
offin C.

The bijection now does the following:

Anything with two blue spots has one blue spot removed;
Anything with just a pink spot is given an extra pink spot.

Notice that it doesn’t seem to matter if this respotting is done simultaneously or in
sequence, and if it is done in sequence it doesn’t seem to matter which is done first. I
don’t know how significant this is. Check my working to make sure you understand
what is going on, and that I haven’t made a mistake. Respotting is confluent (see
chapter [6)).

Again, just as multiplication is associative even tho’ cartesian product isn’t, so
cardinal addition is associative even tho’ disjoint union isn’t.

Distributivity

There is a distributivity law for addition and multiplication of natural numbers, which
you know:

(Mabc)(a(b + ¢) = ab + ac) (3.19)

This assertion boils down to the fact that there is a bijection between A X (B U C)
and (A X B) LI (A x C). There is a lambda term and again it’s a bit fiddly to give it but
if you remember your pink and blue spots you should be able to describe its action in
words.

This corresponds—as you are probably by now willing to predict—to the proposi-
tional tautology. . .

EXERCISE 47
Well, which propositional tautology does equation correspond to?

Exponentiation and Currying

The time has now come to consider not only multiplication and addition, but also expo-
nentiation. You may have seen the notation ‘A — B’ for the set of all functions from A
to B. You may also know that there are |B|"4! functions from A to B. (Do you remember
why?f;g]

You will remember some equations connecting exponentiation and multiplication.
We are now going to check to see if they correspond to natural bijections. A good place
to start is with

=1 (3.20)

18Well, for each thing in A we have a choice of |B| things to send it to, as we can send it to anything in B.
These choices are independent—and we multiply independent choices (as we reminded ourselves in exercise
part 2)—so the answer is |BJAL,

material needed here
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0 is the cardinality of the empty set, so what equation [3.20]is trying to tell us is that
there is precisely one function from the empty set to a set A. And that is true whatever
A is! Miniexercise: What is this function?

That was a bit of a cheat, you may feel. (You shouldn’t feel cheated if you took to
heart my strictures about null objects in section [2.5.1). But this second one isn’t. No
doubt you remember:

(@) = abc (3.21)

This means we should be looking for a bijection between (B X C) — A and C —
(B —> A).

If this is your first encounter with this bijection you might find it hard to describe,
so I’ll give you a lambda term, or rather two.

o If f: BXC — A then Ac.Ab.f({b,c)) is a map from C to B — A and so is a
member of C — (B — A). So Af.Ac.Ab.f({b,c)) is a member of (B X C) —
A) = (C = (B — A)). (Remember that most people will write this last term as

Afeb.f((b, c))).

e If g: C — (B — A)then Ap.g(snd(p))(£st(p)) is a map from C X B to A and
soisin (BxX C) — A. So Ag.Ap.(g(snd(p))(fst(p)) isin (C — (B —» A) —
(Bx C) — A))).

The second one is a bit hard to read. The lambda term Ap.(g(snd(p))(£st(p)))
indicates the function that, when you give it a pair p from B X C, cracks it open to get
the two components snd(p) and £st(p), then applies g to snd(p) to obtain a function
from B to A, to which it then feeds £st(p). Some people put subscripts on the variables
in contexts like this so you can tell where the arguments are coming from. So they
would write

ApBxa-(g(snd(p))(£st(p)))

for this, and
Aficxpy—a-Adcc.Abp.f((b, c))

for the lambda term of the previous item.

If you find that a bit of a mouthful, try this special case. We can think of a binary
relation R C X X Y as a matrix—as we saw earlier (section[3.2.3). This makes it quite
easy to see such a binary relation as a function defined on members of X. Simply send
each x € X to the set of things in Y to which it is related by R. (as it were, the set of
places in its row where you find a 1 rather than a 0). A miniexercise:

EXERCISE 48 Write down a lambda term for this function. (This is actually the same
representation as the way the queue for the airplane loo is represented in section[3.2.6)).
You may wish to use the double apostrophe notation here . ..



3.3. CARDINALS 87

Curry-Howard

It’s not only natural bijections that concern us in the long term, but natural maps that
aren’t necessarily bijections. For example, there is a natural map from A to B — A,
namely dag.Abp.a. After what you have been reading you will no doubt free-associate
from this to the fact that A — (B — A) is a truth-table tautology. So you can see that the
connection that we have been looking at above—between tautologies and the existence
of lambda terms—doesn’t require the lambda terms in question to denote bijections.

This connection has subtleties that we cannot go into here. If you are intruiged by
this, you might try to following exercise:

EXERCISE 49
Find a lambda term for a function from A — (B — C)to (A - B) —» (A — ).

Yes, (A — (B — C)) = ((A - B) — (A — (Q)) is a truth-table tautology!

This dual use of ‘=’ is no mere coincidence: it is a divine ambiguity, known as
the Curry-Howard correspondence, on which a wealth of ink has been spilt. You will
learn more about it when you study foundations of functional programming. Try, for
example, [7]] but not just yet!

EXERCISE 50 You know that |A — B| is |B||A|. How many partial functions are there
from A to B? (If you find you are heading towards a complicated answer, you are
wrong: the answer is very simple, but most people find it hard to find)

3.3.3 Cantor’s Theorem

We’ve proved lots of equations, and they are all easy. There is one major theorem in
the form of an inequation, and it is easy too. It is Cantor’s Theorem.

Before we get stuck into the proof I want to identify a wee, wee assumption that we
have to make. It is this: if there is a surjection from A onto B then there is an injection
from B into A. This is another of those things (like the Cantor-Bernstein theorem) that This is unnneccessary
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is obvious when A and B are finite, but not obvious otherwise. (It’s the axiom of choice
again!)

THEOREM 2 (Cantor) For all cardinals |X|, |X| < 21X

N.B. all cardinals, not just natural numbers.

Proof:

Remember: 2¥! = |P(X)|. Clearly there is an injection X — P(X): the singleton
map Ax € X.{x} is one. So: to prove the inequality all we have to do is prove that there
is no injection P(X) — X. In fact it’s slightly easier to prove that there is no surjection
X —» P(X) (which by assumption is the same thing) and that is what we will do. (I
could have left out the bit about injections from A to B and surjections from B to A, and
given instead a slightly more complicated proof that there is no injection from P(X) to
X, but that proof is displeasingly messy. If you like, you can check and see how to do
it for yourself. Determining which is easier is a delicate calculation)

The proof is now a doddle. Suppose f were a surjection from X onto P(X). Think
about

(xeX:x¢ f(x). (3.22)

This is the set of those things in X that are not members of what f sends them to. Since
f sends members of X to subsets of X, asking of a member x of X whether or not it is
a member of what f sends it to is a perfectly sensible question, since x is a member of
X and f(x) is a subset of X.

If f is a surjection, this subset—[3.22}—of X must be f of something, xy say. Now
(and I want you to work this out for yourselves) ask whether or not xg is a member of
{x € X : x ¢ f(x)}. Think about this a bit before proceeding to the next paragraph.

If it is, it isn’t, and if it isn’t, it is. Clearly this is an impossible situation. How did
we get into it? By assuming that f was a surjection; that ensured that [3.22| was f of
something. Evidently it wasn’t! [ |

Time invested in understanding this proof is time well spent. The same argument
is used to great effect in complexity theory, and in (for example) the proof of the un-
solvability of the Halting problem for Turing machines, which you will see in a later
course.

You Absolutely Must Understand This Proof.

Notice that nowhere in the proof of Cantor’s theorem do we assume that X is finite.
Indeed we don’t even assume that it is nonempty!

3.3.4 Inclusion-Exclusion

If A and B are multisets then the number of things in A U B is the number of things in
A plus the number of things in B. Things are a bit more complicated with [mere] sets,
since we don’t want to count twice those things that appear in both A and B: we want
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to count everything only once even if it appears twice: once in A and once in B. We
have the following equation:

|AUB| =|A|l+|B|—|AN B

Obvious, isn’t it? To get the number of things in A U B you have to subtract from
|A] + |B| the number of things in A N B. This is because the members of A N B are
the things that get counted twice. In some sense equally obvious (but ever so slightly
harder to compute) is:

JAUBUC| = |A|+|B|+|C|—|ANB|—|ANC|-|BNC|+|ANBNC).

(We subtract the number of things in AN B because they get counted twice, and similarly
AN C and BN C. But then anything in A N B N C has been counted three times and
taken away three times, so it has to be put back!)

Think a bit about you might generalise this to the case where you are taking the
union of several sets.

Here is a bald statement of the general principle that I found in the notes of one of
my colleagues:

Jad == D, oAl (3.23)

seS D+TCS teT

This looks extremely scary, but it’s actually nothing more than the obvious gener-
alisation of the equations we have just seen. Let’s decode this assertion carefully and
without panicking.

The thing on the left hand side of is the number of things that belong to the
union of the A;. The family of Ay is indexed: each A has a pointer pointing at it from
an index set—which in this case is called ‘S’. See page[44]

So, in English, [3.23]reads something like

“The number of things in the union of the As is minus the sum—over
nonempty subsets 7" of §—of minus-one-to-the-power-of-the-number-of-
things-in-T" times the number of things in the intersection of all those As
whose subscripts are in 7.7

Or—plainer still—

”For each nonempty 7' C §, take the intersection of all the As whose sub-
scripts are in T (those As pointed to by elements of T); take its cardinality
and take it negative or positive depending on whether T has an odd or even
number of elements. Add them all together, for all such 7, and make the
answer positive.”

The first thing to take note of is a bit of overloading. Primarily we write ‘A’ to
denote one of the As, and the subscript is a member of the index set S. However we are
now going to write ‘Ar’, where T is a subset of S not a member, and this expression
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will denote the intersection (7 A; of all the As whose subscripts are in 7. It’s easy
to detect which of these two usages are in play at any one time, because the indices
themselves are lower-case Roman letters and the sets of indices are upper-case Roman
letters. This is a common use of the difference between upper and lower case Roman
letters. Notice that Ag is the whole universe of discourse—V.

Now recall indicator functions from section [3.2.8] Let I be the indicator function
for B. Normally Ip is the function which (on being given x € V) returns true or
false depending on whether or not x € B. However in this case we want to modify
the indicator functions so that they return O and 1 instead of false and true. This
piece of casting is in order that we can use arithmetic operations on the values of the
indicator functions instead of boolean operations. It’s universal practice in machine
code. Hacky but clever. This ensures that

o I5(x) =1 - Ip(x); and
o Ipnc(x) = Ia(x) - Ip(x).

This second assertion generalises to
Ia,n4y..04,(X) = 14, (x) - La,(x) - - - 14, (%)

so, in particular (remember that Ay is the complement of Ay):

Now IE(X) =1-14,(x)so becomes

Lo (0 = (1= 14, (0) - (1 = 1n, (1)) -+ (1 = Iy, (%) (3.25)

For the next line consider what happens when you multiply out things like (1 —
a)(1 = b)(1 —¢)(1 —d): you get 1— lots of things like —abc and +bd which are positive
if the number of factors is odd and negative if the number of factors is even. “But
shouldn’t it start with a ‘1-" before the big £?” I hear you cry. It should indeed, but
that ‘1-" is in fact included because one of the T's you sum over is the empty set! Very
cunning.

Lioa. @ = D (D ([ [ a0 (3.26)

TCS teT

Notice now that I(x) - I;(x) = I, (x), and in general ]_[ I;(x) = IT(x) giving

(7
Loz () = TZS«—D‘T' (Lay () (3.27)

Now A; NAy...NA, IS Nyes As
In (0= > (D U, (x)) (3.28)

TCS
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Now, for any set X whatever, the number of things in X is simply the number of
things x in V such that Ix(x) = 1; this number is just the sum of all Ix(x), so the number
of things in ﬂA_S is simply the number of x € V such that Iﬂ » AT(X) = 1. This gives

seS
us

I )Ad = D51 A7) (3.29)

seS TCcS

Applying a minus sign to both sides gets us back to equation[3.23]

3.4 Recursive Datatypes

We start this section with some revision of Mathematical Induction. You probably think
you understand it already, but I want you to be Born Again!

3.4.1 Induction: revision

Induction can only be understood backwards, but it must be lived forwards.

Kierkegaard

Finite cardinals are called Natural Numbers, and the set of natural numbers is
denoted with a special kind of boldface ‘IN’. Natural numbers obey a wonderful prin-
ciple called Mathematical Induction which you have certainly heard of. Mathematical
induction is not a pleasant extra but a core skill, and one you must have; do not even
think about skipping this section. Unfortunately it is also a well-known problem for
beginners. There are several causes of this, and life becomes easier once they are teased
apart and tackled separately.

I can think of three off the top of my head:

1. One is the old problem with fault-tolerant pattern-matching, which makes the
average punter so imprecise in expressing their workings that they lose track of
what they are doing. Unless you are extremely precise you won’t have a hope.

2. Hypothetical reasoning is the process by which we prove A — B by assuming
A and deducing B. In modern formal logic we call it “—-introduction”. Lots
of people find this hard. There is even a tradition in the battier parts of Western
Philosophy that it cannot be done at all (or at least that argument by reductio ad
absurdum is impossible). If you have done any Logic you will probably not have
nightmares about this, but others may be spooked. Seek help if need be.

3. A lot of students are unnerved by having to think about a conditional whose
antecedent is a conditional.

However, for the moment I’'ll address the issue about notation, because it often
ensnares even students who are fairly happy about hypothetical reasoning.

Finish this off

Explain ‘antecedent’

Need to find something more to
say about this
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Summary: we are trying to prove that every natural number has a property, F, say.
We will succeed if we can do two things:

1. We establish that F(0);

2. We establish that, whatever natural number # is, F(n) implies F(n + 1).

Step 1 is the base case, and step 2 is the induction step. The base case doesn’t
always have to be 0; sometimes (and the example we are about to work through is a
case in point) the zero case is exceptional and we don’t worry about it. In this case we
will start at 1.

A simple illustration

Let’s take a simple example. It’s simple in that the proposition we are trying to prove
can be easily understood and looks fairly obvious, but the proof is difficult enough to
exhibit all the standard problematic features.

Let us prove by induction that—for all 7—the sum of the first # odd numbers is 1.

That is to say F(n) is the assertion that the sum of the first n odd numbers is n>.

Formula says that the sum of the first n odd numbers is n2. The nth odd number
is of course 2n — 1.

Z(Zr— 1) =n? (3.30)
r=1

‘n’ is the eigenvariable: we are doing “induction on n”.
Base case, n = 1 is easy.

We want to prove the induction step: if it holds for k it holds for £ + 1. What we
are actually doing is a proof by Universal Generalisation (AKA V-introduction), with
‘k’ being the eigenvariable.

We are going to assume it true “for £~ as we say, and hope to be able to deduce it
for k + 1. Notice that in this expression ‘r’ is bound and ‘k’ is free. (This terminology
of free and bound variables wasn’t chucked at you merely to annoy you: it’s needed to
properly understand stuff like this!). Do you know what I mean by this last remark?
Make sure that you do before reading further!

The assumption that we have just made, namely that the assertion we are trying to
prove does at least hold for k (and from which we intend to deduce that it holds for
k + 1) is called the induction hypothesis.

So you add the k + 1th odd number to both sides, getting

k
(Z(Zr— D) +2k+1=k +2k+1 (3.31)

r=1
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So far so good. You now have to do quite a lot of rearranging, and it may be that it
helps if this is done in excruciating detail. Let’s tackle the left-hand side first

k
(Z 2r—1)+2k + 1 (3.32)
r=1
is just
k+1
Z 2r—1 (3.33)
r=1

This is because they are both the sum of the first £ + 1 odd numbers. Formula
3.32|says “the sum-of-the-first-k-odd-numbers—with 2k + 1 added on” (and 2k + 1 just
happens to be the (k+ 1)th odd number). Formula|3.33|says “the sum-of-the-first-k + 1-
odd-numbers”.

So formula[3.3T has become

k+1
ZZr—1=k2+2k+1 (3.34)
r=1

and now we can turn our attention to the RHS.

As any fule kno, the RHS of this is equal to (k + 1)%, so we get

k+1
er— 1=(k+1)7? (3.35)
r=1
But now notice that this formula is exactly the result of taking formula [3.30] and
replacing ‘k’ (the eigenvariable) by ‘k + 1’ throughout. Check this by hand so you
understand it. Formula is a substitution instance of formula This idea
of one formula being a substitution instance of another (replace a variable in the first
formula by something, and obtain thereby the second formula) is one you will need in
your future studies.
And—just as formulasaid that the sum of the first k odd numbers is k%, formula
says that the sum of the first k + 1 odd numbers is (k + 1)2. So we have taken an
assertion about k, and deduced from it the corresponding assertion about k + 1.

This concludes the proof of the induction step

This is something you will see in all the standard cases of proof-by-induction that
the sum of the first k perfect squares, or cubes, or odd numbers, or triangular numbers,
or whatever it is, is some expression in ‘k’. In all these cases you will see a LHS that

k
looks like ( 3, something-or-other) and an RHS that is some complex expression with

‘k> free. F(;rmula [3.30]is our example above. When proving the induction you infer
from (as it were) formula [3.30] the result of substituting ‘k + 1° for ‘&’ in (as it were)
formula[3.30} You add the kth term to both sides, which makes the LHS the sum of the
first k terms plus the k + 1th term—which is of course the sum of the first k + 1 terms.

‘free’??!
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And you add the k + 1th term to the RHS as well and hope that you will be able to
rearrange it into the result of substituting ‘k + 1’ for ‘4’ in the RHS.

A stylistic detail at this point. There is something rather special about the operation
of adding 1 to a number (as opposed to the operation of adding 2, or 3, for example).
This is because it is this operation-of-adding-1 that generates all the natural numbers,
starting from 0. A natural number is either O or something one can obtain from O by
adding 1 lots of times. For this reason we have a special notation for it: ‘S’, so we
write ‘S'(x)” instead of ‘x + 1’ [we don’t think of S as a special case of addition but as
something prior to addition] and (and this is the important part) express the inductive
step in mathematical induction as “if it holds for n, it holds for S (n)”. The point is that
this special notation highlights the rdle of the operation of addition-of-1 in the genesis
of the set of natural numbers.

EXERCISE 51 Suppose f and g obey the declarations:

fO):=1; Yn)(f(n+ 1) := @+ 1) f(n)
g0 :=1; VYm(gn+1):=m+1)-gn)

Prove that (Vn € IN)(f(n) = g(n)).

This shows we can use induction to prove the uniqueness of the function being
defined.

3.4.2 Definition

‘Recursive datatype’ is the sexy, postmodern, techno-friendly way to talk about things
that mathematicians used to call ‘inductively defined sets’. I shall abbreviate these two
words to the neologism ‘rectype’.

The standard definition of the naturals is as the least (with respect to C) set contain-
ing zero and closed under successor, or, using some notation we have just acquired:

]N:ﬂ{Y:OeY/\S“YQY}.

Of course IN is merely the simplest example, but its definition exhibits the central
features of a declaration of a rectype. In general, a rectype is a set defined as the small-
est (C-least) set containing some founders [11;] and closed under certain functions, com-
monly called constructors. (This is standard terminology.) IN has only one founder,
namely, 0, and only one constructor, namely, successor (often written ‘S’ or ‘succ’:
S(x)is x + 1). For the record, a founder is of course a nullary (0-place) constructor.

3.4.3 Structural Induction

This definition of IN justifies induction over it. If F(0) and F(n) — F(S (n)) both hold,
then {n : F(n)} is one of these Y that contains 0 and is closed under S, and therefore it
is a superset of IN, from which it follows that every natural number is F. It is a bit like
original sin: if F is a property that holds of 0, and holds of n + 1 whenever it holds of
n, then each natural number is innoculated with it as it is born. As you are born, you
arrive with a ready-minted certificate saying that you are F. Hence induction.

19This is not standard terminology, but I like it and will use it.
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3.4.4 Generalise from IN

IN is of course the simplest example of a rectype: it has only one founder and only one
constructor, and that constructor is unary.

My first encounter with rectypes was when I was exposed to compound past tenses
in Latin, when I was about eight. I pointed out to my Latin teacher that the construc-
tion that gives rise to the future perfect tense from the perfect could be applied to the
pluperfect tense as well, and what was the resulting tense called, please? Maybe the
reader has had similar experiences. In UK law, if it is a crime to do X, it is also a crime
to attempt to do X or to conspire to do X. So presumably it is a crime to attempt to
conspire to do X? Crimes and tenses form recursive datatypes.

The examples that will concern us here will be less bizarre. An X-list is either the
empty object or the result of consing a member of X onto the front of an X-list. Thus
a list can be thought of as a function from an initial segment of IN to X. Thought of
as a rectype, the family of X-lists has a founder (the empty list) and a single binary
constructor: cons. In ML the notation ‘h::t’ denotes the list obtained by consing the
object h onto the front of the list t. t is the tail of h: : t, and h is its head.

EXERCISE 52 You can also think of the transitive closure t(R) of a binary relation-in-
extension as a rectype. What are the founders and the operations?

We can develop analogues of mathematical induction for any recursive data- type,
and I shall not spell out the details here, as we shall develop them in each case as
we need them. This kind of induction over a rectype is nowadays called structural
induction ]

This is an old example sheet question. You should definitely attempt it.

EXERCISE 53
“We define the length of a Boolean proposition by recursion as follows:

lal =1,
ITI=1
lLl=1,

IAAB|=|Al+ Bl + 1,
AV B| = |A| + B + 1,
|-A| = |A] + 1.

We define a translation which eliminates disjunction from Boolean expressions by
the following recursion:

tr(a) =a, tr(T) =T, tr(L) = 1,
tr(A A B) = tr(A) A tr(B),
tr(A VvV B) = =(=tr(A) A =tr(B)),

20Historical note: Russell and Whitehead called it ancestral induction because they called the transitive
closure of a relation the ancestral of the relation. (This is because of the canonical example: the transitive
closure of the parent-of relation is the ancestor-of relation.) I used their terminology for years—and I still
think it is superior—but the battle for it has been lost; readers should not expect the word ‘ancestral’ to be
widely understood any longer, though they may see it in the older literature.
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tr(=A) = —tr(A).

Prove by structural induction on Boolean propositions that
[tr(A)l < 3|A| -1,

for all Boolean propositions A.”

3.4.5 An Induction Exercise Concerning Evaluation

This section isn’t actually difficult, but it relies on truth-tables, and it might look a bit
scary, so don’t feel guilty if you want to postpone it and come back to it later. Confident
students should be fine.

I’m assuming that you are happy with truth-table definitions of the operations A
and V on booleans (perhaps you prefer the notations ‘AND’ and ‘OR’). A valuation is a
function from propositional letters to booleans. You can think of a valuation as a row
of a truth-table, an assignment of boolean values to every propositional letter in sight.
Given a complex formula A and a valuation v, one can evaluate A according to v and
obtain a truth-value.

Clearly there is a function E: formula X valuations — booleans.

EXERCISE 54 Write code for such a function E in your favourite functional program-
ming language.Er]

The recursion you have written does not contain any instruction as to the mechanics
of calculating the answer. One can evaluate lazily or strictly. For example: suppose
that at some point in the computation-of-the-truth-values-of-A-according-to-v you have
determined, for some subformula A’ of A, that A’ is false according to v. Suppose
A’ A B is the next subformula for us to tackle. If we are evaluating “lazily” we can get
clever and say “Ah! Since A’ has evaluated to false we know already that A’ A B must
evaluate to false, so we don’t need to compute the truth-value of B!” This (clever)
strategy is called “lazy evaluation”. In contrast, the strategy of strict evaluation requires
us to compute the truth value of all subformule of an input before we try to compute
the truth-value of the input. Strict is bottom-up.

Thus there are two functions E and E; (strict evaluation and lazy evaluation ...)
but these two functions have three arguments not two. Their three arguments are: a
formula, a valuation, and a time; and the recursive declaration for E; will have base
clauses like

If A is atomic, then (Yn € IN)(E(A,v,n) = Ej(A,v,n) := v(A)).
and
ES(A’ V7 0) = El(Aa V, 0) = V(A)9

and recursive clauses like (for example)

E(AV B,v,t+1)=1f E;(A,v,t) = true then true else...

21In case you were wondering, your favourite functional programming language is ML!
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EXERCISE 55 Write code for E; and Es in your favourite functional programming
language.

It’s probably obvious to you that E and E; will give the same end result. Perhaps it
even looks so obvious that you think it’s not actually worth proving. However, this fact
is worth proving, and for two reasons. One is that it is a useful exercise in induction,
and the other is that if our valuations are allowed to be partial functions it ceases to be
true!

EXERCISE 56 (Easy)
Find A and v to illustrate how (Nt > 0)(Es(A,v,t) # E|(A,v,1)) can happen if v is
not total.

However, things are better behaved if we assume that all our valuations are total
functions. So, let’s make this assumption pro tem. Then, as we observed above, E; and
E; will give the same end result. It’s worth thinking about how one would state this last
fact properly. So shield the rest of this pdf from your eyes for the moment and give the
matter some thought. The next exercise sets out my attempt at formulating this obvious
fact in a way that one might prove.

Then we want to

EXERCISE 57 Show that:
For all valuations v and all formulee A and all but finitely many t,

Ei(A,v,t) = E(A,v) and Es(A,v,1) = E(A,v).

This is pretty obvious, but it’s not totally straightforward to prove. It’s certainly
obvious that you are going to have to do some induction. .. but an induction on what?
On ‘’? Or a structural induction on the subformula relation? This exercise is an
object lesson in getting straight quite what it is you are proving by induction, stating
the induction hypothesis carefully and being clear in your own mind what kind of
induction you are doing.

3.4.6 Well-founded induction
Well-founded relations and induction

Suppose we have a set with a binary relation R on it, and we want to be able to infer

Vx g(x)

from
(YOLVVR(y, x) — () = Y(x)].

In words, we want to be able to infer that everything is i from the news that you are
i as long as all your R-predecessors are i. y is an R-predecessor of x if R(y, x). Notice
that there is no “case n = 0” clause in this more general form of induction: the premiss
we are going to use implies immediately that a thing with no R-predecessors must have
y. The expression “(Vy)(R(y,x) — ¢(y))” is called the induction hypothesis. The
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first line says that if the induction hypothesis is satisfied, then x is  too. Finally, the
inference we are trying to draw is this: if x has ¢ whenever the induction hypothesis is
satisfied, then everything has . When can we do this? We must try to identify some
condition on R that is equivalent to the assertion that this is a legitimate inference to
draw in general (i.e., for any predicate ).

Why should anyone want to draw such an inference? The antecedent says “x is ¢ as
long as all the immediate R-predecessors of x are ¢, and there are plenty of situations
where we wish to be able to argue in this way. Take R(x, y) to be “x is a parent of y”, and
then the inference from “children of blue-eyed parents have blue eyes” to “everyone
has blue eyes” is an instance of the rule schematised above. As it happens, this is a
case where the relation R in question does not satisfy the necessary condition, for it is
in fact the case that children of blue-eyed parents have blue eyes and yet not everyone
is blue-eyed.

To find what the magic ingredient is, let us fix the relation R that we are interested
in and suppose that the inference

(VYRY, x) = ¥(y) = Y(x)
(V)W (x)

has failed for some choice i of predicateE] Then we will see what this tells us about
R. To say that R has the magic ingredient all we have to do is stipulate that this failure
(whatever it is) cannot happen for any choice of .

Let y be some predicate for which the inference fails. Consider the set of all things
that are not . Let x be something with no R-predecessors. Then all R-predecessors of
x are i (vacuously!) and therefore x is i too. This tells us that if y is something that
is not i, then there must be some y’ such that R(y’,y) and y’ is not y either. If there
were not, y would be . This tells us that the collection of things that are not ¢ “has no
R-least member” in the sense that everything in that collection has an R-predecessor in
that collection.

Thus we can see that if induction fails over R, then there is a subset X of the carrier
set (to wit, the extension of the predicate for which induction fails) such that every
member of X has an R-predecessor in X.

One might have expected that, for the inference to be good, one would have had to
impose conditions on both R and . It is very striking that there should be a condition
on R alone that is enough by itself for this inference to be good for all . All we
have to do is exclude the possibility of the domain of R having any such pathological
subsets and we will have justified induction over R. Accordingly, we will attach great
importance to the following condition on R:

DEFINITION 5 R is well-founded iff every nonempty subset X of the domain of R has
an element x such that all the R-predecessors of x lie outside X. (x is an “R-minimal”
element of X.)

This definition comes with a health warning: it is easy to misremember. The only
reliable way to remember it correctly is to rerun in your mind the discussion we have

22This is a common way of representing arguments in logic: premisses above and conclusions below the
line.
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gone through: well-foundedness is precisely what one needs a relation R to have if
one is to be able to do induction over R. No more and no less. The definition is not
memorable, but it is reconstructible.

A well-ordering is a well-founded strict total order. (No well-founded relation can
be reflexive, so well-founded orders have to be of the strict flavour). Perhaps we should
have some examples of well-orderings. Obviously any finite total order will be a well-
order! What about infinite well-orderings? The only natural example of an infinite
well-ordering is one we have already seen—(IN, <pv). Notice that the real line (R, <R)
is not a well-ordering, for it is a simple matter to find sets of real numbers with no least
element, for example, the set of all real numbers strictly greater than 0. This set has a
lower bound all right, namely 0, but this lower bound is not a member of the set and so
cannot be the least member of it/

EXERCISE 58 One can define well-orderings as relations that are trichotomous and
well-founded.

EXERCISE 59

A pointwise product of two well-founded (strict) partial orders is a well-founded (strict)
partial order.

A lexicographic product of two well-founded (strict) partial orders is a well-founded
(strict) partial order.

It is not hard to see that for a finite binary structure to be well-founded it is necces-
sary and sufficient for it to have no loops. It’s clearly necessary that there should be no
loops, since a loop is manifestly a subset with no least element! Sufficiency is slightly
harder, but you should have no difficulty persuading yourself that if you have a subset
with no least element, then you can use it to build a loop.

With infinite structures, absence of loops remains a necessary condition of course,
but it is no longer sufficient: the negative integers with the relation {{n,n — 1) : n € Z7}
has no loops, but it is still not well-founded. With the help of an apparently minor
assumption we can show that this is the only badness that can happen in infinite ill-
founded structures.

This means that one can safely think of a wellfounded relation R as a relation that
“has no infinite descending chains”. That is to say, there is no sequence xp, x2, x3, . ..
where, for all n € IN, R(x;,41, Xn)-

The official definition of well-foundedness is a lot more unwieldy than the defini-
tion in terms of descending sequences. In consequence, it is very easy to misremember
it. A common mistake is to think that a relation is well-founded as long as its domain
has a minimal element, and to forget that every nonempty subset must have a minimal
element. The only context in which this definition makes any sense at all is induction,
and the only way to understand the definition or to reconstruct it is to remember that it
is cooked up precisely to justify induction; it serves no other purpose.

21t is important not to get confused (as many people do) by the fact that every set of reals has a greatest
lower bound. For example, {x € R : x > 0} has no least member, but it does have a greatest lower bound,
which is of course 0. Notice that 0 ¢ {x € R : x > O}!!
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THEOREM 3 R is a well-founded relation iff we can do well-founded induction over
the domain of R.

Proof: The left-to-right inference is immediate: the right-to-left inference is rather
more interesting.

What we have to do is use R-induction to prove that every subset of the domain of
R has an R-minimal element. But how can we do this by R-induction? The trick is to
prove by R-induction (“on x”) that every subset of the domain of R to which x belongs
contains an R-minimal element. Let us abbreviate this to “x is R-regular”.

Now let x( be such that every R-predecessor of it is R-regular, but such that it itself
is not R-regular. We will derive a contradiction. Then there is some X C dom(R) such
that xop € X and X has no R-minimal element. In particular, xy is not an R-minimal
element of X. So there must be xj s.t. R(xy,xp) and x; € X. But then x; is likewise
not R-regular. But by hypothesis everything R-related to xg was R-regular, which is a
contradiction.

Therefore everything in dom(R) is R-regular. Now to show that any subset X of
dom(R) is either empty or has an R-minimal element. If X is empty, we are all right. If
it is not, it has a member x. Now we have just shown by R-induction that x is R-regular,
so X has an R-minimal element as desired. [ |

Well-foundedness is a very important concept throughout Mathematics, but it is
usually spelled out only by logicians. (That is why you read it here first.) Although
the rhetoric of Mathematics usually presents Mathematics as a static edifice, math-
ematicians do in fact think dynamically, and this becomes apparent in mathematical
slang. Mathematicians often speak of constructions underlying proofs, and typically
for a proof to succeed it is necessary for the construction in question to terminate. This
need is most obvious in computer science, where one routinely has the task of showing
that a program is well-behaved in the sense that every run of it halts. Typically a pro-
gram has a main loop that it goes through a number (which one hopes will be finite!)
of times. The way to prove that it eventually halts is to find a parameter changed by
passage through the loop. There are various sorts of parameters that can play this rdle:

o The simplest illustration is the count variable to be found in many programs. A
count variable is not affected by any of the code within the loop other than the
decrement command that decrements it at the start (or on the end) of each pass.

o Sometimes the rdle is played by a program variable that is not explicitly decre-
mented at the start of each pass in the way a count variable, but is decremented
as a side-effect of what happens on each pass.

o In general we look for a parameter that need not be a program variable at all, but
merely some construct put together from program variables.

In all cases we want the parameter of interest to take values in a set X with a binary
relation R on it such that

1. at each pass through the loop the value of the parameter changes from its old
value v to a new value Vv’ such that (v,v") € R and
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2. any sequence vo, v; ...where for all n, (v, v,+1) € R, is finite.

(If you were expecting this sentence to end “is eventually constant”, look ahead to
section p-[103])

If we can do this, then we know that we can only make finitely many passes through
the loop, so the program will halt. Condition (2) is of course the descending-sequence
version of well-foundedness.

EXERCISE 60 Go back and look at exercise[9 again. This time do the following:

1. Show that the colour of the ball that remains is determined by b and w alone and
hence the algorithm determines a function of b and w.

2. * How can you be sure that the algorithm always terminates whatever you pluck
out of the bag at each stage? hint: think about the lexicographic order of IN?.

As we saw in section we can think of binary relations as digraphs, where
there is a vertex for each element of the domain and an edge from a to b if a is related
to b. This is a very natural thing to do in the present context, since we can also think
of the arrows as representing a possible step taken by the program in question. It also
gives us a convenient way of thinking about composition and transitive closures. a is
related to b by R" if there is a path of length n from a to b in the digraph picture of
R, and a is related to b by the transitive closure of R if there is a path from a to b at
all. It also makes it very easy to see that the transitive closure of a symmetric relation
is symmetric, and makes it obvious that every subset of a well-founded relation is
well-founded. This makes it easy to explain why pointwise products of well-founded
relations are well-founded.

Recursion on a well-founded relation

THEOREM 4 Let (X, R) be a well-founded structure and g : XXV — V be an arbitrary
(total) function. Then there is a unique total function f : X — V satisfying (Vx €

X)(f(x) = g(x, [y : RO, D)D)

Here V is the universe, so that when we say “g : X X V — V” we mean only that
we are not putting any constraints on what the values of g (or its second inputs) are to
be.

Let us have a brief cogitate about what this says, before we start trying to prove it.
It says that if R is wellfounded, then if we try to define a function f by saying;

“take the set of all the values of f for arguments R-related to x, and do g
to that set and x; call the result f(x)”

then we succeed in defining f and the result is unique.
Proof: The idea is very simple. We prove by R-induction that for every x € X there is
a unique function f; satisfying (Vy)(*R(y, x) — fi(y) = g, fx*{z : R(z,y)})). We then
argue that, if we take the union of the f,, the result will be a function, and this function
is the function we want.

|
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The following commutative diagram might help.

XXP(X) > XxV
A Ix x f*
1x XR G
v
X U » V

They haven’t been told
commutative diagrams

The function corresponding to the top left-right arrow, written “1xX f* is da.(fst a, f*“(snd a))”

means “leave the first component alone and translate the second under f”. It may be
that you won’t understand until you have finished digesting section[3.3.1/how R can be
thought of as a map. The map R is not the map from X into P(X) corresponding to R
(we saw in section [3.3.1 how every subset of X x X corresponds to a map X — P(X))
but instead the map that sends a pair (x, y) to {x, {z : R(z,¥)}). (V contains everything:
not just junk but sets of junk as well, so you don’t have to worry about whether values
of g are sets or junk.)

The reason this crops up here is that all rectypes—since they are generated by
functions—will have a sort of engendering relatioﬂ that is related to the functions
that generate the recursive datatype rather in the way that < is related to the successor
function. The engendering relation is that binary relation that holds between an object
x in the rectype and those objects “earlier” in the rectype out of which x was built.
Thus it holds between a formula and its subformula, between a natural number and
its predecessors and so on. Put formally, the (graph of the) engendering relation is the
transitive closure of the union of the (graphs of the) constructors.

The (graph of, extension of) the engendering relation is itself a rectype. For exam-
ple, <iv is the smallest set of ordered pairs containing all pairs (0, n) with n > 0 and

closed under the function that applies S to both elements of a pair (i.e., Ap.(S (fst p), S (snd p))).

The following triviality is important.
THEOREM 5 The engendering relation of a rectype is well-founded.

Proof: Let X be a subset of the rectype that has no minimal element in the sense
of <, the engendering relation. We then prove by structural induction (“on x”) that
(MO <x—-y¢X). ]

Theorem [5| means that we can always do well-founded induction over the engen-
dering relation. In this simplest case, IN, this well-founded induction is often called
strong induction or sometimes course of values induction, or complete induction.

24This is not standard terminology.
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A (standard) example is the proof that every natural number is a product of primes.
If every natural number below 7 is a product of primes then either 7 is a prime (which
is OK with us) or it is a product of two smaller numbers, each of which is a product of
primes by induction hypothesis.

Quite often arguments by well-founded induction are presented in contrapositive
form. When arguing by contraposition we first establish that, if there is a counterexam-
ple to what we are trying to prove, then there is an earlier counterexample. So the set
of counterexamples has no least element, and so by well-foundedness must be empty.
The standard example of this contrapositive style is due to Fermat, who proved that
x* +y* = 7% has no nontrivial solutions in IN. It uses the fact that all pythagorean
triples are of the form a? —b%, 2ab, a* + b? to show that for any solution to P y4 =72
there is one with smaller z. This gives us a proof by well-founded induction on <y that
there are no solutions at all. The details are fiddly, which is why it is not an exercise.

EXERCISE 61
A square can be dissected into finitely many squares all of different sizes (see Gardner,
131).

Why can a cube not be dissected into finitely many cubes all of different sizes?

EXERCISE 62 Define a binary relation < on IN by n <m iff n < m < 100.
Show that < is well-founded.
Consider the two functions f and g defined thus:
f(x)=1f x> 100 then (x—10) else f(f(x+ 11));
g(x)=1if x> 100 then (x—10) else 9I.
Prove that f and g are the same functions-in-extension.

You might like to google ‘McCarthy’s 91 function’.

3.4.7 An lustration from Game Theory

Before we leave recursion on a well-founded relation it might be helpful to have an
illustration. Discrete games in which all plays are finite and no draws are allowed
always have a winning strategy for one player or another. Let us prove this.

First we’d better say what a discrete game is. Let X be an arbitrary set. (X is
intended to be the set of moves.) 1lists(X) is the set of (finite) lists of members of
X. lists(X) has a natural tree structure, and indeed it is usually thought of as a tree.
Let G be a subset of 1ists(X) that is closed under shortening (i.e., initial segments
[sometimes called prefixes] of lists in G are also in G). Naturally ‘G’ is intended to
suggest ‘Game’. G is a subset of 1ists(X) rather than the whole of it because some
moves might not always be legal: P-K4 isn’t legal if there is a piece on K3! There is
a map v defined on the endpoints of G (sequences in G with no proper end-extensions
in G) taking values in the set {I, II}.
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tion here

Zachiri challenges my use of
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Players I and IT play a game by picking elements of X alternately, with I playing
first, with their choices constrained so that at each finite stage they have built a finite
sequence in G. The game ends when they reach an endpoint of G, at which point v tells
them who has won. For the purposes of illustration we will assume that all plays in G
are finite.

The connection with well-foundedness is that this condition is captured by saying
that the relation “s € G At € G and s is an end-extension of 7’ is well-founded. (If you
cannot work out which way round to read this, just note: one way round it is obviously
well-founded: what we mean is that it is well-founded the other way round too.)

Next we need the notion of even and odd positions. A sequence from X of even
length is a position at which it is I’s turn to move; a sequence from X of odd length is a
position at which it is II’s turn to move. Clearly, if s is an even position and even one
of its children (positions to which I can move at his next move) is labelled ‘I’, then
we can label s ‘I’ too, since I can win from there. Similarly, if s is an odd position
and all its children (positions to which IT can move at her next move) are labelled ‘I,
then s can be labelled ‘I’ too. This ratcheting up the upside-down tree of lists that
comprise G is a recursive definition of a labelling extending v that—because of well-
foundedness—is defined on the whole of G. Thus the empty sequence ends up being
labelled, and the lucky owner of the label has a winning strategy.

It is very important that no assumption has been made that X is finite, nor that there
is a finite bound on the length of lists in G. Notice also that these games are nothing to
do with the games of chapter 7}

EXERCISE 63 This question concerns (binary) games of length n.

For each set X € {0,1,2,3,4...2" — 1} we have a game G of length n; there are
two players I and 11, they play by writing down either 0 or 1, ad libitum, alternating
(with I starting), and carry on until n Os-or-1s have been written down (that’s why the
game is of length n); the result is a a string of n Os and 1s, which is to say, a binary
number k < 2". The rule is that T wins iff k € X.

How many (binary) games of length n are there? (Easy)
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Show that, for every n € IN, and for every game of length n, one of the two players
I and 11 must have a winning strategy.

Let 11, be the proportion of these games for which player 11 has a winning strat-
egy: what is the limit of 11, as n gets large?

Other definitions of well-foundedness

It is clearly an immediate consequence of our definition of well-foundedness that any
well-founded relation must be irreflexive. Nevertheless, one could define a relation
R C X x X to be well-founded if (VX' € X)(Ax € X")(Vx’ € X")(R(x',x) = x = X).
This definition of well-foundedness has a “descending chain” version too: “every R-
chain is eventually constant”. This definition is more appealing to some tastes. It
has the added advantage over the other definition that it distinguishes between a well-
ordering of the empty set (which will be the empty relation) and a well-ordering of
the singleton {x}, which will be the relation {(x, x)}. In contrast, according to the other
definition, the empty relation is not only a well-ordering of the empty set, but it is also
a well-ordering of the singleton {x}!

It is a miniexercise to verify that each concept of well-foundedness is definable in
terms of the other. The situation is rather like that with regard to strict and nonstrict
partial orders.

Structural induction again

We know that structural induction holds for rectypes, but we could deduce it from the
well-foundedness of the engendering relation if we wished. Take the example of IN.
Suppose we know that 0 has property F, and that whenever n has property F' so does
S (n). Then the set of naturals that are not F' (if there are any) will have no least member
and therefore, by well-foundedness of <y, will be empty.

This holds in general: we can deduce structural induction from the well-foundedness
of the engendering relation. For example, if we can prove (Yrn)(®(n)) by a well-founded
induction over <, then we can prove (Yn)(Ym <N n)(®(m)) by structural induction.

Other uses of well-foundedness

Intuitions of well-foundedness and failure of well-foundedness are deeply rooted in
common understandings of impossibilities. For example: it is probably not unduly
fanciful to claim that the song “There’s a hole in my bucket, dear Liza” captures the
important triviality that a process that eventually calls itself with its original parameters
will never terminate. The attraction of tricks like the ship-in-a-bottle seems to depend
on the illusion that two processes, each of which (apparently) cannot run until it has
successfully called the other, have nevertheless been successfully run. A similar intu-
ition is at work in the argument sometimes used by radical feminists to argue that they
can have no (nonsexist) surnames, because if they try to take their mother’s surname
instead of their fathers, then they are merely taking their grandfather’s surname, and so
on. Similarly one hears it argued that, since one cannot blame the person from whom
one catches a cold for being the agent of infection (for if one could, they in turn would

perhaps rearrange a bit
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be able to pass the blame on to whoever infected them, and the process would be ill-
founded™), so one cannot blame anyone at all. This argument is used by staff in STD
clinics to help their patients overcome guilt feelings about their afflictions.

The reader is invited to consider and discuss the following examples from the philo-
sophical literature.

1. “In every judgement, which we can form concerning probability, as well as con-
cerning knowledge, we ought always to correct the first judgement, deriv’d from
the nature of the object, by another judgement, deriv’d from the nature of the un-
derstanding. *Tis certain a man of solid sense and long experience ought to have,
and usually has, a greater assurance in his opinions, than one who is foolish and
ignorant, and that our sentiments have different degrees of authority, even with
ourselves, in proportion to the degrees of our reason and experience. In the man
of the best sense and longest experience, this authority is never entire; since even
such-a-one must be conscious of many errors in the past, and must still dread the
like for the future. Here then arises a new species of probability to correct and
regulate the first, and fix its just standard and proportion. As demonstration is
subject to the control of probability, so is probability liable to a new correction
by a reflex act of the mind, wherein the nature of our understanding, and our
reasoning from the first probability become our subjects.

“Having thus found in every probability, beside the original uncertainty inherent
in the subject, a new uncertainty deriv’d from the weakness of that faculty, which
judges, and having adjusted these two together, we are oblig’d by our reason to
add a new doubt deriv’d from the possibility of error in the estimation we make
of the truth and fidelity of our faculties. This is a doubt, which immediately
occurs to us, and of which, if we wou’d closely pursue our reason, we cannot
avoid giving a decision. But this decision, though it shou’d be favourable to
our preceding judgement, being founded only on probability, must weaken still
further our first evidence, and must itself be weaken’d by a fourth doubt of the
same kind and so ad infinitum,; till at last there remain nothing of the original
probability, however great we may suppose it to have been, and however small
the diminution by every new uncertainty. No finite object can subsist under a
decrease repeated in infinitum; and even the vastest quantity, which can enter
into human imagination, must in this manner be reduc’d to nothing.”

Hume (1739) Book I Part IV, Section 1, pp 5-6.

2. “Volitions we postulated to be that which makes actions voluntary, resolute [etc.].
But ... a thinker may ratiocinate resolutely, or imagine wickedly .... Some men-
tal processes then can, according to the theory, issue from volitions. So what
of the volitions themselves? Are they voluntary or involuntary acts of mind?
Clearly either answer leads to absurdities. If I cannot help willing to pull the
trigger, it would be absurd to describe my pulling it as voluntary. But if my vo-
lition to pull the trigger is voluntary, in the sense assumed by the theory, then it
must issue from a prior volition and from that another ad infinitum.”

25Unless one can blame Eve!
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Ryle (1983) pp. 65-6.

EXERCISE 64 Hume seems to be saying that if we multiply together infinitely many
numbers all between 0 and 1 then the product must be zero, but this is incorrect. Prove
Hume wrong by considering the product

]_[ @ - 1)/~

1<ielN

(of 3/4, 8/9, 15/16...).
Work out the values of this product for i = 2, 3,4 and infer a general formula. Then
prove your general formula correct by induction.
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Chapter 4

Some Elementary Number
Theory

Number Theory is a relatively recent development in Discrete Mathematics courses. It
became important because it’s the mathematics that underlies cryptography, and cryp-
tography became a Hot Topic for Computer Science really only with the advent of
the internet and the consequent urgent need for secure secret communication between
computers.

The usual ambition for a number theory slot in a level one Discrete Mathematics
course is coverage of the RSA algorithm for public-key cryptography. That is what we
shall aim for here!

But we’ll start with something a bit more basic and familiar which will launch us
in the right direction.

4.1 Different bases

Q: What goes “Pieces of nine! Pieces of nine!”?

A: A Parroty error.

Binary, octal, decimal and hexadecimal. They are all positional notations (poly-
nomial notations). The only difference between them is the base. “Positional”? The
meaning of a symbol depends very sensitively on where it appears in the formula. Does
‘1’ mean one or ten or one hundred? It depends where it is. We take the positional na-
ture of our decimal system for granted but we shouldn’t. Roman numerals are not
positional, or at least not in the same way (the ‘I’ in ‘IX’ doesn’t mean the same as the
‘T in XT’).

Familiarity with bases other than decimal and binary is not as important as it used
to be, because familiarity with octal and hexadecimal is useful primarily to assembly
language programmers, and the proportion of computer users who need skill in writing
assembly languages is shrinking all the time. (One of my students said to me “Assem-
bly language programmers are the proletariat of the information age”.)

109
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EXERCISE 65 There are tests for divisibility by 3, by 9, and by 11 in base 10; tests
for divisibility by 7 and by 9 in base 8, and tests for divisibility by 15 and by 17 in
hexadecimal. Do you know these tests? If you do know them, can you explain why they
work?

Euclid’s Proof that there are Infinitely many Primes

We start with an old chestnut. A prime number is a natural number with no factors
other than itself and 1. Euclid proved that there are infinitely many primes. His proof
is simplicity itself.

Suppose there are only finitely many primes, so that P, the set of all primes, is a
finite set. Then we can multiply them all together to get [1P, which will be a natural
number. Add 1 to obtain (ITP) + 1. This is a natural number too. Is it prime? It might
be, but even if it isn’t we know that none of its prime factors can belong to P. (After
all, no number can divide into both n and n + 1, can it!). Either way we know we have
a prime that is not in P. This contradiction proves that P wasn’t finite. ]

A historical subtlety: Euclid would not have described this line of reasoning as
showing that there are infinitely many primes; Greek mathematics did not see infinite
quantities in the same way we did. The Greeks would have taken this as a proof that
there is no largest prime.

4.2 Euclid’s Algorithm

The idea is to find the highest common factor of two natural numbers x and y. The key
fact is that anything that divides x and y divides x — y. This tells us that the HCF of
x and y is the same as the HCF of x and x — y (assuming x > y—otherwise it’s y and
y — x.) So, if I want to find HCF(x, y), I should start with two natural numbers x and
y and then, at each stage, subtract the smaller of the two numbers that I have from the
larger and replace the larger number with the result of that subtraction. For example,
the HCF of 39 and 231 is the same as the HCF of 39 and 231 — 39 = 192. So if I start
with 39 and 231, at the next stage I have 39 and 192. The HCF of 39 and 192 is the
same as the HCF of 39 and 192 — 39 = 153. And so on.

The HCEF of the pair-of-numbers-in-hand is a “loop invariant”, and when the
process stops with the two elements of the pair equal then we have found the HCF.

For example if we start with the pair (12, 18) we obtain (12, 6) and then (6, 6). If
we start with the pair (7,25) we obtain (7, 18), then (7, 11), then (7,4), (3,4), (1,3),
(2, 1) and finally (1, 1).

If the bigger number is much bigger than the smaller one then we could end up
subtracting the smaller one many times, and we would be able to save ourselves time
by conflating lots of these subtractions together by dividing the bigger number by the
smaller and keeping only the remainder. For example, that way—to take our (7, 25)
example, we would have missed out (7, 18) and (7, 11), and gone straight to (7, 4).

If we keep track of what we are doing when we run Euclid’s algorithm on two
natural numbers a and b (by keeping an eye on the quotients and the remainders at
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each division) we can not only find HCF(qa, b) (hereafter “(a, b)” as promised on page
HA9) but we can even find two integers x and y such that

ax — by = (a,b) 4.1)

I shall not explain how this can be done (since we don’t need it for our narrow task
of climbing Mount RSA) but if you want to look it up it is known as Bézout’s Lemma.

4.3 Modular Arithmetic

I mentioned in section [3.2.5] that there is another kind of number: integers mod p. It’s
easy to check that, for any natural number #n, the equivalence relation “x and y have the
same remainder on division by »” is a congruence relation for + and X.

That is to say since (if we care only about the remainder mod n of the answer) the
+ and X operation don’t notice if we replace an argument by some thing with the same
remainder mod 7, we can think of + and X as taking for their arguments the equivalence
classes under this relation, rather than the numbers themselves.

This gives us the integers mod n. How is it best to think of these numbers? Let’s
illustrate with integers mod 5. The equivalence classes are {0, 5, 10, ...}, {1,6,11,...},
{2,7,12,...},{3,8,13,.. .} and {4,9, 14, .. .}. Usually it’s easier to identify these equiv-
alence classes with their smallest members, so that—for example—the integers mod 5
is the set {0, 1,2, 3,4}, equipped with the multiplication and addition tables

x|0 123 4 +]0 1.2 3 4
0[0 000 0 0/0 1 2 3 4
1/01 23 4 1123 40
200 2 41 3 202 3 4 0 1
3(0 3 1 42 303 401 2
410 4 3 21 414 01 2 3

What sort of arithmetic do these numbers obey? It’s easy to check that addition
and multiplication are commutative as before, and that addition distributes over multi-
plication as usual. There is an additive unit, which is of course (the equivalence class
of) 0. Of course (the equivalence class of) 1 is a multiplicative unit. What equation
tells us now is that if # is a prime, then the integers mod »n have multiplicative inverses.
Consider equation [4.T] again, this time where a is a prime p

bx—py=1 4.2)

(The RHS is 1, because—since p is a prime—(p, b) = 1.)
But then we have

bx=py+1 4.3)

This says that bx is one more than a multiple of p. But this says precisely that (the
equivalence class of) x is a multiplicative inverse of (the equivalence class of) » mod p.



112 CHAPTER 4. SOME ELEMENTARY NUMBER THEORY

Actually we didn’t need p to be prime: all we really needed was that the right-hand
side of equation[4.3] the HCF, should be 1. So we can say:

Euclid’s algorithm tells us that g has a multiplicative inverse mod n
as long as n and a are coprime.

These equivalence classes are called integers mod n. One disconcerting difference
between them and all the other kinds of number you know is that they have no natural
order to them: no sense of magnitude. No “greater than”. However they do have a
circular order, like the numbers of a clock face. .. (recall exercise [28]).

4.3.1 Euler’s theorem
Euler’s totient function: ¢(n) is the size of the set
{m < n : m and n have no factors in common}.

Slightly more formally (remembering that we were warned on page9|that (x, y) would
sometimes mean “the highest common factor of x and y”):

o(n) :={m <n:(mn) =1} “4.4)

This set is sometimes called U,,, and its members are sometimes called units. The
important point for us at the moment is that members of U,, are precisely the numbers
that have multiplicative inverses mod 7.

Euler’s theorem says that . ..

THEOREM 6 If (a,n) = 1 (which is to say that a and n are co-prime) then a®™ = 1
(mod n)

So what happens if I multiply a by a member u of U,? u and a are both prime to n
so their product a - u is also prime to n and will be in U,, (or at least its remainder mod
n will be). So multiplying members of U,, by a simply moves them around. Indeed we
can say more that that. If u and v are two distinct members of U, then au and av are
also members of U, (we’ve seen this already) and are distinct. Let’s prove this.

Suppose
au = av 4.5)

a and n are coprime so a has a multiplicative inverse mod n, which we will write
a~!'. Multiply both sides of equationby a~! to obtain
Suppose
alau=alav 4.6)
which gives u = v.
So multiplication-by-a is just a permutation of U,,. So

]—[Unzl_[mi 4.7
€U,

because the two sets over which we are taking the products are one and the same set!
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Now

H a-i= (l_[ U,) - a®® (4.8)

€Uy,

We get this by collecting all the a’s together, and noting that there are ¢(n) of them.

But what do we get if we multiply together all the elements of U,? They all have
multiplicative inverses, and the multiplicative inverses are also in Uy, so they all cancel,
giving 1.

Modular exponentiation is easy

There is one consequence of this that we may as well minute now. Euler’s theorem
means that modular exponentiation is easy to calculate. What is 31:000.000.000 64
257? Well, ¢(257) = 256 so Euler’s theorem tells us that 3% = 1 mod 257. So any
power of 32%° is likewise equivalent to 1 mod 257. But 1,000, 000, 000 is a multiple of
256 so 31:000.000.000 j5 5 power of 3236 and therefore 3!:000:000.000 1164 257 must be 1!

That looks like a special case, because 256 divides into 1, 000, 000, 000.

But, had we wanted 3'-000:000.007 164 257 instead, we would only have had to
calculate 37 mod 257.

So, in general, how do we compute a’ mod n when (a,n) = 1?7 Well, as the above
illustration shows, all we need to worry about is the remainder of b on division by ¢(n).
So, no matter how huge b is, we never have to calculate a to the power of anything
bigger than ¢(n).

This tells us that modular exponentiation is no more difficult than division.

EXERCISE 66 The game of Sylver Coinage was invented by Conway, Berlekamp and
Guy. See [5)]. It is played by two players, I and 11, who move alternately, with 1
starting. They choose natural numbers greater than 1 and at each stage the player
whose turn it is to play must play a number that is not a sum of multiples of any of the
numbers chosen so far. The last player loses.

Notice that by ‘sum of multiples’ we mean ‘sum of positive multiples’. The give-
away is in the name: ‘Sylver Coinage’. What the players are doing is trying at each
stage to invent a new denomination of coin, one that is of a value that cannot be rep-
resented by assembling coins of the denominations invented so far. (There is a signif-
icance to the spelling of ‘silver’, but I do not think we need to concern ourselves with
that.)

Prove that no play of this game can go on forever.

The way to do this is to identify a parameter which is altered somehow by each
move. The set of values that this parameter can take is to have a well-founded relation
defined on it, and each move changes the value of the parameter to a new value related
to the old by the well-founded relation. The question for you is, what is this parameter?
and what is the well-founded relation?

(You should give a much more rigorous proof of this than of your answer to exercise
[61) on p. [I03} it is quite easy to persuade oneself that all plays are indeed finite as
claimed, but rather harder to present this intuition as reasoning about a well-founded
relation.)

More detail needed here?

Use inclusion-exclusion
show ¢ is multiplicative.

to
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4.4 The RSA algorithm

Let p and ¢ be two primes. Let mbe p - g. ¢(m) will be (p — 1)(g — 1).

Alice (for some reason she is always called ‘Alice’) wishes to arrange matters so
that people can send her messages that only she and the other party can read. She
arms herself with p, ¢ and m as above, and calculates ¢(m). Now comes the clever bit.
Alice chooses a number e (the ‘e’ is intended to suggest encryption exponent). This
encryption exponent must be prime to ¢(m); this is to ensure that it has a multiplicative
inverse mod ¢(m). This multiplicative inverse mod ¢(m) is the decryption exponent
and is written ‘d’.

Alice announces m and e to the world. (She does not divulge p or g or ¢(m)!). Any-
one who tries to calculate p or g or ¢(m) apparently has only one way in: to factorise
m. This seems to be very hard.

Now, if you wish to send Alice a message, you do the following

1. You code up your message as a natural number somehow, using ASCII perhaps.
Let a be this number. You want a to be less than m, so you might have to chop
up your message into blocks.

2. You then calculate a® (mod m), (this is why you want a < m!) and you send it to
Alice in clear as the spies say: in an open way that everyone can see.

(It’s worth remembering that (2) can be done quite easily: we established in section
that modular exponentiation can be done quickly.)

Alice receives the message. She decrypts it as follows. Let ¢ (for Thomas) be the
number she receives. She can calculate ¢ (mod m), since modular exponentiation is
easy.

What is #4 (mod m)? Well, ¢ is a® (mod m) so

 (mod m) 4.9)
is
(@) (mod m) (4.10)
which is
a®® (mod m). (4.11)

Now a?"™ is 1 (mod m), by Euler’s theorem. We know that d and e are multiplicative
inverses mod ¢(m) so we can think of de (mod ¢(m)) as ¢ - ¢(m) + 1 for some number
c. This makes a®@ (mod m) the same as

a® 1l (mod m) 4.12)
which is

a“?™ . g (mod m) (4.13)

(@®™)¢ . a (mod m) (4.14)
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which simplifies, since a®™ is 1 mod m, to
1€ - a (mod m)

which is of course
a (mod m)

which is the ASCII code for my message
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(4.15)

(4.16)

Do we want to use Inclusion-
exclusion to show that Euler’s
totient function is multiplica-
tive...?
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Chapter 5

Graph theory

The word ‘graph’ has many uses: there is the graph of a relation or function (a relation-
in-extension or function-in-extension) which is a set. There is also the graph of a
function, which is a picture (the graph of Ax.x? is a parabola drawn in the plane). If
you stop and think about this, you will see that these are really the same thing: the
second is merely a depiction—a visualisatioin—of the first. However, here we are
going to use the word in a different way.

A graph is a set of points (known as “vertices”) with lines joining them. Each pair
of vertices in the graph either has a line joining its two members together or it doesn’t.
The line between a and b (that might or might not be there) is called an edge. Normally
we don’t think of there being an edge joining a vertex to itelf. So a graph is a set of
vertices with a set of edges, each edge joining distinct vertices. Or it can be thought
of as a set of vertices with a symmetrical irreflexive relation. People in graph theory
usually think of a graph as a pair (V, E) of a set V of vertices and a set E of edges.

Graphs and digraphs are very useful data structures: lots of things can be rep-
resented using them. For example, binary relations can be represented by digraphs.
(Well, digraphs with loops). Decorated graphs are very useful not only for displaying
information but also for reasoning about it. For example we can represent a network
of depdts with pipelines between them by a decorated graph. Vertices represent dep0ts
and directed edges represent the pipelines. We can decorate the vertices with numbers
indicating the amount of stuff they can store, and decorate the edges with numbers in-
dicating the rate at which they can deliver stuff. Of course if the depots store more than
one commodity (and the pipelines correspondingly transmit more than one commodity)
then the vertices and edges will be decorated by more than one number. Or we might
prefer to have multisets of edges between vertices (one edge for each commodity).
Graphs with multiple edges in this manner are called multigraphs.

A complete graph on a set V of vertices is the graph containing all the possible
edges. The complement G of a graph G is the graph containing precisely the edges
missing from G. A graph is connected if for any two vertices in the graph there is a
path between them. If it’s not connected it is disconnected

EXERCISE 67 Prove that a graph and its complement cannot both be disconnected.
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Draw some pictures
Need some exercises here
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If you have already done some Logic and are happy with the method of resolution
you may wish to try proving this using resolution. Hint: If G and G are both discon-
nected then there are vertices a and b that are disconnected in G and vertices ¢ and d
that are disconnected in G. Invent propositional letters ac, bd and so on, which say that
there is an edge between a and c, between b and d and so on.

A decoration of a graph is a function from edges (or vertices) of the graph to
things.

We have only one section on Graph theory, so we haven’t got time or space do
anything in depth. The two results we do cover give a flavour of the kind of thing that
we prove and a taste of the methods of proof.

5.1 The Ford-Fulkerson theorem

We illustrate this kind of application of graph theory by exhibiting the Ford-Fulkerson
“Min cut max flow” theorem.

This theorem applies to directed graphs with a source and a sink, and which have
their edges decorated with whole numbers (“capacities’”). These things are also called
networks.

In the picture below A is the source and J is the sink

(Don’t worry about the numbers on the edges for the moment).

A cut in a digraph G = (V, E) is a set of edges which disconnectsf_] the graph. (“No
path from the source to the sink™) For example, the set {(K, J), (H, J)} containing the
twoedges K — Jand H — J is acuﬂ

Alternatively a cut is a partition of the set of vertices into two pieces, one of which
contains the source and the other contains the sink. These two ways of thinking about
cuts are related: If {A, B} is a partition of the set of vertices into two pieces, then the
edges of G that join things in A to things in B form a cut (in the other sense). Similarly

1 Zachiri sez i’m not using this word in the way i definied it earlier
2Yet ANOTHER use of round brackets! But this one isn’t standard.
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if we have a set of edges that disconnect the graph we can define a partition of the set
of vertices into two pieces. One piece contains those vertices you can reach from the
source without traversing any of the edges in the cut, and the other is the set of those
vertices from which you can reach the sink without traversing any of the edges in the
cut.

A graph might have its edges decorated with quantities. . . that could in principle be
anything. (That is why the datatype of graphs is so useful). The digraph above has had
its edges decorated by natural numbers, and it’s the kind of picture one would dream
up if one were trying to represent a network of oil pipelines: each edge is a pipeline
from one pumping station to the next, and the decoration of each edge (pipeline) tells
you the capacity of that edge.

Now a flow is an allocation of numbers to edges, where the number allocated to an
edge is no more than its decoration (can’t pump more oil than the pipeline will carry)
and the sum of the allocations to the edges going into a node equals the sum of the
allocations to the edges leaving the node. (oil doesn’t get lost or created at nodes).
There is an obvious notion of the value of a flow, namely the sum of the decorations on
the edges leaving the source (or, equivalently) the sum of the decorations on the edges
entering the sink.

The value of a cut in a decorated graph is the sum of the numbers in its decorations.

The “Max flow min cut” theorem now says that: in any network, the largest value
that a flow can have is the same as the smallest value of a cut. It’s obvious that any flow
must be less than the value of any cut. (Every flow must go through every cut). It’s not
at all obvious that the maximum flow you can propel through a network is the same as
the cheapest cut.

Let’s see what we can do. Suppose we are given a flow.

We are going to colour some vertices blue. (“Blue vertices are those you can in-
crease the flow to”.) We rule that the source is blue. Thereafter if x is blue and there
is an edge x — y used to less than its capacity then y is blue. It’s obvious what this
condition is doing, but there is a second clause which will require a bit of thought. If x
is blue and there is an edge y — x which is used more than O then y is blue.

Ask: is the sink blue?

If yes, then there is a path source — sink on which you can increase the flow. If the
only way in which we made a vertex blue was by finding that it was downstream from
a blue vertex along an underused edge it would be obvious that we would improve the
flow: just pump more along the trail of blue vertices joining the source to the sink. But
what is the second clause doing? What is the significance of the “backward” edges?

Suppose we have—in addition to the source and the sink—two vertices a, b both
blue. a is blue because there is an underused edge from the source — a; b is blue
because there is an edge b — a which is used (it doesn’t matter whether partially or
to full capacity), and the sink is blue because there is an underused edge to it from b.
How does this help? Easy! we can take some of the flow currently going from b to a
and divert it so that it goes to the sink instead. That way we have increased the flow.
This illustrates what we are supposed to do at each “backwards” edge.

If the sink is blue, we can increase the flow. So if we can’t increase the flow, the
sink is not blue. Let us consider this case. Think about the two-piece partition of the
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set of vertices into {{v : blue(v)},{v : —blue(v)}}. The piece containing all the blue
vertices contains the source and the piece containing the non-blue vertices contains the
sink, so this partition is a cut within the meaning of the act. It is now quite easy to see
that the capacity of this cut is precisely the capacity of the flow we started with. Every
molecule of oil starts at a blue vertex (namely, the source) and visits blue vertices until
it reaches a non-blue vertex, and once having reached a non-blue vertex it never looks
back: it never sees a blue vertex again. (say more about this?) So at some point it
traverses an edge from a blue vertex to a non-blue vertex—which is to say, it crosses
one of the edges of the cut. ]

5.2 Euler’s Theorem on graphs

An Eulerian circuit in a graph is a tour round the graph (a walk that takes you back to
where you started) that visits every vertex (possibly several times) but traverses each
edge precisely once. This is in contrast to a Hamiltonian circuit which visits each
vertex once. You will need to know about Hamiltonian circuits later when you do
complexity theory, but we will not go into any detail about them now, as they are quite
hard.

In contrast, there is a rather nice theorem about Eulerian circuits which we will
prove. Actually, before we jump in let’s decide to restrict ourselves to (finite) connected
graphs only, just to keep things simple. Something similar is true for arbitrary graphs
but we don’t care.

We first need the concept of the degree of a vertex. The degree of a vertex v is the
number of edges that meet at v.

THEOREM 7 A (finite) graph has an Eulerian circuit if and only if every vertex has
even degree.

One direction is fairly easy. Suppose there is such a circuit. Follow it round the
graph. If you are walking round the graph, and are not to get trapped at any vertex
v, then there must be a way out of v as well as a way in. (So you can, unlike Omar
Khayyam, always go out from a different door from that through which you came irﬂ)
Now—since you can only use each edge once—the edges at each vertex come in pairs,
from the point of view of your circuit. Each time you come in on an edge, you must
come out on a different edge, and this pairs up the edges that meet at v. Since you were
travelling on an Eulerian circuit, you have used up all the vertices, so every vertex is of
even degree.

The other direction is harder.

We are going to do a proof by wellfounded induction, and the wellfounded relation
we exploit is the subgraph relation. We say G| < G» if G is obtained from G, by
deleting edges and/or deleting disconnected vertices. We claim that < is wellfounded.

3“Myself when young did eagerly frequent
doctor and saint, and heard great argument
about it and about: but evermore
came out by the same door as in I went”.
Khayyam tr. Fitzgerald.
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We will prove by induction on < that every graph all of whose vertices have even
degree has an Eulerian circuit.

So let G be a finite graph all of whose vertices have even degree, and assume that,
for all G’ < G, if all vertices of G’ have even degree, then G’ has an Eulerian circuit.
We will establish that G has an Eulerian circuit too.

We will try to build a circuit. Start at any vertex, and walk around it as we did in
the other direction of the proof, in no particular order. (Caminante, no hay camino. El
camino se hace al andar said Antonio Machado). The only place at which you can ever
get stuck is the vertex where you started, and that is, indeed, where you will eventually
get stuck. You might of course be lucky and have visited all the vertices, in which case
we have an Eulerian circuit as desired. But suppose we don’t.

You do at least have a circuit, C. It might not visit all vertices. Now we delete from
G all the edges that belong to C. The graph G’ that remains is a proper subgraph G
all of whose vertices have even degree. G’ might actually be a union of disconnected
subgraphs (the components of G’) rather than one single subgraph, but this doesn’t
make much difference. By induction hypothesis this subgraph (or these subgraphs)
have Eulerian circuits.

What happens next is a bit hand-wavy, and you will have to draw some pictures.
Equip G’ (or each of its components) with an Eulerian circuit. Then you join up these
Eulerian circuits with the circuit C that we found in the previous paragraph to obtain
an Eulerian circuit for G. Hint: think about the vertices that lie both on the Eulerian
circuits for G’ (or its components) and on the circuit C. We start off by trying to think
of C as an Eulerian circuit for G, but we find that each of these vertices is an invitation
to take a détour round G or one of its components.
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Chapter 6

Confluence

A computer scientist’s life is well-supplied with situations in which there is an object
that has to be processed into a particular form, or turned into something else. The
processing involves performing certain actions, probably several different actions, and
each of them potentially more than once. For example when trying to convert a propo-
sitional formula into disjunctive normal form (see chapter[J) one exploits the identity

AANBVC)«— (ANB)VAAC(C))

every time one wants to “push” a ‘v’ “inside” a ‘A’.

For example, suppose one is trying to obtain a disjunctive normal form for

PA@V(rA(sVD))) 6.1)

This formula has two ‘A’s in it and they both have to be processed. One can attack
either of them first and it’s not going to make any difference to the formula one finally
obtains which way round one does it. If you attack the top (leftmost) ‘A’ first you get

PADV(pAT)A(sV D).
after which you attack the third ‘A’ to get

PAQV(pAFTAS)V(PATAL) (6.2)
Alternatively you could first attack the second ‘A’ in[6.1]and get

pPA(@V(rAs)V(rAD).
Now you can distribute the first ‘A’ over the two ‘V’s that follow it and end up with
as before.

A reduction or simplification process that sometimes allows you a choice of ways
to reduce the object-in-hand but which nevertheless guarantees that, when the music
stops and you have no more reductions to perform, then you will have the same thing
in your hand whichever choices you made en route, is said to be confluent. Clearly,

123
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when you are given a bundle of operations which you use for processing an input, it
does matter greatly whether or not these operations are confluent. Not all processes are
confluent and even when they are it can be hard to prove that they are.

Let’s have some examples.

e There is another confluent process one can do to propositional formulz like [6.1}
You might have a valuation in mind—a row of the truth-table—and have to decide
whether[6.1] comes out true or false under this valuation. Suppose we consider the row
of the truth-table in which p comes out false and all the others come out true. One might
notice that p being false makes the whole thing false, and that it makes no difference in
what order one computes the truth-values of other subformule. This is lazy evaluation
of which you will hear more. As long as your valuations are total functions then your
process of evaluating [the truth-value of] a complex formula will be confluent.

e Another example with which you will have recently (page[62) become acquainted
is the process of adding ordered pairs to a relation R to obtain #(R) the transitive closure
of R. You roll up your sleeves, and stick your hands into R and pull out two ordered
pairs p and p’. You put them both back of course, but if p happens to be (x,y) and
p’ happens to be (y, z) you also add the pair (x, z)—unless it’s already there of course.
Clearly the order in which you pull the various pairs out of R and put them back makes
no difference to the end result, the stage at which there are no further pairs to add co’s
they’re all there. This process of adding pairs to R to obtain #(R) is confluent.

o Notice that the ball-extraction process in Exercises[9]and [60]is confluent.

e Here is another pertinant example that I found on an example sheet. It’s actu-
ally an exercise on Rule Induction but it serves to make other points as well (as good
example sheet questions often do!)

Consider the set X of strings inductively defined over the alphabet {a, b} as the least
set which contain the string ab and

(i) whenever X contains a string au (u a string) also contains auu (so you
can double the number of bs that follow the a); and

(ii) whenever X contains a string abbbu (u a string) it also contains au (so
you can subtract 3 from the number of bs that follow the a).

It’s not hard to persuade yourself that the set of strings obtainable in this manner con-
sists precisely of those strings that are of the form a followed by n bs where n is of
the form 2% — 3m. Indeed that is what the exercise invites you to do. For example if
you want abbbbb you start with ab, double to obtain abb and again (and again) to get
abbbbbbbb and then subtract 3 to get abbbbb. But if i’d doubled a fourth time to get
ab'®—thereby overshooting you might think—i could still get to abbbbb in the end.
How? I subtract 3 twice to get ab'?, double again to get ab*° then subtract 3 five times
to get abbbbb. The process of obtaining a 2X — 3m string of bs by doubling the number
of bs and subtracting 3 from the number of bs is confluent. You might like to try, Dear
Reader, to show that

EXERCISE 68 One can obtain any number of the form 2K — 3m from any other number
of that form by repeatedly doubling and subtracting 3.
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It might feed usefully into your learning about Number Theory from earlier chapters.

Among other examples of confluent phenomena that you will encounter later are:
o the sequent rules for classical propositional logic are confluent, and
e 3-reduction in A-calculus is confluent.

But those are for later.

I would love to fit some of that “for later” material in here (as you can see, the
judgement was that confluence in worth a chapter all to itself) but I haven’t found a
way of making it into first-year material.

But we could end with a non-example. The process of compiling a guest list for
a party is not reliably confluent. At any stage in the compilation you may add to the
growing list anyone who is on speaking terms with everyone on the list so far. But
Arthur and Bertha might both be on speaking terms with everyone on the list-so-far but
not with each other! So you can invite either, but once you’ve invited one you cannot
then invite the other as well. No confluence.

This non-confluence of the process that adds invitees to obtain a party is related to
the fact that there is no notion of party closure the way there is of symmetric closure and
transitive closure. You can obtain the transitive closure of a relation by adding ordered
pairs to it according to an obvious rule, and this process is confluent. See section[3.2.6]
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Chapter 7

A Bit of Game Theory

Game theory is a huge ramshackle area of Mathematics. There are three more-or-less
completely disconnected branches of Mathematics all called ‘Game Theory’. There are
discrete games (e.g. chess), continuous games (lion vs antelope) among others. Here
we are going to be concerned primarily with the third kind, the kind usually considered
by economists. the kind represented by a matrix[ﬂ There are two players, called I (who
picks rows) and IT (who picks columns)—neither knowing the other’s choice at the
time they make their own.
In the game corresponding to the matrix

ap,0 do,1
ayp ail

when I has picked the ith row and II the jth column, IT must pay I the sum of
£a; . (a; j is of course the entry in the ith row and the jth column).

Games represented like this are zero-sum games. That is to say that the sum of the
payoffs to the two players is 0.

[This jargon “zero-sum” tells us at least that the payofts take values in a structure
with an additive inverse. In what follows it’s clear that the values are ordered, and I
think that we can take them to be an ordered abelian group, or perhaps a module over
an ordered field. Don’t worry if you don’t yet know the meanings of these expressions.]

(Nonzero sum games are represented by matrices where each entry is a pair of
numbers, being the payoffs to the two players. We will see those in section [7.1])

We start with zero-sum games. There is a theorem due to von Neumann and Mor-
genstern that says that there is an optimal strategy for both players. This theorem is
known as the Von Neumann and Morgenstern minimax theorem; see [].

What do we mean by an optimal strategyﬂ

First let’s get the concept of dominance out of the way. (The following example is
from [9])
Consider the following matrix.

In exercisewe consider games of the first kind.
2Better answer this!
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01 4 2
2 01 4
1 2 5 3
4 1 3 2

Compare the first and third rows. Notice that whatever ITI does, I is always better off
playing the third row than playing the first: in each column the entry in the third row
is bigger than the entry in the first row. We say the third row dominates the first row.
If T is playing sensibly he will never play the first row, so we can delete it. So we can
assume they are playing this next matrix.

A —_=
—_— N O

1
5
3

N W A

The second column—ifrom II’s point of view—dominates the fourth, so we delete the
fourth, since IT will never play it.

I S
— N O
W WL =

Then—from I’s point of view—the third row of the result dominates the first row, so
we can delete the first row, since I will never play it.

1 25
1 3

Finally the third column—from II’s point of view—is dominated by the second.
Thus I is never going to play either of the first two rows of the originL display, and IT
is never going to play either column 3 or column 4, in effect leaving us with

1 2
4 1

Something to think about. ... In the sequence we ran through above, the commen-
tator (us) acting on assumptions about the rationality of the two players, deleted rows
and columns alternately. That’s just the way it happened in this case; there could have
been a stage at which we could have deleted two (or more) rows (or columns). Suppose
now we are at a stage at which there is both a row and a column that can be deleted
... might it make any difference which one we delete first? This brings up the question
of of confluence from chapter[6] How confident can you be that we will always end up
with the same matrix once we have run out of rows and columns to delete? In general
proving confluence can be hard, but in this case it’s easy ... so easy, in fact, that I am
going to leave it to you to deal with.
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EXERCISE 69
Prove that the process of deleting dominated rows and columns is confluent.

You should be prepared to spend some time on this exercise, and really get it to come
out. (It took me a while!)

By this process of weeding we end up with a matrix in which no row dominates
any other row and no column dominates any other column.

What is the sensible thing to do? The maximin strategy is to choose that course
of action which give you the best result if things go well. For player I this strategy
tells him to play that row whose greatest element is the greatest among all the rows
available. That is to say: he is considering, for each row r, the best case b, that can
happen if he plays r. (b, is the biggest number in row r.) He then chooses r so as to
optimize (= maximise) b,. The trouble is, IT might not oblige by picking the column
in which that number appears! In contrast the minimax strategy is the strategy of
minimising the disasters that can befall you: acting so as to ensure that the worst-case
scenario in the course of action you have embarked on is less dire than the worst-case
scenarios that would have awaited you down other paths.

For player I this strategy tells him to play that row whose least element is the
greatest among all the rows available. That is to say: he is considering, for each row
r, the worst case w; that can happen if he plays r. (w, is the smallest number in row
r.) He then chooses r so as to optimize (= maximise) w,. That way he can be sure of
compelling IT to pay him at least the largest number that is a w, for some row r. Let
us call this value I*. IT has a corresponding (“dual”) strategy which is to consider,
for each column c, the largest number g. in that column. She then chooses ¢ so as to
optimise (= minimise) g.. That way she can be sure that she doesn’t have to pay out
more than the smallest number that is a g, for some column c. Let us call this quantity
IT".

We will minute the following fundamental fact:

I"< IT”

Proof:

Let A be the set {x : for some row r, x is the smallest thing in 7} and let B be the
set {y : for some column c, y is the largest thing in c¢}. We want to show that everything
in A is less than everything in B. Let x be an arbitrary member of A and y an arbitrary
member of B. x belongs to row 7, for some r, and y belongs to some column c. Clearly
at the point where » and ¢ meet we will find a number that is as big as the smallest
thing in » (namely x) but no bigger than the biggest thing in ¢ (namely y). So x < y.
But x and y were arbitrary, so this tells us that everything in A is less than or equal
to everything in B. So the biggest thing in A (which is I*) can be no bigger than the
smallest thing in B (namely IT*). [ |

So “The sup of the infs is less than or equal to the inf of the sups.” The point is
often made that this inequality is the same fact as the implication (Ix)(Vy)(F(x,y)) —
(Vy)(Jx)(F(x,y)). What is going on? If you think of the truth-values true and false
as ordered false < true then you will think that the truth-value of (Ax)(F(x,y)) is the
sup of the truth values of F(x,y) for all x, and the truth-value of (Vx)(F(x,y)) is the
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inf of the truth values of F(x,y) for all x. So the truth-value of (Ax)(Vy)(F(x,y)) is the
sup of the infs, and the truth-value of (Vy)(3x)(F(x,y)) is the inf of the sups. You may
recall the same ideas cropping up in connection with the max-cut-min-flow theorem.

The cases where I* = II* are games with saddle points. This is because such a
game has an element which is the largest in its column and the smallest in its row, and
we say of such an element that it is a saddle point.

Figure 7.1: A saddle

However there are lots of games—even 2 X 2 games—without saddle points, like

4 2
1 3

In this game I will play safe and choose the first row (the row with the largest
minimum), giving I* = 2 and IT will pick column 2 (with the smallest maximum)
giving IT* = 3.

Games lacking saddle points merit further analysis. It’s not clear what is the best
thing to do. We can make progress in understanding this situation if we ask instead a
different question. Instead of asking “What is the best thing to do in (a single play of)
this game?”, one asks: “If one is going to play a lot of plays of this game, what is the
best way to maximise your aggregate payoff?” This leads us to the notion of a mixed
strategy. A mixed strategy gives you an assignmnent of probabilities to rows (if you
are I) or columns (if you are IT) and you toss a suitably biased coin or roll a suitably
biased die to decide which to choose at each play of the game.

It is in this sense of best that the Minimax theorem tells us that both players have a
best strategy. For each player there is an optimal mixed strategy.

One way of thinking of this is to fill out the four points in the matrix above into a
surface, as in the picture. This surface is saddle-shaped, and has a saddle point. It is
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this saddle point that will be the solution to the game—in a sense which we must now
make clear.

THEOREM 8 In any nXm matrix game there is a (?unique?) mixed strategy for 1 (and
II) which is optimal in the sense that no other strategy guarantees as good an average

payoff.

For simplicity’s sake let us restrict ourselves to the case where the matrix is a two-
by-two matrix. We are also going to assume that neither row dominates the other and
neither column dominates the other. This not only restricts our analysis to the cases we
have not yet covered, but also coincidentally excludes from application of this analysis
cases that would cause it to do stupid things like divide by 0. So we are looking at

a b

c d
and let us assume without loss of generality that both a and d are bigger than both ¢
and b.

I and IT use mixed strategies, so that I picks row 1 with probability x and IT picks
column 1 with probability y. We can represent this by decorating the matrix thus:

ly 1-y
X a b
(1-x)|c d

Let P be the expected payoff for the pair of mixed strategies. That is to say, P is
the number of £ that IT will be paying I per game on average. (Remember P may be
negative!) P is the average of the matrix entries weighted in the proportion of the time
that I and IT choose each entry. To be precise, P is

axy +b(1 —y)x+cy(1 —x)+d(1 —y)(1 —x) (P)

Thus on average, if I picks row 1 a proportion x of the time and IT picks column 1 a
proportion y of the time, on average II will pay I £P. We can rearrange this expression
to

xya-b—-c+d)+y(c—d)+x(b—-d)+d. (7.1)

Now once we have fixed on constant values of a, b, ¢ and d the formula P above gives
us a function of two variables x and y. What we want is to find a value of x that makes
the dependence of P on y disappear. The coefficient of y in P is

x((@+d)—(c+Db))+(c—4d) (7.2)
For what value of x does equation [7.2]take the value 0? Clearly we must have

x((@a+d)—(c+Db)=(d-c) (7.3)
So if x takes the value

d-c

a0 -
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then P takes a value from which y has disappeared. This means that if I and IT play
repeatedly, with x playing row one with probability x*, it makes no difference what
player IT does.

This probably looks horrible, but it makes good sense. We are in a situation where
the two rows slope in different ways: row 1 slopes down (going from left to right) and
row 2 slopes upward. (d — ¢) is a measure of the slope of row 2. If it’s very nearly zero
then—if you want a strategy that produces the same result (on average) whatever IT is
doing—then you want to be playing row 2 most of the time. So you want x to be very
small. And it’s simple to check that the top line of x* is positive and smaller than the
bottom line (which is also positive) so x* is between 0 and 1.

Similarly we want to find a value for y that will make P’s dependency on x disap-
pear. You might like to try this by hand, pursuing calculations analogous to equations
[7.2]and[7.3] But we don’t actually need to. Substituting x* into P we get

(d—o)d—-b)
S a+d) - (b+c) 7.4)
which simplifies (try it!) to
(ad — cb) W)

(a+d)y—(b+c)
Which we call the value of the game.

Finally we need to check that

EXERCISE 70
I"<y<II®

(Remember that 1* is the larger of b and c, and that 11* is the smaller of a and d).

This resolves the unsatisfactory situation where there was a gap between the best I
could get for himself and the worst that IT had to endure. Using the mixed strategy IT
can ensure that nothing worse than v happens, and I can ensure that he does at least do
as well as v. v is, in some sense, a solution to the game.

It is possible to find an optimal mixed strategy even if there are more than two rows
or columns, but we have to use some slightly trickier mathematics to do it, and we have
no space for that here. Instead we close with a brief glimpse of some very mysterious
and complex generalisations, which are susceptible of wide application.

7.1 Bimatrix games

In these games the second components are the payoffs to the player picking the columns
(player II); the first components are the payoffs to the player picking the rows (player
I).

These games are deep and important objects, and there is a huge literature on them.
The most famous game of this kind is:
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Figure 7.2: The Prisoners’ Dilemma

cooperate  defect
(3,3) (1,4)  cooperate
41 (2,2)*  defect

The Prisoners’ Dilemma is a game played by two players, both of them prisoners at
the mercy of the Evil Gaoler. You have to choose between shopping your accomplice
(the other player) and staying solid. The game is symmetrical: the options open to the
two players are the same. If you shop your accomplice you get a new identity and a
case of whisky (that’s 4) and your accomplice is fed to crocodiles (that’s 1). If you both
shop each other, your gaolers treat you with contempt and merely shoot you (that’s 2).
If you both stand firm and loyal you escape with your lives and your freedom (that’s
3).

It is almost impossible to overestimate the importance of this discovery of the Pris-
oners’ Dilemma. The number of real-life situations of which it is a plausible formal-
isation is astonishing. This makes it not merely intruiging but important. However,
since the fundamental concepts of game theory are not entirely clear, our analysis of
the Prisoners’ Dilemma game is not as applicable as one would like. An old problem
in Ethics (I think the Greeks wrote about it) is the problem of inferring individual obli-
gation from collective obligation. Clearly all nations are under a collective obligation
to disarm themselves of their nuclear weapons. But—equally clearly—one does not
infer from this that each and every nation is obliged to disarm unilaterally. In contrast,
in the logically very similar situation of the problem posed by global warming and the
need to cut carbon emissions, there is a much stronger inclination to argue that individ-
ual countries are under individual obligations to cut their emissions. This discrepancy
arises because it is not entirely clear how to draw correctly the parallel between the
real-life situation and the formal version.

A subtly different game is Chicken:

Figure 7.3: Chicken

blink don’t blink
(3,3 @4 blink
4,2 (1,1 don’t blink

Chicken is played by two car drivers approaching each other at high speed on a
single carriageway. The one who veers off the road to avoid getting killed loses a lot
of cred and probably writes off the car (that’s 2). Still, it beats getting killed (that’s 1).
If you both veer off the road you still write off the car but you don’t lose as much cred
(that’s 3). If you stay on the road and the other player veers off, then you gain a great
deal of cred—and you keep the car (that’s 4).
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Can one say anything sensible about these games? Well, there are always these
things called Nash equilibria. (The Nash equilibria are the starred entries above).
What is a Nash equilibrium? It’s a pair of a row R and a column C such that I cannot
do better than R—given that IT is going to play C—and II cannot do better than C—
given that I is going to choose R.

On the face of it there may be lots of Nash equilibria. We can use a fixed point
theorem to show that—if we allow mixed strategies—there must be at least one. I'm
not planning to prove that all bimatrix games have Nash equilibria.

And yes, it is the Nash of the Beautiful Mind, who died in a car crash on the fourth
day of the ENG v NZ Lord’s Test 2015.

7.1.1 Symmetrical Bimatrix Games

Consider bimatrix games where the ordered pair at a; ; is the flip of the ordered pair at
aj; and the ordered pairs on the main diagonal have two identical omponents. What’s
this ‘main diagonal’?—doesn’t make sense! After all, we could have written the
columns in any order and we could have written the rows in any order, and that would
jumble things up terribly. Well, it does if there is a way of identifying rows with
columns: and this will happen if, for example, the options available to I are the same
as those available to II. This is the case in the prisoners’ dilemma for example—where
we can name one row (column) ‘cooperate’ and the other ‘defect’ and in chicken, where
one row (column) is ‘blink’ and the other is ‘don’t blink’.

In these circumstances one can once again represent the game by a matrix (not a
bimatrix, two superimposed matrices)—even though the game is not zerosum—but in
this case the entry in a; ; represents that payoff to strategy i played against strategy j,
and the payofT to strategy j played against strategy i is to be found in a;.

It turns out that this special case has a biological motivation. (I think this is right)
an evolutionarily stable strategy is a (possibly mixed) strategy o such that (o, o) is
an equilibrium pair.

They write E(p, q) for the payoff to someone playing p against someone playing g.

The Bishop-Cannings theorem states that if / is a mixed strategy then E(p,[) =
E(1,1) for all p in the support of I.
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Appendices

8.1 Associativity of ‘<’ ...?!

Some of my students have been asking me about this notational point.

A binary relation-in-extension (over a set X) is a set of ordered pairs (of members
of X) which is to say, members of X X X, sometimes written ‘X2’ to save space.

A ternary relation-in-extension over X is an ordered triple of members of X, which
is to say, a member of ... X X X X X.

Now this notation ‘X x X X X’ for the set of ordered triples of members of X
invites confusion, co’s it looks as if it is a shorthand for one of ‘(X X X) X X’ or
‘X X (X x X)* obtained by eliding the brackets. But it’s only safe to elide the brackets
if the X operation is associative, and it’s pretty clear that it isn’t associative.

Notice that the notation ‘X3’ for the set of ordered triples of members of X does not
raise any alarm bells in the way that ‘X X X x X’ does. You just take X > X> to be a
constructor that sends X to the set of ordered triples over X, and the notation with the
exponent ‘3’ is not a composite notation built up from a binary infix operator the way
XX XXX is.

The best picture to have is that, for each n, you have a polymorphic datatype of
n-tuples (over X, that’s where the polymorphism comes from) and each of these con-
structors (for each n) is independent of the other. This is actually the way ML does
it.

Triples are not built up from pairs. If you examine a triple of members of X you
don’t discover on close inspection that it’s actually a pair of an X and a pair of Xs—
nothing like that. So ‘X x X x X is syntactic sugar for X>; the appearance of the
cartesian-product-forming operator ‘X’ within ‘X X X x X’ is entirely spurious; it’s not
really there.

So: why did we not just write ‘X3 all along? After all, it’s shorter! Because our
three factors might not all be the same! The example you gave me from Prof Pitts’
notes is a very good one. For a NFA the transition relation is a three-place relation that
holds between a state ¢, an input character ¢ and another state ¢, and it says that if the
machine is in state ¢ and it reads character ¢ then ¢’ is one of the states it might go to.

135
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Perfectly respectable three-place relation, a set of ordered triples. The set of ordered
triples that it is a subset of is the set of those triples whose component is in Q, whose
second component is in £ and whose third component is in Q. How are we to notate
this set of ordered triples? We need a notation that includes the three symbols X’, ‘Q’
and ‘Y’ in that order. The obvious thing to try is ‘Q X £ X @’, and that is in practice
what we do. The trouble is that this notation appears to allude to the binary constructor
x when actually that binary constructor is not in play at all; what we have is a ternary
constructor.

So, strictly speaking, ‘Q x £ x Q’ should be syntactic sugar for something, just
as ‘X x X x X’ is syntactic sugar for X>. But there is no notation for which it is
syntactic sugar! I suppose we could invent one—it would be something along the lines
of ‘prod(Q, X, Q)’—but (as far as i know) nobody has. The general feeling is evidently
that the way users can be wrong-footed by things like A X A X A into thinking that X is
associative is a price worth paying. Annoying for suspicious beginners admittedly, but
simpler all round in the long run.

OK, so in principle the ordered-triple constructor is just another constructor, anal-
ogous to the pair constructor but not relying on it at all. However if you start to think
about how you implement these constructors on a restricted set of gadgets you discover
some useful connections. If you just have pairing then you can implement n-tuples us-
ing just ordered pairs. You implement the ordered (n + 1)-tuple xg - - - x,, as the ordered
pair of xo and the ordered n-tuple xi ---x,. On this account X> is implemented as
X x (X x X)and X% is implemented as X X (X X (X X X)).

s sfe sfe s she she sk she sk sk ske sk ske sk st sk sk sk sk sie sk sie ste sfe st ste sfe sfe s sfe sfe s she sfe she she sk sk sk sk sk koo siokoRoRoR ok

However i can imagine that you mightn’t want to give up on thoughts of associativ-
ity of x altogether. A X (B x C) is not the same thing as (A X B) X C: the first component
of a member of A X (B x C) is always a member of A; the first component of a member
of (Ax B)xC) is always an ordered pair of member of A with a member of B. It doesn’t
help if you make them all the same: A X (A X A) is not the same as (A X A) X A—and
for the same reasons. However (A X B) X C is naturally isomorphic to A X (B x C).
What do i mean by that? Consider the function that takes a pair ({a, b), c) and gives
back {a, (b, c)). That is a bijection between (A X B) X C and A X (B x C). It’s “natural”
in the sense that i don’t have to know what A, B and C are in order to know that this
rearranging of brackets will work. It’s in virtue of this (“natural”!) bijection that we
know that multiplication of cardinals is associative.
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Glossary

9.1 Elementary Logic

This section is not going to cover baby logic—there are plenty of books about that
already. (Try www.dpmms.cam.ac.uk/~tf/chchlectures.pdf) This rehearses and
collects the terminology.

Conditional, antecedent, consequent, affirming, modus ponens.

tautology

CNF DNF

variables, free and bound.
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More Exercises

Starred exercises have model answers. The following relevant tripos questions also
have model answers in the chapter of answers.
Maths tripos questions: 1995:5:4X,

EXERCISE 71 An old examination question

Let R be a relation on a set X. Define the reflexive, symmetric and transitive clo-
sures r(R), s(R) and t(R) of R. Prove that

l. Rol =R

2. (RUI) =1 u(UR") forn > 1
i<n
3. tr(R) = rt(R).
Show also that st(R) C ts(R).
If X=WNand R =1U{{x,y) : y = px for some prime p} describe st(R) and ts(R).

Comp Sci tripos questions: 1990:1:9, 1990:1:11, 1993:11:11, 1994:10:11, 1996:1:8 Local info: delete

10.1 Exercises on (binary) relations

1. (Do not do more than a sample of the bits of this question: if you are making any
mistakes they will always be the same mistakes, and there is no point in making
the discovery more than once!)

(a) Given the operations of composition and union, express the following rela-
tions in terms of brother-of, sister-of, father-of, mother-of, son-of, daughter-
of. (You may use your answers to earlier questions in answering later ques-
tions.)

139
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parent-of
uncle-of
aunt-of
nephew-of
niece-of
grandmother-of
grandfather-of
first-cousin-of

You can also express some of the relations in the original list in terms of
others by means of composition and union. Do so.

(b) Do the same to include all the in-law and step relations, by adding spouse-
of to the original list. This time you may use intersection and complement
as well.

(c) If the formalisation of “x is a parent of y” is
“father-of(x, y) V mother-of(x, y)”

(i.e., use logical connectives not U and N. .. you will also need to use quan-
tifiers) what are the formalisations of the other relations in the preceding
list? And for a bonus point, formalise “x is the double cousin of y”E] Hint:
might need new variables!

(d) Using the above gadgetry, plus set inclusion (“C”) formalise

Every mother is a parent;

The enemy of [my] enemy is [my] friend;
The enemy of my friend is my enemys;
The friend of my enemy is my enemys;
No friend is an enemy.

2. * Let R be a relation on A. Recall that »(R), s(R) and t(R) are the reflexive,

symmetric and transitive closure operations respectively.

(a) Prove that rs(R) = sr(R);

(b) Does R transitive imply s(R) transitive?

(c) Prove that r#(R) = tr(R) and st(R) C ts(R);

(d) If R is symmetrical must the transitive closure of R be symmetrical?
Prove or give a counterexample.

. Think of a binary relation R, and of its graph, which will be a directed graph

(V,E). On any directed graph we can define a relation “I can get from vertex x
to vertex y by following directed edges” which is certainly transitive, and we can
pretend it is reflexive because after all we can get from a vertex to itself by just
doing nothing at all. Do this to our graph (V, E), and call the resulting relation
S. How do we describe S in terms of R?

"Two people are double cousins if they are first-cousins in two different ways.
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4. * Show that—at least if (Vx)(y)((x,y) € R—Ro R 'isa fuzzy. What about
RN R™'? What about RU R™!?

5. * Given any relation R there is a least 7 2 R such that T is transitive, and a least
S 2 R such that § is symmetrical, namely the transitive and symmetric closures
of R. Must there also be a unique maximal (aka maximum) S C R such that S
is transitive? And must there be a unique maximal (maximum) S C R such that
S is symmetrical? The answer to one of these last two questions is ‘yes’: find a
cute formulation.

6. What are the transitive closures of the following relations on IN?

(a) {€0,1),(1,2),¢2,3),...}:ie,{{n,n+1): n e N},
() {(n,2n) : n € N}

7. What is an antichain? Let D,, be the poset whose elements are the divisors of n,
with x < y if x|y. Find a maximum antichain in D;1¢.

8. Consider the set [1, 7] € IN of natural numbers from 1 up to » inclusive.

How many partial orders < are there on this set with the property that
(Vxy2)z<x€y€x—z<y)?

9. * Show that R C § implies R™' c §~! ‘monotone’ re-used

) ) . ) . There’s a question missing here
10. (a) The purpose of this question was to make a point about lexicographic or-

ders: in this case, about the order on IN X IN. Check that you have really
understood what is going on by rewriting the question for the scenario in
which the balls come in three colours . .. k colours.

(b) (abstruse: not for a first pass) Extend the product order of IN x IN by stip-
ulating that (x,y) < (y,S(x)) and taking the reflexive transitive closure.
Write the result <g. Is <p a total order? Define < between finite subsets of
INXINby X <Yiff (Vx € X)(Ay € Y)(x <g y). Is < wellfounded?

11. Let K = Ax.(1y.x). Evaluate K8, K(K8) and (KK)8.

12. What is a wellordering? What is an initial segment of an ordering? (If you
don’t know what a chain in a poset is you probably won’t know what an initial
segment in a total ordering is either.) If (X, <) is a total order, then a suborder of
it is a subset X’ C X ordered by the obvious restriction of <. Prove that (X, <)
is a wellordering if every suborder of it is isomorphic to an initial segment of it.
(The converse is also true but involves more work.)

13. * Show that U R" is the smallest transitive relation extending R.
nelN

14. t(R) is the transitive closure of RE]

2Misleadingly people often use the expression “transitive closure of R” to mean the transitive reflexive
closure of R.
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(a) * Give an example of a relation R on a set of size n for which #(R) #
R'UR*U...UR",

(b) Give an example of a set and a relation on that set for which #(R) # R' U
R% U ...UR" for any finite n.

(c) If R is reflexive then #(R) is clearly the reflexive transitive closure of R
(often called just the transitive closure): if you are not happy about this,
attempt to write out a proof.

(d) Find an example of an irreflexive relation R on a set such that #(R) is indeed
the reflexive transitive closure of R.

Think about IN and S (the successor function on IN).
What is the transitive closure of S ?
For n,m € IN when do we have (S")* C (§™)*?

When do we have (S" U (S Lusmu ™) = us—1H*

* Show that the smallest equivalence relation containing the two equivalence
relations R and S is t{(RU S).

If R € X X X is a fuzzy on X, is there a largest equivalence relation on X that
C R? Is there a smallest equivalence relation on X that 2 R?

(a) Suppose that for each n € IN, R, is a transitive relation on a (presumably

infinite) set X. Suppose further that for all n, R,, € R;+1. Let R, be U R,,

nelN
the union of all the R,,.

Prove that R, is also transitive.

(b) Give an example to show that the union of two transitive relations is not
always transitive.

For all the following choices of allegations, prove the strongest of the correct
options; explain why the other correct options are not best possible and find
counterexample to the incorrect ones. If you find you are doing them with con-
summate ease, break off and do something else instead.

(a) Anintersection of a fuzzy and an equivalence relation is (i) an equivalence
relation (ii) a fuzzy (ii) neither

(b) A union of a fuzzy and an equivalence relation is (i) an equivalence relation
(ii) a fuzzy (iii) neither

(c) Anintersection of two fuzzies is (i) an equivalence relation (ii) a fuzzy (iii)
neither

(d) An intersection of the complement of a fuzzy and an equivalence relation
is (i) an equivalence relation (ii) a fuzzy (iii) neither

(e) An intersection of a fuzzy and the complement of an equivalence relation
is (i) an equivalence relation (ii) a fuzzy (iii) neither
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(f) A union of a fuzzy and the complement of an equivalence relation is (i) an
equivalence relation (ii) a fuzzy (iii) neither

(g) An intersection of a fuzzy and the complement of a fuzzy is (i) an equiva-
lence relation (ii) a fuzzy (iii) neither

(h) An intersection of the complement of a fuzzy and the complement of an
equivalence relation is (i) an equivalence relation (ii) a fuzzy (iii) neither

(i) A union of two fuzzies is (i) an equivalence relation (ii) a fuzzy (iii) neither.

A PER (‘Partial Equivalence Relation’) is a binary relation that is symmetrical
and transitive. Is the complement of a PER a fuzzy? Is the complement of a
fuzzy a PER? In each case, if it is false, find sensible conditions to put on the
antecedents that would make it true.

Let < be a transitive relation on a set X. Consider the two relations
DL : xeX)AeX)A(x<y)A(y<x)}and
[ ey (xeX)AGeX) AKX LAY £}

(a) Are either of these fuzzies, or equivalence relations?

(b) If one of these isn’t a fuzzy, but “ought to be”, what was the correct defini-
tion?

(c) If the relation in (i) was an equivalence relation, what sort of relation does
< induce on the equivalence classes? Why is the result a mess? What extra
condition or conditions should i have put on < to start with to prevent this
mess occurring?

(d) If (the correct definition of) relation (ii) is an equivalence relation, what can
we say about the quotient?

Explain how to find the two greatest numbers from a set of » numbers by making
at most n + | log, n] — 2 comparisons. Can it be done with fewer? How about the
3 biggest numbers? The k biggest numbers, for other values of k? What happens
to your answer as k gets bigger and bigger and approaches n?

* Show that the largest and smallest elements of a totally ordered set with n
elements can be found with [3n/2] — 1 comparisons if # is odd, and 3n/2 — 2
comparisons if n is even.

Construct natural bijections between the following pairs of sets. (For the pur-
poses of this exercise a natural map is (expressed by) a closed A-term; a natural
bijection is (expressed by) a closed A term (L, say) with an inverse L’. That is
to say, both compose(L, L") and compose(L’, L) simplify to Ax.x. Alternatively,
a natural function is one you can write an ML program for. If you want to think
more about what a natural bijection is, look at your earlier answers to the ques-
tions: If A is a set with n members, how many symmetrical relations are there on
A, and how many antisymmetrical trichotomous relations are there on A? The
answers to these two questions are the same, but there doesn’t seem to be any
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‘obvious’ or ‘natural’ bijection between the set of symmetrical relations on A and
the set of antisymmetrical trichotomous relations on A. You will need to assume
the existence of primitive pairing and unpairing functions which you might want
to write as ‘fst’, ‘snd’ and (x, y).)

A—-> (B—-C)and B— (A - C);
AXBand BX A;
A—->(BxC)and(A - B)X(A - C);
(AXB)—> Cand A — (B - C);

You may wish to try the following pairs too, but only once you have done the ML
machinery for disjoint unions of types:

A->C)x(B—->C)and(A+B) —> C;
A+ (B+C)and (A+ B)+C;
AX(B+C)and(AXB)+(AXxC(C).

Let Z be a set with only one element. Find a natural bijection between (Y + Z)X
and the set of partial functions from X to Y.

Find natural functions{?]

(i) from A into B — A;

(ii) from A into (A — B) — B;

(iii) from A - (B - C)into (A —» B) —» (A — CO);

(iv) from (((A — B) — B) — B) into A — B. (This one is
hard: you will need your answer to (ii))

(v) from (A — B) —» Ainto (A —» B) — B.

(it might help to think of these as invitations to write ML code of types a -> 'b ->

a > (Ca -> 'b) -> ’aetc.)

What is a fixed point? What is a fixpoint combinator? Let T be your answer
to the last bit of the preceding question. (So T is a natural function from (A —
B) — Ainto (A — B) — B.) Show that something is a fixpoint combinator iff it
is a fixed point for 7.

Let P = 1G.(1g.G(gg))(1g.G(gg)). Show that P is a fixpoint combinator. Why is
it not typed? After all, T was typed!

Give ML code for a higher-order function metafact such that any fixed point
for metafact will turn out to be good old fact. Do the same for something te-
dious like £ibo. Delight your class tutor by finding, for other recursively defined
functions, higher-order functions for which they are fixed points.

Prove that 2" — 1 moves are sufficient to solve the Towers of Hanoi problem.

3These do not have to be either injective or surjective. They only have to be (total) functions.

a?
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The fellows of Porterhouse ring each other up every sunday to catch up on the
last week’s gossip. Each fellow passes on (in all subsequent calls that morning)
all the gossip (s)he has picked up, so there is no need for each fellow to ring
every other fellow directly. How many calls are needed for every fellow to have
acquired every other fellow’s gossip?

A triomino is an L-shaped pattern made from three square tiles. A 2% x 2¥ chess-
board, whose squares are the same size as the tiles, has one of its squares painted
puce. Show that the chessboard can be covered with triominoes so that only the
puce square is exposed.

Is it possible to tile a standard (8 x 8) chessboard with thirty-one 2 X 1 rectangles
(dominoes) to leave two diagonally opposite corner squares uncovered?

* Let k € IN and let F be a family of finite sets closed under symmetric differ-
ence, such that each set in F has at most k elements. How big is | #? How big
is F?

Fix a set X. If my and 7, are partitions of it, we say m; refines m, if every piece
of 7y is a subset of a piece of m,. What properties from the usual catalogue
(transitivity, symmetry, etc.) does this relation between partitions of X have?

Let X be a set, and R the refinement relation on partitions of X. Let I1(X) be the
set of partitions. Why is it obvious that in general the structure (I1(X), R) is not
a boolean algebra?

Boolean Algebra

1.

2.

3.

Write down the truth tables for the 16 functions {T, 1}*> — {7, L}, and give them
sensible names (such as A, V, —, NOR, NAND). Which of these functions splat
that you have identified have the feature that if p splat g and p both hold, then
so does g? Why are we interested in only one of them?

(a) Show that NAND and NOR cannot be constructed by using A and V and —
alone

(b) Show that none of NAND, NOR, —, A, V can be constructed by using XOR
alone. (hard)

(¢c) Show that XOR and «— and — cannot be defined from Vv and A alone.
(d) (for enthusiasts only) Can A and V be defined in terms of «— and —?

(e) (for enthusiasts only) Show that all connectives can be defined in terms of
XOR and —.

(f) A monotone propositional function is one that will output 1 if all its inputs
are 1. Show that no nonmonotone function can be defined in terms of any
number of monotone functions. (easy)

What is a boolean algebra? Find a natural partial order on the set of functions
from question [I] that makes them into a boolean algebra.
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4. How many truth-functions of three propositional letters are there? Of four? Of
n?

5. Prove that P([0, 2]) and {7, L} are isomorphic posets.

Generating functions etc.

1. Let u, be the number of strings in {0, 1,2}" with no two consecutive 1’s. Show
Up = 2up_1 + 2up_o, and deduce u, = ﬁ[(l + V32 - (1 = V32

2. Let m, be the number of ways to obtain the product of n numbers by bracketing.
(For example, ((ab)c)d, (ab)(cd), (a(bc))d, a((bc)d) and a(b(cd)) show my = 5.)

Prove m,, = % 2:__12 .

3. Prove that IN XN, with the lexicographical order, is well-ordered, and that IN X IN
with the product order has no infinite antichain.

4. Say n € m (where n,m € IN) if the nth bit of m is 1. n C m is defined in terms
of this in the obvious way. Apparently n C m iff (”;l) is odd, but i have forgotten
how to prove it!

5. Let p, be the number of ways to add n — 3 non-crossing diagonals to a polygon
with 7 sides, thus splitting it into n — 2 triangles. So p3 = 1, p4 = 2, p5 =5, and
we define py = 1. Show that

Pn = P2Pn-1 + P3pp-2+ ...+ pp1p2 for n>3,
6. and hence evaluate p,,.

7. A question on generating functions which will keep you out of mischief for an
entire afternoon!E] Let A, be the number of ways of ordering the numbers 1 to n
such that each number is either bigger than (or smaller than) both its neighbours.
(“zigzag permutations”). Find a recurrence relation for (A,/2). (Hint: Think
about how many zigzag permutations of [1,n] there are where n appears in the
rth place.) Further hints: you will have to divide the nth term by n! and solve a
(fairly simple) differential equation.

8. What can you say about

q0:=1; que1:=1-e"?

Truth-definitions

An ML question which will prepare you for the 1b courses entitled “Logic and Proof”
and “Semantics”. You should make a serious attempt at—at the very least—the first
part of this question. The fourth part is the hardest part and provides a serious work-
out to prepare you for the semantics course. Parts 2 and 3 are less central, but are
educational. If you are a 1b student treating this as revision you should be able to do
all these questions.

“4This is problem 16 on p 64. of [].
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Propositional Logic Predicate (first-order) Logic

A recursive datatype of formula A recursive datatype of formule

An interpretation Z is a domain D with: for
each n-place predicate letter F' a subset ZF
of D"; for each n-ary function letter f a
function Z*f from D" — D. (Also constants).

states: literals — bool. A (Fix Z then) states: vbls — D; a
(recursively defined) satisfaction recursively defined satisfaction function: satz:
relation SAT:statesxfmla—bool | formule X states — bool

¢ is true in an interpretation Z iff for all
A formula ¢ is valid iff for all states v, satz(¢,v) =true.
states v, SAT(v, ¢) =true. ¢ is valid iff it is true in all interpretations.

. Write ML code to implement the left-hand column. If you are completely happy
with your answer to this you should skip the next two questions of this section.

. (For enthusiasts). Expand the propositional language by adding a new unary
connective, written ‘0°. The recursive definition of SAT for the language with
this extra constructor has the following additional clause:

if s is a formula of the extended language and v is a state then SAT(v, O0s) =
1 iff for all states v/ we have SAT(V',s) = 1

Then redo the first question with this added complication.

. (For enthusiasts). Complicate further the construction of the preceding question
by altering the recursive step for O as follows. Accept as a new input a (binary)
relation R between states (presumably presented as a list of pairs, tho’ there may
be prettier ways of doing it). The new clause is then:

if ¢ is a formula of the form Os and v is a state then SAT(v, ) = 1 iff
for all states v’ such that v/ R v we have SAT(v, s) = 1

. Declare a recursive datatype which is the language of partial order. That is to say
you have a set of variables, quantifiers, connectives etc., and two predicate letters
‘< and ‘=’. Fix an interpretation of it, possibly the ML type int. Implement as
much as you can of the apparatus of states, truth etc.

. Declare a recursive datatype which is the language of fields. That is to say you
have a set of variables, quantifiers, connectives etc.; two constants ‘0’ and ‘1’;
a binary predicate letter ‘=" and two function symbols, ‘+” and ‘x’. Fix an
interpretation of it, for example the natural numbers below 17. Implement as
much as you can of the apparatus of states, truth etc. You should be able to write
code that will accept as input a formula in the language of fields and evaluate to

true or false depending on what happens in the naturals mod 17E]

b}

In the last two questions you could make life easier for yourself (but less natural)
by assuming that the language has only finitely many individual variables. This would

31t won’t run very fast!
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enable you, for example (by somehow generating all the possible states, since there are
now only finitely many of them) to verify that the naturals as an ordered set are a model
for the theory of total order, and that the naturals mod 17 are a model for the theory of
fields.

When you have done this ask the system minders or any member of the hvg group
about how to run HOL on the machines available to you. In HOL is a dialect of ML in
which all the needed datatypes are predefined.

Other logic: for 1b revision, mainly

1B?!
1. 7 and e are transcendental. By considering the equation
xz—(ﬂ+e)x+7re=0
prove a trivial but amusing fact. (If you cannot see what to do, read the footnote
for a ur). E]What have you proved? Is your proof constructive? If not, does this
give rise to a constructive proof of something else?
2. The uniqueness quantifier 3!x° is read as “There is precisely one x such that...”.
Show how to express the uniqueness quantifier in terms of the old quantifiers 3
and Y (and =).
(a) Find an example to show that (A!x3!y)¢(x,y) is not always the same as
AlyAlx)e(x, )
(b) Is the conjunction of A!x¢(x) and A!yy¥(y) equivalent to something of the
form A!x3Aly...?
They haven’t been told what Horn clauses

Horn clauses are . . i . ) p
1. What is a Horn clause? What is an intersection-closed property of relatlons

Let ¢(¥) be a Horn clause (in which ‘R’ appears and the X range over the domain
of R). Show that the property Yx(¢(X)) is intersection-closed. (The converse is
also true but do not attempt to prove it!)

2. Let I be an index set, and for each i € I, P; is a person, with an associated set
of beliefs, B;. We assume (unrealistically) that each B; is deductively closed and
consistent. Show that ();¢; B; is deductively closed and consistent. What about
the set of all propositions p such that p is believed by a majority of people? (You
may assume / is finite in this case, otherwise it doesn’t make sense). What about
the set of things believed by all but finitely many of the P;? (You may assume [/
is infinite in this case, otherwise it doesn’t make sense)ﬁ

3. We are given a set £ of literals. We are also given a subset Ko € L. (‘K” for
‘Known’.) Also a set Cy (‘C’ for ‘Conditionals) of formulaz of the kind

(PLAP2A...ADy) D q

6 At least one of 7 + e and e must be transcendental.
7 A horn clause is a formula of the kind A ;¢; ¥; — ¢ where ¢ and all the y; are atomic.
8What about the set of propositions believed by an even number of people?
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If we are given two such sets, of literals and of conditionals, we can get a new set
of Known literals by adding to Ky any ¢ that is the consequent of a conditional
all of whose antecedents are in Ky. Of course we can then throw away that
conditional.

(a) Turn this into a precise algorithm that will tell us, given Ky, Cp and a candi-
date literal ¢, whether or not g can be deduced from Ky and C¢. By coding
this algorithm in ML, or by otherwise concentrating the mind, determine
how efficient it is.

(b) What difference does it make to the implementation of your algorithm if
the conditionals are of the form

P12 (2= (p3—...q)...)?

(c) What happens to your algorithm if Conditionals are allowed to be of the
(more complicated) form:

(PLAP2A...Apy) > (q1V q2)?

Can anything be saved?

(d) Define a quasi-order (remember what a quasi-order is’.ﬂ) on L by setting
p R g if there is a conditional in Cy which has ¢ as its consequent and p
as one of its antecedents, and letting < be the transitive closure of R. Is <
reflexive? Irreflexive? Antisymmetrical? What happens if p < p? What

happens if (p < g) A (g < p)?

9 And don’t lose sleep over the reflexivity condition: we can add lots of silly clauses like p — p at no

cost!
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Chapter 11

Answers to Exercises

I am trying to adhere to a policy of reprinting the questions in italic and the an-
swers/discussions in ordinary type.

Exercise 11|

Hilary and Jocelyn are married. One evening they invite Alex and Chris (also married)
to dinner, and there is a certain amount of handshaking, tho’ naturally nobody shakes
hands with themselves or their spouse. Later, Jocelyn asks the other three how many
hands they have shaken and gets three different answers.

How many hands has Hilary shaken? How many hands has Jocelyn shaken?

The next day Hilary and Jocelyn invite Chris and Alex again. This time they also
invite Nicki and Kim (also married). Again Jocelyn asks everyone how many hands
they have shaken and again they all give different answers.

How many hands has Hilary shaken this time? How many has Jocelyn shaken?
Answer

In the general case Jocelyn asks 2n + 1 people and gets 2n + 1 different answers.
Since the largest possible answer is 2n and the smallest is 0, there are in fact precisely
2n + 1 possible answers and that means Jocelyn has got every possible answer from 0O
up to 2n inclusive.

Think about the person who shook 2n hands. This person shook hands with ev-
eryone that they possibly could shake hands with : that is to say everyone except their
spouse. So everybody except their spouse shook at least one hand. So their spouse
shook no hands at all. Thus the person who shook 2n hands and the person who shook
0 hands are married. Henceforth disregard these two people and their handshakes and
run the same argument to show that the person who shook 2n — 1 hands and the person
who shook 1 hands are married. And so on.

Where does this get us? It tells us, after n iterations, that the person who shook n+1
hands and the person who shook n — 1 hands are married. So what about the person
who shook 7 hands, the odd man out? Well, the only person of whom Jocelyn asks

151
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this question who isn’t married to another person of whom Jocelyn asks this question
is Jocelyn’s spouse.

Let’s name people (other than Jocelyn) with the number of hands they shook. (This
is ok since they all shook different numbers of hands.) 2n didn’t shake hands with its
spouse, or itself, and there are only 2n people left, so it must have shaken hands with all
of them, in particular with Jocelyn. Correspondingly O didn’t shake hands with anyone
at all, so it certainly didn’t shake hands with Jocelyn. We continue reasoning in this
way, about 21 — 1 and 1. 2n — 1 didn’t shake hands with itself or its spouse or with O,
and that leaves only 2n — 1 people for it to shake hands with and since it shook 2n — 1
hands it must have shaken all of them, so in particular it must have shaken hands with
Jocelyn. Did 1 shake hands with Jocelyn? No, because 1 shook only one hand, and
that must have been 2n — 1’s. And so on. The people who shook Jocelyn’s hand were
2n,2n —1,2n -2 ...n + 1 and the people who didn’t were 1, 2, 3, ...n — 1. And of
course, Jocelyn’s other half. So Jocelyn shook # hands.

Exercise

(n2:neN}yand {n: @m)m € N An = m?)}

Exercise

List all partitions of {a, b, c}. (You might find it helpful to draw a picture of each—a
kind of Venn Diagram.)
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Why the two concentric circles on the bottom left?
A: That partition has only one piece. The partition is a singleton!

) QW&

Exercise

Look up ‘monophyletic’. Using only the auxilliary relation “is descended from” give
a definition in first-order logic of what is is for a monadic predicate of lifeforms to be
monophyletic.

F is monophyletic iff both

(M) (F(x) A F(y)) = (J)(F(2) A D(z, x) A D(z,y)))
and
(YOY(F(x) = (D(x,y) = F()
hold.

On finite domains this is equivalent to (3x)(Vy)(D(x,y) «— F(y)) which we should
probably accept.

You may many years later need the concept of a directed subset. X is a directed
subset of a poset (P, <) if (Vx,ye X)(ze X)(x <zAy<2).



Isn’t there duplication of an-
swers to[33?

label ‘first” has been used twice

154 CHAPTER 11. ANSWERS TO EXERCISES

Exercise

The graph of the three-place order relation on the four positions on the face is
{(XI1, 11, VI, (111, VI, IX), (VI, IX, XII), (IX, XII, II),
(XII, VI, IX), (I, IX, XII), (VI, XII, III), (IX, 111, VI),
(XIL, I, IX), (111, VI, XII), (VI, IX, III), (IX, XII, VI)}.

Exercise

Observe that | F is one of the things that 2 everything in F, so certainly | J F € G,
whence (G € |JF. For the other direction we want | F to be included in every
member of G. But every g in G extends every member of F, so certainly g extends |J F
as desired.

Exercise

They are equivalent. I shall deduce the second from the first. (The implication in the
other direction is analogous.)
Assume

Vxy)z<xg€ytx—2z<y) (11.1)

and let a, b and ¢ be such that a > b £ ¢ £ b. We seek to infer a > c.

Suppose not. Then we have a # ¢, whichis =(a > cAa # ¢) whichisa =cVa # c.
¢ = a contradicts our assumption that @ > b but b incomparable with ¢, so we must
have a # c¢. We can’t have ¢ > a beco’s a > b and the conjunction would give us
¢ > b contradicting the assumption that {b, c} are an incomparable pair. So {a, c} are
an incomparable pair. But now b is strictly below one member of an incomparable pair
and so, by must be below the other member of the pair—namely c. But {b, ¢} are
an incomparable pair. So our assumption must have been wrong, and we must have
a > c after all.

Another answer:

Question [10/35|

Are the two following conditions on partial orders equivalent?

. Vo) z>xgy£x—>z<y)
2. (Vxy)z>x£€y£x—z>y).

Assume (1) (Vxyz)(z < x £ y £ x = z < y) and aim to deduce (2) (Vxyz)(z = x £
y £ x = z>y). To this end assume z > x, x £ y and y £ x and hope to deduce z > y.

x < ztells us that z £ y for otherwise x < y by transitivity, contradicting hypothesis.
Next, assume the negation of what we are trying to prove. This gives us y £ z. But then
we have y £ z £ y and x < z so by (i) we can infer x < y, contradicting assumption.

The proof in the other direction is analogous.
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Exercise

(@) IsR\R! antisymmetric? Asymmetric?

(b)Is R XOR R~ symmetrical? Antisymmetric? Asymmetric?

(c) Is the composition of two symmetrical relations symmetrical?
(d) Is the composition of two transitive relations transitive?

(e) Is the converse of a symmetrical relation symmetrical?

(f) Is the converse of a transitive relation transitive?

Answer

(b) is the only one that requires much thought. (R XOR § )‘1 must be R~ XOR § !
so the converse of R XOR R~' must be R~! XOR R which is the same thing. So it’s
symmetrical.

(a) Asymmetric, so both; (c) Yes; (d) No; (e) Yes; (f) Yes.

Exercise

Can there be a function f : X — X whose graph is
(i) areflexive relation? or
(ii) a transitive relation? or
(iii) a symmetrical relation?
Answers

(i) Obviously 1y, the identity relation on X. And it’s the only one!

(i) This is precisely the condition for f to be idempotent, as on p.

(iii) If it’s symmetrical then it must be surjective. And it must be injective, since if
it sends a and b both to ¢, then by symmetry it must send ¢ to both a and b. So a = b.
So it’s a permutation of X, and a permutation of order 2. Such permutations are called
involutions.

Exercise 41|

This exercise is partly about brute calculation of certain quantities, but also an excuse
to think a bit about natural bijections.
How many binary relations are there on a set of size n?

This is not a difficult question at all, but 99% of beginners get it wrong simply
because they expect to be able to wing it, and they won’t think it through.
The answer—of course—is 2"

How many of them are ... ? Answer
(a) reflexive? on?=n
(b) fuzzies? 2()

(c) symmetrical? 2(;151)
(d) antisymmetric? 2.3
(e) total orders? n!

(f) trichotomous? on ., 3(3)
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(g) antisymmetric and trichotomous? 2("3h)

(h) extensional? (2:)

(i) partial orders Do not answer this question
(j) strict partial orders Do not answer this question
(k) permutations? n!

(D circular orders? (n—1)!

Without actually calculating the answers to (c), (d), (f), (g), (j) or (i) ...
(m) Explain why are the answers to (d) and (f) are the same
(n) Explain why are the answers to (g) and (c) are the same;
(o)Explain why are the answers to (j) and (i) are the same.

Answer:

For (m) To get a bijection you need a choice function on the set of pairs of elements
of the underlying set: take the matrix for a symmetrical relation, and flip all the bits in
the upper right triangle. This is just XOR-ing with the graph of a total order. Thus every
total order naturally gives rise to a bijection between the set of symmetrical relations
and the set of antisymmetrical trichotomous relations.

For (n). For both symmetrical relations and antisymmetrical trichotomous relations
you have n independent choice of whether or not to put in the “diagonal” orderedd
pairs (x, x). Now consider the pair (x, y) with x # y and its mate (y, x). A symmetrical
relation either has both these pairs or neither (two possibilities); an antisymmetrical
trichotomous relation has precisely one of them (again, two possibilities). So, either
way you have (g) choices of two outcomes. So the two answers are the same. How
are we to find a bijection between the set of symmetrical relatiions and gthe set of
antisymmetrical trichotomous relations? It’s pretty clear that there is no natural way
of doing it. However, if we arm ourselves with a total order < of our set we can do
something. If R is antisymmetrical and trichotomous we want to obtain a symmetrical
relation R’ from it. Put into R’ all (and only) the “diagonal” pairs in R. Then if R
contains (x,y) where x < y, then put into R’ both the pairs (x, y) and (y, x). If instead
it contains (y, x) then put neither pair into R’. It should now be clear how to go in the
opposite direction.

The answers to (k) and (e) are of course the same, as we all know. There doesn’t
seem to be any natural bijection between the set of all permutations of a set A (also
known as the symmetric group on a set and notated £(A)) and the set of total orders of
it. However, if we fix a total order of a set A, any other total order of A can be thought
of as the application of a permutation of A to that fixed total order. So there is a natural
bijection between the set of total orders of A and the set of bijections between X(A)
and the set of total orderings of A. I think the bijection induced by the permutation 7 is

Expand on this; draw some pic- precisely the operation “conjugate with 7.

tures. Ad (h); if R is an extensional relation on a set A then the functiona — {a’ : {a’,a) € R)

is extensional, so the set of extensional relations on A is naturally bijected with the set

Edit this answer properly of injective functions A — P(A) and that is obviously of size (2:)
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Exercise 42|

Let X be our set of pairs. Consider dom(X N 1) (in full: {x : (x,x) € X}). If
X is of the form (A X B) U (B x A) then dom(X N 1) is clearly going to be A N
B. We can get A U B because it is {x : (y)(x,y) € X)}. Then A XOR B can
be obtained as (A U B) \ (A N B). Then A \ B and B \ A are the two crescents in
the following picture. How do we characterise them? This is the hard part. The
two crescents are the two equivalence classes of an equivalence relation of index 2.

This is not obvious! When do x; and x; belong to the same crescent? When they both
belong to A (but not to B) or both belong to B (but not to A). Notice that in those
circumstances the pair (x1, x3) ¢ X! The relation x; ~ x; defined by {x1, xp) ¢ X is an
equivalence relation on A XOR B!!

Exercise

The enemy of my enemy is my friend
The friend of my enemy is my enemy
The enemy of my friend is my enemy.
The friend of my friend is my friend.

You might like to express these observations in first-order logic, using binary rela-
tion symbols like F(, ) and E( , ).

Answer:

(Yxy2)(E(x,y) A E(y,2) = F(x,2))
(Yxy2)(E(x,y) A F(y,2) = E(x,2))
(Vxyz)(F(x,y) A E(y,2) = E(x,2))
(Vxy2)(F(x, ) A F(y,2) = F(x,2))

1. If you have an enemy must you have a friend? If you have a friend are you
friends with yourself?

We aren’t actually told that E(, ) and F(, ) are commutative but most readers
will probably assume they are. If they are, then if i have (even one) enemy then
there is an enemy of that enemy who is my friend. I am one such friend. The
second half is similar.

2. Can you infer from the foregoing that two things cannot be simultaneously friends
and enemies? Prove or find a countermodel.

Not really. That picture is quite consistent with there being lots of people all
of whom are simultaneously friends and enemies of all the others—and even
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themselves. We are missing the two assumptions of commutativity and the ir-
reflexivity of E(, )

3. Explain “congruence relation for ....” Assume ‘friend-of” to be reflexive, so it
is an equivalence relation. Think about the equivalence-classes-under-friendship.

Let’s also assume that—the expression “he’s his own worst enemy” notwithstanding—

‘enemy-of” is irreflexive.

(i) How does ‘enemy-of” “lift” to these equivalence classes? Is ‘friend-
of”” a congruence relation for ‘enemy-of’?

‘Congruence relation for’ is bookwork. And yes, if F(, ) is an equiv-

alence relation then it is certainly a congruence relation for E(, ).

(i) How many equivalence classes can an equivalence class be hostile

to?

Only one. If you are at war with two alliances then, because the

enemy of your enemy is your friend, the two alliances would coalesce

into one.

(iii) Explain how your answer to (ii) partitions the domain.

4. Clearly ‘enemy-of’ is not transitive, but it does have a property that is rather
like transitivity. Can you describe this feature exactly, and state it for a binary
relation R in the style in which you know how to state that R is transitive?

Answer:

R3 C R. There is no word standardly used to describe this property.

5. Does the feature (analogous to transitivity) from the previous part admit a notion
of closure analogous to transitive closure, symmetric closure etc.? Give a proof
or a counterexample.

Answer

Yes. Whenever you find the pairs (x, y), (y, z) and (z, w) in R, add the pair (x, w).
Keep doing this until you can add no more pairs. The thingie-closure of R is
N{S 2 R : S* C S} by analogy with definition of transitive closure etc.

Exercise 44|

Look again at the box of isotopes on page[70,
Why was I right to write the half-life of Pb*°8 as ‘co” rather than R¢’?”

Answer

There is no number @ such that after  years half the atoms in a sample of Pb2%8
have decayed. Indeed the function half-life-of is defined only for radioactive species,
and Pb?® is not radioactive: the half life of Pb?%8 is not defined. In particular it isn’t
No. What symbol do we use for undefined quantities that seem to be infinite, such as
‘1/0’? Yes, ‘co’. Thus you sometimes see people writing ‘¢ < co’ where ‘¢’ is a term
(sometimes undefined) of type real or natural number to mean that 7 is defined.
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Exercise

[statement of exercise omitted to save space]

Discussion

This is a beautiful question, co’s it touches several important points. It tests your un-
derstanding of structural induction; it tests your ability to do the fiddly manipulation
necessary to perform the inductive step; it underlines the importance of having a suffi-
ciently strong induction hypothesis, and finally it makes a point about dereferencing.

So: we have a propositional language—a recursive datatype of formule—which
starts off with three propositional letters (“literals”) ‘a’, ‘T’ and ‘L’. We then build up
compound formula by means of the constructors ‘A’, ‘v’ and ‘—’. We have a length
function defined on objects in the datatype of formule, written with two vertical bars
as in the question, which is roughly what you think it is—so that the length of a literal
is 1, and the length of a conjunction (or a disjunction) of two formula is one plus the
sum of their lengths, and the length of the negation of a formula is one plus the length
of the formula. Evidently the question-designer thought that the length of a ‘(" or a )’
is zero!

One tends naturally to write the second half of the preceding paragraph with ex-
pressions like

IAAB| = |A|+|B| + 1.

This looks fair enough, and in some sense it is, but we need to be clear about the
conventions we are using. The letter ‘A’ by itself is a single symbol, so a pedant might
insist that |A| = 1. This is wrong of course: the letter ‘A’ is not a formula, but a variable
ranging over formulz. . . when looking for the length |A| of A we have to see throug]ﬂ
the variable all the way to the value it takes—and that value is a formula. All this is well
and good, but it can cause some confusion when we start thinking about expressions
like: |A V B|. The constructor ‘V’ is something we put between two formula to make a
new formula; we don’t put it between two names of formul® or between two pointers
to formule! Until we have a convention to make our practice OK, writing things like
‘|A Vv B|’ should generate a syntax error warning. If you look back to page 95| where
this exercise first appears you will find that I wrote

“...length of a literal is 1, and the length of a conjunction (or a disjunction)
of two formule is one plus the sum of their lengths...”

...and this is syntactically correct. When we wrote ‘|{A A B|” we should really have
written ‘| the conjunction of A and B’

There are two ways of dealing with this. One is to have explicit names for the
constructors, as it might be ‘conjunction of ...  and ‘disjunction of ..." and ‘negation
of ...’ This makes huge demands on our supply of alphanumerics. The other solution
is to have a kind of environment command that creates an environment within which
[deep breath]

IT have italicised this word because the metaphor is a good one: google referential transparency.
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Contructors applied to pointers-to-objects
construct
pointers to the objects thereby constructed.

Inside such a context things like /A Vv B|’ have the meaning we intend here. There is a
culture within which this environment is created by the ‘"> symbol (IAEX: \ulcorner)
and closed by the ‘" symbol (IXIEX: \urcorner). In practice people tend to leave
these things out. The fact that this is—apparently—a safe strategy tells us quite a lot
about the skills of our language module: it’s very good at dereferencing (among other
things)

Thus we should/should-have posed the question as:

“Define the length of a Boolean proposition by structural induction as follows:

lal =1,
ITI =1,
|L] =1,

I"A A Bl =|Al+|B" + 1,
I"AV Bl = |Al+|B[" + 1,
I"=Al= AT +17

[or something like that, with the corners placed correctly!]
And the remainder of the question:

“Define a translation which eliminates disjunction from Boolean expressions by the
following recursion:

tr(a) =a,tr(T)=T,tr(L) = 1,
Ttr(A A B) = tr(A) A tr(B),

tr(A vV B) = =(=tr(A) A —tr(B)),
tr(=A) = =tr(A)™.

Prove by structural induction on Boolean propositions that
[Frr(A)l < 3|Al - 17,

for all Boolean propositions A.”

The above use of corner quotes illustrates how there is no restriction that says that
the scope of the corner quotes has to live entirely inside a single formula. I use corner
quotes in what follows, but (although—i think—i have put them in correctly) they can
be inserted correctly in more than one way.

The Proof by Structural Induction

We aspire to prove by structural induction on the recursive datatype of formulz that

(VA)(rr(A)] < 3-1A1 = 1)

The base case we verify easily. The induction step has three cases
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- If |tr(A)] < 3-JA| whatis |["tr(=A)7|? Ttr(=A) = —=tr(A)™ so "|tr(=A)| = |-tr(A)|7,
and |"—tr(A)7| is |tr(A)| + 1 which is certainly < 3-|7=A7|.

N If [tr(A)] < 3-]A| and |tr(B)| < 3-|B| whatis |"tr(A A B)7|?
Ttr(A A B)'is "tr(A) A tr(B). By induction hypothesis [tr(A)] < 3-]A| -1 and
[tr(B)] < 3-|B|—1so[tr(A) Atr(B)]" < 3-1A|-1)+ @3 -|B|—1)+ 1. The
final ‘+1’ is for the ‘A’. This rearranges to
["tr(A) Atr(B)Y| < 3-(|Al+|B]) -1
but |A| +|B] < |"A A B7| whence
Tltr(A) A tr(B)] < 3-(|JA A B]) — 17 and finally
Ttr(AAB) < 3-(JAAB)—-1".

\Y If trr(A)] < 3-]A] and [tr(B)] < 3 -|B| what is |tr(A vV B)|? "tr(A vV B)™
is "=(=tr(A) A =(tr(B)))". What is the length of this last expression? Clearly
it’s going to be |tr(A)| + |tr(B)| + one for the outermost ‘=" + one for the ‘=’
attached to #7(A) + one for the ‘=’ attached to #r(B) + one for the ‘A’ ... giving
[tr(A)| + [tr(B)| + 4. By induction hypothesis [tr(A)| < 3 -]A|—1 and |tr(B)| <
3-|B| - 1 so we have

A

Tltr(AvV B)l < 3-|Al—1)+ (3-|B]—1) +4™. We can rearrange this to
Tltr(AvV B)] < 3-(|A|+|B])—1—1) + 4™ and further to
Tler(Av B)| < 3-(|Al+|Bl) +2™.

IA

Now |A| + |B] =T|AV B|™" — 1 so we can substitute getting

Fltr(Av B)| < 3-(JAV B| - 1)) + 2™ and rearrange again to get
Tltr(Av B)| < 3-|AV B|— 1" as desired.

A final thought ... wouldn’t mind betting that quite a lot of thought went into this
question. We’ve proved [t7(A)] < 3 -]A| — 1 so we’ve certainly also proved the weaker
claim |rr(A)] < 3 -|A|. However wouldn’t stake my life on our ability to prove the

weaker claim by induction. You might like to try ...i’m not going to!

Exercise

Show that:

For all valuations v and all formula A and all but finitely many t,
Ei(A,v,t) = E(A,v) and E¢(A,v,1) = E(A, V).

In the classical setting one takes a propositional valuation—that is to say, a [total!]
function atoms — :bool—and “extends” it (“by abuse of notation”) to a function de-
fined on complex expressions. This is all right because—if the valuation is total—one
can safely conceal the evaluation process. If the valuation is total then the process of
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evaluation is confluent. If the functions are partial then one needs to make explicit the
recursion that takes a time ¢ and returns the estimate-at-time-z of the truth-value.

Let v be a valuation, a function with values in :bool defined only on atomics. We
define

Es(A,v,0) = Ei(A,v,0) = v(A)

and thereafter

E((ANB),v,t+1)=E((A),H) N Eg(B,v,1)
E((AV B),v,t+1)=E(A),v,t)V Eg¢(B,v,1)
Ey((mA),v,t+1) =-E A1)

where the connectives in the definiens are interpreted strictly, more explicitly:

Es(AAB),v,t+ 1)=1if EyA,v,t) = false then if E((B,v,t) = false then false else
if Eg(A,v,t) = false then if Ey(B,v,t) = true then false else
if Eg(A,v,t) = true then if E((B,v,t) = false then false else
if Eg(A,v,t) = true then if Ey(B,v,f) = true then true else undefined

Es((AV B),v,t+1)= if EyA,v,t) = true then if E((B,v,f) = false then true else
if Eg(A,v,t) = true then if Ey(B,v,t) = true then true else
if Eg(A,v,t) = false then if Ey(B,v,t) = false then false else
if Eg(A,v,t) = false then if E((B,v,f) = true then true else undefined

In contrast, when the functions are partial and we evaluate lazily

E/((AAB),v,t+1)=1f E|(A,v,t) = false then false else
if EiB,v,t) = false then false else
if Ei(A,v,t) = true then E)(B,v,t) else
if EiB,v,t) = true then E;(A,v,1) else
Ei((AAB),v,t)

Ei((AVv B),v,t+1)=1f E)A,v,f) = true then true else
if EiB,v,t) = true then true else
if Ei(A,v,t) = false then Ey(B,v,t) else
if EiB,v,t) = false then E;(A,v,1) else
Ei((AV B),v,1)

E/((mA),v,t+1)=1if E;i(A,v,t) = true then false else
=if Eji(A,v,t) = false then true else
El((=A), v, 1)

Exercise

A wellordering of a set of X is a wellfounded relation, whatever else it is. In fact
its (graph is) a C-maximal wellfounded relation on X. Is that a sufficient condition?
Probably need transitivity too.

We aspire to prove that any C-maximal wellfounded relation is a wellordering. We
prove two factoids:
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(1) a C-maximal wellfounded relation will be transitive.

(i1) a C-maximal wellfounded relation will be trichotomous.

For (i) recall that the transitive closure of a wellfounded relation is wellfounded, so a
C-maximal wellfounded relation must be equal to its transitive closure.

For (ii) suppose R is maximal wellfounded, with {(a,b) ¢ R (where a # b) so that
R U {{a, b)} is not wellfounded. That means there is some subset X’ C X s.t. X’ has an
R-minimal element but no minimal element according to R U {{a, b)}. This must mean
that b was that R-minimal element and that a € X’. But that means that we could add
the pair (b, a) to R without violating wellfoundedness and that means—by maximality
of R—that (b, a) was already in R.

This means that the following are equivalent, for R € X X X:

(1) R is a wellordering of X
(i1) R is maximal wellfounded
(>iii) R is wellfounded and trichotomous.

Exercise

Part2l

The lexicographic order on IN? is wellfounded, so we can do wellfounded induction
on it. This means that if we can prove that, if every ordered pair below p has some
property ¢ then the pair p has property ¢ as well, then every ordered pair in IN? has
that property.

Now let ¢({x,y)) say that if the bag is started with x black balls and y white balls
in it the process will eventually halt with only one ball in the bag. Suppose ¢({x’,y"))
holds for every (x’,y’) below (x,y) in the lexicographic product IN?>. We want to be
sure that if the bag is started with x black balls and y white balls in it the process will
eventually halt with only one ball in the bag. The first thing that happens is that we
pick two balls out of the bag and the result is that at the next stage we have either x — 2
black balls and an unknown number of white balls, or we have x black balls and y — 1
white balls. But both these situations are described by ordered pairs below (x, y) in the
lexicographic product IN?, so by induction hypothesis we infer that if the bag is started
with x black balls and y white balls in it the process will eventually halt with only one
ball in the bag, as desired.

Exercise

The sequence of partial products goes: 3/4, 2/3, 5/8, 3/5, 7/12 ... which looks like
(n+ 1)/2n for the nth partial product. Easy to prove this by induction. Clearly the limit
is 1/2.

Exercise

Suppose we are given 11 and 1, both of them numbers of the form 2F — 3m. (This is
simply to say that neither ny nor n; is divisible by 3). We wish to obtain n, from n;| by
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repeatedly doubling and subtracting 3.

If the two numbers have the same residue mod 3 and n{ > n, then subtract 3 from
np the appropriate number of times. If n; < ny or they have different residues mod 3
then procede along the sequence 2 - n, 4 - ny, 8 - n; until you reach a multiple which is
both bigger than n, and congruent to 7, mod 3. Then subtract 3 the correct number of
times.

Exercise

We (the match referee) start with a matrix, and delete rows or columns when dominance
allows us to, and we continue until no more deletions are possible. It might be that at
some stage(s) there is more than one row (or column) that can be deleted, or perhaps a
stage at which both a row and a column are delete-able. Is the outcome affected by the
order in which we perform these deletions?

One column dominates a second column iff at every row the entry in the first column
is at least as big as the entry in the second column. (And of course the same goes for
two rows mutatis mutandis ...). This means that if one column dominates another it
will continue to do so even if some rows are deleted. This means that if a chance ever
arises to delete a particular column then that chance remains on the table whatever else
we do. So we can postpone any deletion for as long as we like. (This is helpful because
of course there are occasions where a chance to delete a particular column cannot arise
until a particular row has been deleted.) This means that, should we ever reach a
stage where no more deletions can be performed, this can only be because all deletions
that ever became possible have been performed. And that uniquely characterises our
destination ]

It is the fact that deletion-possibilities remain permanently open that ensures conflu-
ence. Your sequence-of-deletion strategies might diverge, but the permanent-possibility
feature ensure that all such strategies can rejoin.

But wait! How can we be sure that a deletion possibility that arises down one path
will also arise down any other? This isn’t a problem: think about the possibilities in
front of your eyes at the stage where the two paths part company. [should probably say
a bit more about this]

What happens if your matrix has infinitely many rows and columns? In those cir-
cumstances you have the possibility that your dependency relation between deletions
(“I can’t delete column c until i have deleted row r; I can’t delete row r until I have
deleted column ¢’; I can’t delete column ¢’ until I have deleted row r’; I can’t delete
row r’ until I have deleted column ¢” ...”") might not be wellfounded. Can you cook
up an infinite matrix where—for all i—you can’t delete row i until you have deleted
column i and can’t delete column i until you have deleted row i + 1?

2But we should probably Say something about why any given deletion always has the same effect (what-
ever that means) irrespective of when we do it. Can we find a situation where this doesn’t hold? It would be
useful
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Exercise

Let R be a relation on a set X. Define the reflexive, symmetric and transitive
closures r(R), s(R) and t(R) of R. Prove that

1. Rol1 =R
2. (RUD =1 u(URi)forn > 1
i<n
3. tr(R) = rt(R).
Show also that st(R) C ts(R).

IfX=NandR =1U {{x,y) : y = px for some prime p} describe st(R) and ts(R).

Answer:

The reflexive (symmetric, transitive) closure of R is the intersection of all reflexive
(symmetric, transitive) relations of which R is a subset.

1. Ro1is R composed with the identity relation. x is related to y by R-composed-
with-S if there is z such that x is related to z by R, and z is related to y by S. Thus
Rol=R.

2. It is probably easiest to do this by induction on n. Clearly this is true forn = 1,
since the two sides are identical in that case. Suppose it is true for n = k.

(RUl)k:IU(URi)

1<i<k

RUDMT = RUD o (RUD.

By induction hypothesis this is

(1U(U R) o (RU1)

1<i<k

Now (AUB)o(CUD)isclearly (AcC)U(AoD)U(BoC)U(Bo D) and applying
this here we get

(1oR) U (o) U (| RYoR) U (| JR)o)
1<i<k 1<i<k
Now loRisR;101is1;

(UR")olis U R’ and

1<i<k 1<i<k

(U R)oRis ( U R

1<i<k 1<i<k+1
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So we get
RU1U( U Rf)u(UR")
I<i<k+1 i<k
which is _
v J R
I<i<k+1

3. The transitive closure of the reflexive closure of R is the transitive closure of
R U 1 which is U(R U 1)" which (as we have—more-or-less—just proved) is
nelN
1V (U R’) which is the reflexive closure of the transitive closure of R.
ieIN
s is increasing so R C s(R). t is monotone, so t(R) C #(s(R)). But the transitive
closure of a symmetrical relation is symmetrical so #(R) C #(s(R)) implies s(t#(R)) C
t(s(R)) as desired.
Finally if X = Nand R = 1 U {{x,y) : y = px for some prime p} then st(R) is the
relation that holds between two numbers when they are identical or one is a multiple of
the other, and 7s(R) is the universal relation IN x IN.

Question [10}2]

Let R be a relation on A. Recall that r(R), s(R) and t(R) are the reflexive, symmetric
and transitive closure operations respectively.

(a) Prove that rs(R) = sr(R);

(b) Does R transitive imply s(R) transitive?

(c) Prove that rt(R) = tr(R) and st(R) C ts(R);

(d) If R is symmetrical must the transitive closure of R be symmetrical?
Prove or give a counterexample.

Think of a binary relation R, and of its graph, which will be a directed graph (V, E).
On any directed graph we can define a relation “I can get from vertex x to vertex y
by following directed edges” which is certainly transitive, and we can pretend it is
reflexive because after all we can get from a vertex to itself by just doing nothing at all.
Do this to our graph (V, E), and call the resulting relation S. How do we describe S in
terms of R?

Answer
(a) Prove that rs(R) = sr(R):

r(s(R))=s(R)U 1
=(RURHUI
=(RUDUR U
=(RUDU®R'U1I
=(RUDURUD!
= s(r(R))
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(b) The symmetric closure of a transitive relation is not automatically transitive:
take R to be set inclusion on a power set.

(c) Prove that r#(R) = tr(R):

r(t(R)) = t(R)U [
=RUR*U...R"...UI
=(RUDURPUDUR'UI...

At this point it would be nice to be able to say (R" U I) = (R U I)" but that isn’t true.
(RU D" is actually RU R? ... R" U I. But it is enough to rewrite the last line as

(RUDURUD>URUI...
which is of course #(r(R)) as desired.

(d) The transitive closure of a symmetrical relation is also symmetrical. First we
show by induction on n that R" is symmetrical as long as R is. Easy when n = 1.
Suppose R" is symmetrical. R**! = R o R". The inverse of this is (R™!)" o R~ which
by induction hypothesis is R” o R which is of course R"*!. Then the union of a lot of
symmetrical relations is symmetrical, so the transitive closure (which is the union of
all the (symmetrical) iterates of R) is likewise symetrical.

Question [10/4]

Show that—at least if (¥x)(Ay)({x,y) € R)—RoR™! is a fuzzy. What about
RNR™'? What about RUR™'?

If (x,y) € R then (y,x) € R™! so (x,x) e RoR™.

That takes care of reflexivity. Suppose (x,z) € R o R™'. Then there is a y such
that (x,y) € R and (y,z) € R™'. But then (z,y) € R. So (x,z) € R o R™! is the same
as (Ay)({x,y) € R A (z,y) € R). But this is clearly symmetric in x and z, so we can
rearrange it to get (Ay)(({y, x) € R HA ({(z,y) € R)) whichis (z,x) € R oR~! as desired.

RUR ! is the symmetric closure of R and is of course symmetric, but there is no
reason to expect it to be reflexive: it’ll be reflexive iff R is reflexive.

Question |10}

“Given any relation R there is a least T 2 R such that T is transitive, and a least
S 2 R such that §' is symmetrical, namely the transitive and symmetric closures of
R. Must there also be a maximal S C R such that S is transitive? And must there
be a maximal S C R such that S is symmetrical? The answer to one of these last
two questions is ‘yes’: find a cute formulation.”

R N R~ is the largest symmetrical relation included in R. The unwary sometimes
think that it is this that is the symmetric closure of R. The point is that altho’ being-
the-complement-of-a-transitive-relation is not an intersection-closed property, never-
theless being-the-complement-of-a-symmetric-relation is intersection-closed, since it
is the same as being symmetric. R N R~! is the complement of the symmetric closure
of the complement of R. Do not confuse complements with converses!!
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Question [10[9]

Show that R C S implies R~ ¢ §~!

The way to do this is to assume that R C S and let (x,y) be an arbitrary ordered
pair in R~!. We then want to infer that (x, y) is in S 7'

If (x,y) isin R~! then (y, x) isin R, because R1lis precisely the set of ordered pairs
(x,y) such that (y, x) is in R. (We would write this formally as: R™' = {{x,y) : (v, x) €
R}.) ButR C S, s0(y, x)isin S, and so (flip things round again) {x, y) is in s-L.

Question [10/13]

Show that U R" is the smallest transitive relation extending R.
nelN

To do this it will be sufficient to show

1. U R" is transitive;
nelN

2. If S is a transitive relation O R then U R'CS.
nelN

(1

We need to show that if (x, y) and (y, z) are both in U R" then {(x,z) € U R".
nelN nelN

If (x,y) € U R" then (x,y) € R* for some k and if (y,z) € U R" then (y,z) € R/

nelN nelN
for some j.

Then (x,z) € R/** C U R".
nelN
For (2) Let S D R be a transitive relation. So R C §. We prove by induction on IN
that for alln € IN, R" € S. Suppose R” € S. Then

R =R'6R @ SoR c® 5§05 c© g,

(a) and (b) hold because o is monotone: if X C Ythen X oZ C Y o Z.
(c) holds because S is transitive. )

Question [10J16]

Let R and S be equivalence relations. We seek the smallest equivalence relation that
is a superset of R U S. We’d better note first that this really is well defined, and it is,
because being-an-equivalence-relation is the conjunction of three properties all of them
intersection-closed, so it is itself intersection-closed.

This least equivalence relation extending R U S is at least transitive, so it must be a
superset of #(R U §), the transitive closure of R U S. Wouldn’t it be nice if it actually
were t(RU §)? In fact it is, and to show this it will be sufficient to show that #(RU S) is
an equivalence relation. Must check: transitivity, reflexivity and symmetry. Naturally
t(R U §) is transitive by construction. R and S are reflexive so R U S is reflexive. In
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constructing the transitive closure we add new ordered pairs but we never add ordered
pairs with components we haven’t seen before. This means that we never have to
add any ordered pairs (x, x) because they’re all already there. Therefore #(R U S) is
reflexive as long as R and S are. Finally we need to check that #(R U S) is symmetrical.
The transitive closure of a symmetrical relation is also symmetrical. First we show by
induction on n that R" is symmetrical as long as R is. Easy when n = 1. Suppose
R" is symmetrical: i.e., R = (R")"!. R™*! = R o R" anyway. The inverse of this is
R o R (R is of course R, so (R™)" o R is (R™) o R™'. R = R" by
induction hypothesis so (R™')" o R™! is R" o R which is of course R"*!. Then the union
of a lot of symmetrical relations is symmetrical, so the transitive closure (which is the
union of all the (symmetrical) iterates of R) is likewise symmetrical.

Actually we can give another—perhaps simpler—proof of this. #(R) = ({S : RC S AS? C S},
or () X for short. Notice that if R is symmetrical, then X is closed under taking inverses
(the inverse of anything in X is also in X). And clearly the intersection of a class closed
under taking inverses is symmetrical.

Question [10/36]

If x < S(y) and y < S(x) then x and y are neighbouring naturals. This is RN R™!. x
and y are related by the transitive closure of this relation iff there is a finite sequence
X0, X1, X2 . .. X, = y such that each x; is adjacent to x;;1. But clearly any two naturals
are connected by such a chain, so the transitive closure is the universal relation. For
part 2, remember that x is related to y by R \ R™! if it is related to y by R but not by
R~L. In this case that means x < SOMHAY £ Sx). Thisis x < S(y) A S(x) < y. The
second conjunct implies the first so we can drop the first, getting S (x) < y. Getting the
transitive closure of this is easy, ‘cos it’s transitive already!

Question[10/??

Everybody loves my baby, so in particular my baby loves my baby. My baby loves
nobody but me. That is to say, if x is loved by my baby, then x = me. So my baby =
me.

This conclusion is striking and unexpected, and has been used to annoy generations
of Logic students since 1924 when the song came out. It makes a point that with fault-
tolerant pattern matching one can restore the ‘else’ that has been discarded from ‘My
baby loves nobody else but me’. It also seems to make a point about narcissism, the
plague of the age. Linguists probably use it to make other points as well.

No-one can play Schumann like Richter

Well, no, actually—Richter can!

Question ??

The answer is the relation that holds between k and k + 1 for O < k < n and between n
and 0.
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Question ?? 24|

- fun £f g b a =g a b;

val f=fn : (Ca -> b -> 'c) > b -> 'a > ’c

- fun ff g = let fun fa a = let val (b,c) = g a in b end;
= fun fe a = let val (b,c) = g a in c end;

= in (fa, fe) end;

val ff = fn : (Ca -> b * ’c) -> (Ca -> 'b) * (Ca -> '¢)

Question ??

Show that the largest and smallest elements of a totally ordered set with n elements can
be found with [3n/2] — 1 comparisons if  is odd, and 3n/2 —2 comparisons if n is even.

First check this for a few small values. If n = 2 we need 1, for n = 3 we need 3, for
n =4 we need 4.

The induction step requires us to show that adding two more elements to a set
requires us to perform no more than three extra comparisons.

So suppose we have a set X with n members, and we have found the top and bottom
elements in 3n/2 — 1 comparisons. Call them 7 and b. Let the two new elements be x
and y. With one comparison we can find out which is bigger. Without loss of generality
suppose it is x. Compare x with ¢ to find the biggest element of X U {x, y}, and compare
y with b to find the smallest. This has used three extra comparisons.

Question ??

Letm=|Fland p = | F|. Let C = {{(x,A) : x € A € F}.
Givenx € |JF,pick Be Fwithxe B.LetY,={AeF:xeA}andN,={A e F:
x ¢ A}. The map AA.(AAB) permutes F and swaps Y, and N,.. Hence |Y| = |Ny| = m/2.
So |C| = (1/2)mp, as each x is in exactly m/2 A’s. But each A contains < k things,
and one A contains none at all, so |C| < (m — 1)k whence p < ’"7_1 -2k < k.



Chapter 12

Indexes

12.1 Index of Definitions
12.2 General Index
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