
I’m not supplying answers to the parts that most of you got right.

Question 1

The unambitious way to tackle this question is to work out a few exampls, and
see if a pattern emerges. It might. The chief drawback is that the number of
examples you have to calculate to get any sort of a picture is large enough for
there to be a reasonable possibility of you making a mistake en route and that
could altogether spoil the effect. But in general the strategy of calculating a
few special cases to get a feel is not a bad idea.

The ambitious way is to try to work out the answer by thinking it through.
|w1| and w2| are the lengths of the words w1 and w2. How long is a word
obtained by interleaving w1 and w2? Clearly such a word has |w1|+ |w2| places
where characters might be, and |w1| of those are occupied by characters from
w1. Clearly there are

(|w1|+|w2|
|w1|

)
ways of picking those |w1| places to be occupied

by characters from w1. Once you have decided which places are to be occupied
by characters from w1 there is only one way of filling in those characters from
w1—since they have to be inserted in order—so there are

(|w1|+|w2|
|w1|

)
ways of

interleaving w1 with w2.
Of course we could also have thought of this as interleaving w2 with w1 and

then we would have obtained the answer
(|w2|+|w1|

|w2|
)

which is of course the same
(whew!) namely

(|w1| + |w2|)!
|w1|! × |w2|!

Question 2

Starting from a machine M1 that recognises L1 and M2 that recognises L2, how
do we build a machine that recognises an interleaving of words from L1 and L2?
A machine that does this must somehow be keeping two strings in mind, a
string that is perhaps going to become something in L1 and a string that is
perhaps going to become something in L2. Let’s start, as the hint suggests,
by considering the easy case where L1 and L2 come from disjoint alphabets.
(L1 might contain strings of letters, and L2 contain strings of numerals.) This
makes it easy beco’s—when a new character comes along for the machine to
process—there need be no doubt in anybody’s mind which of the two strings
the character belongs to. Thus it is clear that—if the alphabets of L1 and L2

are disjoint—the machine you want for recognising interleavings consists of the
two machines M1 and M2 next to each other, and when a character comes along
you feed it to whichever machine is appropriate.

How do you formally describe a machine that consists of M1 and M2 sitting
together side by side? You have to say what its states and transitions are. To
specify its states, you have to specify what states M− 1 and M2 are in , which
is to say that its states are ordered pairs of states, the first component being
a state of M1 and the second component being a state of M2. What is the

1

transition relation? Well, suppose our new machine is in state 〈s1, s2〉, and
receives a character c. If c is from the alphabet for L1 then we move to a state
〈t1, s2〉—where t1 is the state to which M1 moves if it is in state s1 and receives
character c. On the other hand if c is from the alphabet for L2 then we move
to a state 〈s1, t2〉—where t2 is the state to which M2 moves if it is in state
s2 and receives character c. The start state of the new machine is the ordered
pair of the two start states, and a state is accepting if both its components are
accepting.,

This is a description of a deterministic machine, but the reason why it is
deterministic is that the alphabets of L1 and L2 are disjoint, so that whenever
a character arrives we can tell which alphabet it belongs to and we know which
coordinate of the ordered pair to alter. If the alphabets for L1 and L2 overlap—
or are the same—then we don’t know whether to think of the incoming character
as being part of a string in L1 or part of a string in L2.

This means that, if the character c that the machine receives when in state
〈s1, s2〉 belongs to both alphabets then we must put in two transitions, one to
a state 〈t1, s2〉—where t1 is the state to which M1 moves if it is in state s1

and receives character c and one to a state 〈s1, t2〉—where t2 is the state to
which M2 moves if it is in state s2 and receives character c. This machine is
nondeterministic. However its degree of nondeterminism (see the hint) is 2.

Question 3

Once you are happy with that it will be fairly clear what to do with interleavings
of more than two languages. If you interleave n languages L1 . . . Ln, recognised
respectively by machines M1 . . .Mn, then the machine that recognises inter-
leavings of the languages L1 . . . Ln has states that are ordered n-tuples of states
of machines M1 . . .Mn. And its degree of nondeterminism will be n.

2

