
COMPUTER SCIENCE TRIPOS Part IA 2019

Paper 2 Question 5

Thomas Forster

February 19, 2020

A binary relation ≺ on a set A is well-founded iff there are no infinite
descending chains: . . . ≺ ai ≺ . . . ≺ a1 ≺ a0.

(a) Show that a binary relation ≺ on a set A is well-founded iff any nonempty
subset Q of A has a minimal element1, i.e., an element m such that

m ∈ Q ∧ (∀b)(b ≺ m→ b 6∈ Q)

[5 marks]

(b) Show that defining

〈n1, n2〉 ≺ 〈n1
′, n2

′〉 ←→ 〈n1, n2〉 6= 〈n1
′, n2

′〉 and n1 ≤ n′
1 and n2 ≤ n′

2.

determines a well-founded relation between pairs of positive natural numbers.
[7 marks]

(c) Let→ be a binary relation between pairs of positive natural numbers for
which 〈m,n〉 → 〈m,n−m〉 if m < n, and 〈m,n〉 → 〈m− n, n〉 if n < m .

Using (a) and (b), or otherwise, show that for all pairs of positive natural
numbers 〈m,n〉, there is a natural number h such that 〈m,n〉 → 〈h, h〉.

[8 marks]

Discussion

Well-founded relations are important and you need to know about them. That
is beco’s they support a kind of induction (a generalisation of “strong induction”
on the naturals) called wellfounded induction. This question is as good a way in
as you are likely to find, which is why i am writing out this discussion answer.

1not neccessarily unique

1



(a)

This invites you to prove the equivalence of two definitions of “wellfounded”. It
is the second definition that is the primary one, in that it captures the property
a relation has to have if it is to support (wellfounded) induction. The first
definition—the “descending chain condition”—is easier to understand, and is
equivalent to the second if we have the axiom of choice.

The first condition obviously implies the second because an infinite descend-
ing chain would be a ‘(“bad”) Q without a minimal element. For the other
direction suppose there is a “bad” Q. Using the axiom of choice we build an in-
finite descending chain: no element is minimal so we can always find an element
below the last member of the chain we are building.

For a concise introduction to wellfounded induction look at (e.g.) pp 11–12 of
https://www.dpmms.cam.ac.uk/~tf/cam_only/partiiicomputability.pdf or
read the section in Logic, Induction and Sets.

(b)

You will probably recognise this ordering as the lexicographic ordering on IN×IN.
Put another way, it is the lexicographic product of two copies of the strict or-
dering 〈IN, <IN〉. It’s wellfounded beco’s it’s a lexicographic product of two
wellfounded strict total orders (aka wellorderings). This last fact (that a lexico-
graphic product of two wellfounded strict total orders is likewise wellfounded)
is worth committing to memory, so let’s prove it—or rather this particular
instance. Suppose we had an infinite descending chain of pairs of natural num-
bers. Keep you eye on the first components of the pairs you see as you descend.
They cannot get bigger, and they cannot decrease indefinitely (〈IN, <IN〉 is well-
founded, after all) so are eventually constant. So, after a while, all the pairs
have the same first component. Ignore all pairs above that point. Now look
at the second components of the surviving pairs. The same line of argument
applies so they are eventually constant, and we have found our minimal element.
And of course it’s unique.

(c)

We are being invited to build a descending chain by the following method. If we
have a pair 〈m,n〉 in our hand, we put below it either 〈m,n−m〉 (if m < n) or
〈m− n, n〉 (if m > n); if m = n we do nothing. Observe that both 〈m,n−m〉
and 〈m− n, n〉 come below 〈m,n〉 in the lexicographic order. So we cannot do
this infinitely often. So we have to stop! But the only way we can stop is if we
reach a stage where the two components are the same.

You will presumably have spotted the connection to Euclid’s division algo-
rithm. This is the standard proof that that algorithm always halts. That was
always sort-of obvious, so what we have done here is not so much prove that
Euclid’s algorithm is good but rather show that it is good for specific reasons
which can be deployed elsewhere. (For example to proving that the Ackermann
function is defined everywhere).

2

https://www.dpmms.cam.ac.uk/~tf/cam_only/partiiicomputability.pdf

